

How Will Self-Driving Vehicles Affect U.S. Megaregion Traffic? The Case of the Texas Triangle

Yantao Huang, Dr. Kara Kockelman & Neil Quarles

Sponsored by the USDOT's University Transportation Centers Program

Background

- Fully-automated vehicles (AVs), trucks (Atrucks), & shared AVs (SAVs), may dramatically shift passenger & freight travel patterns over time.
- The Texas Triangle megaregion...

is one of the nation's **11** megaregions,

contains 18.2 M of Texas' 25.1 M residents,

has about 6% of the U.S. population, & generated 7% of U.S. GDP in 2010.

• We want to leverage **statewide analysis model** (SAM) data with new self-driving modes & see how the model responds.

SAM Data

- The megaregion contains **2,160** of the state's **4,667 TAZs**, & **66** of the state's **254 counties**
- 19,549 nodes & 27,976 links of the SAM's network lie partially or entirely within the megaregion, including 26,556 roadway links.
- The megaregion was modeled within the U.S. network, & results for the megaregion's links & zones were **pulled out** from of the results of the statewide analysis.

Model Specifications

- 4-step travel demand model with feedback loop is used here, to model traffic patterns across the entire state of Texas.
- Base Case (BAU) scenario without AV, SAV
 & Atruck modes was run first, to compare against self-driving scenarios.
- Various parameter assumptions also tested, using sensitivity analysis.
- 24 hr simulation used to recognize that many trips are long in distance, spanning many times of day & congestion levels.

Trip Generation

- Obtained from the SAM Year 2040 scenario results, based on underlying population & jobs forecasts by zone, using 2009 NHTS data.
- An assumption of 15% increase in Year 2040 trip generation rates (productions & attractions) due to AV technologies enabling new trip-making.
- All trip purposes are **aggregated**.

Trip Distribution

- Traditional "trip distribution" step for **passenger** travel replaced by a **logit destination choice model**.
- Each destination TAZ's attraction depends on a logsum across mode options & destination's population.
- A doubly-constrained trip distribution procedure was used in the freight model, based on SAM's Year 2040 freight-trip generation parameters.

Mode Choice

- 4 passenger modes: HV, bus, rail & air.
- 3 freight modes: Truck, Rail, & Intermodal (IM).
- Models expanded to include AV, SAV & Atruck modes

Traffic Assignment & Feedback

- **Passenger mode & destination choice** results transformed into "trip tables" (OD matrices).
- HV, AV & SAV occupancies = **1.5 persons**
- Freight trip table (in tons by commodity) converted to trucks
 & rail cars, based on average statewide model weights per load.
- Feedback loops (iteration) provide consistent results between travel times, cost skims & network flows, using method of successive average.
- Assignment is conducted on whole U.S. network.

Trip Distance Correlations

ullet

Correlation = 0.82 across
 flows between all >21M OD

pairs

Correlations = **0.81** for trip counts between every all U.S. OD pairs

Mode Splits

- **Operating Costs: HVs = \$0.6**/mile, **AVs = \$0.8**/mi, & **SAVs = \$1**/mi
- Automobile shares rise for short & long-distance trips across the megaregion, shifting markedly away from Texas air travel
- Bus & rail #s fall

Mode Splits (2)

- AVs & SAVs see less impact on shorter distances
- Air trips less than 50 miles are not discussed
- Local air trips reduce significantly

Mode		Automobile (HVs, AVs, & SAVs)	Bus	Rail	Air	
Trips before	< 50 miles	64,678 k/day	1,837 k/day	2,219 k/day	N/A	
Trips after	(short-	75,088 k/day	623.8 k/day	642.3 k/day	N/A	
Change	distance)	+16.1%	-66.1%	-71.1%	N/A	
Trips before	<mark>> 50 miles</mark>	2,946 k/day	33.64 k/day	988.2 k/day	14.27 k/day	
Trips after	(long-	6171 k/day	2.416 k/day	595.7 k/day	2.497 k/day	
Change	distance)	109.5%	-92.8%	-39.7%	-82.5%	
Total change		+20.2%	-66.5%	-61.4%	-82.5%	

