

Bike-Sharing & the Built Environment

TEXAS Architecture

UT Austin School of Architecture's Urban Information Lab (UIL) Dr. Junfeng Jiao & Louis Alcorn Spring 2018 April 26, 2018

Big Picture: How does the built environment relate to bikeshare activity?

Big Picture: How does the built environment relate to bikeshare activity?

- Bicycle Safety cycling infrastructure & high comfort roadways
- Aesthetics Parks/open space & tree canopy
- **Community Character** density, average structure age, median rent, & median home value
- Active Transport Connectivity sidewalks, bus stops, rail stations, & transit trip frequency

Past Research Efforts in this Area of Study:

- Noland, Smart, and Guo. 2016. "Bikeshare Trip Generation in **New York** City." *Transportation Research Part A*.
 - Positive correlation with Bikeshare utilization near subway stations and bike infrastructure
- Wang, X., Lindsey, G., Schoner, J., and Harrison, A. (2016) "Modeling Bike Share Station Activity: Effects of Nearby Businesses and Jobs on Trips to and from Stations". *Journal of Urban Planning and Development*, 142(1).
 - In Minneapolis, stations associated with neighborhood **sociodemographics**, **proximity to CBD** + water
- [under review] Alcorn, Louis & Jiao, Junfeng. 2018. "Bike Sharing Station Usage and the Surrounding Built Environments in Major Texas Cities". *Journal of Planning Education and Research*.
 - Limited significance of predictive models except for high comfort bike facilities in Austin
- Ma, T., C. Liu, and S. Erdoğan. 2015. "Bicycle Sharing and Transit: Does Capital Bikeshare Affect Metrorail Ridership in Washington, D.C.?" *Compendium of TRB 94th Annual Meeting*: 1-21.
 - People **replacing short-distance bus trips with bikeshare** but still riding metro for longer trips

Focus on the Largest 4 US Systems

- New York Citibike
- Chicago Divvy

- Washington D.C. Capital Bikeshare
- Boston Hubway

City	Start Date	End Date	Stations	Avg. Daily Station Use	Maximum	Minimum
New York	Jul-13	Oct-17	832	102	575	1
Chicago	Jun-13	Jul-17	631	38	485	1
Wash. D.C.	Sep-10	Apr-17	512	51	319	1
Boston	Jul-11	Oct-17	212	21	86	1

Dependent Variable

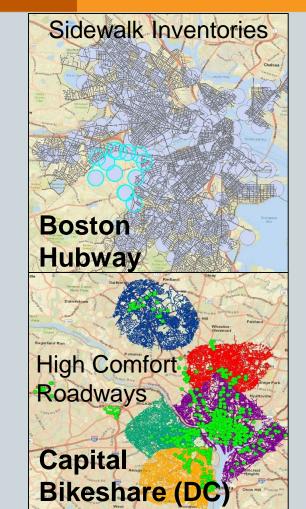
Average daily bikeshare station usage

=<u>(# check outs + # check ins)</u> (# of days station is open)

Independent Variables

- High Comfort Roadways (People For Bikes dataset)
- Bike Network Any Treatment above "sharrows" (City/County GIS portals)
- Open Space/Park Area (City/County GIS portals)
- Sidewalk Area (City/County GIS portals)
- Trees/Tree Canopy (City/County GIS portals)
- Population Density, Housing Unit Density, Median Gross Rent, Median Home Value, Median Structure Age (2016 ACS 5-yr. est.)
- # of Bus/Rail Stops within ¼ mile of bikeshare stations & # of unique daily transit trips available (Historic GTFS feeds)

Methodology


- Built environment inventory within ¼ mile of bikeshare station:
 - Generate 1/4 mile airline buffer around station areas
 - Intersect independent variable data with these ¼ mile access-sheds
 - Spatially join dependent variable count/area/length data with each station location buffer
 - Bivariate correlations with Pearson's R
 - Forward Stepwise Regression to account for covariance of dependent variables.

