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Abstract

We study a dynamic model of procurement auctions in which the agents (sellers) will abandon
the auction if their utility does not satisfy their private target, in any given round. We call this
“abandonment” and analyze its consequences on the overall cost to the mechanism designer
(buyer), as it reduces competition in future rounds of the auction and drives up the price.
We show that in order to maintain competition and minimize the overall cost, the mechanism
designer has to adopt an inefficient (per-round) allocation, namely to assign the demand to
multiple agents in a single round. We focus on threshold mechanisms as a simple way to achieve
ex-post incentive compatibility, akin to reserves in revenue-maximizing forward auctions. We
then consider the optimization problem of finding the optimal thresholds. We show that even
though our objective function does not have the optimal substructure property in general, if
the underlying distributions satisfy some regularity properties, the global optimal solution lies
within a region where the optimal thresholds are monotone and can be calculated with a greedy
approach, or even more simply in a parallel fashion.
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1 Introduction

The wide applicability of auctions in real life, from the simple traditional sealed-bid and ascend-
ing/descending price auctions, to the modern sponsored search and eBay auctions, to government-
run auctions for spectrum and carbon emissions, has inspired the development of a rich theory
of auctions and mechanism design. The more prevalent auction design focuses on the so called
‘regular’ auctions, where the bidders are buyers wishing to buy an item from the mechanism de-
signer (seller), who tries to maximize her revenue (see, e.g. [15]). Less prevalent are ‘reverse’ or
‘procurement’ auctions where the bidders are sellers and the mechanism designer is a buyer wanting
to minimize cost.

A principal example of procurement auctions is public procurement—the process by which
governments purchase goods, services and construction—which comprises a significant fraction, 10-
20%, of a country’s GDP [5]. Some of the more complex procurement auctions include the above
mentioned spectrum and carbon emissions auctions, as well as the procurement of energy, a key
motivation of this work.

A notable feature of the above examples that makes the corresponding auction processes es-
pecially complex in reality is their repeated nature with interdependencies among the different
rounds. Thus, while the large majority of literature on auction and mechanism design focuses on
static mechanisms that optimize the designer goals with a single round in mind, there has been a
recent rise in the study of dynamic mechanism design which attempts to model and analyze mech-
anisms across time [1]. In the context of procurement, different strands of literature investigate
different types of interdependencies, such as caused by a capacity constraint [21, 22], a switching
cost from one service provider to another [9, 17], a backlog cost in dynamic inventory control mod-
els [18, 23], learning through experience [16, 20] and piecewise procurement where the subprojects
of a large project have to be procured in a predetermined order [2, 24].

Yet very simple and basic models for dynamic procurement remain unexplored that provide
fertile ground for theory exploration and progress. We propose one such model which takes the
most basic reverse auction of multiple sellers needing to provide a unit of divisible good or service
over repeated rounds, with the condition that a seller must make at a minimum her overhead cost in
order to remain present in future rounds of the auction. This provides a coupling or interdependency
of the different rounds of the auction that precludes existing mechanisms from applying and calls
for new tools in mechanism design.

Our motivation for this model comes from the process for energy procurement called “economic
dispatch”: Electricity generation is currently managed by Independent System Operators (ISO)
in a myopic way (day by day). Each generator submits a supply curve, namely one or more
bids of how much it is able to generate at what unit cost, for the following day. The ISO then
allocates generation, based on demand (and subject to any system constraints), so as to minimize
the total generation cost. Economic dispatch is thus effectively a generalized version of the standard
procurement auction.

In a lot of US markets, wind is typically the least expensive form of generation, thus it is
favored by the current selection mechanism over conventional generation (nuclear, coal and gas).
Coal, as the least competitive conventional generation, is gradually being driven out of business
due to underuse. Wind though has higher variability and uncertainty, and requires increased use
of expensive back-up generation, while conventionals are reliable and do not need to be backed
up. Ultimately, this is pushing the system to the two extremes of cheap, variable renewables and
expensive, back-up generation. As a result, this short-term cost-minimization approach yields a
higher long-term cost and compromises system reliability [14].

In reality, a less competitive generator whose economic viability is threatened might be “saved”
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by the ISO if it is considered critical to system reliability, by entering a side contract with the ISO
that guarantees it sufficient allocation and payment to help it remain viable. Such contracts are
currently done behind closed doors in an ad hoc way, including the ISO’s decision which generators
it considers critical.

To improve system efficiency and transparency, our model here makes a first step toward provid-
ing a framework for systematic allocation and payments that minimize cost over multiple periods.
Specifically, two issues stand out from the brief background on energy procurement above. One
issue is the need to capture the agents’ overhead costs necessary to stay in business as a model
feature to make transparent the process of identifying and saving a needed agent. We call the phe-
nomenon of permanently leaving the auction due to not having met the overhead cost in a given
round as “abandonment”. The second, related issue, is the tension of cost vs competition, or short-
vs long-term outlook, namely that being optimal in the current round might be suboptimal from
a long-term perspective. That is because cost minimization in a given round might result in fewer
agent allocations and thus reduced competition in future rounds, which would lead to a higher cost
in the future. We discuss these two issues in more detail in the context of our model and results
below.

Modeling choices and assumptions. Our goal is to frame the above real-life situation as
a simplified auction theory model that abstracts away many engineering components, which are
important but not central to the core mechanism design challenges. What are the minimal features
our model can be stripped down to, that make it as simple as possible yet expressive of the two
above-mentioned issues of (i) abandonment and (ii) tradeoff of cost and competition?

We focus on a two-round model with n symmetric agents (sellers), each of whom can meet the
entire demand of 1 unit of divisible good/service per round, and each of whom submits a bid for
her overhead cost, namely the amount she needs to make this round to “be saved” and remain in
the next round of the auction. The overhead costs are private values, independent and identically
distributed according to some known distribution F , across agents and across rounds.

To keep the model tractable, we assume that a per unit production cost that sellers incur for
providing the good/service is known and constant (which turns out mathematically equivalent to it
being zero). For example, in the energy application above, the cost of producing energy can easily
be estimated by the technology; however, the overhead costs of generators (such as financing, labor
costs, maintenance, etc.) are private information.

In a given round, the auctioneer or mechanism designer collects the bids and decides on the
allocations and payments which in turn determine which agents are going to be saved for the
following round. We will argue later that in the last day, the mechanism designer is going to
allocate the entire demand to a single agent (since there is no need to maintain the competition
anymore). Further, to more succinctly capture the challenges that abandonment and competition
issues present, we assume that even in that final round, the mechanism should satisfy the overhead
cost constraint of that single agent: this is also equivalent to removing this assumption and having
one extra round, namely a 3-round auction setting.

Abandonment. In both forward and reverse auctions, when the auction is repeated over several
iterations, it has been noted that the agents may leave the platform. The typical assumptions used
in the literature are of dynamic arrival and departure that are exogenous and are not related to the
outcome of the auction [11, 12]. In a regular auction the agent may prefer to change her auction
platform if she is not receiving enough utility. Similarly, in a reverse or procurement auction, for
example in the energy sector, if the generators do not meet their overhead costs they are forced to
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close down.
Two natural modeling choices for the utility function of an agent stand out to capture the

abandonment: the utility for being allocated zero or, more generally, for being paid less than one’s
overhead cost could be modeled as zero or as negative infinity (or, equivalently, a large negative
constant). The first choice may appear more natural on the surface but it fails to align the incentives
with the phenomenon of abandonment—specifically, it fails to represent the negative repercussions
of a bankruptcy in reality, which is what we are trying to model with agents abandoning the
auction. Indeed, if an agent ever goes out of business, the agent should not be incentivized to stay
in the auction. Furthermore, zero utility for zero allocation is inaccurate in the energy context
where power plants continue having overhead expenses (such as employee salaries and power plant
maintenance) even if they are not allocated and not producing in a given time period, so effectively
a zero or even insufficient positive allocation implies losses which are what ultimately drives plants
to retire. We thus opt for the negative infinity model, which also emphasizes the “finality” of an
agent’s participation in the auction if she is not allocated or has not met her overhead cost in a
given round.

We remark that with this modeling choice, the utility function will not satisfy individual ratio-
nality, in that participating in the auction may have lower expected utility than not participating.
Again, this is consistent with the energy and likely a number of other applications where starting
a business such as building and operating a power plant entails risk and is not guaranteed to break
even. We note the relation of our utility function choice to regular auctions where a buyer has a
budget and receives a utility of negative infinity for exceeding it (e.g., [6, 10]). Indeed, we can view
the overhead cost that needs to be met each period as a reverse budget where, once the budget is
exceeded, or in our case the reverse budget is not met, the agent is forced to abandon the auction.

