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Executive Summary 

More automated vehicles mean easier travel, and thus more frequent long-distance driving within 

the Texas Triangle Megaregion. Vehicle-Miles Traveled (VMT) is likely to rise on all types of 

roadways, throughout the megaregion, in the coming years and decades, well beyond what trends 

in population and economic activity would predict. Data on travel behaviors and trends will be 

compiled to modify existing models or create new ones to forecast these changes, under a variety 

of policy and technology scenarios. They will predict VMT and other impacts across the 

megaregion’s network, and help decision makers within the Texas Triangle megaregion the 

USDOT to appreciate the benefits and costs of different policies, investments, and practices. 

 

This project conducted a thorough review of work relating to long-distance travel, before testing 

different destinations and mode and route change choice parameters within the Texas Triangle 

megaregion. Specific conclusions and recommendations were developed to help provide insight 

to Texas public transportation agencies and other Texas stakeholders. This project was built on 

existing work undertaken on behalf of TxDOT, modified for application within the Texas Triangle 

a megaregion. 

 

Key findings of this work include: 

1) People will shift to more distant destinations, on average (evidenced by the increase in the 

megaregion’s average travel distance: from 14 miles to 16 miles). 

2) Air travel will fall by more than 82%, with these long-distance travelers shifting to ground 

transport options. 

3) Without travel demand management (like credit-based congestion pricing and mandated 

tight headways between AVs), congestion issues will grow, thanks to an average VMT 

increase of 47%, which is more evident in the region’s major cities: Houston, Dallas-Fort 

Worth, San Antonio and Austin. 

4) Almost 109.6% of the megaregion’s link flows will suddenly exceed capacity, relative to 

a no-AV case, which has 4.6% exceed capacity. 

5) Automobile travel will rise across all trip distance categories, with jumps most evident 

between suburban and urban zones.  
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6) Six of the 15 commodity groups simulated are expected to see a >5% increase in their 

associated truck trips, due to the introduction of Atrucks, with rising truck trade largely 

between Houston and other major Texas employment centers. 
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Chapter 1. Introduction 

Fully-automated vehicles (AVs) and trucks (Atrucks), along with shared AVs (SAVs), may 

dramatically shift passenger and freight travel patterns across cities and regions over time. As the 

driving burden and heavy fixed costs of vehicle ownership disappear, more distant locations and 

ground-based travel become relatively more attractive. Atrucks not only free paid operators from 

the driving task, but allow them to work longer hours, resting en route. They will shift or eliminate 

driver responsibilities and should improve safety. Truck platooning through vehicle-to-vehicle 

communication also improves trucking efficiency. Atrucks may be equipped with other automated 

functions, like freight drop-offs and pick-ups.  

 

The Texas Triangle megaregion makes an interesting case study for such shifts. It is one of the 

nation’s 11 megaregions (America 2050 Project, 2014), and contains 18.2 million of Texas’ 25.1 

million residents - or 6% of the U.S. population. Its businesses and workers, inside cities like 

Houston, San Antonio, Austin, Dallas, and Fort Worth, generated 7% of U.S. GDP in 2010 

(Todorovich, 2007). Its 66 counties (out of Texas’ 254 counties) cover 58,400 square-miles. This 

region’s future traffic patterns are analyzed here, using travel demand models.  

 

The current research is not only about the mode choice shift due to the AVs (Yong and Kockelman, 

2018; Perrine at al., 2018; LaMondia et al., 2016), but also about the impacts on SAV fleet size, 

volume of travel and parking requirements through SAV simulation (Liu et al., 2017; International 

Transport Forum, 2015). The shared electric autonomous vehicles are also considered to 

investigate the environmental impact (Loeb and Kockelman, 2017; Loeb et al., 2018). Yong and 

Kockelman (2018) apply conventional four-step travel demand model to test the impact of 

connected AVs (CAVs) and SAVs on the network of Austin, Texas in year 2020. They found that 

20% or more vehicle-kilometers traveled will be added to the roadway network, assuming 

operating costs of conventional vehicle, CAV, and SAV to be $0.12, $0.25, $0.62/km respectively. 

Moreover, a relatively low values of travel time (VOTT) for AV passengers and competitive 

pricing assumptions of SAV use result in longer distance travel and reduced transit system use. 

Liu et al. (2017) simulate conventional vehicles and SAVs in the Austin network using different 

possible fare levels of SAV, with an agent-based MATSim toolkit. SAV is shown to be not only 
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preferred by longer distance travelers to conventional vehicles, but preferable for trips less than 10 

miles by households without a conventional vehicle. Assuming that an SAV could serve 17-20 

person-trips per day, a higher rate of SAV results in a greater vehicle replacement, ranging from 

5.6 to 7.7 per SAV. Further, The International Transport Forum (2015) report the agent-based 

simulation results of the potential change in urban mobility in the city of Lisbon, due to the 

implementation of a shared and fully autonomous vehicle fleet. They anticipate that SAVs could 

deliver the same mobility with 10% of the fleet but result in a 6% increase in VKT, and the reduced 

parking needs would free significant public and private places.  

