EXPLORING THE RELATIONSHIP BETWEEN THE LIGHT RAIL TRANSPORTATION AND BUS SERVICES

Is this relationship competition substitution or congestion substitution in Seattle, WA?

Yefu Chen, chenyf56@utexas.edu
Ph.D. student, the University of Texas at Austin
CONTENTS

Light Rail Transit and Bus Services

Background
Previous studies
Research purposes

Study Design
Study area conditions
Data
Method
Analytic plan

Results
LRT versus non-LRT
Quantile regression

Discussion
LRT effects
Controlling variables

Conclusion
Light rail transit and bus - Background

- Public agencies are working to promote public transit, as the solution to existing transportation issues (Courtenay, 2007; Stewart et al. 2017).

![Graph showing change in transit ridership in major US regions 2002-2018](image-url)

- Seattle
Light rail transit and bus – Previous studies

LRT and bus could promote system-wide public transit ridership (Mackett, 1998; Puget Sound Regional Council, 2016).

A significant number of bus riders could change when LRT launch.

- LRT could **substitute** bus systems (Ben-Akiva & Morikawa, 2002; Lavery & Kanaroglou, 2013; Nils et al., 2018; Rahman, Yasmin, & Eluru, 2019).
- The influences on different bus services should be different (Cain et al., 2009).

Few studies explored which type of substitution occur.
Light rail transit and bus – Previous studies

There are two types of substitution (Investopedia, 2019).

Competition substitution
• If the substitution occurs in areas with small ridership, LRT should be a competitor against the bus system.

Congestion substitution
• If the substitution appears in areas with an existing large bus ridership, LRT could be a possible way to ease high public transit demand.
Light rail transit and bus – Research purposes

This study aims to explore the relationship between LRT and bus service in Seattle, WA.

Specifically, we intended to answer two research questions:
- Is the relationship between LRT and bus a substitution in our study area?
- What kind of substitution could this relationship be: competition substitution or congestion substitution?

Given the considerable expense of transport infrastructure, the clear investigation could contribute to an appropriate combination considering public transit benefits and interactions, and wisely allocate future budgets.
• Public transit ridership is increasing from 2010 in Puget Sound Region where Seattle locates.
• Public transit system includes LRT and bus Seattle, LRT system and Bus service.

Study Design – Data

Our study includes 2988 bus stops in Seattle.

- Geocoded bus stops and LRT stations
- Created **1-km Euclidean buffers** surrounding bus stops as bus buffers and **2-km Euclidean buffers** surrounding LRT stations as LRT catchments
- Used bus buffers to capture nearby conditions through bus stop buffers and define LRT effects through LRT catchments
- Introduced BRT dummy

Data

Outcome variables

- **Ridership on**
 - Number of average weekday riders taken on (count)
 - Description (Unit): Number of average weekday riders taken on (count)
 - Source: KCM (2017)
 - Mean (St. Dev.): 111.617 (307.948)
 - Min: 0
 - Max: 4319

- **Ridership off**
 - Number of average weekday riders taken off (count)
 - Description (Unit): Number of average weekday riders taken off (count)
 - Source: KCM (2017)
 - Mean (St. Dev.): 111.782 (316.622)
 - Min: 0
 - Max: 5326

Explanatory variable

- **LRT dummy**
 - 0 means not covered by LRT buffers; 1 means covered by LRT buffers (dummy)
 - Source: KCM (2017)
 - Description (Unit): LRT dummy
 - Mean (St. Dev.): 0.2026 (67.804%)
 - Min: 0
 - Max: 1

Controlling variables – transportation

- **Bus rapid transit**
 - Number of regular bus; 1 means Bus rapid transit bus (dummy)
 - Source: KCM (2017)
 - Description (Unit): Bus rapid transit
 - Mean (St. Dev.): 0.2863 (95.816%)
 - Min: 0
 - Max: 1

- **Bus stop**
 - Number of bus stops within bus buffers (count)
 - Source: WSDOT (2017)
 - Description (Unit): Bus stop
 - Mean (St. Dev.): 51.085 (28.437)
 - Min: 6
 - Max: 177

Controlling variables – land-use

- **Residential**
 - Area of residence land-use within bus buffers (km²)
 - Source: KCA (2014)
 - Description (Unit): Residential
 - Mean (St. Dev.): 1.23 (0.493)
 - Min: 0
 - Max: 2.21

- **Trade**
 - Area of trade land-use within bus buffers (km²)
 - Source: KCA (2014)
 - Description (Unit): Trade
 - Mean (St. Dev.): 0.141 (0.146)
 - Min: 0
 - Max: 1.108

- **Service**
 - Area of service land-use within bus buffers (km²)
 - Source: KCA (2014)
 - Description (Unit): Service
 - Mean (St. Dev.): 0.261 (0.229)
 - Min: 0
 - Max: 1.991

Controlling variables – socio-demographics

- **Population**
 - Number of people ranging from 18 to 64 within bus buffers (count)
 - Source: ACS (2017)
 - Description (Unit): Population
 - Mean (St. Dev.): 23789.48 (11999.1)
 - Min: 2081
 - Max: 70062

- **Median age**
 - Median age within bus buffers (year)
 - Source: ACS (2017)
 - Description (Unit): Median age
 - Mean (St. Dev.): 37.114 (3.833)
 - Min: 22.9
 - Max: 48.4