Competition vs cost. In a one-shot environment it is well understood that competition lowers
cost and a monopoly increases it. Over multiple rounds, however, the connection of cost and
competition is not as straightforward. Already in our two-round setting, we can see that in order
to meet the demand while satisfying agent overhead costs, it is cheapest for the mechanism designer
to pick the single lowest bid agent and allocate the entire demand to her—cheapest in the first round,
that is. This can be implemented by running a Vickrey-Clarke-Groves (VCG) mechanism where we
ask each agent for their overhead cost. However, due to abandonment, this would result in all but
one agent abandoning the auction after the first round, and would lead to a monopoly situation in
the second round whereby the designer needs to pay the maximum amount to the single remaining
agent—paying the upper bound of the agent’s bid distribution. Allocating to multiple agents in
the first round would be a lot more costly in that round: is the higher cost worth the savings that
would result from increased competition in round 2? Indeed this question highlights one of the
central design challenges for our mechanism discussed in Section 4, and a key technical challenge
in the resulting multi-variate optimization problem discussed in Section 5.

Bid-sensitive vs bid-oblivious mechanisms. Following the above discussion, there is a trade-
off between the cost we incur on day 1, and the competition that exists on day 2. We thus expect
that there is an optimal point in the trade-off between cost and competition. In other words, there
should be an optimal number of agents that balances the cost required to save those agents today,
and the expected cost we incur tomorrow given the competition among this surviving number
of agents. Let k denote this optimal number of agents. Now we can generalize the well known
truthful second-price auction as follows: after the agents submit their bids, the mechanism assigns
the demand to the cheapest k agents and all those k agents receive a payment equal to the (k+1)st
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bid. Note that the higher k is, the higher the cost would be in the current round, but there will be
more competition (hence less cost) in future round(s), and vice versa. Hence, the optimal k can be
calculated based on the distribution F and the number of rounds left.

In fact, we can do even better than the mechanism described above, which we call a “bid-
oblivious” mechanism. In a bid-oblivious mechanism, we commit to save k agents, independently
of their bids. Instead, we could let the bids determine the number of agents to be saved, via using
appropriate thresholds. This is similar to revenue maximization in regular auctions, in which by
setting a reserve price we ensure that the item is not sold at a cheap price. If all the bids happen to
be less than the reserve price, the item would not be sold. Similarly here, we can save k agents only
if the lowest k bids are below a certain threshold. In this way, we can dynamically decide on the
number of agents to be saved, and achieve a lower cost. We call this a “bid-sensitive” mechanism,
as the bids affect the number of agents that get allocated the service. We provide an example on
how bid-sensitive mechanisms can achieve a lower cost compared to bid-oblivious mechanisms in
Appendix A.

Preview of our results and challenges. Our goal is to design the optimal bid-sensitive mech-
anisms, i.e., to find the optimal thresholds for allocating the service to various number of agents at
every round. Specifically, for our two-round auction, it suffices to set the corresponding thresholds
for round one, as the final round has a trivial optimal mechanism. We denote by ti the threshold
for saving i agents in round one. Our main result is to show that the global optimization for the
thresholds t2, t3, ... can be done in a greedy fashion, even though the objective function does not
have the optimal substructure property that usually leads to optimality of greedy approach (see
Theorem 3).

To illustrate this, consider and example with three agents in which the overhead costs are drawn
from a uniform [0, 1] distribution. Let C(t2, t3) be the expected cost of both rounds, given that we
set thresholds t2, t3 for round one (note that t1 = 1, since we always have to save at least one agent).
We show in Example 2 in Section 4 that the optimal thresholds in this setting are (t∗2, t

∗
3) = (1

6 ,
1
12).

Yet this simple example reveals a few interesting observations:

1. If the underlying distribution satisfies certain properties, the optimal thresholds are monotone,
i.e., t∗2 ≥ t∗3 ≥ t∗4 ≥ · · · (see Lemma 1 and Theorem 3 in Section 5). Even though this may
seem intuitive, we show in Example 5 in Appendix D that this is not always true for general
distributions.

2. We can find the optimal threshold mechanism with a greedy algorithm, meaning that we can
start by optimizing over t2 (while setting t3, t4, ... to any arbitrary values). This gives the
optimal value for t2. Then, using the optimal value of t2, we can optimize over t3. However,
if we do this process in any other order, it does not result in the optimal threshold values.
We illustrate this in Figure 1, where the black curve shows the optimal value of t3 for any
arbitrary value of t2. Specifically, the figure shows that if we first optimize over t3, we get a
value different than 1/12 (unless t2 is set to a high enough value).

3. Figure 1 also shows the derivative of the objective function with respect to t3 for any pair
(t2, t3). We show in Section 5 that as long as t2 > t3 (under the diagonal line), the sign of the
derivative is independent of the actual value of t2. This may suggest that as long as t2 >

1
12 ,

the optimal t3 should be 1/12. However, this is not the case. In fact, for t2 = 1
12 + ε we see

that the optimal t3 is even higher that t2. The situation becomes even more chaotic if we add
one more agent, as the optimal value of t3 could depend on t4 as well. However, we show that
fortunately none of these complicating behaviors happen, once we set the earlier thresholds
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to their optimal values. More precisely, once we are optimizing over ti after setting earlier
thresholds to their optimal values, the resulting value we get for ti would be smaller than all
previous values, and it will not depend on the remaining thresholds.

4. Another point worth noting from this example is that the optimal values of t2 and t3 would
remain the same if we added one or more agents to the initial pool of participants. This is not
specific to the uniform distribution, as we prove it more generally in Lemma 1. We discuss
the similarity of this independence to regular auctions next.
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Figure 1: Derivative of the cost with respect to the threshold for saving 3 agents (∂C/∂t3). The
blue area represents the points (t2, t3) for which this derivative is negative, and the red/yellow area
represents the positive region. The green star represents the global optimal solution of (t∗2, t

∗
3) =

(1
6 ,

1
12).

Similarities to Myersonian approach. Our main result is the characterization of optimal
thresholds for our procurement auction setting and an algorithm to efficiently compute them. One
important corollary of our analysis is that the optimal threshold mechanism is independent of
the initial number of agents participating in the auction. More precisely, it turns out that the
optimal threshold for saving k agents is the value where the marginal contribution to the cost of
the current day (virtual cost w.r.t. F ) is equal to the savings of having the k-th agent present

in the future rounds. Note that the virtual cost function (x + F (x)
f(x) ) is solely determined by the

underlying distribution function F . Also, the marginal gain of having the k-th agent in the future
round(s) does not depend on the pool of agents we start with. This is very similar to Myerson’s
result for revenue maximization in regular auctions: for n symmetric buyers, the optimal auction
is a second-price auction with a reserve price. The reserve price is obtained by setting the virtual
valuation (defined as v − 1−F (v)

f(v) ) to zero, and is again independent of the number of agents (n).
This similarity is surprising, since in procurement auctions we have to always meet the demand and
we cannot use price as a tool to trade off utility across different types. However, using thresholds
for saving a different number of agents, we are able to trade off utility across different types and
different rounds.

Another similarity is in how we achieve optimality. In revenue maximization, the reserve price
is equivalent to supply reduction, meaning that depending on the bids, the seller has the right to
not sell the item. Note that this means that the optimal auction is not efficient, as the seller will
sometimes withhold the object even though the highest bidder has a strictly positive value. For our
cost minimization problem, we achieve optimality via what is effectively a demand increase. The
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efficient outcome for each stage is to assign the service to the agent with the lowest overhead cost
since every agent can satisfy the demand. However, the mechanism may allocate the production of
the service to multiple agents in the hope of decreasing the future costs.1

Summary of results. Our results can be summarized as follows:

(a) We model a two-round dynamic procurement auction with abandonment, where the agents
leave the auction if they do not meet their overhead costs in a given round. We focus on
threshold mechanisms, as they are widely used in practice, and show that they are ex-post
incentive compatible for our dynamic auction model. The thresholds are similar to setting
reserves for revenue maximization in regular auctions.

(b) Next, we study the optimization problem for finding the optimal set of thresholds. We show
that if the distribution F for overhead costs is regular (as defined later), the optimal thresholds
are independent of the number of agents participating in the auction. In other words, we do
not need to know the number of agents to determine the optimal set of thresholds.

