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Abstract

How does financial market concentration affect capital allocation? We propose

a complete-markets model in which real investment and financial price impact are

jointly determined in general equilibrium. We identify a two-way feedback mecha-

nism whereby price impact induces misallocation and misallocation raises price im-

pact. The mechanism is stronger if productivity is low or productivity dispersion is

high. Given rising dispersion, the model can rationalize trends in corporate discount

rates, cash holdings, investment, asset prices, and capital reallocation over the last

two decades, even when market concentration is relatively stable. Overall, our find-

ings suggest that financial market concentration may hamper allocative efficiency.
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1 Introduction

A striking fact about the U.S. economy since the 2000s is that corporate investment has

been weak despite falling risk-free rates and low costs of capital.1 During this time, large

nonfinancial firms also increased their net lending and accumulation of financial assets,

such as corporate debt, in what has often been referred to as a “corporate savings glut”

(e.g., Gruber and Kamin (2015)). Why were firms unwilling to invest despite low costs

of capital? One popular explanation is a dearth in profitable investment opportunities.

However, it is unclear which structural changes would have created such scarcity, and

different explanations may have different policy and welfare implications.

In this paper, we propose one such alternative explanation: high financial market

concentration and cross-sectional dispersion in investment opportunities have made it

difficult for large firms to share risk and efficiently reallocate capital via financial mar-

kets. Our approach is motivated by the empirical fact that many financial markets, in-

cluding those for corporate credit, have grown increasingly concentrated since the 1980s,

with a large share of capital now managed by a relatively small number of large financial

institutions and nonfinancial firms.2

While previous literature has shown that such concentration can distort asset prices

and liquidity, our contribution is to study the feedback to real investment using a tractable

general equilibrium model of strategic trading with rich heterogeneity in investment op-

portunities, scale effects in preferences, and nonlinear price impact. Our key theoretical

result is a novel two-way feedback mechanism between financial price impact and capital

misallocation, whereby price impact induces capital misallocation by impairing risk shar-

ing and misallocation increases price impact by distorting the cross-sectional distribution

1Gutierrez and Philippon (2017), Fernald, Hall, Stock, and Watson (2017), and Alexander and Eberly
(2018) find a decline in investment relative to trend since the early 2000s, and in particular relative to mea-
sures of Tobin’s Q. Laubach and Williams (2016) and Del Negro, Giannone, Giannoni, and Tambalotti (2018)
document a secular decline in risk-free rates over the past few decades; Bianchi, Lettau, and Ludvigson
(2020) find a concurrent decline in risk premia.

2Corbae and Levine (2018) shows that the five largest U.S. banks held 47% of total U.S. bank assets in
2015; in the U.K., France, Germany, Italy, and Canada, the range is from 71% to 84%. The OCC estimates
that over 90% of the notional amount of interest-rate swaps is accounted for by four banks, while over
95% of the CDS market is accounted for by three banks. In the corporate bond market, Li and Yu (2022)
document that the median investment-grade bond is held by only 47 investors, while Celik, Demirtas, and
Isaksson (2020) show 25 large nonfinancial firms alone held $356 billion in corporate bonds in 2018. Ben-
David, Franzoni, Moussawi, and Sedunov (2021) show that the largest institutional investor oversaw 6.3%
of total U.S. equity assets in 2016, while the top 10 investors managed 26.5%.
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of cash flows. Based on this mechanism, we show that the distortions induced by market

power are particularly severe when investment opportunities are highly dispersed across

firms. Given the secular increase in productivity dispersion over the last 20 years docu-

mented by Cunningham, Foster, Grim, Haltiwanger, Pabilonia, Stewart, and Wolf (2022),

we find that our model can rationalize many salient trends regarding corporate discount

rates, the cost of capital, and investment behavior over this period. By exacerbating issues

of liquidity, financial market concentration can therefore reduce the efficiency of capital

allocation in a manner that aligns with recent empirical trends.

Our framework is a general equilibrium model with complete financial markets

and a finite number of large investors that represent large firms. Investors allocate funds

across risky individual-specific investment technologies, a safe storage opportunity with

low returns (cash), and financial securities. Because firms in practice are known to en-

gage in hedging, we assign to them risk-averse preferences that might reflect managerial

risk aversion (e.g., Papanikolaou and Panousi (2012)), a desire to smooth cash flows, or

large shareholder under-diversification (e.g., Greenwald and Stiglitz (1990)).3 Because

our model is quite general, one can also interpret very unproductive firms as financial

institutions who lend and borrow from other firms.