Freight Mode Splits

Commodity	Mod	e Shares A	fter Atru	cks Introd	uced	Total Ton-mile (Billion) Change from Base (
	Atruck	Htruck	Truck Rail		IM	All modes	Truck	Rail	IM	
Agriculture	30.4%	52.6%	83.0%	16.9%	0.18%	0.75	<mark>+7.2%</mark>	-25.3%	-25.3%	
Mining	37.1%	58.0%	95.1%	4.9%	0.04%	0.28	+2.4%	-30.9%	-31.0%	
Coal	2.5%	3.5%	6.0%	91.0%	3.08%	0.97	<mark>+50.0%</mark>	-2.0%	-2.0%	
Nonmetallic Minerals	26.6%	56.1%	82.7%	17.3%	0.01%	23.42	<mark>+5.6%</mark>	-21.8%	-21.9%	
Food	34.5%	58.0%	92.4%	7.5%	0.06%	3.22	+3.1%	-28.8%	-28.8%	
Consumer Manufacturing	38.6%	60.7%	99.2%	0.1%	0.68%	0.09	+1.1%	-31.7%	-31.7%	
Non-Durable Manufacturing	35.9%	63.7%	99.6%	0.2%	0.19%	0.49	+0.2%	-29.6%	-29.7%	
Lumber	36.3%	61.2%	97.5%	2.4%	0.04%	1.13	+1.2%	-26.4%	-26.5%	
Durable Manufacturing	<mark>48.1%</mark>	<mark>38.4%</mark>	86.5%	13.0%	0.53%	1.14	<mark>+9.6%</mark>	-35.1%	-35.1%	
Paper	33.8%	54.5%	88.3%	11.2%	0.49%	0.45	<mark>+5.2%</mark>	-28.3%	-28.4%	
Chemicals	30.6%	46.6%	77.2%	22.7%	0.05%	6.46	<mark>+11.1%</mark>	-25.6%	-25.6%	
Petroleum	30.6%	62.9%	93.5%	6.5%	0.01%	9.07	+2.2%	-24.5%	-24.7%	
Clay, Concrete, Glass	34.3%	60.5%	94.8%	5.2%	0.06%	8.85	+2.1%	-28.4%	-28.4%	
Primary Metal	34.2%	47.7%	81.9%	18.0%	0.02%	1.05	<mark>+9.0%</mark>	-27.8%	-27.8%	
Secondary & Misc. Mixed	36.6%	61.7%	98.3%	1.2%	0.49%	16.95	+0.5%	-30.5%	-30.6%	

Trip Distributions

Trip distribution of a thousand trips per day by automobile **before** & after AV

introduction

- Oper. Cost: HV = 0.6
 \$/mile vs AV = 0.8 \$/
 mile vs SAV = 1 \$/mile
- Average trip distance is 14 miles before AVs, compared to 16 miles after the AV scenario
- Slight **increase** in truck trips of all trip distances

VMT Results

• **VMT** = average trip distance x trip count for each distance band.

VMT (1M mi per day)	Automobile	Rail	Bus	Air
Before	955.2M mi/day	19.4M mi/day	114.1M mi/day	2.0M mi/day
After	1400.9	4.5	57.3	0.3
Change	+46.7%	-77.1%	-49.8%	-84.6%

• **VMT** = Automobile VMT within Megaregion Border.

	Automobile VMT before AV (1M per day)	Automobile VMT after AV (1M per day)	Change		
Dallas-Fort Worth	453M miles	669M miles	+47.7%		
San Antonio Region	118	171	+45.8%		
Austin Region	119	186	+56.9%		
Houston Region	432	587	+36.0%		
Total Megaregion	1,367	2,012	+47.2%		

• **Raised burden** for the infrastructure of the major cities in the megaregion, especially in the Austin area

Freight Spatial Patterns

- Major commodity movements (90% of megaregion's freight movement in tons) & movement changes between OD pairs in the Triangle
- Trade happens mostly between Triangle's key sub-regions: Houston, Dallas-Fort Worth, San Antonio & Austin