(c) We prove that if the underlying distribution F satisfies certain properties, the optimal thresh-
olds will be monotone, meaning that the optimal threshold for saving i agents is lower than
the optimal threshold for saving j agents for any i > j. Moreover, we show that this mono-
tonicity helps divide the optimization problem into n separate problems, which ultimately
leads to an efficient algorithm to calculate the optimal thresholds in parallel.

2 Related Work

Single-parameter mechanism design has been extensively studied in theoretical computer science
over the last decade and lead to several interesting results in the intersection of approximation and
mechanism design (e.g. [13] and references therein). Over the last few years there has been an
increased interest in dynamic mechanism design and specifically, revenue maximization in repeated
auctions [3, 19]. The challenge in this line of work has been that depending on the assumptions
about when the agents obtain their information, these models become multi-dimensional, leading
to a notoriously hard problem in mechanism design (see [4] for a survey).

For example, Ashlagi et al. [3] study incentive compatible mechanisms for revenue maximization.
In contrast to prior economic literature they require that the mechanism is strongly individually
rational, namely the utility of each agent should be non-negative at any stage of the game. One
interpretation of strong individual rationality in the context of a dynamic auction is that agents
would abandon the service if they ever receive negative utility. Our model of abandonment in a
procurement auction setting can be thought of as a relaxation of individual rationality, where each
agent expects to achieve a specific level of utility and if she does not meet her target then she
abandons the platform.

Different models of dynamic procurement auctions have been studied in the past. The common
aspect between these different models is an intertemporal dependency, either on the procurer/buyer
side or the suppliers/bidders, that ties the outcomes of the individual auctions. Examples of such
dependencies include:

Capacity constraint: When the bidders are capacity-constrained, their costs increase if they win
the current auction (due to higher future capacity utilization). Therefore, capacity-constrained

1Our solution keeps the total production the same, splits the allocation of the service equally and increases the
payment rate accordingly. This is equivalent to increasing the total demand without inflating the payment rate.
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firms face an intertemporal trade-off in sequential auctions: higher profits in the current period
lead to lower profits in future periods. This model has been studied over both a finite [21] and an
infinite horizon [22].

Switching cost: When a procurer buys goods from competing suppliers repeatedly over time, she
may incur an additional switching cost each time she switches from one supplier to another. These
costs arise because the buyer must acquire skill at using a new supplier’s product, and affect the
competition between the incumbent supplier and his rivals [9, 17].

Backlog/holding cost: In dynamic inventory control models, the procurer becomes a retailer
who has to repeatedly run a procurement auction among a number of potential suppliers before
observing the actual demand. At the end of each period, any unsatisfied demand will be backlogged
with a backlog cost and any unsold inventory will be carried over to the next period with a holding
cost [18, 23].

Learning through experience: In many industries learning by doing or learning through pro-
duction experience enables suppliers to provide better service at lower costs. Lewis and Yildirim
[16] consider such model in which the cost of each supplier at each round consists of a (public)
intrinsic cost of production, which decreases every time that producer supplies the procurer, and a
(private) transitory cost drawn according to a prior distribution. They study how buyer optimally
manages dynamic competition among rival suppliers to exploit learning economies.

Piecewise procurement: Sometimes sequential procurement auctions belong to a large-scale
project whose subprojects have to be procured in a predetermined order. The project yields its full
value once it is completed. The question is then how the procurer optimally designs a procurement
auction for each subproject, especially when she cannot write long-term contracts [2, 24].

In comparison to these previous models, we introduce the notion of abandonment to the
procurement auction, meaning that the suppliers may leave the auction if their received payments
do not cover their internal costs. Under this model, it is no longer true that repeating a single-
round-optimal auction will lead to assigning the demand to the best set of agents at the best price
[14]. To the best of our knowledge, this fundamental model has not been studied in the literature.

3 Preliminaries

There are 2 periods and a set of agents N , where |N | = n. Each period the mechanism designer
wants to allocate a unit of production to a subset of agents. In period j = 1, 2, each agent
i is characterized by her overhead cost M j

i and her production cost cji . We assume that the
overhead costs are private and independently identically distributed according to a distribution F
(independent across both agents and rounds). We will assume that F is a continuous distribution
supported on [0, 1].

Let xji be the production percentage allocated to agent i in round j and pj the anonymous
payment rate for round j. The utility of agent i in round j is given by:

uji (M
j
1 ,M

j
2 , · · · ,M

j
n) =

{
xji (p

j − cji ) xji (p
j − cji ) ≥M

j
i ,

−∞, xji (p
j − cji ) < M j

i .
(1)

Agent i seeks to maximize her aggregate utility u1
i + u2

i from both rounds. The utility function

is capturing the fact that if an agent does not meet her overhead cost M j
i in round j, she goes out

of business and loses everything she gained today. In addition we assume that if an agent receives
−∞ utility she will abandon the auction.
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We further focus on the case where the individual production costs cji are known to the designer

and homogeneous across the agents. For simplicity all our results will assume cji = 0 for all i and j
but, as we show in Section 6, this can be generalized if they are the same for all agents in a particular
round but not necessarily 0, and can vary across rounds. Hence, without loss of generality, the
utility of agent i becomes:

uji (M
j
1 ,M

j
2 , · · · ,M

j
n) =

{
xji · pj xji · pj ≥M

j
i ,

−∞, xji · pj < M j
i .

(2)

The mechanism designer does not know the overhead costs, M j
i , which are all identically and

independently distributed according to a distribution F , i.e., M j
i ∼ F independent across rounds

j = 1, 2 and across agents i = 1, . . . , n.

Mechanism. Each agent reports her current overhead cost M j
i to the designer during round

j and the designer decides on the allocation xji (M
j
1 , · · · ,M

j
n) for all i ∈ N and the anonymous

payment rate pj(M j
1 , · · · ,M

j
n). We seek to design a mechanism that minimizes the expected total

cost of the outcome

E
Mj

i ∼F

[
p1(M1

1 , . . . ,M
1
n) + p2(M̂2

1 , . . . , M̂
2
n)

]
,

where M̂2
i = M2

i if x1
i · p1 ≥M1

i and M̂2
i =∞ otherwise.

Truthfulness. There are several generalizations of truthfulness once we depart from the standard
single-shot environment. Ex-post incentive compatibility requires that agents want to report truth-
fully their overhead costs if this maximizes their aggregate utility even if they have access to the
realization of their overhead costs in advance. For example, in our setting with two rounds, agent
i should not have an incentive to report a different value than M1

i in round 1 despite knowing the
value M2

i . Periodic ex-post incentive compatibility relaxes this condition to agents having access to
the history of the game and having only distributional assumptions for their future overhead costs.
Nevertheless, the simple class of threshold mechanisms that we analyze in this paper satisfies the
stronger notion of ex-post incentive compatibility. Each round j is characterized by a choice of n
different thresholds (tj1, t

j
2, . . . , t

j
n), where tji represents the maximum amount that the mechanism

is willing to pay to save the i-th agent in round j. This is more precisely described in the following
definition.

Definition 1. A single threshold mechanism using thresholds t1, . . . , tn ∈ [0, 1] is defined as follows:
Assume M1 < M2 < · · · < Mn and let us define the predicate Tk(M1, . . . ,Mn) = 1 if and only if
Mk ≤ tk, in other words the kth smallest value is less than the kth threshold.2 Let k be the highest
index such that Tk = 1. Then the mechanism allocation is:

xi =

{
1/k if i ≤ k
0 otherwise

(3)

and the payment to agent i is xi · p, where p is the total mechanism payment (also the per unit cost
of providing the demand) defined as p = k ·min{tk,Mk+1}. In other words, the cheapest k agents
equally provide the service, while each receiving a payment of min{tk,Mk+1}.

2In the case of ties we need to slightly adjust the description of the mechanism. For the sake of clarity we present
the more general version of the mechanism in Appendix B and prove that it is truthful. Since we assume continuous
distributions, we can assume no ties for optimizing our objective, without loss of generality.
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The mechanism uses the thresholds to determine the number of agents it wishes to allocate the
service to. Note that allocating the service to more than one agent is inefficient. Allocating to
multiple agents and respecting their overhead costs means that for every agent such that xi > 0 it
must be that the agent payment is at least her overhead cost, xi · p ≥Mi.

Proposition 1. Any threshold mechanism is truthful3 in the corresponding single-shot game and
each agent that has non-zero allocation has non-negative utility.