Financial positions are unrestricted: firms can buy or sell any number of securities

consistent with their budget constraints. The only friction in our model is imperfect com-

petition in financial markets. In particular, we embed the canonical trade-off studied by

the literature following Kyle (1989) that price impact deters trading and leads to unreal-

ized gains from trade. Empirically, Koijen and Yogo (2019) and Bretscher, Schmid, Sen,

and Sharma (2022) estimate that large investors have high and persistent price impact in

corporate equity and bond markets, respectively, suggesting that price impact is relevant

for capital reallocation.

From a theoretical perspective, the main novelty introduced by endogenous in-

vestment is that the level, riskiness, and cross-sectional distribution of cash flows are

determined in general equilibrium alongside price impact. To achieve this in a tractable

manner, we study a Cournot-Walras equilibrium with a competitive fringe composed

of households and other price-taking investors, rather than an equilibrium in demand

3Amel-Zadeh, Kasperk, and Schmalz (2022), for instance, document that up to one-fifth of the largest
U.S. firms has a nonfinancial blockholder or insider as its largest shareholder.

2



schedules among strategic investors only.4 This allows us to incorporate not only scale

effects and heterogeneity in investment opportunities, but also nonlinear price impact, all

of which critically influence the feedback between investment and price impact.

In the model, financial markets allow firms to manage risk and reallocate capital.

This dual role is consistent with practice. For example, Ferreira (2021) documents that

Braeburn Capital, a wholly-owned subsidiary of Apple Inc., manages $244 billion in fi-

nancial assets, representing 70% of Apple’s total book assets, $153 billion of which was

invested in corporate bonds. According to the Wall Street Journal, “Apple acts like a hedge

fund by supporting this portfolio with $115 billion in debt.” Apple is far from unique: cor-

porate savings have risen in recent years, and large nonfinancial corporations are now net

lenders rather than borrowers (e.g., Chen, Karabarbounis, and Neiman (2017)). Under-

standing how corporate trading affects capital allocation is therefore an urgent matter.

Our analysis offers three main results. The first is a characterization of an ad-

verse feedback loop between price impact and capital misallocation. Price impact gives

rise to capital misallocation through the established mechanism that it leads to unreal-

ized gains from trade in financial markets. Our contribution is to show that the man-

ner in which price impact affects investment differs across the productivity distribution.

High-productivity firms are net borrowers in financial markets. For these firms, price im-

pact hampers risk management and deters borrowing, and so they invest less than they

would in competitive markets. Low-productivity firms instead are net suppliers of cap-

ital. For these firms, price impact deters lending to other firms, and so they invest more

in their own investment opportunities than they would under perfect competition. As

such, price impact induces capital misallocation. Moreover, because it also impedes risk

sharing, investment in risky capital eventually falls, and firms increasingly self-insure

through inefficient cash holdings. Capital misallocation then, in turn, exacerbates price

impact in financial markets. This is because lower output growth among firms that stems

from inefficient investment forces them to buy more / sell less assets to the competitive

fringe. This lowers the fringe’s consumption and, if the fringe has convex marginal util-

ity (such as with constant relative risk aversion preferences), increases price impact. The

amplification from this feedback loop is ultimately determined by the degree of market

concentration and the cross-sectional distribution of agents’ productivity, which are the

4The online appendix provides a detailed comparison of the two equilibrium concepts.

3



key fundamentals in the economy. Our analysis shows that ignoring the feedback to in-

vestment understates the consequences of market concentration for allocative efficiency.

Our second main result examines the general equilibrium relation between the

distribution of cash flow risk in the economy and aggregate economic conditions. We

find financial market distortions are sensitive to changes in fundamental gains from trade

across market participants, such as shocks to the cross-sectional dispersion of investment

opportunities. This is true even when such shocks would be entirely neutral in com-

petitive markets. For example, a mean-preserving spread of diversifiable investment risk

leads to higher price impact, and thus a bigger decline in risky investment. An increase

in potential gains from trade therefore leads to fewer realized gains from trade. Because

dispersion in firm productivity has increased over time (e.g., Cunningham, Foster, Grim,

Haltiwanger, Pabilonia, Stewart, and Wolf (2022)), our analysis suggests a secular increase

in the distortions from market power despite the absence of any direct changes in market

concentration. Because dispersion is counter-cyclical, our model also suggests that liq-

uidity is pro-cyclical, while reallocation is counter-cyclical. The former is consistent with

evidence from NÆs, Skjeltorp, and Ødegaard (2011) for stock markets, and from Bao,

Pan, and Wang (2011) and Kargar, Lester, Lindsay, Liu, Weill, and Zúñiga (2021) for bond

markets; the latter is documented by Eisfeldt and Ramipini (2006).

