Parents’ and Offspring's Perceptions of Change and Continuity when Parents Experience the Transition to Old Age

Article in *Advances in Life Course Research* · January 2007

DOI: 10.1016/S1040-2608(07)12010-4

5 authors, including:

Karen L Fingerman
University of Texas at Austin
105 PUBLICATIONS 2,062 CITATIONS

Elizabeth L Hay
19 PUBLICATIONS 482 CITATIONS

Claire Kamp Dush
The Ohio State University
57 PUBLICATIONS 642 CITATIONS

Kelly Cichy
Kent State University
17 PUBLICATIONS 176 CITATIONS

Available from: Karen L Fingerman
Retrieved on: 16 November 2016
PARENTS’ AND OFFSPRING’S PERCEPTIONS OF CHANGE AND CONTINUITY WHEN PARENTS EXPERIENCE THE TRANSITION TO OLD AGE

Karen L. Fingerman, Elizabeth L. Hay, Claire M. Kamp Dush, Kelly E. Cichy and Shelley J. Hosterman

ABSTRACT

Most parents and children are fortunate to share several decades of the life course when both parties are healthy adults. When parents reach the transition to old age, however, they typically experience health declines and both parties must adjust to changes in the relationship. The sample included older adults (aged 70+) suffering vision loss, hearing loss, or seeking general health care and a grown son or daughter (N=121 dyads, 242 individuals).

*This study was funded by a grant from the Brookdale Foundation, "Sensory Impairment and Family Ties in Late Life" and by grant R01AG17916 “Problems Between Parents and Offspring in Adulthood” and grant R01AG027769 “The Psychology of Intergenerational Transfers,” from the National Institute of Aging awarded to Karen L. Fingerman.
Aging parents also suffered common health problems (e.g., hypertension, arthritis). Parents and offspring provided open-ended descriptions of changes and continuities in their relationship. Although prior studies link parental health declines to intergenerational ambivalence, most parents and offspring in this study mentioned positive changes in the relationship in recent years, regardless of parental health. Multilevel models revealed that perceptions of changes in parental health or receipt of support were associated with objective indicators of parental health. Findings suggest offspring’s views of the relationship converge with parents’ when parents reach the transition to old age and show physical signs of aging.

Due to the lengthening of life expectancy in industrialized nations, adults now often experience several decades when they are in relatively good health and their parents are also in good health. Most individuals report positive relationships with parents or offspring throughout this period (Fingerman, Chen, Hay, Cichy, & Lefkowitz, 2006; Rossi & Rossi, 1990). At the end of life, however, parents often suffer debilitation due to physical or mental frailties. Offspring tend to step in and provide care, help with care if the parent’s spouse is still living, or coordinate formal paid services. Throughout this caregiving period, relationships become more strained (Gaugler, Zarit, & Pearlin, 2003; Walker, 1999; Zarit, 2007). Research on adults’ ties to their parents has focused on these two periods of the life course: (a) when offspring are adults and parents are in good health or (b) the end of life when parents are in poor health and require assistance. We know little about the transition between these two life course phases, when parents show signs of physical aging, but are not incapacitated.

Health declines can be precipitous, as when a parent suffers a stroke, but frequently, chronic health problems develop over prolonged periods. Indeed, we might deem this period of the life course a “transition to old age.” Researchers have recently turned attention to the “transition to adulthood,” a socially constructed period of the life course during which young people aged 20 to 30 achieve markers of adulthood (see, Arnett, 2006). Yet, researchers have focused less attention to the potential physical transition from healthy adulthood into the frailties of old age. Scholars have studied adults suffering chronic illnesses, but have not conceptualized this as a period of life course transition. This study focused on this transitional period, when parents accrue chronic illness and functional deficits, but still live independently.

Life course theorists have suggested that researchers consider interdependencies that accrue during such periods. Parents and offspring are not
individuals whose development simply co-occurs, but rather, individuals who react to changes in the other party (Hagestad, 2003). In this case, parents and offspring share several years while parental health slowly wanes. Although parents continue to function independently during this transition, both parties cope with parental physical ailments and the potential for future decline.

In casual conversation, middle-aged adults commonly use the term "role reversal" to describe these transitions in relationships with aging parents. It is not clear whether parents and offspring do, in fact, exchange aspects of their roles as both grow older, but offspring's perceptions of changes are important. Such perceptions may be associated with how offspring treat their parents and how they feel about the relationship in the present and the future. Research finds parents' perceptions of their young children's transitions influence behaviors towards those children and the child's development (Goodnow & Collins, 1990; Shearer, Crouer, & McHale, 2005). A similar pattern may occur with regard to adult offspring's perceptions of parental transitions in late life. For example, when offspring perceive and act on a belief that their parents are declining, they may undermine their parents' functioning. Yet, systematic data concerning offspring's perceptions of changes when parents experience common non-debilitating health problems are not available.

Further, parents' perceptions of changes in the tie and whether they believe offspring are attempting to reverse roles may be of equal importance in understanding the relationship. Studies suggest that older adults dislike receiving unwanted help and unsolicited assistance can undermine their autonomy (Baltes & Wahl, 1992; Smith & Goodnow, 1999). Yet, it is not clear either anecdotally or from research whether parents perceive that a role reversal occurs or how they experience their relationships with offspring as their health declines.

This study focuses on parents' and offspring's reactions to the transition to old age, when parents incur common health problems of late life, but do not require hands-on care. We were interested in whether offspring and parents perceive negative changes as parental health declines across the life course, even in the absence of caregiving. Specifically, we examined: (a) middle-aged offspring's and their parents' perceptions of change and continuity in the relationship during this period, (b) generational differences in such perceptions, and (c) associations of parental health problems with such perceptions.

PERCEPTIONS OF CHANGES AND CONTINUITY

Our first goal was to examine changes parents and offspring perceive in their relationships as parents begin to show signs of physical aging and experience
this transitional period of the life course. In particular, we were interested in perceptions of changes in support exchanges, parental health, and emotional qualities of the relationship. We considered these issues based on prior research. We expected parents and offspring to notice changes in support exchanges and parental health. In a small qualitative study of middle-aged daughters, Fingerman (1997) found that women were particularly sensitive to tasks they performed for their mothers and that they noticed even minor declines in their mother’s health. Further, middle-aged adults often do take on new tasks for their parents, and both parties may note this shift from the prior period of the relationship, when parents primarily provided for offspring (McGarry & Schoeni, 1997).

We were also interested in whether parents and offspring perceive shifts in emotional qualities of their ties. Family theorists have argued that parents and offspring may experience shifts in the emotional qualities of their relationships when parents experience health problems in late life. The nature of these changes in emotional quality is unclear, however. Some studies report greater ambivalence (mixed positive and negative feelings) when parents are in poorer health (Fingerman et al., 2006; Spitze & Gallant, 2004; Willson, Shuey, & Elder, 2003). Other studies suggest a decrease in ambivalence (Fingerman, Hay, & Birditt, 2004) or increased positive regard throughout adulthood (Umberson, 1992). We examined parents’ and offspring’s descriptions of changes in their tie to better understand how they perceive emotional qualities under different types of parental health conditions.

In sum, we expected parents and offspring to be particularly attuned to the health changes parents experience as they undergo a life course transition into old age, even when the health declines only impinge mildly on parental functioning. We also anticipated generational differences in the nature of parents’ and offspring’s responses.

Generational differences in perceptions of change. Generational differences in parents’ and offspring’s perceptions of their ties are well documented in the literature. Across studies, parents rate the quality of their ties higher (Rossi & Rossi, 1990; Shapiro, 2004; Umberson, 1992), and report fewer problems in their ties (Fingerman, 2001) than do offspring. Such generational differences may be evident in reports of change and continuity.