Proof. If an agent i is not allocated the service, she receives utility of −∞. Bidding a lower overhead
cost may result in her being allocated some part of the demand. There are two scenarios in which
this may happen: (1) If there exists some k such that Tk is the highest true predicate both before
and after agent i lowered her bid. In this case, it must be that her lower bid is less than or equal to
Mk < Mi. This results in a payment equal to Mk, which makes her utility −∞ again. (2) If Tk is
not the highest true predicate after agent i lowers her bid. Assume that the new highest predicate
satisfied is Tw for some w > k. Since Tw was not true before, it must be that the threshold tw is
now the critical value, therefore each agent receives a payment equal to tw. But since Tw was false
before, we know that tw < Mi, meaning that agent i will receive −∞ utility.

If agent i is allocated the service, notice that her payment is independent of her actual overhead
cost. Reporting a lower overhead cost does not change her allocation nor payment. Similarly, if she
reports a higher amount, she will receive the same payment, as long as she is still being allocated
the service. If her increase makes her not being allocated, then her utility becomes −∞. In neither
case is deviating from reporting the true overhead cost profitable.

We now define a threshold mechanism for a two-round game.

Definition 2. A threshold mechanism for a two round game is characterized by two sets of thresh-
olds t1 = (t11, . . . , t

1
n) and t2 = (t21, . . . , t

2
n). For any round j, we allocate the demand to at least i

agents, if there are i bids below tji .

While technically the threshold mechanism defined in the second round could depend on the
number of surviving agents, the optimal mechanism in the last round is oblivious to this fact; it
will always allocate the service to a single agent and offer her a payment equal to the second lowest
bid or the top of the distributional support if only one agent has survived. Since the mechanism
is only feasible if it always allocates the entire demand, we need to have that tj1 = 1 (the upper
bound of the support of F ) and therefore we will be omitting t1 from now on.

Proposition 2. A threshold mechanism for a dynamic game is ex-post incentive compatible.

Proof. It is easy to see that for j = 2 (the last round), truthfulness of the threshold mechanism in
the single-shot version implies that reporting the truth in the last round is optimal for each agent.
For j = 1, we have to argue that deviating from the truth does not increase the aggregate utility
for the agent. Since the mechanism is independent of the outcome of round 1, the only way that
the reported overhead cost in round 1 affects the second round is if the agent is not allocated in
the first round, hence has to abandon the auction. Instead, the agent could misreport a smaller
overhead cost in order to ensure some allocation in round 1 so as to be considered in round 2.
But in this case the aggregate utility of this agent remains −∞, hence she cannot benefit from the
deviation.

3Assuming no ties.

10



As mentioned earlier, our objective in designing a threshold mechanism is to minimize the total
payment of our allocation. In other words, we seek a mechanism (x, p) with thresholds (t1, t2) such
that it minimizes the total payment. The optimal mechanism for the second round is independent
of what happens during the first round and there is no reason to allocate the production of the
service to more than one agent.

Proposition 3. The optimal threshold mechanism for the second round of a two-round auction is
always equal to t22 = t23 = · · · = t2n = 0.

Proof. Setting t22 > 0 means that with some probability two agents will be allocated the service
resulting in a payment more than the second lowest bid. Note that allocating the service to the
second lowest agent does not result in any benefit in the future (since this is the last round). On
the contrary, setting all thresholds for round two to 0 ensures that we allocate the service to the
agent with the lowest bid, and the payment would be equal to the second lowest bid. Similarly,
setting any t2i to a non-zero value is a sub-optimal choice. Therefore, the optimal mechanism in
round 2 is to set all thresholds t2i to zero for i ≥ 2. (As always we have t21 = 1.)

Note that when the threshold mechanism allocates to an agent, it ensures that the payment
she receive is at least her reported overhead cost so she will not abandon the auction. This is not
necessarily needed for the second round according to the definition of our objective. If we allow the
mechanism to allocate to an agent and not respect her overhead cost, then we could simply add an
additional round. In that case, any feasible mechanism must ensure that one agent survives to the
third round; therefore, the payments should satisfy her overhead cost in the second round as well.
Thus our analysis exactly captures this case when we only focus on the first two rounds.

The main result of our paper is to characterize the first round optimal threshold mechanism
for dynamic procurement. It is important to note the connection of our problem to revenue max-
imization where effectively we use a similar analysis in terms of virtual costs. An alternative way
to interpret our mechanism is that it implements a form of supply increase to reduce the aggregate
cost of the mechanism. Our results hold for natural assumptions on the distribution of the overhead
cost defined below.

Definition 3 (Regularity [7]). We say that a probability distribution f (with cumulative distribution

function F ) supported on [0, 1] is regular if its virtual cost function defined as x+ F (x)
f(x) is monotone

increasing.

Definition 4 (Order statistics [8]). Let X1, ..., Xn be a random sample of size n (independent)
from a distribution F and X1:n ≤ X2:n ≤ ... ≤ Xn:n be the order statistics obtained by arranging
Xi’s in non-decreasing order. We denote by µr:n the expectation of the rth order statistic, i.e.:

µr:n = E[Xr:n]

Definition 5 (Diminishing returns of order statistics). We say that the rth order statistic of a
distribution F has the diminishing returns property if

µr:n−1 − µr:n ≥ µr:n − µr:n+1, ∀n > r.

Our main theorem is stated below. A surprising property we find is that the mechanism does
not need to know the initial number of agents that participate in any round of the auction.

Theorem 1. If distribution F satisfies the regularity condition (Definition 3), and its second order
statistic has the diminishing returns property (Definition 5), then the optimal threshold mechanism
can be found in polynomial time.
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The remainder of our paper is organized as follows. In Section 4 we define the canonical
threshold mechanism and provide a few examples. In Section 5 we present the main theorem of
our paper proving the optimality of the canonical threshold mechanism. In Section 6 we discuss
generalizations of the model where our results still hold. Finally, in Section 7 we discuss significant
departures from our setting via breaking various types of homogeneity and symmetry and propose
future directions.

4 Mechanism

Our objective in designing a threshold mechanism is to minimize the payment of our allocation. We
will use Cn(t2, ..., tn) to denote the aggregate cost of two rounds given a specific set of thresholds
(t2, . . . , tn) for the first round, where n is the number of agents in round 1.

Example 1 (2 agents, 2 rounds). To develop intuition for the general problem, we first start with a
simple example. Suppose we have 2 agents in round 1. We want to answer the following questions:
“When is it beneficial to keep both agents alive for the second round? Is there a more efficient way
than committing to save a particular number of agents a-priori?”

Since we have only two agents and one is always picked, we only need one threshold denoted by
t ∈ [0, 1] to determine whether or not picking the second agent is beneficial. If both bids are below
t, we pick both agents and pay them t each; otherwise, we pick the cheaper agent and the payment
would be equal to the higher bid. To find the optimal t, we have to calculate the expected cost
as a function of t. We assume the overhead costs are drawn according to a uniform distribution
supported on [0, 1], i.e., M1,M2 ∼ U [0, 1]. Three different cases can happen regarding the bids (in
round one) as shown in Table 1.

For example, in the first case when both bids are below t, we decide to keep both agents alive;
therefore, we have to pay t to each of them. There is also a cost of µ2:2 = 2/3 which is the expected
cost of the next round, given that both agents will be available and we have to pay the highest bid
(out of those two uniform [0, 1] bids) to the lowest bidder. On the other hand, when we keep one
agent alive in cases 2 and 3, that single agent faces no competition in the next round and will bid
Mi = 1 (which we will have to accept). Note that when we save only one agent, the payment is
determined by the second bid, since we always assume t1 = 1.

Multiplying the costs by their corresponding probabilities and adding up cases we get:

E[cost] = t2
(

2t+
2

3

)
+ 2t(1− t)

(
1

2
+
t

2
+ 1

)
+ (1− t)2

(
2

3
+
t

3
+ 1

)
.

Optimizing over the threshold value t, we get t∗ = 1
6 , which evaluates to a cost of 539

324 ≈ 1.6636.

Example 2 (3 agents, 2 rounds). In this example we want to answer the following questions:
“When is it beneficial to keep all three agents alive for the second round? Also, how does the
threshold for picking 2 agents change compared to the previous example with only 2 agents?”

