Prosumer Pricing, Incentives and Fairness

Ali Khodabakhsh
June 27, 2019

Joint work with Jimmy Horn, Evdokia Nikolova, Emmanouil Pountourakis

The University of Texas at Austin
Electrical and Computer Engineering
Cockrell School of Engineering

ACM e-Energy 2019, Phoenix, AZ, United States
Goal: propose a rate structure for electricity customers that

- More fairly divides the utility’s overhead cost among customers (consumers or prosumers).
- Provides the utility a mechanism to control the solar penetration.
 - Minimum rate
 - Minimum risk (number of connection points)
 - ...

Introduction

Ali Khodabakhsh (UT Austin)
Customers pay $e + t + o$ (per unit) to buy energy from the grid.

Prosumers usually get only e (per unit) for extra energy sold to grid.

Total overhead cost depends on the capacity of the network.
Example:
- Assume $e = t = o = 4 \, \text{¢/kWh}$
- $c = \text{solar production cost}$

- $c \geq 12 \, \text{¢/kWh}$: **No investment**
- $12 > c \geq 4$:
 - **Consumer**
 - **Neutral Prosumer**
- $c < 4 \, \text{¢/kWh}$:
 - **Invest as much as possible**
 - **Positive Prosumer**
Example: Overhead cost

- Proportional to total gross demand
- Split based on net demands

<table>
<thead>
<tr>
<th></th>
<th>House 1</th>
<th>House 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand (kWh/month)</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>Solar (kWh/month)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Net demand (kWh/month)</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>Overhead</td>
<td>$15</td>
<td>$15</td>
</tr>
</tbody>
</table>
Example: Overhead cost

- Proportional to total gross demand
- Split based on net demands

<table>
<thead>
<tr>
<th></th>
<th>House 1</th>
<th>House 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand (kWh/month)</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>Solar (kWh/month)</td>
<td>0</td>
<td>300</td>
</tr>
<tr>
<td>Net demand (kWh/month)</td>
<td>600</td>
<td>300</td>
</tr>
<tr>
<td>Overhead</td>
<td>$20</td>
<td>$10</td>
</tr>
</tbody>
</table>
Proposed Pricing Scheme

\[R(p_i, d_i) = \begin{cases}
(d_i - p_i)(e + t) + \frac{d_i - p_i}{\sum_{j=1}^{n}[d_j - p_j]_+} \cdot O, & p_i < d_i \\
0, & p_i = d_i \\
-(p_i - d_i)e, & p_i > d_i
\end{cases} \]

\[R(p_i, d_i) = \begin{cases}
\frac{d_i}{\sum_{j=1}^{n} d_j} \cdot O + (d_i - p_i) \cdot r, & p_i < d_i \\
\frac{d_i}{\sum_{j=1}^{n} d_j} \cdot O, & p_i = d_i \\
\frac{d_i}{\sum_{j=1}^{n} d_j} \cdot O - (p_i - d_i)(e + \alpha t), & p_i > d_i
\end{cases} \]

\[r = \frac{(e + \alpha t) \sum_{i=1}^{n}[p_i - d_i]_+ + (e + t) \sum_{i=1}^{n}(d_i - p_i)}{\sum_{i=1}^{n}[d_i - p_i]_+} \]

Q: how to obtain gross demands \((d_i)\)?
Numerical Results

- $n = 10,000$ customers
- $e = t = 4 \, \text{¢/kWh}$
- $c \sim \text{Normal distribution (mean=6 \, \text{¢/kWh, variance=1)}$
- $d \sim \text{Uniform distribution (between 400 and 1600 kWh/month)}$
Numerical Results

- \(n = 10,000 \) customers
- \(e = t = 4 \) ¢/kWh
- \(c \sim \) Normal distribution (mean=6 ¢/kWh, variance=1)
- \(d \sim \) Uniform distribution (between 400 and 1600 kWh/month)
How do we obtain gross demands (d_i’s)?

- Let customers report their gross demand
- Introduce penalty for inconsistent reports
- At time t pay additional amount of $\gamma |d_i^t - d_i^{t-1}|$
Two factors that limit the cheating level

- Higher penalty rate (γ)
- More uncertainty (e.g. more rounds)