Offspring may be particularly attuned to the effects of parental health declines on their relationship. As adults enter midlife, they become increasingly aware of the finite nature of life (Neugarten, 1968); as an extension of this awareness, they also experience heightened awareness of parental aging and mortality (Troll, 1986). Further, adults worry about their parents’ health throughout adulthood (e.g., Hay, 2004), and by midlife, they
experience anxiety over future care they may provide for their parents (Cicirelli, 1988). Thus, offspring may be primed to notice the impact of subtle changes in parental health on their relationships. Parents, on the other hand, may be less attuned to the impact of minor health problems on relationships with their offspring. Therefore, we expected offspring to describe parental health problems more often than parents.

Offspring may perceive assistance they provide to parents in a different manner than do parents. Most parents provide more functional and financial support for their offspring than the reverse, even in old age (Soldo, 1996). Yet, as parents encounter physical declines of old age, offspring may take on new tasks for them (McGarry & Schoeni, 1997) and offspring appear to be sensitive to changes in such tasks (e.g., making dinner or running errands; Fingerman, 2000). Parents may be less aware of this assistance (Rossi & Rossi, 1990). We expected offspring to notice changes in parental health and in support exchanges to a greater extent than their parents.

Instead, parents may focus on the offspring’s maturation and accomplishments (e.g., Fingerman, 2000; Ryff, Schmutte, & Lee, 1996; Troll, 1986). They may view shifts in assistance as indicative of their offspring’s maturation, rather than as indicative of their own diminishing abilities. We expected parents to discuss changes in positive ways, and to highlight their offspring’s growth.

In sum, offspring’s perceptions of changes in ties to their parents may reflect their own midlife concerns, the onset of parental health problems, and changes in assistance they provide. Combined, these factors may result in offspring’s sense of a “role reversal.” Parents, by contrast, may focus on more positive aspects of the relationship, and may view changes in terms of the offspring’s maturation and achievements.

Continuity in relationship patterns. Of course, by the time most parents incur health problems of old age, parents and offspring have shared two to three decades of adulthood. Therefore, we also consider parents’ and offspring’s perceptions of stability in the relationship. Parents and offspring may be sensitive to changes in patterns of assistance in the tie, but may recognize continuities in ongoing features of the relationship across the life course, such as the strength of their bond. For example, in a small qualitative study of change and continuity in the mother/daughter tie, middle-aged daughters described positive feelings (such as love and affection) and negative feelings (such as guilt and irritation) as areas of continuity in the tie (Fingerman, 1997). That qualitative study focused on the period of the life course when both parties are relatively healthy, however, and reports of emotional stability may reflect general stability in the tie across that period.
We considered stability of emotional bonds, but did not anticipate an identical pattern in this study. We expected parents and offspring to view the strength of their tie as an area of continuity. Yet, we also expected parents and offspring to respond to parental health declines with shifts in the emotional tone of the relationship, but the literature is split as to whether those shifts involve increased positive regard or ambivalence.

As with regard to changes, we expected generational differences in perceptions of continuity. Parents, in particular, are motivated to view ties to offspring as stable when they begin to show signs of physical decline. Parents like to view themselves as “parents” throughout life, even after their children are grown (Fingerman, 2001; Long & Mancini, 1989). Therefore, we expected parents to emphasize positive qualities of the relationship, the assistance they provide offspring, and their own parental role as areas of continuity. Indeed, research suggests even frail older adults view themselves as providing support. For example, Ingersoll-Dayton and Talbott (1992) found elderly adults confined to wheel chairs claimed to help family members. Likewise, older adults experiencing vision loss report providing affective and instrumental support to friends and family (Boerner & Reinhardt, 2003). Thus, parents may describe help to offspring as an area of continuity in the tie. By contrast, scant evidence suggests offspring may focus on positive and negative qualities of the tie in describing continuity (Fingerman, 1997; Troll, 1986), although we also hypothesized that many offspring would highlight changes in emotional qualities of the tie linked to parental health problems.

HEALTH PROBLEMS AND PERCEPTIONS OF CHANGE AND CONTINUITY

In addition to considering generational disparities, we considered how physical health problems and functional disabilities may contribute to perceptions of change and continuity in the tie. On the one hand, health problems may amplify generational differences in perceptions of changes, particularly if offspring are sensitive to changes in their roles and to parental health. On the other hand, health problems may equalize parents’ and offspring’s perceptions of their relationship, particularly if the health problems are salient to both parties.

Health in late life is complex. This study considered features of health likely to have an impact on relationships between adults and their parents: (a) the salience of health problems, (b) parental functioning and requirements for assistance, and (c) the potential life threatening nature of the
health problems. To examine these features of health, the study included three groups of older adults, those suffering: (a) presbycusis (i.e., hearing loss), (b) vision loss (age-related macular degeneration, AMD), and (c) no irreversible sensory loss. The third group included adults who suffer health problems and served as something of a control group for the sensory loss groups. Indeed, older adults in all three groups experienced a variety of other health problems (e.g., high blood pressure, emphysema), but they were able to live in the community or did not require hands-on caregiving.

We focused on sensory disorders because they are common problems of late life that are also salient to social partners. Hearing loss affects over 33% of the population over age 70 (Desai, Pratt, Lentzner, & Robinson, 2001; Fozard & Gordon-Salant, 2001), and AMD (the leading cause of uncorrectable vision loss in old age) affects more than 15% of the older population (Bressler, 2004; Casten, Rovner, & Edmonds, 2001). Sensory disorders can make it difficult for individuals to function in daily life and to communicate with social partners (Tesch-Romer, 1997; Wahl & Tesch-Romer, 2001). These sensory disorders also are emblematic of more permanent parental decline and aging. Often, only partial remediation is possible for presbycusis (Strawbridge, Wallhagen, Shema, & Kaplan, 2000), and dry-type AMD progresses to significant vision loss (Bressler). Moreover, sensory impairments are obvious to outsiders, conveying the impression the parent is aging rapidly.

Vision and hearing loss, however, may affect perceptions of change in the relationship in distinct ways (Kline & Scialfa, 1996). Visual impairment has a greater impact on daily functioning than other health problems, except stroke and dementia (Lee, Smith, & Kington, 1999; Stuck et al., 1999). By contrast, studies find few or no effects of hearing loss on daily functioning (Wallhagen, Strawbridge, Shema, Kurata, & Kaplan, 2001), but do find that individuals who experience hearing loss suffer social isolation and difficulties connecting with other people (Smith & Kampfe, 1997). Therefore, we considered whether parents and offspring perceive distinct changes in their ties when parents suffer sensory loss (as an external sign of aging) compared to older parents who do not suffer sensory loss, as well as comparing the effects of vision and hearing loss.

We also considered the influence of functional disabilities and offspring's provision of assistance on perceptions of change. Parents and offspring may perceive changes in their relationships if parents are no longer able to do tasks they could do easily in the past, such as driving. They may note such changes, regardless of whether or not the offspring has to step in to compensate for those parental losses. Parents may suffer functional disabilities but turn to a spouse, another child, or paid professional for assistance. At the same time, we
were interested in objective indicators of what the offspring does for the parent. When offspring have to take on new tasks for the parents, parents and offspring alike may be particularly sensitive to these changes in assistance patterns.