 

This report is organized as follows: Texas’ Statewide Analysis Model (SAM) data are described 

first in chapter 2, since they provide key inputs, validation values, and several parameters for 

application of a four-step travel demand model. Model calibration is performed to establish a 

reasonable base case scenario, before introducing the scenarios offering the new passenger and 

freight modes. Model results and various sensitivity analyses are described in chapter 3, before 

providing the report’s conclusions in chapter 4.  

 

 

 
  



 

9 
 

Chapter 2. Travel Demand Model Methods 

2.1. Data Set 

The megaregion’s 66 counties’ come from the regional boundary used by Zhang et al. (2007), and 

associated network and traffic analysis zone (TAZ) files were obtained from the Texas SAM. The 

megaregion contains 2,160 of the state’s 4,667 TAZs, as shown in Figures 2.1(a) and 2.1(c). The 

entire state transportation situation was simulated, with megaregion results pulled out afterwards, 

to avoid boundary effects (e.g., missing external-zone travel) at the edges of the region. 

 

The SAM network covers all of North America, with greater detail in and near Texas. Figure 2.1(b) 

shows the state’s highway, railway and airline networks, which contain 200,445 links and 168,507 

nodes. Just 19,549 nodes and 27,976 of the SAM’s network lie partially or entirely within the 

megaregion, including 26,556 roadway links. Some megaregion trips (with both origin and 

destination zones within the Texas Triangle) can lead to travel outside the region, especially with 

very heavy traffic conditions, so this report’s extended-network and state-zone analysis allows for 

this kind of behavior. Figure 2.1(c) highlights the megaregion TAZs and the road links (in purple) 

and nodes that lie within it. As illustrated, dense networks exist within Houston, San Antonio, 

Austin, and the Dallas-Fort Worth metroplex. 

 

 

A four-step travel demand modelling process with feedback loop is used here to model traffic 

patterns across the entire state of Texas (before pulling out megaregion results), including trip 

   
a. SAM TAZs b. SAM Networks c. Roadway Network 

Figure 2.1 Geographic data of SAM model 

 



 

10 
 

generation, trip distribution, mode choice and traffic assignment. For passenger travel’s four-step 

model, the traditional trip distribution procedure was replaced here by a destination choice model, 

and the PA matrix was then converted into an OD matrix. The model uses just one time of day to 

recognize that many trips are long in distance, spanning many times of day, and many different 

congestion settings. For the freight model, a doubly-constrained trip distribution procedure was 

used, based on the SAM’s Year 2040 freight-trip generation parameters. A mode choice model 

was then applied, reflecting Truck, Rail and Intermodal Transport (IM) alternatives. A base case 

scenario - without AV, SAV and Atruck modes – was run first, to compare against the self-driving 

scenarios. Various parameter settings were also tested, using sensitivity analysis, to provide a sense 

of prediction variability. As noted earlier, the megaregion was modeled within the U.S. network, 

and recognizing all Texas TAZs, so the results for just the megaregion’s links and zones were 

pulled out from of the results of the statewide analysis.  

 

2.2. Trip Generation 

Trip generation data were obtained from the SAM Year 2040 scenario results, based on underlying 

population and jobs forecasts by zone (Alliance Transportation Group, 2018), using 2009 National 

Household Travel Survey (NHTS) data. Standard trip types include home-based work, home-based 

other, home-based school, non-home based other, and non-home-based visitor. Long-distance, 

inter-city trips include infrequent business trips and other long-distance trips. Table 2.1’s 15 

commodity groups are based on U.S. Standard Transportation Commodity Codes, and SAM 

freight transport attraction and production levels exist for for all Texas counties and non-Texas US 

states. 

 

This work assumes a 15% increase in Year 2040 trip generation rates (productions and attractions) 

due to AV technologies enabling new trip-making. This assumption is based largley on Harper et 

al.’s (2016) estimating a 14% increase in U.S. VMT due to non-driving Americans, elderly 

Americans, and people with travel-restrictive medical conditions being able to make regular use 

of AVs. More just-in-time freight deliveries, directly to customers, especially on local roads, 

within cities, may also emerge. 
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2.3. Trip Distribution 

For the nested logit modeling of destination and mode choices in passenger travel, each destination 

TAZs attraction depends on a logsum across mode options (also called a mode accessibility term) 

and destination’s population. Essentially, the systematic utility for trips going from zone i to zone 

j was specified as follows: 

𝑉𝑖𝑗=𝛾 × ln(pop
i
)+𝜆 × log (∑exp(𝑉𝑖𝑗

𝑚)

𝑚

) + 𝛼 × √𝐿𝑖𝑗 + 𝛽 × 𝑙𝑜𝑔(𝐷𝑖𝑗) 

where 𝑉𝑖𝑗
𝑚 is the utility of travel from zone i to zone j using mode m, and 𝐷𝑖𝑗 is travel distance 

from zone i to zone j.  Table 2.1’s model parameter values come from Zhao and Kockelman (2017) 

and Outwater et al. (2015). 

