#### Prosumer Pricing, Incentives and Fairness

#### Ali Khodabakhsh

June 27, 2019

Joint work with Jimmy Horn, Evdokia Nikolova, Emmanouil Pountourakis



The University of Texas at Austin Electrical and Computer Engineering Cockrell School of Engineering



ACM e-Energy 2019, Phoenix, AZ, United States

Goal: propose a rate structure for electricity customers that

- More fairly divides the utility's overhead cost among customers (consumers or prosumers).
- Provides the utility a mechanism to control the solar penetration.
  - > Minimum rate
  - > Minimum risk (#connection points)

≻ ...

#### Challenges: Incentives



- Customers pay e + t + o (per unit) to buy energy from the grid.
- Prosumers usually get only *e* (per unit) for extra energy sold to grid.
- Total overhead cost depends on the capacity of the network.

### Challenges: Incentives

Example:

- Assume e = t = o = 4¢/kWh
- *c* = solar production cost



# Challenges: Fairness

Example: Overhead cost

- Proportional to total gross demand
- Split based on net demands



| Demand<br>(kWh/month)     | 600  | 600  |
|---------------------------|------|------|
| Solar<br>(kWh/month)      | 0    | 0    |
| Net demand<br>(kWh/month) | 600  | 600  |
| Overhead                  | \$15 | \$15 |

# Challenges: Fairness

Example: Overhead cost

- Proportional to total gross demand
- Split based on net demands



| Demand<br>(kWh/month)     | 600  | 600  |
|---------------------------|------|------|
| Solar<br>(kWh/month)      | 0    | 300  |
| Net demand<br>(kWh/month) | 600  | 300  |
| Overhead                  | \$20 | \$10 |

# **Proposed Pricing Scheme**

$$R(p_i, d_i) = \begin{cases} (d_i - p_i)(e + t) + \frac{d_i - p_i}{\sum_{j=1}^n [d_j - p_j]_+} \cdot O, & p_i < d_i \\ 0, & p_i = d_i \\ -(p_i - d_i)e, & p_i > d_i \end{cases}$$

$$R(p_i, d_i) = \begin{cases} \frac{d_i}{\sum_{j=1}^n d_j} \cdot O + (d_i - p_i) \cdot r, & p_i < d_i \\ \frac{d_i}{\sum_{j=1}^n d_j} \cdot O, & p_i = d_i \\ \frac{d_i}{\sum_{j=1}^n d_j} \cdot O - (p_i - d_i)(e + \alpha t), & p_i > d_i \end{cases}$$

$$r = \frac{(e + \alpha t) \sum_{i=1}^{n} [p_i - d_i]_+ + (e + t) \sum_{i=1}^{n} (d_i - p_i)}{\sum_{i=1}^{n} [d_i - p_i]_+}$$

Q: how to obtain gross demands  $(d_i)$ ?

#### Numerical Results

- *n* = 10,000 customers
- e = t = 4¢/kWh

- c ~ Normal distribution
  (mean=6 ¢/kWh, variance=1)
- d ~ Uniform distribution
  (between 400 and 1600 kWh/month)



#### Numerical Results

- *n* = 10,000 customers
- e = t = 4¢/kWh

- c ~ Normal distribution
  (mean=6 ¢/kWh, variance=1)
- d ~ Uniform distribution
  (between 400 and 1600 kWh/month)



# Inducing Truthfulness

- How do we obtain gross demands (d<sub>i</sub>'s)?
- Let customers report their gross demand
- Introduce penalty for inconsistent reports
- > At time t pay additional amount of  $\gamma |d_i^t - d_i^{t-1}|$



## Inducing Truthfulness

- Two factors that limit the cheating level
- > Higher penalty rate ( $\gamma$ )
- More uncertainty (e.g. more rounds)

