

Digraph Fourier Transform via Spectral Dispersion Minimization

Gonzalo Mateos

Dept. of Electrical and Computer Engineering University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/

Co-authors: Rasoul Shafipour, Ali Khodabakhsh, and Evdokia Nikolova Acknowledgment: NSF Award CCF-1750428

Calgary, AB, April 20, 2018

Network Science analytics

- Network as graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$: encode pairwise relationships
- Desiderata: Process, analyze and learn from network data [Kolaczyk'09]
- \blacktriangleright Interest here not in ${\cal G}$ itself, but in data associated with nodes in ${\cal V}$
 - \Rightarrow The object of study is a graph signal
 - \Rightarrow Ex: Opinion profile, buffer levels, neural activity, epidemic

Graph signal processing and Fourier transform

► Directed graph (digraph) G with adjacency matrix A ⇒ A_{ii} = Edge weight from node i to node j

• Define a signal $\mathbf{x} \in \mathbb{R}^N$ on top of the graph

 $\Rightarrow x_i =$ Signal value at node i

- ▶ Associated with G is the underlying undirected G^u
 ⇒ Laplacian marix L = D A^u, eigenvectors V = [v₁, · · · , v_N]
- ► Graph Signal Processing (GSP): exploit structure in A or L to process x
- Graph Fourier Transform (GFT): $\tilde{\mathbf{x}} = \mathbf{V}^T \mathbf{x}$ for undirected graphs
 - \Rightarrow Decompose x into different modes of variation
 - \Rightarrow Inverse (i)GFT $\textbf{x}=\textbf{V}\boldsymbol{\tilde{x}},$ eigenvectors as frequency atoms

GFT: Motivation and context

- Spectral analysis and filter design [Tremblay et al'17], [Isufi et al'16]
- ▶ Promising tool in neuroscience [Huang et al'16] ⇒ Graph frequency analyses of fMRI signals
- Noteworthy GFT approaches
 - ► Eigenvectors of the Laplacian L [Shuman et al'13]
 - Jordan decomposition of A [Sandryhaila-Moura'14], [Deri-Moura'17]
 - Lovaśz extension of the graph cut size [Sardellitti et al'17]
 - Greedy basis selection for spread modes [Shafipour et al'17]
 - Generalized variation operators and inner products [Girault et al'18]
- \blacktriangleright Our contribution: design a novel digraph (D)GFT such that
 - Bases offer notions of frequency and signal variation
 - Frequencies are (approximately) equidistributed in [0, f_{max}]
 - Bases are orthonormal, so Parseval's identity holds

Total variation of signal x with respect to L

$$\mathsf{TV}(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathsf{L} \mathbf{x} = \sum_{i,j=1,j>i}^{N} A_{ij}^{u} (x_i - x_j)^2$$

 \Rightarrow Smoothness measure on the graph \mathcal{G}^{u}

- ► For Laplacian eigenvectors $\mathbf{V} = [\mathbf{v}_1, \cdots, \mathbf{v}_N] \Rightarrow \mathsf{TV}(\mathbf{v}_k) = \lambda_k$ $\Rightarrow 0 = \lambda_1 < \cdots \leq \lambda_N$ can be viewed as frequencies
- ▶ **Def:** Directed variation for signals over digraphs ([x]₊ = max(0, x))

$$\mathsf{DV}(\mathbf{x}) := \sum_{i,j=1}^{N} A_{ij} [x_i - x_j]_+^2$$

 $\Rightarrow Captures signal variation (flow) along directed edges \\\Rightarrow Consistent, since DV(x) \equiv TV(x) for undirected graphs$

- ▶ Goal: find N orthonormal bases capturing different modes of DV on G
- ► Collect the desired bases in a matrix $\mathbf{U} = [\mathbf{u}_1, \cdots, \mathbf{u}_N] \in \mathbb{R}^{N \times N}$ ⇒ \mathbf{u}_k represents the *k*th frequency mode with $f_k \coloneqq \text{DV}(\mathbf{u}_k)$
- ► Similar to the DFT, seek *N* equidistributed graph frequencies

$$f_k = \mathsf{DV}(\mathsf{u}_k) = \frac{k-1}{N-1} f_{\mathsf{max}}, \quad k = 1, \dots, N$$

 \Rightarrow $f_{\sf max}$ is the maximum DV of a unit-norm graph signal on ${\cal G}$

- ▶ Q: Why spread frequencies?
 - Parsimonious representations of slowly-varying signals
 - Interpretability \Rightarrow better capture low, medium, and high frequencies
 - Aid filter design in the graph spectral domain