Finally, we were interested in the emotional impact of life threatening disorders (e.g., cancer) on relationships between parents and offspring. Socio-emotional selectivity theory suggests that when individuals approach the end of life, they focus on positive aspects of their relationships. A shortened time perspective leads individuals to view their ties to others in more positive terms (Carstensen, Isaacowitz, & Charles, 1999). Thus, parents who have suffered life threatening disorders may be particularly positive about their ties to offspring. Elsewhere, we have proposed that a similar process occurs with regard to relationship partners; when individuals perceive little time left with a relationship partner, they may perceive their relationship with that partner in more positive terms (Fingerman & Pitzer, 2006). Thus, offspring also may sense that little time remains with a parent who has suffered a life threatening disease, and may hold more positive perceptions of the relationship as a result.

Thus, we considered different aspects of parental physical status to better understand how parental health problems are associated with relationships with offspring. Sensory losses are common, can be objectively measured, and are obvious to outsiders. Vision and hearing loss are also associated in different ways with relationship processes. Vision loss is often associated with functional loss; individuals who cannot see cannot drive. Offspring may or may not step in to take over tasks the parent cannot fulfill. Of course, individuals could suffer functional loss and require offspring help for other less obvious reasons. Arthritis can be debilitating, but physicians cannot measure severity of the disorder easily; tools such as eye charts for vision loss render assessment of vision loss to be highly accurate. Finally, we considered less obvious, but potentially more serious conditions such as heart disease and cancer. Although the parents in this study retained independence in their daily living, they suffered a variety of common physical ailments of late life, and this study allowed us to differentiate how different aspects of these ailments shape relationships with their offspring.

OTHER FACTORS ASSOCIATED WITH PARENT/OFFSPRING TIES

This study examined relationships between parents and the offspring who knows most about their health care. We do not mean to oversimplify
relationships between aging parents and their offspring by limiting our focus to a single dyad and to a single cultural context. Theorists have articulated distinctions in the parent/offspring relationship as a function of the marital histories of the two generations (Putney & Bengtson, 2003), their birth cohorts (Fingerman & Dolbin-MacNab, 2006), the presence of other family members (Fingerman, 2001), education levels (Pillemer & Suitor, 2002), ethnicity (Davey, Janke, & Savla, 2005; Laditka & Laditka, 2001), gender (Suitor & Pillemer, 2002; Walker, 1999) and other social structural factors (Hagestad, 2003). We did not focus on this array of variables in this study. Rather, we attempted to consider differences in health in a sample with fairly homogeneous demographic characteristics. We did so to better isolate and understand how health and functional status are associated with parents’ and offspring’s perceptions of changes at this transitional phase of the life course for parents.

In sum, parents and offspring may have different views of continuity and change in their relationship. When describing changes across the life course, we examined whether parents and offspring refer to positive and negative qualities of the relationship. We expected generational differences in perceptions of changes in the relationship, with offspring more likely to report negative changes and to mention parental health and tasks they perform for their parents, and parents more likely to focus on offspring’s maturity. With regard to continuity, we expected parents and offspring alike to describe the strength of the relationship, with parents more positive and more aware of support they provide than offspring. We expected reports of different types of changes to be associated with indicators of parental health such as sensory loss, functional impairments, tasks offspring perform for their parents, and life threatening diseases. In particular, we expected vision loss to be associated with functional impairments and offspring’s reports of increased assistance, and hearing loss to be associated with decreased positive qualities of the relationship.

METHODS

Sample

The study included three groups of adults over the age of 70 and their offspring (N = 121 dyads, 242 individuals). Participants included community-residing parents suffering from (a) vision loss due to dry-type macular degeneration (n = 44 dyads), (b) presbycusis requiring a hearing aid
(n = 32 dyads), and (c) no such sensory loss (i.e., they had at least 20/60 corrected vision and functional hearing, n = 45 dyads). Data from two additional parents were excluded because their offspring refused to participate. Given the progressive nature of visual and hearing loss, interviewing individuals at the moment of diagnosis may not reveal the impact of the disorders on their relationships (Erdal & Zautra, 1995). Thus, the study included individuals who had been seeking treatment for vision and hearing impairments rather than individuals newly diagnosed for the disorders.

Optometry and ophthalmology clinics, audiology clinics, and internal medicine clinics in three counties in central Pennsylvania assisted with recruitment. Medical personnel told potential participants the study focused on health and family ties in late life, and that a grown child would be asked to participate. Vision clinics and internal medicine practices obtained response rates of 35% and 43%, respectively, for eligible participants. Response rates are not available for the audiology clinics.

After patients agreed to participate, the research team conducted additional screening. Individuals were excluded who: (a) showed signs of cognitive impairment or frailty requiring caregiving with tasks of daily life (e.g., bathing, dressing), (b) suffered both vision and hearing problems, and (c) suffered vision loss due to other causes (e.g., glaucoma, diabetes). Individuals contacted through the internal medicine clinics who had macular degeneration or who wore hearing aids were reassigned to these groups (n = 2, n = 3, respectively).

Prior studies suggest parents who have many children discuss health problems with only one or two offspring (Logan & Spitze, 1996; Pillmer & Sutor, 2006; Roberto, 1999). Thus, we asked parents to refer us to the son or daughter who knew most about their health. As in prior studies, mothers and fathers were equally likely to select sons to participate, but more mothers than fathers selected daughters to participate (e.g., Logan & Spitze, 1996; Roberto, 1999).

Procedure

The principal investigator and trained graduate students conducted the interviews. Participants had the option of face-to-face or telephone interviews. Most participants requested telephone interviews, including older adults suffering hearing loss who had special adapters in their telephones that
enhanced their ability to hear. Interviews lasted one to three hours. Parents' medical records (obtained with their written permission) also provided indicators of health.

Background Information

Participants provided a variety of sociodemographic information (see Table 1). In keeping with the geographic region of the study, the sample was 97% European American, 2% African American, and 1% Asian. On average, parents had 2.93 (SD = 1.23) children, and offspring had $M = 1.96$ (SD = 1.56) children of their own. Thirty-nine offspring had children under age 18.

Table 1. Sample Characteristics.

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Parent (n = 121)</th>
<th>Offspring (n = 121)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years*</td>
<td>79.4 (5.7)</td>
<td>50.2 (8.4)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>0.57</td>
<td>0.65</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than high school</td>
<td>0.07</td>
<td>0.00</td>
</tr>
<tr>
<td>High school</td>
<td>0.26</td>
<td>0.14</td>
</tr>
<tr>
<td>Some college</td>
<td>0.35</td>
<td>0.24</td>
</tr>
<tr>
<td>College degree</td>
<td>0.19</td>
<td>0.32</td>
</tr>
<tr>
<td>Graduate degree</td>
<td>0.13</td>
<td>0.30</td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married/remarried</td>
<td>0.51</td>
<td>0.73</td>
</tr>
<tr>
<td>Widowed</td>
<td>0.43</td>
<td>0.03</td>
</tr>
<tr>
<td>Divorced/separated</td>
<td>0.06</td>
<td>0.14</td>
</tr>
<tr>
<td>Never married</td>
<td>0.00</td>
<td>0.11</td>
</tr>
<tr>
<td>Religion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protestant</td>
<td>0.72</td>
<td>0.61</td>
</tr>
<tr>
<td>Catholic</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td>Jewish</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>None</td>
<td>0.03</td>
<td>0.13</td>
</tr>
<tr>
<td>Other</td>
<td>0.01</td>
<td>0.02</td>
</tr>
</tbody>
</table>

*Numbers represent proportions, except age where values represent means and values enclosed in parentheses represent standard deviations.
We conducted ANOVA and chi-square tests to examine group differences in background characteristics. As per distribution of macular degeneration in the population, more females than males had AMD ($\chi^2 = 4.45, p < 0.05; n = 29$ females, $n = 15$ males), but the other two groups included approximately equal numbers of men and women. Perhaps due to the expense of hearing aids, older adults in the hearing loss group reported more years of education than individuals in the other groups ($F = 6.03, p < 0.01$). There were no significant differences in other background characteristics of the three groups.