 

Freight trips are distributed by tons of each commodity, using a doubly-constrained gravity model, 

to keep values in strong alignment with current freight production and consumption levels across 

the state of Texas and beyond. The associated utility function is as follows: 

𝑉𝑖𝑗𝑐=exp(-1/(Dc*𝐷𝑖𝑗)+δ × ln(pop
i
)+τ × log (∑exp(𝑉𝑖𝑗

𝑚)

𝑚

)) 

where Dc is the average travel distance for commodity group c and 𝐷𝑖𝑗 is the distance from zone i 

to zone j.  

 

2.4. Mode Choice 

Four passenger modes exit in the base-case (Year 2040) scenario: conventional automobile –

labeled as “HV” for human-driven vehicle below, bus, rail and air. Three freight modes exist: 

Truck, Rail, and Intermodal (IM). These choice models were expanded to accommodate AV, SAV 

and Atruck modes, as shown in Figure 2.2. Trips costs, fares, and in-vehicle travel times of bus, 

rail and air all come from SAM model outputs. Rail’s values are the average of all of SAM’s rail 

modes for each OD pair (including urban rail, intercity rail, and high-speed rail alternatives in 

many OD cases). When AVs and SAVs are added to the set of alternatives, HVs, AVs and SAVs 

are nested under the Auto mode (Figure 2.2(b)). There is no parking cost for SAV use (much like 

a taxi), and privately-owned AVs are assumed to face the same parking cost that HVs pay (since 
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AVs are not expected to be allowed to drive empty, creating additional congestion for cities and 

regions).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Operating costs of bus, rail and air modes come directly from SAM model outputs, while several 

assumptions are used for Auto costs. Litman (2018) anticipates AV operating costs to be $0.80-

$1.20 per mile in early years of AV availability, before declining to $0.60-$1.00 per mile, 

compared to $0.40-$0.60 per mile for Human-driven vehicles (HVs). Johnston and Walker (2017) 

expect SAVs to debut in some cities in year 2018 at $0.86 per mile, or $0.84 per mile for Shared 

Autonomous Electric Vehicles (SAEVs), compared to personal HVs costing $0.4 per mile. They 

expect traditional Transportation Network Company (TNC) vehicles (like today’s Lyft and Uber 

rides) to cost $2.04 per mile, and SAEV fees to fall to $0.51 per mile in 2025, $0.36 in 2030, and 

$0.33 in 2035. Bösch et al. (2017) predict that SAVs may cost $0.44 per mile to cover operating 

costs and deliver a very healthy 30% profit margin, while a dynamic ride-sharing (en route 

carpooling) service may cost between $0.20 and $0.30 per passenger mile. They also suggest that 

purpose-built SAVs for use as pooled taxis may lower fares to just $0.16 per mile, long-term.  

 
a. Passenger mode choice structure without AVs 

 
b. Passenger mode choice structure with AVs 

 
c. Freight mode choice structure without Atrucks 

 
d. Freight mode choice structure with Atrucks 

Figure 2.2 Mode choice structures, for passenger and freight transport, before and after AVs 
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Perrine et al.’s (2018) model of long-distance U.S. travel assumed AV costs to range from $0.10 

to $1.65 per mile and VOTT to be $3.00- $9.00 per hour for AV occupants, with the base case 

scenario of $0.2 per mile operating cost and VOTT of $6.00 across 6 distinct scenarios. Fagnant 

and Kockelman (2016) estimated that SAV pricing at $1.00 per mile could generate a 19% annual 

return on investment if each AV’s purchase price is $70,000. This return varied from 12.3% to 

38.8% for operating costs of $0.50 and $0.25 per mile, respectively. Arbib and Seba (2017) 

envision internal-combustion SAVs to cost roughly $0.38 per mile, while SAEVs may be much 

cheaper, at $0.16 per mile in 2021 and $0.10 per mile in 2030. They posit that government 

subsidies or advertising may one day make SAEVs free to most or all riders.  

 

Based on all these estimates, this work assumes that both AVs and HVs carry operating costs of 

$0.60 per mile, and SAVs cost either $1.50, $1, or $0.50 per mile (across scenarios). Combined 

with parameter assumptions from Zhao and Kockelman (2017), mode choice parameters used here 

are shown in Table 2.1, with several of these varied later in the report, during sensitivity analyses. 

