How Will Self-Driving Vehicles Affect U.S. Megaregion Traffic? The Case of the Texas Triangle

Yantao Huang, Dr. Kara Kockelman \& Neil Quarles

Sponsored by the USDOT's University Transportation Centers Program

Background

- Fully-automated vehicles (AVs), trucks (Atrucks), \& shared AVs (SAVs), may dramatically shift passenger \& freight travel patterns over time.
- The Texas Triangle megaregion...
is one of the nation's 11 megaregions, contains 18.2 M of Texas' 25.1 M residents, has about 6% of the U.S. population, \& generated 7\% of U.S. GDP in 2010.
- We want to leverage statewide analysis model (SAM) data with new self-driving modes \& see how the model responds.

SAM Data

- The megaregion contains 2,160 of the state's 4,667 TAZs, \& 66 of the state's 254 counties
- 19,549 nodes \& 27,976 links of the SAM's network lie partially or entirely within the megaregion, including 26,556 roadway links.
- The megaregion was modeled within the U.S. network, \& results for the megaregion's links \& zones were pulled out from of the results of the statewide analysis.

Model Specifications

- 4-step travel demand model with feedback loop is used here, to model traffic patterns across the entire state of Texas.

Trip Generation

```
Trip Distribution
```


- 24 hr simulation used to recognize that many trips are long in distance, spanning many times of day \& congestion levels.

Trip Generation

- Obtained from the SAM Year 2040 scenario results, based on underlying population \& jobs forecasts by zone, using 2009 NHTS data.
- An assumption of 15% increase in Year 2040 trip generation rates (productions \& attractions) due to AV technologies enabling new trip-making.
- All trip purposes are aggregated.

Trip Distribution

- Traditional "trip distribution" step for passenger travel replaced by a logit destination choice model.
- Each destination TAZ's attraction depends on a logsum across mode options \& destination's population.
- A doubly-constrained trip distribution procedure was used in the freight model, based on SAM's Year 2040 freight-trip generation parameters.

Mode Choice

- 4 passenger modes: HV, bus, rail \& air.
- 3 freight modes: Truck, Rail, \& Intermodal (IM).
- Models expanded to include AV, SAV \& Atruck modes

Traffic Assignment \& Feedback

- Passenger mode \& destination choice results transformed into "trip tables" (OD matrices).
- HV, AV \& SAV occupancies = 1.5 persons
- Freight trip table (in tons by commodity) converted to trucks \& rail cars, based on average statewide model weights per load.
- Feedback loops (iteration) provide consistent results between travel times, cost skims \& network flows, using method of successive average.
- Assignment is conducted on whole U.S. network.

Trip Distance Correlations

- Correlation $=0.82$ across flows between all >21M OD pairs

Passenger Trip Distances across Texas (< 50 mi.)

- Correlations $=0.81$ for trip counts between every all U.S. OD pairs

Mode Splits

- Operating Costs: HVs = \$0.6/mile, AVs = \$0.8/mi, \& SAVs = \$1/mi
- Automobile shares rise for short \& long-distance trips across the megaregion, shifting markedly away from Texas air travel
- Bus \& rail \#s fall

Mode Splits (2)

- AVs \& SAVs see less impact on shorter distances
- Air trips less than 50 miles are not discussed
- Local air trips reduce significantly

Mode	Automobile SAVs)		Bus		Rail

Freight Mode Splits

Commodity	Mode Shares After Atrucks Introduced					Total Ton-mile (Billion) All modes	Change from Base Case		
	Atruck	Htruck	Truck	Rail	IM		Truck	Rail	IM
Agriculture	30.4\%	52.6\%	83.0\%	16.9\%	0.18\%	0.75	+7.2\%	-25.3\%	-25.3\%
Mining	37.1\%	58.0\%	95.1\%	4.9\%	0.04\%	0.28	+2.4\%	-30.9\%	-31.0\%
Coal	2.5\%	3.5\%	6.0\%	91.0\%	3.08\%	0.97	+50.0\%	-2.0\%	-2.0\%
Nonmetallic Minerals	26.6\%	56.1\%	82.7\%	17.3\%	0.01\%	23.42	+5.6\%	-21.8\%	-21.9\%
Food	34.5\%	58.0\%	92.4\%	7.5\%	0.06\%	3.22	+3.1\%	-28.8\%	-28.8\%
Consumer Manufacturing	38.6\%	60.7\%	99.2\%	0.1\%	0.68\%	0.09	+1.1\%	-31.7\%	-31.7\%
Non-Durable Manufacturing	35.9\%	63.7\%	99.6\%	0.2\%	0.19\%	0.49	+0.2\%	-29.6\%	-29.7\%
Lumber	36.3\%	61.2\%	97.5\%	2.4\%	0.04\%	1.13	+1.2\%	-26.4\%	-26.5\%
Durable Manufacturing	48.1\%	38.4\%	86.5\%	13.0\%	0.53\%	1.14	+9.6\%	-35.1\%	-35.1\%
Paper	33.8\%	54.5\%	88.3\%	11.2\%	0.49\%	0.45	+5.2\%	-28.3\%	-28.4\%
Chemicals	30.6\%	46.6\%	77.2\%	22.7\%	0.05\%	6.46	+11.1\%	-25.6\%	-25.6\%
Petroleum	30.6\%	62.9\%	93.5\%	6.5\%	0.01\%	9.07	+2.2\%	-24.5\%	-24.7\%
Clay, Concrete, Glass	34.3\%	60.5\%	94.8\%	5.2\%	0.06\%	8.85	+2.1\%	-28.4\%	-28.4\%
Primary Metal	34.2\%	47.7\%	81.9\%	18.0\%	0.02\%	1.05	+9.0\%	-27.8\%	-27.8\%
Secondary \& Misc. Mixed	36.6\%	61.7\%	98.3\%	1.2\%	0.49\%	16.95	+0.5\%	-30.5\%	-30.6\%

Trip Distributions

- Trip distribution of a thousand trips per day by automobile before \& after AV introduction
- Oper. Cost: HV = 0.6 $\$ /$ mile vs AV $=0.8 \$ /$ mile vs SAV = $1 \$ / \mathrm{mile}$
- Average trip distance is 14 miles before AVs, compared to 16 miles after the AV scenario
- Slight increase in truck trips of all trip distances

VMT Results

- VMT = average trip distance x trip count for each distance band.