Let t and t′ be the thresholds for picking 2 and 3 agents in round one, respectively. Doing
the same calculations as in the previous example, we get the following expected cost function: (we
assume that t′ ≤ t, but we can also calculate the expected cost for the case of t′ > t and check that
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# Case Probability Expected Cost Picture

1 M1,M2 ≤ t t2 2t+2
3

1
t

• M2

• M1

0

2

M1 ≤ t < M2
or

M2 ≤ t < M1 2t(1− t) t+ 1
2(1− t)+1

1
• M2

t
• M1

0

3 M1,M2 > t (1− t)2 t+ 2
3(1− t)+1

1
• M2

• M1
t
0

Table 1: Different scenarios of the bids of two agents (Example 1) with respect to the threshold t.
Here green represents which agents survive to the next round, and red represents the payment to
each of those green agents.

the optimal solution is indeed in the t′ ≤ t region.)

E[cost] =t′3
(

3t′ +
1

2

)
+ 3t′2(t− t′)

(
2(t′ +

t− t′

2
) +

2

3

)
+ 3t′(t− t′)2

(
2(t′ +

2(t− t′)
3

) +
2

3

)
+ (t− t′)3

(
2(t′ +

3(t− t′)
4

) +
2

3

)
+ 3t2(1− t)

(
2t+

2

3

)
+ 3t(1− t)2

(
1 + 2t

3
+ 1

)
+ (1− t)3

(
1 + t

2
+ 1

)
. (4)

Optimizing over threshold values t, t′ we get (t, t′) = (1
6 ,

1
12) which evaluates to a cost of 1.49149.

Observe that in the previous 2 examples, the threshold of saving 2 agents was 1
6 , regardless of

whether we started with 2 or 3 agents. In addition, the expected cost (4) has the property that for
any t′, the optimal value of t is 1/6. Also, for any value of t ≥ 1

6 , the cost is minimized at t′ = 1
12 .

These observations lead us to the idea that the optimal thresholds can be calculated individually,
through the following notion of canonical thresholds.

Definition 6 (Canonical thresholds). The canonical threshold for saving i agents, denoted by t̂i,
is the optimal value for ti when all previous thresholds are set to one, and all remaining thresholds
are set to zero. More precisely,

t̂i ≡ argmin
ti

Cn(t2, ..., tn)

s.t. t2 = · · · = ti−1 = 1,

ti+1 = · · · = tn = 0.

(5)

In Section 5 we show that the canonical thresholds defined above are indeed optimal thresholds
for minimizing the objective function Cn(t2, ..., tn). To prepare the ground for this result, we first
establish some properties of our objective function. In particular, in Theorem 2, we calculate the
partial derivative of the objective function with respect to any threshold ti. For this theorem, we
have to define the following notation.

13



Notation. Recall that we defined the predicate Tk(M1, ...,Mn) = 1 if there are at least k bids
below tk. We define the vector M = (M1, ...,Mn) to be the vector of all private values and we write
Tk(M) = 1, or for short Tk = 1, if the kth predicate is satisfied. Otherwise, we write Tk = 0.

Given that the first i bids are below ti (hence predicate i is satisfied), we define Pi,n as the prob-
ability that the remaining bids are above ti so as not to satisfy any higher predicate (Ti+1, ..., Tn).
More precisely, we define

Pi,n = Pr
[
Mi+1, ...,Mn > ti, Ti+1 = ... = Tn = 0 |M1, ...,Mi ≤ ti

]
, (6)

where we assume Pn,n = 1 (since higher bids/thresholds do not exist for this case). An important
property that we use in our proofs is that by this definition, Pi,n is independent of all lower
thresholds (t2, ..., ti−1).

Finally, given a vector of all private values M, we define g(M, t2, ..., tn) to be the total cost of
the mechanism using thresholds t2, ..., tn. This total cost consists of a deterministic cost for the
current round (since the bids are given by M) and an expected cost for the future round(s). With
our earlier notation, Cn(t2, ..., tn) = EM[g(M, t2, ..., tn)]. We are now ready to calculate the partial
derivative of the objective function.

Theorem 2. The derivative of the cost with respect to any threshold ti is given by:

∂Cn(t2, ..., tn)

∂ti
= i

(
n

i

)
Pi,n× (7)[

F (ti)
i + F (ti)

i−1f(ti)EM

[
i× ti + µ2:i − g(M, t2, ..., tn) | Ti = ... = Tn = 0, ti < Mi:n < ti + ε

]]
,

where ε→ 0.

Before proving (7), let us provide some intuition on different parts of this expression. Roughly
speaking, the cost Cn(t2, ..., tn) is determined by the “active” threshold, which corresponds to the
highest predicate that is satisfied. As long as we do not change the active threshold, perturbing
the remaining thresholds should not change the cost, therefore the derivative should be zero with
respect to them. When we think of the derivative with respect to a particular ti, we want to know
how much the cost would increase/decrease if we change ti to ti + ε. There are two scenarios where
this perturbation changes the cost:

1. The first scenario is when there are exactly i agents below ti. This corresponds to
(
n
i

)
F (ti)

i

in (7). We also want the remaining bids to be above ti in a way that higher predicates are
not satisfied (so that ti is active), which is captured by Pi,n. Finally in this case, when we
add ε to ti, all those i agents receive ε more payment, which corresponds to the multiplicative
term i in (7).

2. The second scenario is when ti becomes active after we add ε to it. This requires that the
ith bid is between ti and ti + ε, which is why we get i

(
n
i

)
F (ti)

i−1f(ti). We again need the
remaining bids to be above ti + ε and to not satisfy any higher predicate (Pi,n). The change
in the cost is more complicated in this scenario. We know that at ti + ε we are going to save
i agents and therefore the cost would be roughly i × ti for this round, and µ2:i for the next
round. However, it is not clear how many agents we were saving at ti. That is why we have
the expectation of the cost with negative sign, while the expectation is conditioned to this
particular scenario in which there are exactly i− 1 agents with bids below ti.
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Proof. Using linearity of expectation and law of total probability we have:

∂Cn(t2, ..., tn)

∂ti
=

∂

∂ti
EM [g(M, t2, ..., tn)] = EM

[
∂g(M, t2, ..., tn)

∂ti

]
(8)

=

n∑
j≥i

Pr(Tj = 1, Tj+1 = ... = Tn = 0)EM

[
∂g(M, t2, ..., tn)

∂ti
| Tj = 1, Tj+1 = ... = Tn = 0

]
(9)

+ Pr(Ti = ... = Tn = 0)EM

[
∂g(M, t2, ..., tn)

∂ti
| Ti = ... = Tn = 0

]
(10)

Note that for j ≥ i + 1, the derivative (and therefore the conditional expectation) is zero because
we save at least i + 1 agents and the payment is independent of ti. For j = i, if the (i + 1)th bid
(i.e., Mi+1:n) is more than ti, then we have g(M, t2, ..., tn) = i× ti + µ2:i, and hence

EM

[
∂g(M, t2, ..., tn)

∂ti
| Ti = 1, Ti+1 = ... = Tn = 0,Mi+1:n > ti

]
= i.

In addition, the corresponding probability of such an event is

Pr(Ti = 1, Ti+1 = ... = Tn = 0,Mi+1:n > ti) (11)

=

(
n

i

)
F (ti)

i Pr
[
Mi+1, ...,Mn > ti, Ti+1 = ... = Tn = 0 |M1, ...,Mi ≤ ti

]
=

(
n

i

)
F (ti)

iPi,n (12)

For the case of Ti = ... = Tn = 0, we save at most i− 1 agents and the derivative of the cost with
respect to ti is zero, unless there is a bid in (ti, ti + ε) such that increasing ti by ε makes Ti = 1. In
this special case we use the fact that:

∂g(M, t2, ..., tn)

∂ti
= lim

ε→0

g(M, t2, ..., ti + ε, ..., tn)− g(M, t2, ..., ti, ..., tn)

ε
.