The ASCs (alternative specific constants) for AVs and SAVs are set to be negative, at -0.05 and -

0.2, respectively, to reflect some consumer hesitation. This is based on surveys and other work by 

Casley et al. (2013), Schoettle and Sivak (2014) and Bansal and Kockelman (2016), suggesting 

that AVs and SAVs will improve travelers’ safety and mobility, but may generate some acquisition 

cost, privacy and controllability concerns (especially when the vehicle is not privately owned).  

 

 

(a) Passenger Model 

Destination 

Choice 

Mode Choice Logsum Log of Dist. Square root of Dist. Log of Population 

1.855  = -1.25  = 0.01  = 0.8 

Mode Choice 

Base Case Automobile Bus Rail Air 

Constant 0 -2.8 -2.8 -2.8 

Operating Cost Coefficient -0.072 -0.14 -0.14 -0.14 

In-vehicle Time 

Coefficient 
-0.019 -0.019 -0.019 -0.019 

Operating Cost ($/mile) 0.6 N/A N/A N/A 

Parking Cost  N/A N/A N/A 

VOTT 15.83 8.14 8.14 8.14 

AV Case HV AV SAV Bus Rail Air 

Nesting Coefficient  = 0.6* N/A N/A N/A 

Constant 0 -0.05 -0.2 -2.8 -2.8 -2.8 

Operating Cost Coefficient -0.072 -0.072 -0.072 -0.14 -0.14 -0.14 

Table 2.1 Passenger and Freight Model Parameters 
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Note: Numbers marked with * are modified during sensitivity analysis. 

 

As shown in Figures 2.2(c) and 2.2(d), the Htruck and Atruck alternatives are nested under the 

truck mode, after AVs are introduced to the market. The Air and Water modes are ignored here, 

since they are considered fixed in the SAM model. (In reality, some air-freight and water-born 

freight trips will probably be replaced by Atruck trips, due to its convenience, cost and speed.) An 

Atruck is assumed to cost 1.5 times that of an Htruck, but assumed to save some connecting 

(uploading or downloading) times at origins and destinations. The nesting coefficient is set to 0.7, 

recognizing that Htrucks and Atrucks have more relative substitutability as their costs and times 

are similar. Further, Atrucks are assumed to have an ASC of -0.2 under the truck nest, also 

assuming some consumer hesitation due to the high initial cost of the Atrucks.  

 

In-vehicle Time 

Coefficient 
-0.019 -0.015* -0.015* -0.019 -0.019 -0.019 

Operating Cost ($/mile) 0.6 0.8* 1* N/A N/A N/A 

Parking cost    N/A N/A N/A 

VOTT ($/hr) 15.83 11.08* 11.08* 8.14 8.14 8.14 

(b) Freight Model (Adapted from Texas SAM) 

Trip 

Distribution 

Mode Choice Logsum Log of Population 

 = 0.5  = 0.1 

Mode Choice 
Rail 

Constant 
IM constant Cost Coefficient Time Coefficient 

Average Travel 

Distance (mi.) 

Agriculture -1.343 -5.224 -0.018 - 1539  

Mining -2.291 -6.111 -0.033 - 888 

Coal 3.316 - -0.007 - 1175 

Nonmetallic 

Minerals 
-1.441 -8.469 -0.031 - 670 

Food -2.237 -6.430 -0.016 - 1715 

Consumer 

Manufacturing 
-6.742 -4.233 -0.012 - 2174 

Non-Durable 

Manufacturing 
-5.941 -5.345 -0.019 - 1837 

Lumber -2.253 -6.053 -0.029 -0.021 1437 

Durable 

Manufacturing 
2.407 -2.771 -0.008 -0.064 1828 

Paper -1.772 -4.420 -0.013 - 1463 

Chemicals -0.874 -6.644 -0.011 - 1322 

Petroleum -2.529 -8.443 -0.030 - 935 

Clay, 

Concrete, 

Glass 

-2.668 -6.520 -0.019 - 1414 

Primary Metal -0.609 -7.263 -0.010 - 1661 

Secondary & 

Misc. Mixed 
-4.143 -4.457 -0.016 - 1902 
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2.5. Traffic Assignment and Feedback Loop 

Mode and destination choice results are transformed into trip tables or OD matrices, and round-

trip tours are split in two for the final traffic assignment. Based on 2009 NHTS data (Santos et al., 

2011), HV, AV and SAV occupancies are set to 1.5 persons. The freight trip table (in tons by 

commodity) are converted to trucks and rail cars, based on SAM weights. Feedback loops are 

performed to provide consistent results between travel time and cost skims and network 

assignment flows, feeding congested travel times back for subsequent iterations, using the method 

of successive averages 

 

A multi-modal, multi-class assignment was conducted in each scenario, to reflect large differences 

in VOTT between human-drivers and self-driving vehicles. The feedback loop was set to perform 

20 iterations, with a stopping criterion of relative gap below 10-4, to try and achieve a stable, 

convergent equilibrium.  
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Chapter 3. Scenario Results 

3.1. Model Calibration 

To appreciate how parameter and model-specification changes affect predictions, the revised 

model’s results (for the before-AVs base case) were compared to the original SAM model’s 

outputs, with histograms of trip distances shown in Figure 3.1. The base case predictions deliver 

quite a few more trips under 5 miles and somewhat fewer trips between 6 and 15 miles, but 

otherwise track the SAM predictions closely (with a correlation coefficient of 0.99 across the 

binned distances, and 0.82 across flows between all >5M 21M OD pairs). This distinction is 

probably due to the destination choice model’s enabling more attraction within and between TAZs. 

