An In-Memory-Computing Charge-Domain Ternary CNN Classifier

Xiangxing Yang1, Keren Zhu1, Xiyuan Tang1, Meizhi Wang1, Mingtao Zhan2, Nanshu Lu1, Jaydeep P. Kulkarni1, David Z. Pan1, Yongpan Liu2, Nan Sun1,2

1University of Texas at Austin, Austin, TX
2Tsinghua University, Beijing, China
Outline

• Motivations
• Existing Works
• Theoretical Concept of the Proposed Work
• Circuit Implementation
• Measurement results
• Summary
Quest for Energy Efficient Edge Computing System

Increasing need from various applications:

Pattern Recognition Image Classification Object recognition
Challenges on Energy Efficient NN Inference

- High computation energy
- High memory access energy

Total MACs
Total Weights

<table>
<thead>
<tr>
<th>Model</th>
<th>MACs</th>
<th>Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>LeNet5</td>
<td>60k</td>
<td>341k</td>
</tr>
<tr>
<td>AlexNet</td>
<td>61M</td>
<td></td>
</tr>
<tr>
<td>Reset50</td>
<td></td>
<td>25.5M</td>
</tr>
<tr>
<td>VGG16</td>
<td>138M</td>
<td>15.5G</td>
</tr>
</tbody>
</table>

[V. Sze, Proceedings of the IEEE 105.12 2017]
Challenges on Energy Efficient NN Inference

\[h = g \left[\left(\sum_{i=1}^{m} w_i \cdot x_i + b \right) \right] \]

- \(x_i \): Input activation
- \(w_i \): Weight
- \(b \): Bias
- \(h \): Output to next layer
- \(g \): Activation function

Accumulation
Challenges on Energy Efficient NN Inference

1. Higher resolution cost more energy

2. Memory access is expensive

Rough Energy Costs in 45nm 0.9V

- Add
- Mult
- SRAM Access(64b)

<table>
<thead>
<tr>
<th>Format</th>
<th>Add</th>
<th>16b</th>
<th>Mult</th>
<th>16b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer</td>
<td>0.03</td>
<td>0.4</td>
<td>0.9</td>
<td>1.1</td>
</tr>
<tr>
<td>Floating Point</td>
<td>0.1</td>
<td>0.2</td>
<td>3.1</td>
<td>3.7</td>
</tr>
</tbody>
</table>

[SRAM Access(64b) 10]

[M. Horowitz, ISSCC 2014]
Solutions to Energy Efficient NN Inference

• Conventional computing:

SRAM/DRAM
Load data for computing/
Store results

Memory

Processing Element(PE)

Compute

Memory access can easily dominate energy/throughput

• In-memory-computing:

Minimized data movement from distributed memory
Solutions to Energy Efficient NN Inference

- Reduced Resolution Network:

\[\text{32b Floating point} \rightarrow ? \]

Multiplying energy cost
Solutions to Energy Efficient NN Inference

- Reduced Resolution Network:

 CIFAR-10, ResNet-56
 Activations are quantized to 1/2/3/4/8/32b

 [Y. Dong, IJCV 2019]

 Visualization of filters from binary neural network

 [M. Courbariaux, arXiv 2016]
Energy Cost of NN Inference

\[\text{Power} = \text{Rate} \times \frac{\text{Energy}}{\text{Inference}} = \text{Rate} \times \frac{\text{Operations}}{\text{Inference}} \times \frac{\text{Energy}}{\text{Operation}} \]

[Energy / Inference]

[Ops/Inference

Energy/OP]

[B. Murmann, ISSCC 19 Tutorial]
Outline

• Motivations
• Existing Works
• Theoretical Concept of the Proposed Work
• Circuit Implementation
• Measurement results
• Summary
Existing works

• Digital Domain:
 - Bit error free 😊
 - High power from digital adder tree 😞
 - Low throughput 😞

[K. Ando, JSSC 18]
Existing works

- Current Domain:
 - High throughput 😊
 - PVT-robustness 😞
 - Consumes static current 😞

[J. Zhang, JSSC 17]
Existing works

• Charge Domain:
 - High throughput 😊
 - No static current 😊
 - Large operations/inference ☹️

\[\frac{v_{td}}{V_{DD}} = \frac{C_u}{C_{tot}} \left(\sum_{i=0}^{N-1} w_i x_i + b \right) \]

[D. Bankman, JSSC 18]
Outline

• Motivations
• Existing Works
• Theoretical Concept of the Proposed Work
• Circuit Implementation
• Measurement results
• Summary
Comparison of Model Size