Note that this derivative would be infinity as we have a sudden increase in g, however the probability
of this event is proportional to ε which makes a finite product. In particular, we have:

Pr(Ti = ... = Tn = 0, ti < Mi:n < ti + ε) (13)

= n

(
n− 1

i− 1

)
F (ti)

i−1εf(ti) Pr
[
Mi+1, ...,Mn > ti + ε, Ti+1 = ... = Tn = 0 |M1, ...,Mi ≤ ti + ε

]
= n

(
n− 1

i− 1

)
F (ti)

i−1εf(ti)Pi,n

In this case, g(M, t2, ..., ti + ε, ..., tn) = i× (ti + ε) +µ2:i. Even though the cost g(M, t2, ..., ti, ..., tn)
depends on the thresholds t2, ..., ti and the realization of the bids, its expectation is independent of
the number of agents n, since we have already conditioned on the fact that exactly i − 1 bids are
below ti (and the assignment and payments only depend on those i− 1 bids). Putting the results
back into the original summation (10), we get:

∂Cn(t2, ..., tn)

∂ti
= i×

(
n

i

)
F (ti)

iPi,n+ (14)

n

(
n− 1

i− 1

)
F (ti)

i−1f(ti)Pi,nEM [i× ti + µ2:i − g(M, t2, ..., tn) | Ti = ... = Tn = 0, ti < Mi:n < ti + ε]
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Using the identity i
(
n
i

)
= n

(
n−1
i−1

)
we get:

∂Cn(t2, ..., tn)

∂ti
= i

(
n

i

)
Pi,n× (15)[

F (ti)
i + F (ti)

i−1f(ti)EM

[
i× ti + µ2:i − g(M, t2, ..., tn) | Ti = ... = Tn = 0, ti < Mi:n < ti + ε

]]
,

which completes the proof.

5 Optimality of Canonical Thresholds

In this section, we study the optimality of the canonical thresholds. We first begin by showing that
canonical thresholds form a monotone decreasing sequence. While this property seems intuitive,
it is not necessarily true if the underlying distribution F does not satisfy our two assumptions of
regularity and diminishing returns property of the second-order statistic, discussed in Section 3.
See Appendix D for an example of an irregular distribution F , for which the optimal thresholds
are non-monotone.

Lemma 1. For a regular distribution F that its second order statistic has the diminishing returns
property (Definition 5), the canonical thresholds are monotone non-increasing and independent of
the number of agents n.

Proof. By definition, t̂i is the optimal value for ti when t2 = · · · = ti−1 = 1 and ti+1 = · · · = tn = 0.
To find the optimal ti, we start from the general expression (7) for the derivative and show that
it simplifies as follows whenever ti ≤ ti−1 (which is true here since ti−1 = 1). When the ith bid is
between ti and ti + ε, Ti = ... = Tn = 0, and ti ≤ ti−1, we would save i − 1 agents and therefore
g(M, t2, ..., tn) = (i− 1)ti + µ2:i−1. This simplifies equation (7) to:4

∂Cn(t2, ..., tn)

∂ti
= i

(
n

i

)
Pi,n ×

[
F (ti)

i + F (ti)
i−1f(ti)

[
ti + µ2:i − µ2:i−1

]]
= i

(
n

i

)
Pi,nF (ti)

i−1f(ti)

[
ti +

F (ti)

f(ti)
+ µ2:i − µ2:i−1

]
, ∀ti ≤ ti−1. (16)

Other than the trivial roots ti = 0 and ti = 1 (which are local maximizers), there is a single root
for this derivative that determines t̂i as follows:

t̂i +
F (t̂i)

f(t̂i)
= µ2:i−1 − µ2:i. (17)

Therefore, we have t̂i ≥ t̂j for all i ≤ j, since the left-hand side is a monotone increasing function
and the right-hand side is a constant, monotone non-increasing in i. Also note that (17) makes t̂i
independent of n (as long as n ≥ i). This concludes the proof.

Now, we prove that the canonical thresholds provide the global optimal solution for minimizing
the expected cost of the auction. In Lemma 2 we show that when the previous thresholds are set
to 1, as we increase threshold ti from zero to its canonical value t̂i, the expected cost Cn(t2, ..., tn)
decreases; and as we increase ti beyond t̂i, the cost increases again.

4For consistency of notation, we define µ2:1 = 1. This is because when we save i agents in round one, the expected
cost of the second round would be µ2:i for i ≥ 2, and 1 if i = 1.
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Lemma 2. If tk = 1 for all k ≤ i − 1, then ∂
∂ti
C(t2, ..., tn) is non-positive for ti ∈ (0, t̂i), zero at

ti = t̂i, and non-negative for ti ∈ (t̂i, 1).5

Proof. Since ti−1 = 1, we can again use the simplified version of the derivative (16) instead of the
general version (7) for all ti. Since Pi,n, F (ti), and f(ti) are all non-negative, we have to show

that ti + F (ti)
f(ti)

+ µ2:i − µ2:i−1 is non-positive for ti ∈ (0, t̂i), zero at ti = t̂i, and non-negative for

ti ∈ (t̂i, 1). Assuming that the virtual cost is monotone non-decreasing, it suffices to show that

ti +
F (ti)
f(ti)

+µ2:i−µ2:i−1 = 0 at ti = t̂i, which is true due to (17). (Note that ti +
F (ti)
f(ti)

+µ2:i−µ2:i−1

is strictly negative/positive at 0/1, therefore t̂i is a fractional point.)

The previous lemma shows that the canonical threshold t̂i is the global minimizer of the cost
when t2 = ... = ti−1 = 1, independent of the values of the remaining thresholds ti+1, ..., tn. However,
in the following lemma and its corollary, we show that this holds even if we lower the value of the
previous thresholds from 1 to their canonical values.

Lemma 3. If tk = t̂k for all k ≤ i − 1, then ∂
∂ti
C(t2, ..., tn) is non-positive for ti ∈ (0, t̂i), zero at

ti = t̂i, and non-negative for ti ∈ (t̂i, 1).

Proof. Note that compared to the previous lemma, we only lowered the value of t2, ..., ti−1 from 1
to their canonical value tk = t̂k. One can argue from (7) that this lowering of thresholds does not
change the derivative for any ti ∈ [0, t̂i−1]. This is true because we can use equation (16) in this
region, which shows that the derivative is independent of t2, ..., ti−1, whenever ti ≤ ti−1 (remember
that Pi,n is independent of t2, ..., ti−1). Figure 2 shows an example of how lowering the thresholds
t2, ..., ti−1 affects the derivative with respect to ti.

ti

∂
∂ti

Cn (1,...,1,ti, ti+ 1, . . . , tn )
∂
∂ti

Cn ( ̂t2, . . . , ̂ti− 1, ti, ti+ 1, . . . , tn )

̂ti− 1̂ti ̂t2̂t3 1

∂Cn

∂ti

0

Figure 2: Derivative of the cost with respect to ti when: (blue) the previous thresholds are set to
one, (red) the previous thresholds are lowered to their canonical values.

Note that from Lemma 1 we know that t̂i ≤ t̂i−1. This immediately implies that ∂
∂ti
C(t2, ..., tn)

is non-positive for ti ∈ (0, t̂i), zero at ti = t̂i, and non-negative for ti ∈ (t̂i, t̂i−1). Therefore, we
only need to show that the derivative is non-negative for ti ≥ t̂i−1. To do this, we show that the
lowering of thresholds t2, ..., ti−1 indeed increases the derivative in this region, i.e.,

∂

∂ti
C(t̂2, ..., t̂i−1, ti, ti+1, ..., tn) ≥ ∂

∂ti
C(1, ..., 1, ti, ti+1, ..., tn), ∀ti ≥ t̂i−1 (18)

5Note that whenever ti−1 = 1, the previous thresholds t2, ..., ti−2 are irrelevant. Therefore, this lemma holds even
if we only had ti−1 = 1. However, we state the lemma as is for the sake of the next lemma.
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which implies the non-negativity of the derivative, since the right hand side is non-negative due to
Lemma 2. To prove (18), note that from (7), comparing the above two derivatives is equivalent to
showing that

EM

[
g(M, t̂2, ..., t̂i−1, ti, ti+1, ..., tn) | A

]
≤ EM

[
g(M, 1, ..., 1, ti, ti+1, ..., tn) | A

]
,

where A is the event that there are exactly i − 1 bids below ti and we save at most those i − 1
agents. Note that this expected cost is exactly equal to the situation if we had only i − 1 agents
in the auction, and we knew that their bids are upper bounded by ti. In other words, it suffices to
show that

C̃i−1(t̂2, ..., t̂i−1) ≤ C̃i−1(1, ..., 1), (19)

where C̃i−1 is the expected cost in a game with i− 1 agents with distribution F̃ which is obtained
from truncating F to have the support [0, ti] (note that distribution F̃ only applies to the first day,
and on day 2 the bids are again drawn according to the original distribution F ).

To show (19), we use the following set of inequalities:

C̃i−1(t̂2, t̂3, t̂4, ..., t̂i−1) ≤ C̃i−1(1, t̂3, t̂4, ..., t̂i−1)

C̃i−1(1, t̂3, t̂4, ..., t̂i−1) ≤ C̃i−1(1, 1, t̂4, ..., t̂i−1)

...