Indicators of Health

Indicators of health included: subjective ratings, degree of sensory impairment (where relevant) obtained from parents' medical records, self-reports of functional status, and self-reported symptoms of depression. Parents rated their own health and functional abilities, whereas offspring rated both their own health and their perceptions of parents' health and functional abilities. Parents' and offspring's ratings of parental health and functioning were highly correlated, and only parental reports are used here. Indicators of health are provided below for description of the sample; however, as described, we selected a parsimonious subset of indicators for analyses based on the bivariate associations.

Subjective ratings of health. Participants provided a subjective rating of health on a 5-point scale: 1 (*excellent*), 2 (*very good*), 3 (*good*), 4 (*fair*), and 5 (*poor*; Idler & Kasl, 1991). On average, offspring rated their health as very good to excellent ($M = 1.85$, SD = 0.86), and parents rated their health as good to very good ($M = 2.52$, SD = 1.00). Given high correlations between self-rated health and other indicators of health, this assessment was not considered in analyses.

Sensory impairment. We obtained visual acuity based on medical records. Vision was assessed using the Snellen chart score (i.e., 20/20, 20/60 vision) for the better eye. Average vision for the AMD group was 196/20. Participants in the other two groups had 60/20 corrected vision or better. In keeping with standard procedures for research, scores were then transformed using the log of the minimum angle of resolution for purposes of analyses (logMar; Casten et al., 2001).

For participants suffering hearing loss, we obtained information from audiology records (e.g., pure-tone tests, air conduction thresholds from 500 to 4,000 Hz, word recognition threshold). This information was converted
into standard ratings of hearing loss: 1 (normal), 2 (slight), 3 (mild), 4 (moderate), 5 (moderately severe), 6 (severe), and 7 (profound). On average, participants suffered moderate hearing loss ($M = 4.0$, $SD = 0.75$). All participants in the hearing loss group suffered at least mild hearing loss, and none suffered severe or profound hearing loss.

Functional status. Participants answered six items assessing instrumental activities of daily living from the Community Disability Scale (Bassett & Folstein, 1991; Rovner, Zisselman, & Shmuel-Dulitzku, 1996): ability to clean, cook, pay bills, fix things around the house, do garden or yard work, and to drive or use public transportation independently. The summed items provide a continuous total functional disability score (FDS), $\alpha = 0.76$. On average, parents reported disabilities with 1.43 tasks ($SD = 1.65$, range 0 to 6 tasks).

Parents also indicated whether anyone assists them with each of these tasks, and if so, whom. We derived a summed total of tasks provided by the target child, $\alpha = 0.78$. On average, offspring assisted parents with only 0.86 tasks ($SD = 1.25$). This assessment was not intended as an exhaustive indicator of social exchanges, but rather as an indicator of whether offspring assist with tasks commonly associated with functional disabilities.

As in prior studies, parental functional disability correlated highly with the logMar visual acuity ($r = 0.62$); and modestly with hearing loss ($r = 0.27$; Casten et al., 2001; Gomez & Madey, 2001; Patrick, Kinne, Engelberg, & Pearlman, 2000). Consequently, we did not include degree of sensory impairment in analyses. Instead, the measure of parental functional disability served as a proxy for degree of impairment (sensory and otherwise), whereas group membership (e.g., hearing loss group) allowed us to examine differences due to the type of sensory impairment.

Life threatening diseases. Participants provided a complete list of medical conditions they suffered in the past two years. We used Gold, Malmberg, McClearn, Pedersen, and Berg's (2002) physician rating scale of the potential mortality of diseases to classify diseases as: (a) not at all life threatening (e.g., migraine headaches), (b) somewhat life threatening (e.g., emphysema, ulcer), and (c) very life threatening (e.g., leukemia, heart attack; Gold, Malmberg, McClearn, Pedersen, & Berg). This classification of diseases was developed by physician rating and mortality data to determine the likelihood of a medical condition resulting in mortality. On average, parents suffered 1.52 ($SD = 1.27$) somewhat life threatening diseases and 0.52 ($SD = 0.58$) very life threatening diseases during the prior two years. Our predictions did not consider non-threatening diseases and
therefore, we did not consider diseases falling under this classification further.

Relationship Indicators

We also assessed relationship factors that may affect perceptions of changes and continuity.

Proximity and contact. Parents and offspring indicated proximity to one another with an ordinal scale, 1 (*within 2 miles*) to 6 (*more than 500 miles or 10 hours by car*). Ordinal scales to assess distance and contact minimize the impact of extreme values (Dewit, Wister, & Burch, 1988; Greenwell & Bengtson, 1997). Consistent with national data (Lin & Rogerson, 1995), 65% of offspring in the study lived within 30 miles or half an hour drive from their parents, and an additional 15% lived half an hour to 2 hours driving time. In response to a follow-up question, eight parent/offspring dyads indicated they resided in the same household.

Participants rated 2 items concerning frequency of contact: how often they (a) talk on the phone and (b) visit in person using the ordinal scale 1 (*everyday*) to 8 (*less than once a year*). On average, participants reported talking by phone once a week or so (*M*= 2.31, *SD*= 1.36) and visiting in person every few weeks (*M*= 3.45, *SD*= 2.00).

Relationship quality. Participants also completed an adapted 8-item version of the Positive Affect Index (e.g., feeling cared for, trusted, understood; Bengtson & Schrader, 1982), using a 10-point scale 1 (*not at all*) to 10 (*always*). Ratings were high (*M*= 72.49, *SD*= 8.53, *α*= 0.81 for offspring, and *M*= 76.22, *SD*= 6.29, *α*= 0.84 for parents).

Perceptions of Change and Continuity

Participants responded to open-ended questions pertaining to changes and continuity in their relationships. Based on pilot studies, we asked:

All relationships change over time. Parents and children notice changes as they grow older. Can you describe to me the ways in which your relationship with _________ has changed over the past few years? What's different about your relationship now than when you both were younger?

This phrasing was intended to focus participants on recent changes (rather than changes from adolescence).
Parents' and Offspring's Perceptions

A parallel question asked about perceptions of continuity in the tie, "Although your relationship may be different than it used to be in some ways, you may also feel there are ways in which your relationship has remained the same over the years..."

Interviewers recorded participants' responses verbatim. They provided an electronic version of the transcript to the research coordinator within an hour of the interview to assure that lags did not occur in transcriptions.

Coding of open-ended responses. We designed a coding scheme for this study to classify parents' and offspring's open-ended descriptions. We derived larger categories based on the predicted topics of change and continuity. The predicted areas of change and continuity included: emotional qualities of the relationship, parental health and functioning, offspring's achievements, and parents' and offspring's exchanges of assistance. We then developed subcodes under each of these categories, and added new subcodes until all transcripts fit at least one subcode. Some participants described change or continuity in an unexpected positive or negative direction, such as improvements in parental health. Therefore, subcodes addressed valence (e.g., health declined, health improved). Data also revealed that participants discussed positive or negative aspects of broader family ties (e.g., widowhood, parents' connection to grandchildren, close marriage) and we added these subcodes post-hoc without predictions.