Baseline test: 98% Accuracy on MNIST

1b Resolution
1.38x10^8 OPs

~4x Bigger model size

1.5b Resolution
3.57x10^7 OPs
\{w,x\} from -1,0,1
Mixed Signal BNN vs TNN

SAR ADC

SAR ADC with V_{CM} based switching

Mixed-Signal BNN

1b $W \times X$

Activation function

Input

Output

Mixed-Signal TNN

1.5b $W \times X$

Activation function

Input

Output
Mixed Signal BNN vs TNN

<table>
<thead>
<tr>
<th>Hardware Complexity</th>
<th>Operations Inference (@same accuracy)</th>
<th>Energy Operation (CDAC signal swing)</th>
<th>Energy Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNN</td>
<td>☺ ☺ ☺</td>
<td>☺ ☺ ☺</td>
<td>☺ ☺ ☺</td>
</tr>
<tr>
<td>TNN</td>
<td>☺</td>
<td>☺ ☺</td>
<td>☺ ☺ ☺</td>
</tr>
</tbody>
</table>

VREFP \(\rightarrow \) VREFN
\(V_{REF} \) Output
1b W * X

VREFP \(\rightarrow \) VREFN
\(V_{REF} \) Output
1.5b W * X

Mixed-Signal BNN

Mixed-Signal TNN

OPs/Inference \(\downarrow \) 75%
Energy/Operation \(\downarrow \) 31%
Energy/Inference \(\downarrow \) 82%
Outline

- Motivations
- Existing Works
- Theoretical Concept of the Proposed Work
- Circuit Implementation
- Measurement results
- Summary
On-chip Neural Network Model

<table>
<thead>
<tr>
<th>Layer</th>
<th>Type</th>
<th>Size</th>
<th>Channel</th>
<th>Filter Size</th>
<th>Dilated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CONV-TN</td>
<td>30x30</td>
<td>1(input)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>CONV-TN</td>
<td>28x28</td>
<td>32</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2p</td>
<td>MAX POOL</td>
<td>26x26</td>
<td>32</td>
<td>2x2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>CONV-TN</td>
<td>13x13</td>
<td>32</td>
<td>2x2</td>
<td>1</td>
</tr>
<tr>
<td>3p</td>
<td>MAX POOL</td>
<td>12x12</td>
<td>32</td>
<td>2x2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>FC</td>
<td>(Flatten 6x6x32) 1152 - 10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chip Architecture

- **Ternarized Input Image** (From MNIST)
- **Digital CONV1 (32ch * 4)**
- **CONV2 (32ch)**
 - 1 KB Weights
 - 256 Bytes Bias SRAM
- **CONV3 (32ch)**
 - 1 KB Weights
 - 256 Bytes Bias SRAM
- **FC (1152 - 10)**
 - 288 Bytes Image SRAM
 - 2.88 KB Weights SRAM
- **MAXPOOLDING**
- **MAXPOOLDING**
- **Image SRAM**
 - 1352 Bytes

Results (0~9)

Weights and Bias

Preload to chip

0.18uJ/classification @ 97.1% accuracy
CONV1 – Example of One-Channel Convolution

Filter 2x2 Dilated L = 2

Ternarized Input Image 1ch

Output Image 1ch

Output Image 1ch

X_{011} = \text{STEP}(W_{11}X_{i11} + W_{12}X_{i13} + W_{21}X_{i31} + W_{22}X_{i33})

X_{012} = \text{STEP}(W_{11}X_{i12} + W_{12}X_{i14} + W_{21}X_{i32} + W_{22}X_{i34})

W, X \in \{-1, 0, 1\}
CONV1 – Example of 32-Channel Convolution

\(W, X \in \{-1, 0, 1\} \)
CONV1 – Digital Implementation

Slice 0
- 4 input pixels (DFF * 8)
- Filter1 2x2 (DFF * 8)

Slice 1
- 4 input pixels (DFF * 8)

Slice 31

8b 8b 8b 8b

STEP\left(\sum_{i=1}^{4} (W_i \times X_i)\right)

Combinational Logic

ϕ_{EN}

Data I/O
- Loading W
- Loading X

ϕ_{EN}

One Pixel Output (32 ch)

CONV1 Output
CONV1 – Digital Implementation

Slice 0 - 31
- Input Registers
- Filter Registers

Slice 32 - 63

Slice 64 - 95

Slice 96 - 127

Data I/O
- Loading W
- Loading X

Φ_{EN}

CONV2

256b

CONV2$_{EN}$

32ch 2x2 pixels

STEP($\sum_{i=1}^{4} (W \ast X)$)
CONV2 – Example of 32-Channel Convolution

Filter0
2x2x32

Filter1

CONV1
Output
2x2x32

Filter31

CONV2
Output
32ch

\[\mathbf{X_0} = \text{STEP}(\sum_{i=1}^{128} (\mathbf{W}_i \cdot \mathbf{X}_i) + \text{Bias}) \]