C̃i−1(1, 1, ..., 1, t̂i−1) ≤ C̃i−1(1, 1, ..., 1, 1)

Each of the above inequalities is implied by Lemma 2, since this lemma says that the derivative
with respect to any tk is non-negative for tk ≥ t̂k, as long as the previous thresholds are all equal
to one. Therefore, increasing any tk from t̂k to 1 cannot decrease the cost. The only concern here
is that the thresholds t̂k were calculated for the auction with n agents and distribution F , while
we are using the same thresholds here for the auction with i− 1 agents and truncated distribution
F̃ . The reason why we are allowed to do this is that neither changing the number of agents nor
truncating the distribution can affect the optimality of t̂k. This is because t̂k is the solution of the
following equation:

tk +
F (tk)

f(tk)
+ µ2:k − µ2:k−1 = 0

In addition to being independent of n, this equation is invariant to conditioning F from above. In
other words, for the truncated distribution F̃ we have:

F̃ (t) =
F (t)

F (ti)
, f̃(t) =

f(t)

F (ti)
, ∀t ≤ ti

Hence F̃ (t)

f̃(t)
= F (t)

f(t) , which implies having tk = t̂k (for k = 2, ..., i− 1) gives a lower cost compared to

tk = 1, regardless of having distribution F or F̃ .6

Since we showed that the derivative (with respect to ti) is non-positive up to t̂i and non-negative
afterwards, we arrive at the optimality of t̂i.

6This is similar to revenue maximization where if we condition F to be above a certain value v and obtain the
conditional distribution F̃ , we have that 1− F̃ (x) = 1−F (x)

1−F (v)
and f̃(x) = f(x)

1−F (v)
. This implies that the inverse hazard

rate and as a result the virtual value functions of these distributions remain the same.
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Corollary 1. If tk = t̂k for all k ≤ i− 1, then Cn(t2, ..., tn) is minimized at ti = t̂i, independent of
the values of the remaining thresholds ti+1, ..., tn.

So far we showed that as long as the previous thresholds are set to their canonical values, t̂i is
the global optimal value for ti. To achieve the global optimal values for the entire set of thresholds
(tk, k = 2, ..., n) it suffices to use the previous lemma in an inductive manner.

Theorem 3. If distribution F satisfies the regularity condition (Definition 3), and its second order
statistic has the diminishing returns property (Definition 5), then the global optimal thresholds that
minimize Cn(t2, ..., tn) are

t∗k = t̂k, ∀k.

Proof. Let us assume that this is not true and there exists another set of thresholds (t′2, ..., t
′
n) with

cost smaller than Cn(t̂2, ..., t̂n). Looking at t2, Corollary 1 can be used without any condition on
the remaining thresholds, which immediately implies that either t′2 = t̂2, or we can change it to t̂2
without increasing the cost. Given t′2 = t̂2, we can now use this argument again for t3 and conclude
that t′3 = t̂3. Repeating this argument, we arrive at Cn(t′2, ..., t

′
n) = Cn(t̂2, ..., t̂n), which contradicts

our starting assumption.

6 Extensions

Our results extend to several generalizations, as long as the agents remain homogeneous. In par-
ticular, the following extensions hold individually or in combination with the others:

Symmetric capacities. Throughout this paper we assumed that each agent is able to meet the
entire demand, or equivalently there are no capacities on the agents. However, in practice we can
have the constraint that the assignments should satisfy xi ≤ xi, where xi is the capacity of agent
i. We argue that our results hold if the agents have the same capacity, i.e., xi = x for all i. To
see this, let m = d1/xe be the minimum number of agents that we need to keep in all rounds.
To guarantee that we meet the demand on day 2, we have to set t2 = ... = tm = 1 in day 1.
For the remaining thresholds tk (k > m), note that if we save k agents from day 1 to day 2, the
expected cost on day 2 would be m× µm+1:k. Therefore, similarly to (17), the optimal value of tk
is where the virtual cost matches the savings of having k agents versus having k − 1 agents, i.e.,
tk + F (tk)/f(tk) = m(µm+1:k−1 − µm+1:k). Note that in this case we need the (m + 1)-st order
statistics to satisfy the diminishing returns property of Definition 5.

Changing distributions. Note that the analysis of our threshold algorithm did not use the fact
that the distribution in each round was the same. Let F1 and F2 be the distributions for the
overhead costs for day 1 and 2 respectively. We define the canonical threshold to satisfy

t̂i +
F1(t̂i)

f1(t̂i)
= µ2:i−1 − µ2:i. (20)

where µ is defined according to the order statistics of F2. As long as the regularity condition holds
for F1, and F2 has the diminishing returns property of the second order statistic, our theorem still
holds since our proof only requires that µ2:i−1 − µ2:i is a decreasing function of i.
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Non-zero service costs. Assume that the agents incur a cost of c1 and c2 for providing a unit of
demand on day 1 and 2, respectively (but still have the same cost as other agents each round). In
this case, the definition of a threshold mechanism changes slightly compared to Definition 1. After
finding the highest predicate Tk that is satisfied, the first k agents with lowest bids are allocated an
assignment of xi = 1/k, while receiving a payment of p · xi, except that the payment now increases
to p = k ·min{tk,Mk+1}+ c (where c is the service cost of the corresponding day). This is required
to ensure that for any agent with strictly positive allocation we have xi(p− ci) ≥Mi.

Now we argue that the canonical thresholds are still optimal for the case of non-zero costs. This
is because any feasible allocation will result in an additional cost of

∑
i xi · c = c to the mechanism

designer. As a result, the optimal threshold mechanism for non-zero service cost (c > 0) corresponds
to designing the optimal mechanism for c = 0, and adding the cost c to the payment rate p so as
to ensure that the utilities of the agents are the same. This shows that our assumption of cji = 0
(for all i, j) throughout the paper was without loss of generality.

7 Conclusion and Future Work

In this paper we studied a dynamic procurement auction for n symmetric agents. We assumed
3 different properties for the agents that were crucial to achieve the optimality of the canonical
thresholds: (i) we assumed a common distribution F for the overhead costs, (ii) we assumed that
the per-unit cost of providing the service is the same for all agents, and (iii) we assumed that each
agent can provide the entire demand. Relaxing any of these assumptions breaks the symmetry of
the agents and opens a new research question for future work.

If we assume a different distribution Fi for each agent’s overhead cost, then the savings from
allocating the service to k agents and having them participate in the future rounds depend on the
identity of those agents. This could potentially lead to having a different threshold for any subset
of agents, which would make the problem computationally intractable. On the other hand, if we
assume that agents have different per-unit costs, the optimal assignment would not be trivial, even
if the set of agents with non-zero assignments are known. In other words, if we want to save a
particular set of k agents, the optimal assignment is not necessarily 1/k, and it depends on the
per-unit costs of those particular k agents. The same challenge holds when we consider different
capacities for the agents, as equal assignments of 1/k may not even be feasible in that setting.
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A Bid-oblivious vs Bid-sensitive Mechanisms

In this section, we show an example of how bid-sensitive mechanisms can achieve a lower cost
compared to bid-oblivious mechanisms. Remember that our threshold mechanisms determine the
number of agents that serve the demand in a dynamic way, after observing the bids. On the other
hand, bid-oblivious mechanisms determine this number a-priori, before the bids are submitted.

Example 3 (Bid-oblivious mechanism). Consider 2 rounds and n agents with overhead costs drawn
from the uniform distribution, Mi ∼ U [0, 1]. We only have to decide on the number of agents to
be saved from round 1 to round 2. If we save 1 agent, the expected cost would be 2

n+1 for round 1,
which is the expected value of the second lowest bid out of n i.i.d. uniform bids in [0, 1]. However,
in that case, there will be no competition in round 2, and we have to pay the upper-bound of the
distribution (which is 1) to the single agent left in round 2. On the other hand, if we saved 2 agents
in round 1, the expected cost for that round would be 2 × 3

n+1 , because each of the agents gets
the third lowest bid. We also have to pay 2/3 in expectation in round 2. Comparing the two cases
( 2
n+1 + 1 versus 2 × 3

n+1 + 2
3), we conclude that it is beneficial to save 2 agents if there are more

than n = 11 agents initially. Similarly, we can compute the number of agents that justify saving
3,4,... agents.

Example 4 (Bid-oblivious vs bid-sensitive). Consider 2 rounds and 2 agents with uniform [0, 1]
distribution for overhead costs. According to the previous example, the bid-oblivious mechanism
would save only 1 agent in the first round, and therefore pay a total cost of 2

3 + 1 in expectation.
However, by setting a threshold of t2 = 1

6 (as calculated in Example 1), the expected cost reduces
to 539

324 ≈ 1.663.