Independent raters determined the presence or absence of each code in participants' response. A given response could fall under more than one code. The same rater coded responses to the change and continuity questions due to intermingling of statements in some participants' responses. If a respondent described changes in response to the query about continuity (e.g., "Well, we still feel really close, but what I do for her has changed a lot. I help her more..."), the statements about changes were coded as "changes."

Raters received over 20 hours of training and attended twice weekly meetings during coding. Once reliability was established, coders overlapped on 55 continuity and 66 change responses to establish reliability. Coders resolved disagreements through conference. Kappas and frequencies for each code are found in Tables 2 and 3. We did not analyze several codes because of low frequency in the data or lack of predictions concerning that particular code. Responses concerning improvements in offspring health, family loss, and continuity of parent still not assisting offspring appeared too infrequently to allow reliable estimation of kappas.
Table 2. Kappas and Proportions of Descriptions of Changes Fitting Each Code.

<table>
<thead>
<tr>
<th>Code</th>
<th>Kappa</th>
<th>Parent (n = 121)</th>
<th>Offspring (n = 121)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relationship quality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relationship improved</td>
<td>0.82</td>
<td>0.78</td>
<td>0.77</td>
</tr>
<tr>
<td>Relationship worse</td>
<td>0.83</td>
<td>0.42</td>
<td>0.46</td>
</tr>
<tr>
<td>Exchanges of assistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parent assists more</td>
<td>-</td>
<td>0.08</td>
<td>0.06</td>
</tr>
<tr>
<td>Parent assists less</td>
<td>0.69</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>Offspring assists more</td>
<td>0.79</td>
<td>0.41</td>
<td>0.42</td>
</tr>
<tr>
<td>Offspring assists less</td>
<td>-</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Individual condition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parent physical health better</td>
<td>-</td>
<td>0.06</td>
<td>0.07</td>
</tr>
<tr>
<td>Parent physical health worse</td>
<td>0.84</td>
<td>0.35</td>
<td>0.48</td>
</tr>
<tr>
<td>Offspring achievements</td>
<td>-</td>
<td>0.24</td>
<td>0.12</td>
</tr>
<tr>
<td>Offspring health worse</td>
<td>0.78</td>
<td>0.07</td>
<td>0.03</td>
</tr>
<tr>
<td>Family situation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family additions/improvements</td>
<td>0.73</td>
<td>0.30</td>
<td>0.21</td>
</tr>
<tr>
<td>Family losses/problems</td>
<td>0.89</td>
<td>0.21</td>
<td>0.19</td>
</tr>
</tbody>
</table>

* Responses fitting code occurred at such a low frequency that kappas could not be estimated.

Table 3. Kappas and Proportions of Descriptions of Continuities Fitting Each Code.

<table>
<thead>
<tr>
<th>Code</th>
<th>Kappa</th>
<th>Parent (n = 121)</th>
<th>Offspring (n = 121)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relationship quality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relationship good</td>
<td>0.95</td>
<td>0.79</td>
<td>0.73</td>
</tr>
<tr>
<td>Relationship poor</td>
<td>0.92</td>
<td>0.06</td>
<td>0.17</td>
</tr>
<tr>
<td>Exchanges of assistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parent still assists</td>
<td>0.92</td>
<td>0.26</td>
<td>0.36</td>
</tr>
<tr>
<td>Parent still does not assist</td>
<td>-</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Offspring still assists</td>
<td>0.83</td>
<td>0.35</td>
<td>0.12</td>
</tr>
<tr>
<td>Offspring still does not assist</td>
<td>-</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>Individual condition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parent physical/mental health still good</td>
<td>0.67</td>
<td>0.03</td>
<td>0.14</td>
</tr>
<tr>
<td>Parent physical/mental health still poor</td>
<td>0.87</td>
<td>0.02</td>
<td>0.08</td>
</tr>
<tr>
<td>Offspring physical/mental health still good</td>
<td>0.65</td>
<td>0.17</td>
<td>0.04</td>
</tr>
<tr>
<td>Offspring physical/mental still poor</td>
<td>1.00</td>
<td>0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>Family situation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family situation good</td>
<td>0.79</td>
<td>0.13</td>
<td>0.07</td>
</tr>
<tr>
<td>Family situation poor</td>
<td>-</td>
<td>0.01</td>
<td>0.03</td>
</tr>
</tbody>
</table>

* Responses fitting code occurred at such a low frequency that kappas could not be estimated.
RESULTS

In keeping with our goals to: describe parents' and offspring's perceptions of change and continuity, examine generational differences, and consider the influence of parental health variables on those perceptions, we present: (a) descriptions of coded open-ended responses, (b) generational differences in the codes tested with non-parametric statistics, and (c) multilevel models examining health influences on parents' and offspring's coded responses.

Descriptions of Coded Responses for Changes

Emotional qualities of the relationship. As can be seen in Table 2, a majority of participants described changes involving positive qualities of the relationship, such as increased feelings of emotional closeness. A 41-year-old son whose father experiences hearing problems commented:

Uh, well... as we have grown older, we both want to be closer, and put more effort in. I try to learn more about his background. I show more interest now than before. I want to find out these things before he can't remember or something happens to him.

Nearly half of participants also referred to changes involving problems in the relationship. These problems varied. A few parents and offspring mentioned geographic separation or less contact than they had before. Other participants referred to emerging problems in the tie, usually associated with tense interactions involving parental health. For example, a middle-aged daughter described pestering her mother and being unsure whether her mother was ignoring her:

...I'm sure she doesn't appreciate me buzzing over her all the time. I tend to tell her if I think she's not doing something right... She doesn't always listen to what I have to say to her. Sometimes when I'm with her, I find myself repeating myself because I think she can't hear me, but my husband thinks she can hear fine and she's just ignoring me.

Health and assistance. We had expected parental health issues to be a key area of change, particularly for offspring. Yet, just over a third of parents and nearly half of offspring referred to declines in parental health. These problems focused on a wide range of diseases (cancer, cataracts), regardless of whether parents suffered vision or hearing loss. As expected, over a third of participants mentioned declines in parental physical health. A 78-year-old father who suffered no sensory losses commented, “... we are slipping a bit,
I guess. So she’s become more capable.” An 84-year-old mother suffering
AMD mentioned a litany of health problems:

When the lump in my breast was discovered she insisted she was going to find me a
doctor in Chicago that did nothing but breast cancer surgery-and she did. And when this
cataract came off, she said she would find a doctor who did nothing more than cataract
surgery-and she did. She has been a wonderful, supportive daughter.

A 40-year-old daughter commented on her father who suffered hearing loss
commented more broadly on the array of health problems her father suffers,
“Since he’s gone through these medical problems, he’s more dependent on
other people…”

Related to health declines, as expected, nearly half of participants
described increases in offspring assistance. For example, a 79-year-old man
suffering vision loss commented:

Well, like I said, before I used to mow the grass, and now she mows the grass. I used to
drive the car and now she drives the car …. I used to do things for her and now she does
things for me.

A daughter complained of her father:

I find as he has gotten older … (he has) gotten more self-centered. For example, he will
call and say, “I have an appointment this day at this time and I need you to take me.”
And I will say “Dad, I have to work, I can’t take time off that day,” and that upsets
him …. and there is less understanding of my situation.

As expected, offspring sometimes referred to a “role reversal” when des-
cribing assistance. One woman commented on advice she provides her
mother:

I guess what frustrates me is that I still view her as my parent. She is my mother, and I
look to her as the person with the answers. Now, she looks to me as the one with the
answers, and that is hard to accept.

Offspring achievements. Only a few parents and offspring commented on
the offspring’s achievements. A 72-year-old mother of a 40-year-old man
commented:

He is on his own. He bought a house, he has a significant other, he is busy, he works. The
umbilical cord has been cut, if you know what I mean. He is very self-sufficient, and I am
proud of him.