 

 
a. Passenger Trip Distance Predictions across Texas (< 50 mi.) 
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In terms of freight predictions, the correlations are 0.997 for 25-mile distance bins (Figure 3.1(b)) 

and 0.81 for trip counts between every all U.S. OD pairs. Truck and Rail volumes exhibit relatively 

high correlations in each of the 15 commodity classes, while IM results (for intermodal 

assignments) are relatively uncorrelated. Fortunately, the IM mode accounts for a relatively small 

amount of Texas trade, so its misprediction is not a serious issue. In reality, freight transport is 

tricky to predict (since every shipment is unique in various ways), and the SAM model delivers 

slightly higher mode shares in Rail and IM, while the modified model’s base case delivers slightly 

higher truck shares in most commodity classes. 

 

3.2. Mode Share 

Table 3.1 and Figure 3.2 shows passenger-mode splits before and after AVs. The Automobile 

mode is the sum of HV, AV and SAV trips. With AVs available, Automobile shares rise for short 

and long-distance trips across the megaregion, shifting markedly away from Texas air travel (with 

most air travel distances between 100 miles and 280 miles). Existing and future travel between 

DFW, Houston, San Antonio and Austin is expected to favor AVs and SAVs. Trips by bus less 

 
b. Freight Trip Distance Predictions across U.S. 

 
Figure 3.1 Comparing Predicted Trip Distance to SAM Model Results 
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than 50 miles appear to fall, since bus routes are normally no more than 50 miles. Rail trips also 

fall, for both distances up to 120 miles. 

 

 

 

 
a. Change in Trip Counts for Short-Distance (<50 mi) Passenger Trips 

 

 
b. Change in Trip Counts for Long-Distance (>50 mi) Passenger Trips 

 

Figure 3.2 Changes in Texas Triangle trip counts by mode (after AVs minus before AVs), versus trip 

distance 
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As shown in Table 3.1, AVs and SAVs see less impact on shorter distances, in which automobile 

mode increases by 16.1% while bus and rail are reduced by 66.1% and 71.1% respectively. Air 

trips less than 50 miles are not discussed here because distances less than 50 miles between two 

airports in Texas is not considered to be a normal trip. However, in distances greater than 50 miles, 

Automobile and Bus modes show the same trend but with relatively large change. However, Rail 

was relatively less affected in the longer distances, decreasing by 61.4%. Air remains to be the 

mode that affected most by the AV and SAV introduction while rail is least affected in long-

distance trips. Air travel across Texas decreases by 61.8% while decreasing by 82.5% across the 

megaregion. Internal trips starting or ending from airports in the megaregion are shifting to other 

places instead of staying in the megaregion, while losing to AVs at the same time. San Antonio 

International Airport, Dallas/Fort Worth International Airport, Love Field Airport, Hobby Airport, 

Houston International Airport and Austin–Bergstrom International Airport enplanements or 

deplanements across the U.S. will probably remain after Triangle traffic is lost to AVs. 

 

 

 

With respect to the mode share in freight, all modeled 15 industries would witness trips increase 

in truck and decrease in rail and IM, after Atrucks are introduced. The increase of truck travel 

varies by mode but most of Rail and IM mode decrease by 30%. Coal commodity truck trips see a 

massive increase (51.3%), which is mainly shifted from rail models that dominated coal 

transportation prior to Atruck implementation, followed by chemicals (11.3%), but consumer 

manufacturing, non-durable manufacturing and secondary and miscellaneous mixed goods have 

slight increase of less than 1%. 

 

Mode 

Automobile 

(HVs, AVs, & 

SAVs) 

Bus Rail Air 

Trips before < 50 miles 

(short-

distance) 

64,678 k/day 1,837 k/day 2,219 k/day N/A 

Trips after 75,088 k/day 623.8 k/day 642.3 k/day N/A 

Change +16.1% -66.1% -71.1% N/A 

Trips before > 50 miles 

(long-

distance) 

2,946 k/day 33.64 k/day 988.2 k/day 14.27 k/day 

Trips after 6171 k/day 2.416 k/day 595.7 k/day 2.497 k/day 

Change 109.5% -92.8% -39.7% -82.5% 

Total change +20.2% -66.5% -61.4% -82.5% 

Table 3.1 Person-Trip Count Changes by Mode for Short and Long-Distance Trips (Internal trips, 