		litional data to this aver's features usi	a layer's attribute table so you	can
		dimensione and	ng uns data.	
What do you w				
Join data from	n another l	ayer based on spa	tial location	
1. Choose	the layer t	to join to this laye	r, or load spatial data from di	sk:
СНІ	EVA_bikel	ane_intersect		6
2. You are	joining:	Lines to Polygo	ns	
options		geometry types of	ou will be given different f the source feature class and	
of the		intersect it, and a	mary of the numeric attribute count field showing how	s
How	do you wa	nt the attributes to	o be summarized?	
A	verage	Minimum	Standard Deviation	
✓ Si	ım	Maximum	Variance	
closes	t to its bo		attributes of the line that is ance field showing how close et layer).	
		ing inside a polyg (i.e. a distance of	on is treated as being closest 0).	
3. The res	ult of the j	oin will be saved i	into a new layer.	
Specify ou	tput shape	file or feature clas	s for this new layer:	
C:\Use	rs\sweet\D	ocuments\UIL\Chi	cagoBoston-SPRING2018	6

Limitations of Data

- Weaving together multiple datasets
 - Boston = Boston + Cambridge + Brookline + Somerville
 - Chicago = Evanston + Chicago
 - NYC = NYC + Jersey City (NJ)
 - Washington D.C. = DC + Alexandria (VA) + Arlington (VA) + Bethesda (MD) + Rockville (MD) + Fairfax County (VA) + Montgomery County (MD), and more!

Preliminary Results: Chicago

R	R-Squared	Adjusted R-Squared	Ν
0.7681	0.5900	0.5839	609
VAR	Coefficient	p-value > t	TOL
GrossRent	0.0342	5.7086E-9	0.2348
HouDens	0.5171	3.4071E-9	0.4789
OpenSpaceContinuousAccessSqMeters	5.7387E-6	0.0001	0.4015
BikeLaneIntersectMeters	0.0021	1.9045E-9	0.3546
SidewalkAreaSqMeters	-6.4038E-5	0.0031	0.4214
PCB_HC_Meters	-0.0018	0.0314	0.7208
OpenSpaceIntersectSqMeters	2.4046E-5	0.0034	0.4763
REValue	3.4652E-5	0.0122	0.3471
TreeCanopySqMeters	-3.3078E-5	0.0141	0.6626
Intercept	-30.0444		

Preliminary Results: Boston

R	R-Squared	Adjusted R-Squared	N
0.6668	0.4446	0.4243	171
VAR	Coefficient	p-value > t	TOL
REValue	2.5446E-5	0.0002	0.5002
DistRail_meter	-0.0088	0.0024	0.6172
HCBikeLength	0.0004	0.0345	0.7128
GrossRent	0.0080	0.0031	0.6001
PopDens	0.1062	0.0582	0.5721
RailStop	-1.2046	0.0875	0.6209
Intercept	-12.9255		

Preliminary Results: NYC

R	R-Squared	Adjusted R-Squared	Ν
0.6974	0.4863	0.4802	765
VAR	Coefficient	p-value > t	TOL
GrossRent	0.0347	9.3283E-5	0.3605
Bikelane_Length_M	0.0024	1.2693E-6	0.3648
HouDens	1.6148	2.7720E-11	0.0876
TreeCount	-0.1181	0.0000	0.7588
DistRail_meter	-0.0426	0.0002	0.8366
OpenSpaceArea	-3.0130E-5	0.0045	0.9544
PFB_HC_Length	0.0007	0.0022	0.3686
PopDens	-0.4346	0.0061	0.0891
REValue	3.7006E-5	0.0105	0.6812
Intercept	-3.5885		

Trends

- Always Positive Coefficients:
 - Median Gross Rent (3)
 - Median Home Value (3)
 - Bike Lane Length (2)
- Always Negative Coefficients:
 - Trees/Tree Canopy Area (2)
 - Distance to Rail Stops (2)
- Mixed Results:
 - High Comfort Cycling Roadways (3)
 - Population Density (2)
 - Open Space (2)

- Limited Significance:
 - Sidewalk area (1)
 - Median Structure Age (0)
 - Frequency of transit trips available
 within ¼ mile of bikeshare station (0)
 - Proximity to Bus Stops (0)

Work Ahead

- Add Transit-related independent variables to NYC model
- Create Model for Washington D.C.
- Combine all four models to make a fifth 4city model (pending data continuity)
- Submit to present at TRB

Questions?

Contact:

Dr. Junfeng Jiao – jjiao@austin.utexas.edu Louis Alcorn – loualcorn@utexas.edu