Family relationships. Nearly a fifth of participants described losses (usually
widowhood), “When my wife passed away, he and my daughter-in-law took
Parents' and Offspring's Perceptions

me under their wings ... they try to make sure I am okay, and always include me.” In addition, over a quarter of participants' referred to positive changes or additions to family, “Because I was single until I was 34, I had children late and since then I feel more of a link with my father ...” These findings are consistent with our prior findings that older parents and middle-aged offspring conceptualize their relationships within the context of other family ties (Fingerman, 2000, 2001).

Descriptions of Coded Responses for Continuities

There was less variability in descriptions of continuities than in descriptions of changes (Table 3). Most parents and offspring emphasized the closeness of the tie, describing activities or time spent together. Few participants commented on negative aspects of the relationship as areas of continuity. A widowed father commented, “Well, we’ve always gone out to eat together, gone out and done things together. Even before my wife passed away we did those things ...” A daughter whose mother suffered vision loss put it simply, “We’ve always been loving and caring.” Such positive sentiments were reiterated by most participants. Few participants commented on continuity in negative aspects of the relationship.

Interestingly, nearly a third of participants commented on continuity in parental help. Some comments were vague, however, and referred to the quality of the tie. For example, a 53-year-old woman whose father suffered vision loss remarked, “Like I said - he still gives the sense that he takes care of me.” A 47-year-old woman whose mother suffers hearing loss explained, “I can always rely on her. If I really needed something, I would call and she would be there.” As expected, parents also commented on help they provided offspring. A mother suffering hearing loss explained, “We give her financial support when we can, and we are always here for her. And she knows that she can call on us when she needs us.”

Surprisingly, some parents and offspring also commented on persistence in offspring’s providing help to the parent. We had expected offspring’s provision of assistance to represent a change in the tie. A mother with no vision or hearing impairments commented, “She has always cared about me and when I’m sick she is always there - I don’t have to ask ...” Sometimes offspring couch such responses in terms of exchanges of assistance, “Basically, we love one another and we care for one another. We do things for one another. Being 82, when she can’t go out [I do things for her]...."
Generational Differences in Perceptions of Changes and Continuity

To examine generational disparities in distributions of codes, we used McNemar’s test, a non-parametric statistic allowing paired comparisons in a 2 × 2 contingency table that has been used in our prior studies of parents and offspring (Fingerman, 1996). The test allows calculation of exact p values for instances when fewer than 30 cases have different values in the matched pair. Significant findings indicate lack of symmetry in the table.

With regard to descriptions of changes, as expected, McNemar’s tests revealed offspring were more likely to describe parental health, $\chi^2 (n = 121) = 5.11, p < 0.05$ and parents were more likely to describe offspring achievements, $\chi^2 (n = 121) = 4.97, p < 0.05$. We had also expected offspring to mention changes in assistance more often than parents, and for parents to mention positive qualities of the tie more often, but there were no significant generational differences for emotional qualities of the tie or for offspring assistance.

With regard to continuities, McNemar’s tests revealed offspring were more likely to mention problematic aspects of the relationship exact $p = 0.004$. Parents were more likely to mention continuity in offspring’s assistance $\chi^2 (n = 121) = 16.57, p < 0.001$. There were no significant generational differences in positive relationship quality or parental assistance.

Parental Health and Contextual Variables Associated with Perceived Change and Continuity

Analytic strategy. We were interested in the influence of parental health variables on the parents’ and the offspring’s responses. Because we were interested in studying linked lives, we examined the effects of parental health on parents’ and offspring’s experience of their relationship. Thus, parental health variables are “shared” by parents and offspring. Therefore, we used PROC Mixed in SAS to estimate multilevel models to account for non-independence of parental health in analyses (Littell, Milliken, Stroup, & Wolfinger, 1996; Singer, 1998). We treated parental health indicators as upper level (relationship level) variables and individual characteristics of the participants (age, generation) as lower level variables. We used the SAS PROC Mixed functions for binomial distributions. Based on our predictions and distributions in the codes, we estimated four multilevel models for coded descriptions of changes concerning: better relationship quality, worse relationship quality, parental health, and offspring assistance.
For continuity, we estimated three multilevel models for: parental assistance, offspring assistance, and positive qualities of the relationship.

Also, to ascertain that the models did not differ for parents and for offspring, we first estimated separate logistic regressions for the four descriptions of changes and three descriptions of continuity. The pattern of findings was parallel in equations for parents and offspring, and therefore, we did not include interaction terms involving generation (e.g., gender X generation) in the multilevel models.

We also estimated point biserial correlations between the coded themes and family and potential control variables (number of offspring's siblings and children, proximity, contact, and relationship quality). We included only covariates significantly correlated with the dependent variable ($p<0.05$) in each equation; inclusion of control variables not associated with the dependent variable may generate spurious findings (Rovine, von Eye, & Wood, 1988; Weisberg, 1979). Frequency of contact was included as a control variable in models regarding descriptions of change in parental health and continuity in assistance. Relationship quality was included as a control variable in analyses concerning positive or negative relationship quality.

Multilevel models. Significant findings from the multilevel models are found in Table 4. With regard to changes, parents and offspring were more likely to describe changes involving parental health problems when they were older, the parent suffered more somewhat threatening diseases, the parent experienced greater functional disability, and the parties had more frequent contact. Parents and offspring were more likely to describe changes in offspring assistance: if they were female, parents had more somewhat threatening diseases, and offspring performed a greater number of tasks for the parent. None of the hypothesized variables were associated with changes in qualities of the relationship.

With regard to continuity, parents were more likely to describe continuity in offspring's assistance than offspring, and parents and offspring were more likely to describe this topic when they were older, and the parent suffered either type of sensory loss. Models did not reveal significant findings for reports of continuity in parental assistance. Finally, only relationship quality was significantly associated with reports of continuity in the positive qualities of the relationship; findings are not presented.

Qualitative examples. Finally, we provide qualitative examples to illustrate the significant models in this study. In the model concerning declines in parental health the following were significant predictors: age, parental somewhat threatening diseases, functional disability, and frequency of
Table 4. Multilevel Models Examining Descriptions of Changes and Continuity.