Our third main result pertains to asset pricing implications. In particular, we pro-

vide conditions under which all asset prices rise, the risk-free rate falls, and the market

risk premium remains low as markets become concentrated. Although low investment

amidst low costs of capital is typically seen as a puzzle, in our model they are a joint

outcome of endogenous distortions to financial market trading. The relation between

investment and asset prices is nonlinear. When market concentration is low, shocks to

market concentration reallocate investment among firms and are primarily reflected in

rising asset prices. As market concentration increases, firms increasingly self-insure us-

ing cash holdings. From this point on, incremental price adjustments are largely driven

by changes in the quantity of risk. An interesting implication is that variation in market

power may be difficult to detect using reduced-form measures of illiquidity, such as the

price elasticity, because these also reflect changes in the quantity and distribution of risk.

To illustrate the empirical relevance of these channels, we use our model to inter-

pret trends in corporate investment and financial returns from 2002 to 2016. Gormsen
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and Huber (2022) document a striking fact from this period, which is that corporations

report large wedges between their discount rates (or hurdle rates) and their estimates of

the relevant weighted average cost of capital in financial markets. In particular, they show

that the risk-free rate and the cost of capital have fallen sharply over this period, while

discount rates have remained high and stable. Since private and market-based valuations

do not align in the presence of price impact, our model predicts precisely such a wedge

between hurdle rates and cost of capital. Calibrating our model to 2002, we show that an

exogenous increase in productivity dispersion taken directly from Cunningham, Foster,

Grim, Haltiwanger, Pabilonia, Stewart, and Wolf (2022) can account for most of the time

variation in all three rates of return from 2002 to 2016 alongside anemic real investment.

Adding a small increase in market concentration, consistent with data from Kwon, Ma,

and Zimmermann (2023), leads to an even better fit with the cost of capital, and predicts

a decline in investment and an increase in corporate cash holdings over the same period,

all of which are consistent with the data. While we leave a full quantitative evaluation

of our theory to future work, these findings suggest that financial market concentration

may have contributed to the joint dynamics of real and financial variables over the last

two decades. They also highlight one of our key theoretical results, which is that the dis-

tortions from financial market power are tightly linked to the cross-sectional distribution

of investment opportunities.

The paper is organized as follows. Section 2 describes our model. Section 3 con-

tains the theoretical analysis. In Section 4, we interpret recent trends in corporate invest-

ment relative to market rates of return through the lens of our model. Section 5 contains

additional empirical predictions for understanding corporate hedging behavior and asset

returns in a production-based framework. Section 6 concludes. Proofs are in Appendix

A. Appendix B contains a description of our data.

1.1 Related literature.

Our paper contributes to a growing literature at the intersection of macroeconomics, fi-

nancial markets, and industrial organization. Gabaix and Koijen (2020) posit institutional

mandates and portfolio constraints limit large competitive investors’ ability to absorb

demand shocks in financial markets. Koijen and Yogo (2019), Haddad, Huebner, and

Loualiche (2021), and Bretscher, Schmid, Sen, and Sharma (2022) use a demand-system
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approach to analyze large investors behavior in financial markets, emphasizing the role

of quantities for estimating the degree of price impact. However, they generally maintain

the assumption of price-taking behavior and ignore feedback to real investment.

Other papers in this area focus on imperfect competition among financial interme-

diaries (e.g., Egan, Hortacsu, and Matvos (2017), Drechsler, Savov, and Schnabl (2017),

Corbae and D’Erasmo (2021), Hachem and Song (2021)), some of which consider impli-

cations for investment. In contrast to these papers, we focus on imperfect competition

among large firms that internalize their trades move asset prices. This allows us to link

market concentration directly to trends in firm investment behavior and capital allocation.

In this context, our focus on imperfect competition in financial markets distinguishes our

work from studies of market concentration in product markets (e.g., Gutiérrez and Philip-

pon (2017), Jones and Philippon (2016), Azar and Vives (2021), Corhay, Kung, and Schmid

(2020), Chen, Dou, Guo, and Ji (2020)), which also lowers investment and risk-free rates

but often raises productivity and risk premia through procyclical markups.

Our work is related to the literature on capital misallocation.5 Eisfeldt and Ramip-

ini (2006) provide evidence misallocation is counter-cyclical while reallocation is procycli-

cal. Carlstrom and Fuerst (1997) and Ai, Li, and Yang (2020), for instance, relate misalloca-

tion to agency frictions, while Kurlat (2013) and Bigio (2015) link capital misallocation to

asymmetric information about the endogenous quality of capital in secondary markets.