Step Activation Function of CONV2
CONV2 – Implementation of One-Channel SC Neuron

\[V_x = \frac{C_u}{C_{Total}} \cdot (V_{REFP} - V_{REFN}) \cdot \left(\sum_{i=1}^{128} (W_i \cdot X_i) + \sum_{i=1}^{32} \text{Bias}_i \right) \]

\[C_{Total} \approx 160 \ C_u \]

\((W_i \cdot X_i), \text{Bias} \subseteq \{ V_{REFP}, V_{CM}, V_{REFN} \} \)
CONV2 – Synapse Design

Encoding for simplicity:

<table>
<thead>
<tr>
<th>DEC</th>
<th>BIN</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>V_{REFP}</td>
</tr>
<tr>
<td>-1</td>
<td>11</td>
<td>V_{REFN}</td>
</tr>
<tr>
<td>0</td>
<td>0X</td>
<td>V_{CM}</td>
</tr>
</tbody>
</table>

$1.5b$ Multiplier \rightarrow

\[\text{IN1}_H, \text{IN2}_H \rightarrow \text{OUT}_H \]
\[\text{IN1}_L, \text{IN2}_L \rightarrow \text{OUT}_L \]
CONV2 – Comparator Design

Dout = STEP (Vx)

Dout_H

Dout_L

V_{INP}

V_{REF+}

V_{REF-}

V_{INN}

V_{X} = V_{INP} - V_{INN}

V_{+} = V_{REF+} - V_{REF-}

V_{-} = V_{REF-} - V_{REF+}

Differential Comparator

AVDD

COMP OUT

CLK

Moscap Array

5b SRAM

VDD

GND

V_{REF+}

V_{REF-}

Offset Calibration

C2C4C8C16C

5b SRAM

VDD

GND

Moscap Array

Offset Calibration
CONV2 – Effect of Comparator Offset

\[\text{Dout} = \text{STEP} \ (V_x) \]

\[V_+ = V_{\text{REF}+} - V_{\text{REF}-} \]
\[V_- = V_{\text{REF}-} - V_{\text{REF}+} \]

Ideal activation function

Actual activation function

Offset \sim 10 \text{ LSB}
CONV2 – Foreground Comparator Offset Calibration

From off-chip DAC

Inputs set to V_CM

Offset code set to minimum

Fire comparator 1000 times

Avg output ≈ 0.5?

Yes

Calibration done

No

Offset code += 1

RST = 1
CONV2 – Foreground Comparator Offset Calibration

- Offset ~ 10 LSB w/o Offset Calibration
- Offset < 1 LSB w/ Offset Calibration
CONV2 – Maxpooling

Architecture of CONV2 (Single-end shown)
Datapath from CONV2 to CONV3

E.g. CONV2 output

CONV3 Filter Window

CONV2 Output Image

Only need to read 2 pixels from SRAM

MUX

CONV3 EN

x144
FC Layer Operation

CONV3 Output Image
6x6x32

[Diagram of CONV3 Output Image]

Flattened
1152 x 1

Weights for ‘0-9’

\[
\text{Logit} = \left(\sum_{i=1}^{1152} (W_i \ast X_i) \right)
\]

\(W_i, X_i \in \{-1,0,1\}\)

‘0’:
‘1’:
‘2’ : 5
‘3’ : 24
‘4’ : 35
‘5’ : -22
‘6’ : 117
‘7’ : -4
‘8’ : -8
‘9’ : 42

Classification Result : 6
FC Layer Implementation

32 Channels

MEMORY DECODER
Scan In
SRAM WRITE DRIVER
640 BITS WEIGHTS SCAN CHAIN

W*X 1.5bit Multiplier

20 bit Weights SRAM

φi Select weights for 0~9

SE<3:0>

1 pixel load after CONV3 conversion

32 Channels

Φ0 Φ0 Φ0

Φ1 Φ1 Φ1

Φ35 Φ35 Φ35

36 Pixels

D_{OUT, CONV3} 64b

DOUT_CONV3 64b

2b 2b 2b

Scan In 640 BITS WEIGHTS SCAN CHAIN

(Single-ended shown)
FC Layer Implementation

![Diagram of FC Layer Implementation](image)

- **RST**
- **ON1**
- **ON2**
- **RST1**
- **RST2**
- **COMP**

- '0' on C1
- '1' on C2
- '0'>='1'?
- '0'<='1'
- Select weights '2'
- '2' on C1
- '1'>='2'?
- '2'<='1'
- Reset C1

- **VCM**
- **VIN**
- **OUT**

- **VCM**
- **RST**
- **COMP**
Outline

• Motivations
• Existing Works
• Theoretical Concept of the Proposed Work
• Circuit Implementation
• Measurement results
• Summary
Die Photo