<table>
<thead>
<tr>
<th>Predictor</th>
<th>B</th>
<th>SE</th>
<th>e^β</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change: Parent health worse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gendera</td>
<td>0.36</td>
<td>0.29</td>
<td>1.43</td>
<td>1.23</td>
</tr>
<tr>
<td>Age</td>
<td>0.03</td>
<td>0.01</td>
<td>1.03</td>
<td>2.11*</td>
</tr>
<tr>
<td>Generationb</td>
<td>-0.16</td>
<td>0.51</td>
<td>0.85</td>
<td>0.30</td>
</tr>
<tr>
<td>Upper level/Parental health</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hearing loss</td>
<td>0.62</td>
<td>0.40</td>
<td>1.86</td>
<td>1.55</td>
</tr>
<tr>
<td>Vision loss</td>
<td>0.48</td>
<td>0.42</td>
<td>1.62</td>
<td>1.13</td>
</tr>
<tr>
<td>No vision/hearing loss</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somewhat threatening diseases</td>
<td>0.25</td>
<td>0.13</td>
<td>1.28</td>
<td>1.88*</td>
</tr>
<tr>
<td>Very threatening diseases</td>
<td>0.40</td>
<td>0.28</td>
<td>1.49</td>
<td>1.44</td>
</tr>
<tr>
<td>Functional disability</td>
<td>0.25</td>
<td>0.12</td>
<td>1.28</td>
<td>2.05*</td>
</tr>
<tr>
<td>Offspring assistance with tasks</td>
<td>0.11</td>
<td>0.14</td>
<td>1.12</td>
<td>0.70</td>
</tr>
<tr>
<td>Frequency of contactc</td>
<td>-0.17</td>
<td>0.09</td>
<td>0.84</td>
<td>-1.88*</td>
</tr>
<tr>
<td>Change: Offspring assists more</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gendera</td>
<td>0.73</td>
<td>0.31</td>
<td>2.08</td>
<td>2.32*</td>
</tr>
<tr>
<td>Age</td>
<td>0.04</td>
<td>0.02</td>
<td>1.04</td>
<td>1.62</td>
</tr>
<tr>
<td>Generationb</td>
<td>-1.05</td>
<td>0.73</td>
<td>0.35</td>
<td>-1.45</td>
</tr>
<tr>
<td>Upper level/Parental health</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hearing loss</td>
<td>-0.38</td>
<td>0.40</td>
<td>0.68</td>
<td>-0.96</td>
</tr>
<tr>
<td>Vision loss</td>
<td>-0.66</td>
<td>0.40</td>
<td>0.94</td>
<td>-0.16</td>
</tr>
<tr>
<td>No vision/hearing loss</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somewhat threatening diseases</td>
<td>0.31</td>
<td>0.13</td>
<td>1.28</td>
<td>2.44*</td>
</tr>
<tr>
<td>Very threatening diseases</td>
<td>0.49</td>
<td>0.27</td>
<td>1.63</td>
<td>1.82</td>
</tr>
<tr>
<td>Functional disability</td>
<td>-0.02</td>
<td>0.12</td>
<td>0.98</td>
<td>-0.19</td>
</tr>
<tr>
<td>Offspring assistance with tasks</td>
<td>0.37</td>
<td>0.13</td>
<td>1.45</td>
<td>2.78**</td>
</tr>
<tr>
<td>Continuity: Offspring still assist</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gendera</td>
<td>0.34</td>
<td>0.39</td>
<td>1.72</td>
<td>1.39</td>
</tr>
<tr>
<td>Age</td>
<td>0.06</td>
<td>0.02</td>
<td>1.06</td>
<td>3.45**</td>
</tr>
<tr>
<td>Generationb</td>
<td>3.32</td>
<td>0.77</td>
<td>27.66</td>
<td>4.33***</td>
</tr>
<tr>
<td>Upper level/Parental health</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hearing loss</td>
<td>1.01</td>
<td>0.59</td>
<td>2.75</td>
<td>2.01*</td>
</tr>
<tr>
<td>Vision loss</td>
<td>1.17</td>
<td>0.53</td>
<td>3.22</td>
<td>2.19*</td>
</tr>
<tr>
<td>No vision/hearing loss</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somewhat threatening diseases</td>
<td>-0.07</td>
<td>0.16</td>
<td>0.93</td>
<td>-0.46</td>
</tr>
<tr>
<td>Very threatening diseases</td>
<td>0.07</td>
<td>0.33</td>
<td>1.07</td>
<td>0.21</td>
</tr>
<tr>
<td>Functional disability</td>
<td>-0.03</td>
<td>0.15</td>
<td>0.97</td>
<td>-0.17</td>
</tr>
<tr>
<td>Offspring assistance with tasks</td>
<td>0.03</td>
<td>0.17</td>
<td>1.03</td>
<td>0.18</td>
</tr>
<tr>
<td>Frequency of contactc</td>
<td>-0.17</td>
<td>0.11</td>
<td>0.84</td>
<td>-1.62</td>
</tr>
</tbody>
</table>

Note: e^β = exponentiated B. Estimated parameters 10, Convergence criterion = 0.001.

aAIC = 1073.4.
bGender 1 = female, 0 = male.
cGeneration 1 = parent, 0 = offspring.
dFrequency of contact 1 = everyday to 8 = less than once a year.
eAIC = 1,086.7.
fAIC = 1,239.9.
* p < 0.05.
** p < 0.01.
*** p < 0.001.
contact. For example, a 79-year-old woman with high blood pressure and high cholesterol who sees her daughter every few days explained:

... Now she is acting like more of a caretaker to me, I had an artery fixed and it upset her because I was not well. At that time we decided to put her name on all the things related to my bank accounts. We also wrote a living will.

Offspring’s responses sometimes referred to a role reversal with regard to declines in parental health and functioning. For example, the daughter of a man who suffers diabetes, high blood pressure, and hearing loss commented:

I think in the past, he was much more of the parent caregiver. He looked at me and treated me as his daughter who needed his care. That’s changed he treats me more as an equal now. And now I worry about him in ways that I didn’t before. I won’t say that I parent him, but like when we cross the street, I worry about him because he is slower now.

For increases in offspring assistance, significant variables involved responses from women, parental somewhat life threatening diseases, and offspring actual assistance with tasks. For example, a daughter whose mother suffers from high blood pressure (and no sensory loss) and who helps her mother with housework and transportation commented:

She is more willing to let me do things for her — that in the past, she would have said, “No.” I would say she has become a little more dependent, and certainly confides more.

Likewise, an 85-year-old mother suffering from macular degeneration, high blood pressure, and diabetes commented:

She takes me to the store, to the doctor, every Wednesday. She takes me to the ophthalmologist and to appointments. She washed everything yesterday, the curtains and windows on this side of the house. She is going to do the other side next week. She’s been real good She has a goal to keep me in the house on my own. She will do anything for me to stay here.

Finally, for continuity in offspring assistance, significant predictors included generational status (parents described this more than offspring), older age, and hearing or vision loss. Some of these responses were quite brief. For example, an 83-year-old man suffering vision loss put it simply, “Like I said — he still gives the sense that he takes care of me.” An 88-year-old woman with AMD commented, “He helps me and gets me special things.” Finally, a 72-year-old man suffering hearing loss remarked, “She has always cared about me. When I’m sick she is always there—I don’t have to ask. I’ve been very fortunate.”
DISCUSSION

Findings from this study show that parents and offspring perceive changes in their relationship during the transitional phase of the life course, when parents encounter common physical problems of aging (e.g., sensory impairments), but prior to severe disabilities associated with frailty and dementia. These reports of changes in the relationship were more positive than initially expected, however. Further, parents' and offspring's perceptions of changes in parental health and offspring assistance were associated with parental health deficits, whereas the likelihood of their commenting on changes or continuity in emotional qualities of the relationship was not linked to specific health patterns. There were few generational differences in perceptions of changes or continuity. Thus, on the whole, findings from this study suggest offspring may come to share their parents' perspective on the relationship as they develop across the life course. Further, in the absence of parents' suffering severe debilitating health problems, offspring and parents are able to focus on positive aspects of the relationship, even during the parents' transition into old age.

Perceptions of Change and Continuity

We were interested in understanding how parents and offspring react to changes in their relationships during a potentially long life course transition period, when parents decline from fully independent and healthy to more elderly and frail. Middle-aged adults often focus discussion on their parents and concerns about parental health, even when they, the middle-aged offspring, are not involved in hands-on care for the parents. The overwhelming findings are that parents and offspring generally feel positively about their relationships, but many also note difficulties in the relationship as well.