We provide a novel channel through which strategic considerations induce large firms

and financial institutions to voluntarily misallocate capital in illiquid financial markets,

in which the endogenous degree of illiquidity is increasing in the extent of misallocation.

Our focus on risk management and capital allocation is related literature on cor-

porate participation in financial markets. Ferreira (2021) shows nonfinancial firms have

substantial holdings of corporate bonds and how these cross-holdings can account for

the equity premium in a quantitative model. Ma (2019) provides evidence that firms act

as strategic cross-market arbitrageurs in their own debt and equity securities. Closest

to us are papers exploring how imperfect competition in product markets interacts with

hedging in competitive forward markets (e.g., Allaz (1992), Allaz and Vila (1993), Cox

and Karam (2022)). Imperfect hedging in those settings arises from the rich interaction

between current hedging and future competition in product markets. We shut down prod-

5See Eisfeldt and Shi (2018) for a review of this literature.
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uct market competition to study the economic consequences of the strategic rationing of

securities in illiquid financial markets, with associated feedback effects to real investment.

Our paper contributes to the literature linking investment and asset markets in the

tradition of Cochrane (1991) and Cochrane (1996). Kogan and Papanikolaou (2012) pro-

vide a review of this literature. One key insight from this approach is that a return on firm

assets have a tight connection with the return on its equity. We show this connection is

modified in particular ways when financial markets are illiquid, and find this has strong

implications for investment. More recently, Schmid, David, and Zeke (2020) show hetero-

geneity in firm productivity leads to heterogeneity in firm-specific risk premia that can

explain a sizable part of the observed dispersion in marginal products of capital. Our ap-

proach gives rise to heterogeneity in marginal products of capital as well as ex ante capital

misallocation and a disconnect between stock returns and investment hurdle rates.

Our equilibrium concept is Cournot-Walras equilibrium in the tradition of Gab-

szewicz and Vial (1972). In this approach, strategic traders choose price-contingent quan-

tities taking into account the quantities demanded by other strategic agents and the resid-

ual demand curve of the competitive fringe. A closely-related approach based on Kyle

(1989) instead studies equilibrium in demand schedules. Rostek and Yoon (2020) provide

a review of this literature, and papers such as Malamud and Rostek (2017) discuss how

price impact hampers risk sharing given an exogenous endowment of securities or other

endowments. Although this concept allows for a richer analysis of strategic interactions

among large traders than Cournot-Walras, mainly by permitting agents to submit de-

mand schedules, it typically requires strong assumptions on preferences and payoffs (such

as the canonical CARA-normal setting) to preserve tractability. One contribution of our

paper relative to this literature is that we introduce a real investment decision, which

means that the distribution of cash flows (and therefore trading needs) are endogenously

determined in general equilibrium alongside price impact. We provide a more detailed

comparison of the two equilibrium concepts in the online appendix.

2 Model

In this section, we describe our model. There is a single good (the numeraire) and two

dates, t = 1, 2. At date 1, agents make production and savings decisions under uncer-
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tainty because the state of the world at date 2, z, is unknown. As a consequence, asset

prices and production plans are jointly determined in equilibrium at t = 1. The set of pos-

sible states at date 2 is Z ≡ {1, 2, . . . Z}, and the probability of state z ∈ Z is π(z) ∈ (0, 1)

from the perspective of all agents. At t = 2, payoffs are realized and all agents consume.

There are two classes of agents: a discrete number of strategic agents who are large

relative to the economy and internalize their price impact in financial markets, and a

unit continuum of atomistic agents called the competitive fringe who take prices as given.

Strategic agents represent large firms or large financial institutions who lend to firms.

There are N types of strategic agents, indexed by i ∈ {1, 2 . . . , N}, where a type indexes

the production technology available to the agent. There are 1/µ agents of every type, each

of which has mass µ ∈ (0, 1]. The total number of strategic agents is thus N/µ and the

total mass is N. We use µ to vary the degree of market concentration without affecting the

aggregate production possibility frontier. As µ→ 0, we approach the perfect competition

benchmark where there is an infinite number of infinitesimal agents. In what follows, we

focus on the case in which all agents within a type follow symmetric strategies.

Strategic agent j of type i receives an initial endowment µe at date 1 and has access

to a type-specific production technology that transforms µk j,i units of the numeraire at

date 1 into µyi(z)k j,i units of the numeraire in state z at date 2. Since the total endowment

owned by agents of type i is e, parameter µ also determines the fraction of total initial

wealth an agent of type i has relative to all agents of type i. That is, µ measures relative

size. All endowments and technological payoffs are bounded, and production may be

subject to agent-specific and aggregate risk. We place no other restrictions on {yi(z)}N
i=1

other than that total risky investment ∑i,j ki,j is lower under financial autarky (i.e., when

no financial trading is permitted) than under perfect competition.