- **Gender**
 - Percent of male within bus buffers
 - Source: ACS (2017)
 - Description (Unit): Gender
 - Mean (St. Dev.): 0.503 (0.028)
 - Min: 0.461
 - Max: 0.656

- **Race**
 - Percent of white-only within bus buffers
 - Source: ACS (2017)
 - Description (Unit): Race
 - Mean (St. Dev.): 0.682 (0.163)
 - Min: 0.207
 - Max: 0.907

- **Education**
 - Percent of people with college-level or higher degrees within bus buffers
 - Source: ACS (2017)
 - Description (Unit): Education
 - Mean (St. Dev.): 0.35 (0.068)
 - Min: 0.153
 - Max: 0.454

- **Income**
 - Average annual income within bus buffers (USD)
 - Source: ACS (2017)
 - Description (Unit): Income
 - Mean (St. Dev.): 45124.7 (10515.05)
 - Min: 16208
 - Max: 69875

- **Vehicle ownership**
 - Percent of car ownership within bus buffers
 - Source: ACS (2017)
 - Description (Unit): Vehicle ownership
 - Mean (St. Dev.): 0.981 (0.044)
 - Min: 0.691
 - Max: 1
Study Design – Method

Quantile regression estimates the **conditional mean** of the response variable given specific values of the predictor variables (Flom, 2017).

\[y_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip} + \varepsilon_i, \quad i = 1, 2, 3, \ldots, n \]

where the response \(y_i \) for the \(i \)th observation is continuous, and the predictors, \(x_{i1}, \ldots, x_{ip} \), represent the main effects that consist of variables (Rodriguez & Yao, 2017).

Log(# of boarding/alighting) ~ LRT dummy + controlling variables

Source: https://libguides.lb.polyu.edu.hk/research_method
Study Design –
Analytic plan

Study purposes: explore the relationship between LRT and bus service in Seattle, WA.

Stage 1: LRT versus non-LRT
• Categorize bus stops within and out of LRT catchments and compare the differences (number of boarding and alighting, and BRT)

Stage 2: Quantile regression
• Investigated the relationship between LRT and bus service
Results – LRT versus non-LRT

• Both boarding and alighting covered by LRT catchments are larger than those outside (230.978 and 233.442 vs. 54.941 and 54.015).

• BRT rate of bus stops outside of LRT catchments is higher than those inside (4.837% vs. 2.806%).
Results – Quantile regression (boarding)

<table>
<thead>
<tr>
<th></th>
<th>0.2</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRT dummy</td>
<td>-0.176</td>
<td>-0.207</td>
<td>-0.192</td>
<td>-0.258*</td>
<td>-0.287**</td>
</tr>
<tr>
<td></td>
<td>(-0.559)</td>
<td>(-0.963)</td>
<td>(-1.050)</td>
<td>(-1.664)</td>
<td>(-2.085)</td>
</tr>
</tbody>
</table>

Controlling variables – transportation & land use & socio-demographics

- LRT effects on number of boarding are significantly negative in the moderate quantile (-23%, 0.6) and highest quantile (-25%0.8) of boarding.
Results –
Quantile regression (alighting)

<table>
<thead>
<tr>
<th></th>
<th>Dependent variable: Ridership off</th>
<th>Method: Quantile regression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>LRT dummy</td>
<td>-0.276</td>
<td>-0.215</td>
</tr>
<tr>
<td></td>
<td>(-1.091)</td>
<td>(-1.162)</td>
</tr>
</tbody>
</table>

Controlling variables – transportation & land use & socio-demographics

- LRT effects on number of alighting are significantly negative in the highest quantile (-17%, 0.8) of alighting.
Discussion – LRT effects

The relationship of LRT and bus services could be regarded as the congestion substitution.

• The substitution of boarding is significant in the moderate-high quantile and highest quantile; while, the substitution of alighting is significant in the highest quantile.
Discussion –
Controlling variables

Outcome: # of boarding
- BRT (+, 0.2~0.8)
- Residential (+, 0.2~0.6); trade (+, 0.2~0.6); service (+, 0.2~0.8)
- Population (+, 0.2~0.8); median age (-, 0.2~0.8); gender (+, 0.6); race (+, 0.4~0.8); education (-, 0.2~0.8)

Outcome: # of alighting
- BRT (+, 0.2~0.8); sidewalk (+, 0.4~0.6)
- Residential (+, 0.2~0.6); service (+, 0.2~0.5)
- Population (+, 0.2~0.8); median age (-, 0.2~0.4); gender (+, 0.6); race (+, 0.8); education (-, 0.2~0.5 and 0.8)
Conclusion

This study investigated the relationship between the light rail transit (LRT) and bus while controlling for existing transportation, land-use, as well as socio-demographic factors based on a dataset of 2988 bus stops of Seattle, WA in 2017.

Based on a specific quantile regression, this relationship could be regarded as the congestion substitution, as substitution appeared in areas with a large existing bus ridership, and LRT could be a way to ease high public transit demand.

Some limitations are also worth noting for future study.
• The socio-demographics of riders were not adequately captured due to the lack of data sources.
• Second, individual bus stops may not be the most appropriate unit of future analysis (Stewart, Moudon, & Saelens, 2017).
• Third, panel analysis should be essential for future study.
Thanks!

Yefu Chen, chenyf56@utexas.edu
Ph.D. student, The University of Texas at Austin

Source: https://www.delcotimes.com/opinion/editorial-local-traffic-bottlenecks-demand-attention/article_11423b0-08eb-11ea-9587-47030a02751d.html