Thousand Person-Trips per Day) 
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3.3. Trip Distribution 

Figure 3.3 shows the trip distribution of a thousand trips per day by automobile before and after 

AV introduction. Air and rail travel is assumed to have straight line travel distance, while bus has 

the same as automobile in the road network. After AVs and SAVs are introduced, trips of all 

distances increase, while trips between 4 miles to 120 miles see greater increases in trip distances 

before and after AV introduction, at 14 miles before AVs, compared to 16 miles after the AV 

scenario. Travelers are shifting to longer distances due to the potential benefits that AVs would 

bring. As shown in Figure 3.3(a) and 3.3(b), AVs have slightly less share than the HV mode less 

than 6 miles, but there are more trips longer than 6 miles and the share of AV increase when the 

trip distance increases. SAV shows a similar trend, but few SAV trips greater than 80 miles are 

observed.  

Commodity 
Mode Share After Atrucks Introduced Change from Base Case 

Atruck Htruck Truck Rail IM Truck Rail IM 

Agriculture 30.4% 52.6% 83.0% 16.9% 0.18% +7.2% -25.3% -25.3% 

Mining 37.1% 58.0% 95.1% 4.9% 0.04% +2.4% -30.9% -31.0% 

Coal 2.5% 3.5% 6.0% 91.0% 3.08% +50.0% -2.0% -2.0% 

Nonmetallic 

Minerals 
26.6% 56.1% 82.7% 17.3% 0.01% +5.6% -21.8% -21.9% 

Food 34.5% 58.0% 92.4% 7.5% 0.06% +3.1% -28.8% -28.8% 

Consumer 

Manufacturing 
38.6% 60.7% 99.2% 0.1% 0.68% +1.1% -31.7% -31.7% 

Non-Durable 

Manufacturing 
35.9% 63.7% 99.6% 0.2% 0.19% +0.2% -29.6% -29.7% 

Lumber 36.3% 61.2% 97.5% 2.4% 0.04% +1.2% -26.4% -26.5% 

Durable 

Manufacturing 
48.1% 38.4% 86.5% 13.0% 0.53% +9.6% -35.1% -35.1% 

Paper 33.8% 54.5% 88.3% 11.2% 0.49% +5.2% -28.3% -28.4% 

Chemicals 30.6% 46.6% 77.2% 22.7% 0.05% +11.1% -25.6% -25.6% 

Petroleum 30.6% 62.9% 93.5% 6.5% 0.01% +2.2% -24.5% -24.7% 

Clay, Concrete, 

Glass 
34.3% 60.5% 94.8% 5.2% 0.06% +2.1% -28.4% -28.4% 

Primary Metal 34.2% 47.7% 81.9% 18.0% 0.02% +9.0% -27.8% -27.8% 

Secondary & 

Misc. Mixed 
36.6% 61.7% 98.3% 1.2% 0.49% +0.5% -30.5% -30.6% 

Table 3.2 Mode Splits in Freight Ton-Miles Moved within the Texas Triangle (Internal Trips) 
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Figure 3.3(c) presents the trip distribution of trucks before and after Atrucks become available. 

There is a slight increase in truck trips of all trip distances, with the conventional Htruck retaining 

 

 
(a) Passenger Trip Distribution Before and After AV (< 50 miles)  

 
(b) Passenger Trip Distribution Before and After AV (> 50 miles) 

 
(c) Freight Trip Distribution Before and After AVs 

Figure 3.3 Trip distributions before and after AVs (across modes, by distance, for passenger and freight 

travel) 
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a greater share of tons at all distances than the Atruck does in this megaregion, since the Atruck 

costs more, especially for these intermediate travel times (all under 5 hours). In the future, as the 

cost of Atrucks decreases, a greater market share of Atrucks would be expected. The jump of 170 

miles and 230 miles can be seen as the distance between Dallas-Fort Worth and Houston, and San 

Antonio to Houston or Austin to Houston. It is evident that Houston is a main freight center in the 

megaregion. 

 

3.4. Freight Spatial Analysis 

Figure 3.4 maps the major commodity movements (and their changes) between OD pairs in the 

Triangle. It does not show the smallest flow volumes, which sum to the first 10% of tons moved. 

Therefore, Figure 3.4(a) shows 90% of the freight movement (in tons) that happens in the 

megaregion. Trade happens mostly between the megaregion’s four key sub-regions: Houston, 

Dallas-Fort Worth, San Antonio and Austin, as well as counties near Dallas-Fort Worth and 

Houston (Texas’ most populous regions). After Atrucks’ introduction, trade rises mostly between 

Houston and the other three regions. 