VMT				
$(1 \mathrm{M} \mathrm{mi} \mathrm{per} \mathrm{day)}$	Automobile	Rail	Bus	Air
Before	$955.2 \mathrm{M} \mathrm{mi} /$ day	$19.4 \mathrm{M} \mathrm{mi} /$ day	$114.1 \mathrm{M} \mathrm{mi} / \mathrm{day}$	$2.0 \mathrm{M} \mathrm{mi} / \mathrm{day}$
After	1400.9	4.5	57.3	0.3
Change	$+46.7 \%$	-77.1%	-49.8%	-84.6%

- \quad VMT = Automobile VMT within Megaregion Border.

	Automobile VMT before AV $(1 M$	Automobile VMT after AV $(1 M$ per day $)$	Change

- Raised burden for the infrastructure of the major cities in the megaregion, especially in the Austin area

Freight Spatial Patterns

- Major commodity movements (90\% of megaregion's freight movement in tons) \& movement changes between OD pairs in the Triangle
- Trade happens mostly between Triangle's key sub-regions: Houston, Dallas-Fort Worth, San Antonio \& Austin

Truck Trips before AVs

Top Truck Trip Increases After Atrucks

Truck Trip Increases > 5\%

Agriculture

Chemicals

Network Congestion Results

- Traffic flows (by line thickness) \& congestion levels (volume-to-capacity ratios, by color)
- 92.3% of the links experience higher flows in both directions

After AVs

$\mathrm{V} / \mathrm{C}>1$ on 9.9% of links

AV Sensitivity Analysis Results

- market penetration is in person-trips/day

Scenario	Base	1	2	3*	4	5	6	7*	8	9	10	11	12*	13	14	15
SCENARIO ASSUMPTIONS	AV \& SAV VOTT (\$/hr)						Operating Cost (\$/mile)				Nesting Coefficients of Automobile Mode					
	N/A	14.25	12.67	11.08	9.50	7.92	AV	AV	AV	AV	0.5	0.6	0.7	0.8	0.9	1
	Reduced VOTT (\% less than original)						0.6	0.8		1						
	0	0.1	0.2	0.3	0.4	0.5	SAV 0.6	SAV 1	SAV	$\begin{aligned} & S A V \\ & 1.5 \end{aligned}$						
Total VMT (Passenger + Freight) (Billion per day)	$\begin{gathered} 1.4 \\ \text { B/day } \end{gathered}$	$\begin{gathered} 2.0 \\ \text { B/day } \end{gathered}$	2.012	2.030	2.051	2.086	2.088	2.012	1.991	1.990	2.152	2.012	1.894	1.793	1.707	1.632
HV VMT (Billion per day)	0.96	0.58	0.51	0.45	0.40	0.34	0.40	0.51	0.51	0.54	0.51	0.51	0.50	0.48	0.47	0.45
AV VMT (Billion per day)	N/A	0.67	0.74	0.81	0.87	0.94	0.58	0.74	0.74	0.	0.85	0.74	0.67	0.61	0.56	
SAV VMT (Billion per day)	N / A	0.13	0.14	0.14	0.15	0.16	0.46	0.14	0.14	0.0 b	0.11	0.14	0.16	0.17	0.19	
HV market penetration	93.0	40.1	37.6	35.3	33.1	30.45	31.9	37.6	> 37.7	40.6	37.4	37.6	37.6	37.5	37.3	37.0
AV market penetration	N/A	41.4	43.5	45.6	47.5	49.84	36.5	43.5	43.4	46.7	45.5	43.5	42.0	40.8	39.9	39.1
SAV market penetration	N/A	16.2	16.6	17.0	17.4	17.81	29.4	16.6	16.7	10.5	14.4	16.6	18.5	20.1	21.4	22.6
\%Links with V/C > 1	4.60	9.60	9.78	9.94	10.20	10.60	10.63	9.78	> 9.56	9.55	11.47	9.78	8.56	7.83	7.19	6.64
Maximum V/C	3.22	4.05	4.07	4.07	4.09	4.12	4.13	4.06	> 4.03	> 4.04	4.21	4.06	3.88	3.73	3.61	3.49

Key Results

- Average passenger-trip distance across Texas Triangle rises 14\%, from 14 to 16 miles.
- Local Air travel between Triangle airports expected to fall dramatically, by over 80\%, though just 4.3\% of all air trips in Texas.
- Without road pricing or other demand management, VMT predicted to rise 47.2%, along with links' V/C ratios, especially in the Triangle's biggest top sub-regions.
- The number of links having demand exceed capacity is predicted to double.
- Movements in 7 of 15 commodity classes predicted to rise >5\%.

Future Work \& Things to Try

- Reflect dynamics of congestion \& use of SAVs between drop-offs \& pickups
- Adjust ASCs in cases where AVs are introduced.
- Allow for trips across U.S.-Mexico border.
- Simulate SAVs serving as first-mile \& last-mile modes in support of longer-distance travel (by trains, planes, \& buses, for example).

Thank you!
 Questions \& Suggestions?