We had expected most parents and offspring to focus on changes in parental health and in offspring's assistance, reflecting offspring's sense that roles are reversing during this transitional phase of the life course (Fingerman, 1997). This was not the case. A majority of participants mentioned changes in emotional qualities of the relationship, consistent with findings that adults rate the quality of the parent/offspring relationship higher as they grow older (Fingerman, 2000; Rossi & Rossi, 1990; Umberson, 1992). Parents and offspring in this study also described positive relationship qualities as an area of continuity, consistent with findings that young adults and their parents rate their relationships positively (Fingerman, 2000; Rossi & Rossi, 1990). In other
words, parents and offspring report that their relationships have been good for years, but are getting better. The fact that many parents and offspring talked about positive changes, even in the context of declining parental health and sensory impairment, is telling. These findings suggest that less severe physical declines characteristic of the transition to old age may not generate the types of stress that dementia and frailty spur (Zarit, 2007). Indeed, these findings are less suggestive of a role reversal than of a state of “filial maturity” (Birditt, Kamp Dush, Fingerman, & Lefkowitz, 2006; Blenkner, 1963; Nydegger, 1991). According to scholars, filial maturity involves accepting the parents’ weaknesses and viewing them as peers. Offspring’s ability to view parental health realistically and to appreciate the better qualities in their relationships is suggestive of such a state as well.

Of course, nearly half of participants did mention declines in relationship quality in recent years. This finding is consistent with the burgeoning literature pertaining to intergenerational ambivalence (Fingerman et al., 2006, 2004; Lüscher & Pillemmer, 1998; Pillemmer & Suitor, 2002). Theorists have suggested that parental health problems may set up ambiguous social structures that generate feelings of ambivalence in parents and offspring (Connidis & McMullin, 2002). Nonetheless, we wish to emphasize that the surprising aspect is the overriding sense of positive changes in this relationship, even in the face of the parental health declines and ambivalence characteristic of this stage of the life course.

Generational Differences

We found fewer generational differences in descriptions of change and continuity than anticipated. Of course, offspring focused somewhat more on changes in parental health and parents focused somewhat more on offspring’s achievements. Yet, parents and offspring were equally likely to note increases in offspring’s provision of assistance, an issue linked to perceptions of “role reversal” (Fingerman, 1997). Indeed, only one generational difference persisted in multilevel analyses including contextual variables, and that was the unexpected finding that parents were more likely to mention continuity in offspring’s assistance.

Thus, parents’ and offspring’s views of their relationship may converge to some extent in late life. This convergence is striking, given the plethora of studies that find distinctions in parents’ and offspring’s perceptions of qualities of their relationships throughout much of adulthood (Rossi & Rossi, 1990;
Shapiro, 2004). There are several possible explanations for these findings concerning: (a) offspring in the sample, (b) the developmental period in the parent–offspring tie or (c) methodological issues. The study was limited to grown sons and daughters who are particularly involved in their parents' health. Prior studies find that aging parents who have many children turn to one or two offspring for their health care needs (Logan & Spitze, 1996; Roberto, 1999). The parents may select these particular offspring as confidants in health decisions because their perspectives already converge with regard to qualities of the relationship (Pillemer & Suior, 2006). Alternately, the situation may induce a convergence of perspectives; offspring who are involved with parents who have moderate health problems may come to understand those problems without intense emotional involvement that distorts perceptions when they provide care for frailty or dementia (Sands, Ferreira, Stewart, Brod, & Yaffe, 2004). Similarly, as mentioned previously, this study may tap a period in the relationship after many offspring achieve filial maturity, and are able to accept parental health problems and see positive changes in the relationship, just as their parents do. Finally, it is notable that in the extensive literature regarding generational disparities in perspectives of parent/offspring ties, researchers have focused on a narrow range of abstract relationship quality indicators, such as affection and respect. This study addressed perceptions of changes in recent years, a more specific set of qualities that are potentially observable to both parents and offspring. In any case, the study provides fodder for future research on the extent of generational disparities between adults and their parents, beyond simple ratings of qualities of relationships.

Contextual Variables and Perceptions of Change and Continuity

Surprisingly, vision and hearing loss, per se, were not strongly directly associated with parents' and offspring's descriptions of changes. Of course, vision loss was indirectly associated with reported changes through its association with parental functional disability and offspring's provision of assistance. Parental disability and offspring's provision of assistance were, in turn, associated with perceptions of changes involving parental health and offspring assistance. Thus, vision loss may influence perceptions of change primarily when the vision loss affects functioning and the need for assistance.

Indeed, participants who described parental declines or increases in offspring assistance appeared to respond to objective indicators of health. These parents were older than other parents and were more likely to have
offspring who performed tasks of daily living. Furthermore, both vision and hearing loss were associated with participants’ descriptions of continuity in offspring’s provision of assistance. Perhaps helping patterns were established earlier in the progression of the disorders. Alternatively, parents may cope with sensory impairments by emphasizing how the offspring’s assistance has been continuous and, thereby, minimizing the effect such impairments have on their relationship.

Consistent with other research (e.g., Erdal & Zautra, 1995), future longitudinal studies might include parents newly diagnosed with sensory losses to examine parents’ and offspring’s perceptions of the tie as disability accrues. It would also be useful to consider situations involving co-morbidity, where parents suffer both hearing and vision loss or other combinations of impairment. It would be interesting to follow the progression of illness and to examine greater complexity of health problems in the context of parent/offspring ties.

Limitations and Suggestions for Future Research

The principal limitations of this study stem from its cross-sectional design and reliance on a sample in a single location. Further, the parents were seeking medical treatment for sensory disorders or general health and were privileged with regard to medical care and education. When older adults lack ready access to medical care, parents and offspring may be more or less sensitive to parental health problems, depending on their experience of those health problems. The sample was also homogeneous in nature, and it is not clear whether findings would generalize across ethnic groups. Becker, Beyene, Newsom, and Mayen (2003) found that elderly Filipino, Latino, African American, and Cambodian Americans differed considerably in their expectations of their grown offspring. Such differences in expectations may carryover into perceptions of change and continuity in the tie.

In conclusion, parents and offspring tended to share perceptions of change and continuity. As parents accrue functional deficits and offspring step in to assist, both parties may be aware of subtle shifts in the relationship. Offspring may frame these changes in terms of role enhancements or revisions, whereas parents may view these changes as reflecting offspring’s increasing responsibility in the relationship. Yet, both parties are aware of continuities in their roles across the life course. Importantly, most parents and offspring talked about positive changes in the relationship, even when parents confronted obvious physical deficits in vision and hearing. Many parents and offspring
also mentioned the relationship changing for the worse, suggesting that health problems can contribute to intergenerational ambivalence (Fingerman et al., 2006; Willson et al., 2003). Nonetheless, the prevailing positivity suggests an optimistic view of this relationship, even as parents transition into the final stages of the life course and show signs of physical aging.

ACKNOWLEDGMENTS

Sara Moorman provided invaluable assistance with every aspect of this paper. We are grateful to Marla Moon, Blindness and Visual Services of Central Pennsylvania, Cheryl Dellasega, Gail Balliet, Hershey Medical Center Internal Medicine Clinic, The Pennsylvania State University Audiology Clinic, Elise Uhring, Jeane Singer, David Taddy, Antonio Montalbo, John Fisher, Jason Saltman, Judy Albrecht, and Susan Parr for assistance with recruitment of participants. Tom Frank provided invaluable consultation with regard to assessment of hearing loss. Robin Casten and Marla Moon provided information about assessment of vision loss. Carol Gold provided assistance with ratings of illness and-disease severity.

REFERENCES

INTERPERSONAL RELATIONS ACROSS THE LIFE COURSE

EDITED BY
TIMOTHY J. OWENS
Purdue University, USA

J. JILL SUITOR
Purdue University, USA

2007