 

 

  
(a) Truck Trip before Atruck (b) Truck Trip Increase After Atruck 

Figure 3.4 Major freight movements across the Texas Triangle 
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The spatial increase of the commodities can also be analyzed. Figure 3.5 shows the commodities 

that have an increase in truck trips greater than 5%. The lines that show growth less than 10% of 

the total increase of the corresponding commodity have been hidden. For agriculture, chemical 

and primary metal, most connections are seen between Houston and Dallas-Fort Worth/San 

Antonio/Austin. For coal, increased trips happen across central megaregion and the south. For 

nonmetallic minerals and paper, there is an increased connection between Houston and Dallas-

Fort Worth, but also west of the megaregion.  

 

3.5. Vehicle-Miles Traveled 

Table 3.3 shows passenger-VMT changes for all passenger modes after introducing AVs. The 

VMT is approximated for rail, bus and air. Based on the trip distribution results, VMT is obtained 

by multiplying average trip distances with trip counts for each corresponding distance band. Rail, 

bus, and air modes show a decrease in VMT, with rail travel decreasing by 77.1%, air travel by 

   
(a) Agriculture (b) Coal (c) Nonmetallic Minerals 

   

(d) Paper (e) Chemicals (f) Primary Metal 
Figure 3.5 Top truck trip Increases by commodity (based on Figure 6 flows, if more than a 5% change) 
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84.6% and bus VMT shrinking by 49.8%. Overall automobile modes show a 46.7% increase in 

VMT after AVs’ introduction. Passenger airline travel is the mode most affected by the arrival of 

AVs. The 15% of this VMT increase is probably due immediately to the assumption that trip 

generation and attraction values all rise by 15% in all zones.  

  

 

 

Table 3.4 details the VMT changes in major cities in megaregion area. Dallas-Fort Worth, San 

Antonio, Houston and Austin all show a VMT increase of almost more than 30%. Houston presents 

the smallest increase among them at 36.0%, while Austin gains a VMT increase of 56.9%. On 

average, VMT increases by 47.0% across the megaregion area. The considerable increase in VMT 

due to the advent of AVs and SAVs could probably raise burden for the infrastructure of the major 

cities in the megaregion, especially in the Austin area.  

 

 

Note: Dallas-Fort Worth Counties are Denton, Collin, Hunt, Parker, Tarrant, Dallas, Rockwall, Kaufman, Ellis, 

Johnson, Henderson and Hood; San Antonio Counties are Bexar, Comal, Guadalupe and Wilson; Austin Counties 

are: Williamson, Travis, Bastrop, Caldwell and Hays; Houston Counties are Harris, Montgomery, Liberty, 

Chambers, Brazoria, Galveston and Fort Bend. 

 

3.7. Roadway Network Performance 

Figures 3.6(a) and 3.6(b) illustrate traffic flows (by line thickness) and congestion levels (volume-

to-capacity ratios, by color) on all of the region’s road links in before- and after-AV cases. Figure 

VMT 

(1M mi per day) 
Automobile Rail Bus Air 

Before 955.2M mi/day 19.4M mi/day 114.1M mi/day 2.0M mi/day 

After 1400.9 4.5 57.3 0.3 

Change 46.7% -77.1% -49.8% -84.6% 

Region 
VMT before AV 

(1M per day) 

VMT after AV 

(1M per day) 
Change 

Dallas-Fort Worth Region 453M miles 669M miles +47.7% 

San Antonio Region 118 171 +45.8% 

Austin Region 119 186 +56.9% 

Houston Region 432 587 +36.0% 

Total Megaregion 1,367 2012 +47.2% 

Table 3.3 Texas Triangle VMT Changes by Passenger Modes Before and After AVs (for internal trips 

only) 

 

Table 3.4 VMT Changes (for Passenger + Freight) in Texas Triangle’s Main Cities Before and After AVs 
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3.6(c) illustrates the changes across regional links, with added flows heaviest within the Dallas-Ft 

Worth and Houston regions, and many V/C ratios suddenly exceeding 1.5 once AVs are 

introduced, notably along the IH-35 corridor. Congestion on highways across megaregions are also 

observed to be slightly higher than before. After the introduction of automation technology, 

infrastructure needs to be upgraded to accommodate more travel across the megaregion area. 

 

4.9% of the megaregion’s 27,976 links are simulated to have V/C values above 1 before AVs are 

introduced (with a maximum ratio of 3.2), and this more than doubles, to 9.9% (with a max value 

of 4.1), after AVs are widely available to travelers. 92.3% of the links experience higher flows in 

both directions, 1.6% have decreased flow in both directions, and 2.0% have higher flow in just 

one direction and lower flow in the other.  