Truck Trips before AVs

Top Truck Trip Increases After Atrucks

Truck Trip Increases > 5%

Chemicals

Primary Metals

Network Congestion Results

- Traffic flows (by line thickness) & congestion levels (volumeto-capacity ratios, by color)
- 92.3% of the links experience higher flows in both directions

V/C >1 on **4.9%** of 27,976 links

After AVs

V/C >1 on 9.9% of links

AV Sensitivity Analysis Results

• market penetration is in person-trips/day

Scenario	Base	1	2	3*	4	5	6	7*	8	9	10	11	12*	13	14	15	
	AV & SAV VOTT (\$/hr)					Operating Cost (\$/mile)			Nesting Coefficients of Automobile Mode								
SCENARIO	N/A	14.25	12.67	11.08	9.50	7.92	AV	AV	AV	AV							
ASSUMPTIONS		Reduced	VOTT (%	less than	original)		0.6	0.8	1	1	0.5	0.6	0.7	0.8	0.9	1	
	0	0.1	0.2	0.3	0.4	0.5	SAV	SAV	SAV	SAV	0.5	0.0	.0 0.7	0.0	0.9	1	
	U	0.1	0.2	0.5	0.4	0.5	0.6	1	1	+ 1.5							
Total VMT (Passenger + Freight) (Billion per day)	1.4 B/day	2.0 B/day	2.012	2.030	2.051	2.086	2.088	2.012	1.991	1.990	2.152	2.012	1.894	1.793	1.707	1.632	
HV VMT (Billion per day)	0.96	0.58	0.51	0.45	0.40	0.34	0.40	0.51	• 0.51 =	• 0.54	0.51	0.51	0.50	0.48	0.47	0.45	
AV VMT (Billion per day)	N/A	0.67	0.74	0.81	0.87	0.94	0.58	0.74 –	0.74 🗖	→ 0.78	0.85	0.74	0.67	0.61	0.56	0.52	
SAV VMT (Billion per day)	N/A	0.13	0.14	0.14	0.15	0.16	0.46	0.14	0.14	0.06	0.11	0.14	0.16	0.17	0.19	0.20	
HV market penetration	93.0	40.1	37.6	35.3	33.1	30.45	31.9	37.6 🗖	37.7 🗖	40.6	37.4	37.6	37.6	37.5	37.3	37.0	
AV market penetration	N/A	41.4	43.5	45.6	47.5	49.84	36.5	43.5	43.4	46.7	45.5	43.5	42.0	40.8	39.9	39.1	
SAV market penetration	N/A	16.2	16.6	17.0	17.4	17.81	29.4	16.6 🗖	▶ 16.7 ■	10.5	14.4	16.6	18.5	20.1	21.4	22.6	
%Links with V/C > 1	4.60	9.60	9.78	9.94	10.20	10.60	10.63	9.78 🗖	9.56 🗖	9.55	11.47	9.78	8.56	7.83	7.19	6.64	
Maximum V/C	3.22	4.05	4.07	4.07	4.09	4.12	4.13	4.06	4.03	4.04	4.21	4.06	3.88	3.73	3.61	3.49	

Key Results

- Average passenger-trip distance across Texas Triangle rises
 14%, from 14 to 16 miles.
- Local Air travel between Triangle airports expected to fall dramatically, by over 80%, though just 4.3% of all air trips in Texas.
- Without road pricing or other demand management, VMT predicted to rise 47.2%, along with links' V/C ratios, especially in the Triangle's biggest top sub-regions.
- The number of links having demand exceed capacity is predicted to **double**.
- Movements in 7 of 15 commodity classes predicted to rise >5%.

Future Work & Things to Try

- Reflect dynamics of congestion & use of SAVs between drop-offs & pickups
- Adjust **ASCs** in cases where AVs are introduced.
- Allow for trips across U.S.-Mexico border.
- Simulate SAVs serving as **first-mile & last-mile modes** in support of longer-distance travel (by trains, planes, & buses, for example).

Thank you! Questions & Suggestions?

Paper at www.caee.utexas.edu prof/kockelman