- 40nm LP CMOS
- Active Area: 0.98mm²
- Supply: 0.8V/0.7V/0.9V
Measurement Results

![Measurement Results Image]

- **Coverage Details**
 - Digital and Memory: 44.1 uW
 - CDAC and Multipliers: 43.7 uW
 - Comparators: 7.8 uW

- **Accuracy**
 - 97.1% accuracy @ 549 FPS

<table>
<thead>
<tr>
<th>Power Domain</th>
<th>Voltage</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVDD</td>
<td>0.7 V</td>
<td>44.1 uW</td>
</tr>
<tr>
<td>AVDD</td>
<td>0.8 V</td>
<td>7.8 uW</td>
</tr>
<tr>
<td>V_REF</td>
<td>0.9 V</td>
<td>37.8 uW</td>
</tr>
<tr>
<td>V_CM</td>
<td>0.45 V</td>
<td>5.9 uW</td>
</tr>
</tbody>
</table>
Comparison table

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>40nm</td>
<td>65nm</td>
<td>28nm</td>
<td>55nm</td>
<td>65nm</td>
<td>65nm</td>
</tr>
<tr>
<td>Circuit Type</td>
<td>Mixed-Signal Charge-domain</td>
<td>Digital</td>
<td>Mixed-Signal Charge-domain</td>
<td>Mixed-Signal Current-domain</td>
<td>Mixed-Signal Current-domain</td>
<td>Mixed-Signal Charge-domain</td>
</tr>
<tr>
<td>Bit Precision</td>
<td>1.5b</td>
<td>1/1.5b</td>
<td>1b</td>
<td>1.8b</td>
<td>1.5b</td>
<td>1b</td>
</tr>
<tr>
<td>Area(mm²)</td>
<td>0.98</td>
<td>3.9</td>
<td>4.6</td>
<td>5.85</td>
<td>0.055</td>
<td>12.6</td>
</tr>
<tr>
<td>Area Eff.(GOPS/mm²)</td>
<td>469¹</td>
<td>105</td>
<td>67</td>
<td>N/A</td>
<td>N/A</td>
<td>1498</td>
</tr>
<tr>
<td>Operating VDD(V)</td>
<td>0.8/0.7/0.9</td>
<td>0.55-1.0</td>
<td>0.8/0.8</td>
<td>0.9</td>
<td>0.8/0.45</td>
<td>0.94/0.68/1.2</td>
</tr>
<tr>
<td>Energy Eff.(TOPS/W)</td>
<td>556²</td>
<td>2.3-6.0</td>
<td>532</td>
<td>40.2</td>
<td>490-15.8</td>
<td>866</td>
</tr>
<tr>
<td>Dataset</td>
<td>MNIST</td>
<td>MNIST</td>
<td>CIFAR-10</td>
<td>MNIST</td>
<td>MNIST</td>
<td>MNIST</td>
</tr>
<tr>
<td>Accuracy</td>
<td>97.1%³</td>
<td>90.1%</td>
<td>86.05%</td>
<td>98.56%</td>
<td>96.2%</td>
<td>98.6%</td>
</tr>
<tr>
<td>FPS</td>
<td>549</td>
<td>N/A</td>
<td>237</td>
<td>N/A</td>
<td>N/A</td>
<td>651</td>
</tr>
<tr>
<td>Power(mW)</td>
<td>0.096</td>
<td>N/A</td>
<td>0.899</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Operations / Inference</td>
<td>TNN</td>
<td>BNN (simu)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.57x10⁷</td>
<td>1.38x10⁸</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MACs Energy / Inference</td>
<td>0.09uJ</td>
<td>0.52uJ</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>0.8uJ</td>
</tr>
<tr>
<td>Total Energy / Inference</td>
<td>0.18uJ</td>
<td>0.7uJ</td>
<td>N/A</td>
<td>3.8uJ</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>All operations on chip</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

¹Based on SC neuron
²Based on MACs energy efficiency
³10 runs average on 10,000 test set images.
Outline

• Motivations
• Existing Works
• Theoretical Concept of the Proposed Work
• Circuit Implementation
• Measurement results
• Summary
Summary

• A 1.5b charge domain ternary CNN classifier is proposed:
 - Fully on-chip NN with lowest energy/inference reported for >97% MNIST accuracy
 - Compared to BNN with same accuracy:
 • 75% \(\frac{\text{Operations}}{\text{Inference}}\) ↓
 • 31% \(\frac{\text{Energy}}{\text{Operation}}\) ↓
 • 82% \(\frac{\text{Energy}}{\text{Inference}}\) ↓
Thank You