 

3.8. Sensitivity Analysis 

Table 3.5 shows results of sensitivity analysis from varying VOTT, operating costs, and nesting 

parameters. The nesting coefficient and the operating costs are assumed to be fixed across all 

scenarios in the sensitivity analysis of the value of travel time. In this case, the preference for HVs, 

AVs and SAVs as well as the correlations of all nested automobile modes are fixed. The VOTT 

analysis presents the potential different levels of convenience that drivers and passengers will 

perceive when AVs and SAVs come into the market. As the VOTT for those using AVs falls, 

regional VMT rises, with higher AV and SAV market shares and more congestion. Such behaviors 

also emerge when VOTT is fixed but AVs and HVs are more correlated, thanks to a lowered 

nesting coefficient (implying that AVs and HVs are closer substitutes/have more in common). AVs 

   
(a) Base Case Before AV (b) After AV (c) Changes after AVs 

   

Figure 3.6 Flows and congestion 
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and HVs may have additional features in which case they will likely be uncorrelated, but AVs and 

HVs still function the same for personal travel, but with reduced cost and time. Therefore, a low 

nesting coefficient and larger AV and SAV market share are expected to happen. Also as expected, 

lowered AV and SAV operating costs deliver higher VMT, congestion and AV market share. With 

the development of the automation technology, AVs and SAVs will become less costly in the 

further, so it is reasonable to believe AVs and SAVs will be more widely used as time goes by. 

SAV is also increasingly popular as the market shared of SAV almost double, when the same 

operating cost of AV and SAV decrease from $1/mile to $0.6/mile, which may probably happen 

with automation technology becoming mature. The operating cost for AV and SAV may be much 

lower than an HV in the future. Further, with improved technology of AV, through which people 

could perform task much more easily like working and sleeping, the VOTT would be smaller and 

eventually be similar with the value of time working at office or sleeping at home. The nesting 

coefficient in the future could vary based on the nest structure, for example: SAV could be nested 

in a public transportation mode instead of the auto mode, and if the HVs are completely replaced 

by AV, there is no need for a nesting coefficient. 
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Chapter 4. Conclusion and Recommendations 

This study uses a four-step model structure with nested logit models to reflect future widespread 

availability of AVs, SAVs, and Atrucks. It starts with Texas’ SAM data and relies on TransCAD 

7.0 software to equilibrate (with travel time and cost feedbacks) the passenger and freight flow 

volumes across shortest paths via preferred modes, to preferred destinations. Changes in mode 

choices, trip distances, and congestion levels across the Texas Triangle region are examined, 

comparing before vs. after conditions, and assuming that trip generation rates also rise (by those 

presently unable to drive, for example).  

 

As expected, the average travel distance for passenger travel across the megaregion rises, from 14 

to 16 miles. Air travel between Triangle airports is expected to fall dramatically, by over 80%, 

which could account for roughly 4.3% of all air trips in Texas. Without road pricing or other forms 

of demand management, VMT is predicted to rise 39.1%, along with many links’ V/C ratios, 

especially in the megaregion’s top sub-regions (Houston, Dallas-Fort Worth, San Antonio and 

Austin). The number of links having demand exceed capacity is predicted to more than double (to 

nearly 10% of links). In terms of freight transport, movements in 7 of the 15 commodity classes 

are predicted to rise over 5%, with coal the most (50%), followed by chemicals (11.1%), durable 

manufacturing (9.6%), primary metal (9.0%), agriculture (7.2%), nonmetallic mineral (5.6%) and 

paper (5.2%), and such movements increase mostly between Houston and other key population 

hubs, like Dallas-Fort Worth, San Antonio and Austin. Added travel can easily mean greater 

energy use and air pollution, human health issues, climate change issues, reductions in active 

transport, and higher rates of obesity, diabetes, and other issues. 

 

Predictions of much-lowered local air travel and rising demand for highway infrastructure should 

help state and city departments of transport, planning organizations, manufacturers, transit 

providers, and airport authorities think about the kinds of policies and practices they should be 

putting into law and their budgets now. These may be a doubling or tripling of fuel taxes (which 

have not risen in Texas in 25 years), credit-based congestion pricing (so that everyone “owns” a 

piece of the limited road network), limits on size and fuel use of privately owned AV (to avoid 

vehicles getting bigger [to include beds, for example] and less efficient), and very clear limits on 
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empty-AV use (so that SAV fleet managers cannot add more than 15% VMT from empty travel 

and private AV owners cannot send their vehicles out empty on public roadways [only in private 

parking lots, for example]).  

 

In terms of modeling improvements, the dynamics of congestion and use of SAVs between drop-

offs and pickups are not reflected here. Microsimulation models like MATSim and POLARIS can 

track vehicles and travelers, while simulating traffic dynamics over 24 hours, but are challenging 

to learn and apply at such scale. Trips across the Mexico border are also neglected here, as well as 

the details of dynamic ride-sharing (between strangers using SAVs, saving on trip costs). Of 

course, SAVs can also serve as first-mile and last-mile modes supporting longer-distance trains, 

planes, and (self-driving) buses. And only time will tell how quickly (and affordably) 

manufacturers and fleet operators bring such technologies to market, how quickly businesses and 

individuals can afford and adopt the new modes, and how thoughtfully regions, states and nations 

will govern themselves, to pursue healthier and more sustainable futures. 
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