B Dealing with Ties

Allowing for ties in the bids introduces some slight technicalities which we present in the updated
definition and proof of truthfulness of our mechanism below.

Definition 7. A single threshold mechanism using thresholds t1, . . . , tn ∈ [0, 1] is defined as follows:
Assume M1 ≤ M2 ≤ · · · ≤ Mn and let us define the predicate Tk(M1, . . . ,Mn) = 1 if and only if
Mk ≤ tk, in other words the kth smallest value is less than the kth threshold. Let k be the highest
index such that Tk = 1 and let ` be the largest index such that Mk = M`. Then the mechanism
allocation is:

xi =

{
1/` if i ≤ `,
0 otherwise

(21)

and the payment to agent i is xi · p, where p is the total mechanism payment (also the per unit cost
of providing the demand) defined as p = ` ·min{tk,Mk+1}.

Proposition 4. Any threshold mechanism is truthful in the corresponding single-shot game and
each agent that has non-zero allocation has non-negative utility.
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Proof. If an agent i is not allocated the service, she receives utility of −∞. Bidding a lower overhead
cost may result in her being allocated some part of the demand. There are two scenarios in which
this may happen: (1) If there exists some k such that Tk is the highest true predicate both before
and after agent i lowered her bid. In this case, it must be that her lower bid is less than or equal to
Mk, which is strictly less than Mi since if Mi = Mk then agent i should have been allocated. This
results in a payment equal to Mk, which makes her utility −∞ again. (2) If Tk is not the highest
true predicate after agent i lowers her bid. Assume that the new highest predicate satisfied is Tw
for some w > k. Since Tw was not true before, it must be that the threshold tw is now the critical
value, therefore each agent receives payment equal to tw. But since Tw was false before, we know
that tw < Mi, meaning that agent i will receive −∞ utility.

If agent i is allocated the service, notice that her payment is independent of her actual overhead
cost. Reporting a lower overhead cost does not change her allocation nor payment. Similarly, if she
reports a higher amount, she will receive the same payment, as long as she is still being allocated
the service. If her increase makes her not being allocated, then her utility becomes −∞. In neither
case is deviating from reporting the true overhead cost profitable.

C Distributional Assumptions

Throughout the paper, we assumed two important properties for the underlying distribution F :
(i) we assumed that the virtual cost is monotone increasing, and (ii) we assumed that the second
order statistics have the diminishing returns property, µ2:n−1−µ2:n ≥ µ2:n−µ2:n+1. One sufficient
condition for (i) is that F is log-concave. For (ii), we can show that: (see for example, [8])

µr:n−1 − µr:n =
r

n

(
n

r

)∫ 1

0
[F (x)]r[1− F (x)]n−rdx. (22)

Therefore, we have to show that the above expression is monotone decreasing in n, for r = 2.
Since the above integral is hard to compute for arbitrary distributions F , here we show numerically
that many distributions satisfy this property. We also compute the above integral for polynomial
distributions and show theoretically that they satisfy both of our assumptions.

Figure 3: Regularity of a truncated normal distribution with µ = 0.8 and σ = 0.1: (Left) Distribu-
tion F , (Middle) Marginals of second order statistic, (Right) Virtual cost function.

Figure 3-(left) shows a truncated normal distribution with µ = 0.8 and σ = 0.1 (i.e., this is
a probability distribution derived from a normal distribution N (µ, σ2) by bounding the random
variable between 0 and 1). Figure 3-(middle) shows the marginal decrease in the second order
statistic as we increase the number of samples from n to n+ 1, i.e., µ2:n−µn+1. As we can see, the
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marginal change diminishes as we have more samples. Finally, Figure 3-(right) shows the virtual
cost which confirms its monotonicity.

Figure 4: Regularity of the polynomial distribution with exponent p = 2: (Left) Distribution
F (x) = x2, (Middle) Marginals of second order statistic, (Right) Virtual cost function.

Figure 5: Regularity of the polynomial distribution with exponent p = 1/2: (Left) Distribution
F (x) =

√
x, (Middle) Marginals of second order statistic, (Right) Virtual cost function.

Figures 4, 5 confirm our distributional assumptions for a polynomial distribution F (x) = xp,
where p > 0. Figure 4 corresponds to the case of p = 2, meaning that the CDF is a quadratic
function, F (x) = x2; and Figure 5 corresponds to p = 1/2, meaning that F (x) =

√
x. Note that for

polynomial distributions, since f(x) = pxp−1, we have F (x)
f(x) = x/p, which is why the virtual costs

are linear in both figures.
Finally, Figure 6 shows a beta distribution for which we have f(x) = xα−1(1− x)β−1 Γ(α+β)

Γ(α)Γ(β) ,
where Γ is the Gamma function. For this figure we have the shape parameters set to α = 2 and
β = 5.

We now prove that polynomial distributions satisfy the distributional assumptions needed for
our results.

Theorem 4 (polynomial distributions). For any distribution F (x) = xp, x ∈ [0, 1], p > 0 we have:

(a) x+ F (x)
f(x) is monotone increasing.

(b) µr:n−1 − µr:n is monotone decreasing in n for any r.

Proof. First, x+ F (x)
f(x) = x+ xp

pxp−1 = x(1 + 1
p) which is monotone increasing. For the second part,
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Figure 6: Regularity of beta distribution with shape parameters α = 2 and β = 5: (Left) Distribu-
tion F (x) = Ix(α, β), where I denotes the regularized incomplete beta function, (Middle) Marginals
of second order statistic, (Right) Virtual cost function.

using equation (22), we have:

µr:n−1 − µr:n =
r

n

(
n

r

)∫ 1

0
(xp)r(1− xp)n−rdx =

r

n

(
n

r

)
Γ(n+ 1− r)Γ(r + 1

p)

p · Γ(n+ 1
p + 1)

, (23)

where Γ is the Gamma function, and satisfies Γ(z + 1) = zΓ(z). Comparing this expression with
the same expression for µr:n − µr:n+1, we need to show that:

(n− 1)!

(r − 1)!(n− r)!
×

Γ(n+ 1− r)Γ(r + 1
p)

p · Γ(n+ 1
p + 1)

≥ n!

(r − 1)!(n+ 1− r)!
×

Γ(n+ 2− r)Γ(r + 1
p)

p · Γ(n+ 1
p + 2)

,

or equivalently
Γ(n+ 1

p + 2)

Γ(n+ 1
p + 1)

≥ n

n+ 1− r
× Γ(n+ 2− r)

Γ(n+ 1− r)
.

Now using the above-mentioned property of the Gamma function Γ(z + 1) = zΓ(z), notice that
the left hand side is equal to n + 1 + 1/p, while the right hand side is equal to n; therefore, the
inequality is true for any p > 0.

D Non-monotone Example

Here we give an example where the global optimal thresholds are non-monotone, in particular for
this example t∗2 < t∗3. We proved via Lemma 1 and Theorem 3 that this cannot happen if the
underlying distribution F satisfies our two assumptions of regularity (Definition 3) and diminishing
returns of order statistics (Definition 5). In fact, the distribution F in the following example fails
both of these assumptions. It has a point mass probability which breaks the monotonicity of the
virtual cost, and more importantly, its second order statistic does not have the diminishing returns
property. More precisely, the savings of having the 3rd agent participating in the second day
(µ2:2− µ2:3) is more than the savings from the 2nd agent (1− µ2:2). This makes the buyer want to
save the 3rd agent even at a higher value than he is willing to pay for the 2nd agent.

Example 5 (Non-monotone thresholds). Consider a distribution F that is U [0, 1
2 ] with probability

1/2 and equal to 1 with probability 1/2. In other words,

M =

{
X w.p. 1

2 ,

1 w.p. 1
2 ,
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where X ∼ U [0, 1
2 ]. Now suppose we have three agents with overhead costs drawn independently

from F . If we save 1, 2, or 3 agents, the expected cost we incur on day 2 would be 1, µ2:2 = 5
6 , and

µ2:3 = 21
32 , respectively. Additionally, the optimal thresholds on day 1 are

t∗2 =
1

2
(1− µ2:2) =

1

12
≈ 0.083,

t∗3 =
1

2
(µ2:2 − µ2:3) =

17

192
≈ 0.088,

which show that the optimal thresholds can be non-monotone (t∗3 > t∗2), if we do not have constraints
on the underlying distribution F .
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