Ex: Directed variation minimization [Sardellitti et al'17]

$$\min_{\mathbf{U}} \sum_{i,j=1}^{N} A_{ij} [\mathbf{u}_i - \mathbf{u}_j]_+$$

s.t. $\mathbf{U}^T \mathbf{U} = \mathbf{I}$
$$U^{\star} = \begin{bmatrix} 0.5 & c & c & c \\ 0.5 & a & 0 & b \\ 0.5 & b & a & 0 \\ 0.5 & 0 & b & a \end{bmatrix}$$

• U* is the optimum basis where $a = \frac{1+\sqrt{5}}{4}$, $b = \frac{1-\sqrt{5}}{4}$, and c = -0.5

- All columns of U^{*} satisfy DV(u^{*}_k) = 0, k = 1,...,4
 ⇒ Expansion x = U^{*}x fails to capture *different* modes of variation
- Q: Can we always find *equidistributed* frequencies in $[0, f_{max}]$?

• Finding f_{max} is in general challenging

$$\label{eq:umax} \begin{split} u_{\text{max}} = \underset{\|u\|=1}{\text{argmax}} \ \mathsf{DV}(u) \quad \text{and} \quad f_{\text{max}} \coloneqq \mathsf{DV}(u_{\text{max}}). \end{split}$$

- Let v_N be the dominant eigenvector of L ⇒ Can 1/2-approximate f_{max} with ũ_{max} = argmax DV(v) v∈{v_N,-v_N}
- f_{max} can be obtained analytically for particular classes though

• Equidistributed $f_k = \frac{k-1}{N-1} f_{\text{max}}$ may not be feasible. Ex: In undirected \mathcal{G}^u

$$f_{\max}^{u} = \lambda_{\max}$$
 and $\sum_{k=1}^{N} f_k = \sum_{k=1}^{N} \text{TV}(\mathbf{v}_k) = \text{trace}(\mathbf{L})$

▶ Idea: Set $u_1 = u_{min} := \frac{1}{\sqrt{N}} \mathbf{1}_N$ and $u_N = u_{max}$ and minimize

$$\delta(\mathsf{U}) := \sum_{i=1}^{N-1} \left[\mathsf{DV}(\mathsf{u}_{i+1}) - \mathsf{DV}(\mathsf{u}_i)\right]^2$$

 $\Rightarrow \delta(\mathbf{U})$ is the spectral dispersion function

 \Rightarrow Minimized when the *free* DV values form an arithmetic sequence

$$\min_{\mathbf{U}} \sum_{i=1}^{N-1} \left[\mathsf{DV}(\mathbf{u}_{i+1}) - \mathsf{DV}(\mathbf{u}_{i}) \right]^{2}$$
subject to $\mathbf{U}^{T}\mathbf{U} = \mathbf{I}$
 $\mathbf{u}_{1} = \mathbf{u}_{\min}$
 $\mathbf{u}_{N} = \mathbf{u}_{\max}$

- ▶ Non-convex, orthogonality-constrained minimization of smooth $\delta(\mathbf{U})$
- ► Feasible since u_{max} ⊥ u_{min}
- Adopt a feasible method in the Stiefel manifold to design the DFGT:
 (i) Obtain f_{max} (and u_{max}) by minimizing -DV(u) over {u | u^Tu = 1}
 (ii) Find the orthonormal basis U with minimum spectral dispersion

Feasible method in the Stiefel manifold

Rewrite the problem of finding orthonormal basis as

$$\begin{split} \min_{\mathbf{U}} \quad \phi(\mathbf{U}) &:= \delta(\mathbf{U}) + \frac{\lambda}{2} \left(\|\mathbf{u}_1 - \mathbf{u}_{\min}\|^2 + \|\mathbf{u}_N - \mathbf{u}_{\max}\|^2 \right) \\ \text{subject to} \quad \mathbf{U}^T \mathbf{U} = \mathbf{I}_N \end{split}$$

- Let U_k be a feasible point at iteration k and the gradient G_k = ∇φ(U_k) ⇒ Skew-symmetric matrix B_k := G_kU_k^T − U_kG_k^T
- Follow the update rule $U_{k+1}(\tau) = (I + \frac{\tau}{2}B_k)^{-1} (I \frac{\tau}{2}B_k) U_k$
 - Cayley transform preserves orthogonality (i.e., $U_{k+1}^{T}U_{k+1} = I$)
 - \blacktriangleright Is a descent path for a proper step size τ

Theorem (Wen et al'13) The procedure converges to a stationary point of smooth $\phi(U)$, while generating feasible points at every iteration.

- 1: Input: Adjacency matrix **A**, parameters $\lambda > 0$ and $\epsilon > 0$
- 2: Find \mathbf{u}_{max} by a similar feasible method and set $\mathbf{u}_{\text{min}} = \frac{1}{\sqrt{N}} \mathbf{1}_N$
- 3: Initialize k = 0 and orthonormal $U_0 \in \mathbb{R}^{N \times N}$ at random
- 4: repeat
- Compute gradient $\mathbf{G}_k = \nabla \phi(\mathbf{U}_k) \in \mathbb{R}^{N \times N}$ Form $\mathbf{B}_k = \mathbf{G}_k \mathbf{U}_k^T \mathbf{U}_k \mathbf{G}_k^T$ 5:
- 6.
- Select τ_k satisfying Armijo-Wolfe conditions 7.
- Update $\mathbf{U}_{k+1}(\tau_k) = (\mathbf{I} + \frac{\tau_k}{2} \mathbf{B}_k)^{-1} (\mathbf{I} \frac{\tau_k}{2} \mathbf{B}_k) \mathbf{U}_k$ 8:
- $k \leftarrow k+1$ g٠
- 10: **until** $\|\mathbf{U}_k \mathbf{U}_{k-1}\|_F \leq \epsilon$
- 11: **Return** $\hat{\mathbf{U}} = \mathbf{U}_{k}$
 - Overall run-time is $\mathcal{O}(N^3)$ per iteration

Numerical test: Synthetic graph

▶ Rescale DV values to [0,1] and calculate spectral dispersion $\delta(\mathbf{U})$

 \Rightarrow 0.256, 0.301, 0.118, and 0.076 respectively

 \Rightarrow Confirms the proposed method yields a better frequency spread

Numerical test: US average temperatures

- Consider the graph of the N = 48 contiguous United States
 - \Rightarrow Connect two states if they share a border
 - \Rightarrow Set arc directions from lower to higher latitudes

• Graph signal $\mathbf{x} \rightarrow \text{Average annual temperature of each state}$

Numerical test: Denoising US temperatures

- Noisy signal $\mathbf{y} = \mathbf{x} + \mathbf{n}$, with $\mathbf{n} \sim \mathcal{N}(\mathbf{0}, 10 \times \mathbf{I}_N)$
- Define low-pass filter $\tilde{\mathbf{H}} = \text{diag}(\tilde{\mathbf{h}})$, where $\tilde{h}_i = \mathbb{I}\{i \leq 3\}$
- Recover signal via filtering $\hat{\mathbf{x}} = \mathbf{U}\tilde{\mathbf{H}}\tilde{\mathbf{y}} = \mathbf{U}\tilde{\mathbf{H}}\mathbf{U}^{T}\mathbf{y}$
 - \Rightarrow Compute recovery error $e_f = \frac{\|\hat{\mathbf{x}} \mathbf{x}\|}{\|\mathbf{x}\|}$
 - \Rightarrow Reverse the edge orientations and repeat the experiment

► DGFT basis offers a parsimonious (i.e., bandlimited) signal representation ⇒ Adequate network model improves the denoising performance

- \blacktriangleright Measure of directed variation to capture the notion of frequency on ${\cal G}$
- > Find an orthonormal set of Fourier bases for signals on digraphs
 - ► Span a maximal frequency range [0, f_{max}]
 - Frequency modes are as evenly distributed as possible
- Two-step DGFT basis design via a feasible method over Stiefel manifold
 i) Find the maximum directed variation f_{max} over the unit sphere
 - ii) Minimize a smooth spectral dispersion criterion over $[0, f_{max}]$
 - \Rightarrow Provable convergence guarantees to a stationary point
- Ongoing work and future directions
 - Complexity of finding the maximum frequency f_{max} on a digraph?
 - \Rightarrow If NP-hard, what is the best approximation ratio
 - Optimality gap between the local and global optimal dispersions?

Symposium on Graph Signal Processing

Topics of interest

- \cdot Graph-signal transforms and filters
- \cdot Distributed and non-linear graph SP
- · Statistical graph SP
- · Prediction and learning for graphs
- · Network topology inference
- · Recovery of sampled graph signals
- · Control of network processes

Paper submission due: June 17, 2018

- \cdot Signals in high-order and multiplex graphs
- \cdot Neural networks for graph data
- · Topological data analysis
- \cdot Graph-based image and video processing
- \cdot Communications, sensor and power networks
- · Neuroscience and other medical fields
- \cdot Web, economic and social networks

Organizers:

Gonzalo Mateos (Univ. of Rochester)

Santiago Segarra (MIT)

Sundeep Chepuri (TU Delft)