Assumption 1 (Low Investment in Autarky) Parameters are such that aggregate risky in-

vestment ∑i,j ki,j is higher under perfect competition than when no financial trading is permitted.

Strategic agents also have access to a risk-free storage technology that transforms

µsi ≥ 0 units of the numeraire into Rµsi units at date 2. Storage represents a safe alter-

native, such as cash, that is less productive on average, i.e., E[yi(z)] > R for all i. This

flexible setting allows us to capture heterogeneity in the types of market participants. For

example, an institutional investor may have a real investment opportunity that is nearly
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equivalent to cash (E[yi(z)] ≈ R), whereas a technology firm may be highly productive

(E[yi(z)] >> 0).

Strategic agents have preferences over consumption at both dates that are rep-

resented by the utility index u(c). Unless otherwise stated, u(c) is homothetic, strictly

increasing, strictly concave, and twice continuously differentiable. For simplicity, we do

not impose non-negativity of consumption, but our results extend to this case. Assuming

homothetic preferences allows us to highlight how firm size affects investment purely

through equilibrium interactions rather than by directly affecting preferences. Risk aver-

sion captures the notion that even large firms can exhibit risk aversion under a variety of

frictions (e.g., Greenwald and Stiglitz (1990), Papanikolaou and Panousi (2012)).6 Section

2.2 provides a further discussion of these assumptions.

In addition to the set of strategic agents, there is a non-strategic competitive fringe

with mass m f composed of price-taking agents that represent households or other com-

petitive traders. In contrast to strategic agents, the fringe has linear preferences over

consumption at date 1, and is risk-averse over consumption at date 2 with von Neumann-

Morgenstern utility index, u f (c). We assume u f (c) is strictly increasing, strictly concave,

and twice continuously differentiable. The competitive fringe receives endowment of the

numeraire e at date 1 and e2, f (z) at date 2 in state z. The fringe has no production technol-

ogy, reflecting its role as households and retail investors in financial markets. Quasi-linear

preferences permit a particularly tractable demand system, but the main economic forces

are unchanged if the fringe were also risk averse over consumption at date 1.

Both strategic agents and the competitive fringe participate in financial markets at

date 1. The set of available assets is the complete set of Arrow securities. That is, there

are |Z| securities, and security z pays one unit of the numeraire at date 2 in state z but

zero otherwise. This ensures that markets are complete from a spanning perspective. We

discuss the case of redundant securities in Subsection 3.1.

We denote by aj,i(z) the asset holdings of the state z security by agent j of type i,

where aj,i(z) < 0 denotes a sale. The aggregate position of type i strategic agents and all

6Asplund (2002) and De Giovanni and Iakimova (2022) also model strategic, risk-averse firms but focus
on product market competition rather than imperfect competition in financial markets. Papanikolaou and
Panousi (2012) not only provide a theory of firm risk aversion based on manager preferences, but also
provide evidence of this channel in the set of public firms in Compustat.
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strategic agents are, respectively,

ai(z) ≡
1/µ

∑
j=1

µaj,i(z) and A(z) ≡
N

∑
i=1

ai(z).

The competitive fringe’s position in security z is a f (z). Market clearing conditions are

A(z) + m f a f (z) = 0 for all z. (1)

We define A to be the (N + 1)× Z matrix of asset holdings for all agents and all assets,

with entries ∑
1/µ
j µaj,i (z) that sum asset demands across the Ji agents within each type.

The row cardinality of A is N + 1 because there are N types strategic agents and a com-

petitive fringe. The market-clearing price of asset z given A is then denoted by Q(A, z).

2.1 Decision Problems and Equilibrium Concept

Our equilibrium concept is Cournot-Walras in the tradition of Gabszewicz and Vial (1972).

In this approach, strategic traders place price-contingent orders taking into account the

quantities demanded by other strategic agents and the residual demand curve of the com-

petitive fringe. As discussed at the outset, this concept simplifies strategic interactions

among traders relative to the equilibrium concept in the tradition of Kyle (1989), but it

allows us to incorporate rich heterogeneity in agent productivity, asymmetric equilibria,

and nonlinear residual demand in a tractable manner, all of which are important for our

insight that there is a two-way feedback between price impact and real misallocation. In

line with Gabaix and Koijen (2020), the limited risk-bearing capacity of the fringe can also

capture that there are few traders who quickly reallocate capital in response to shocks.

A strategy σf for the competitive fringe consists of asset positions and consump-

tion, σf = {{a f (z)}z∈Z , c1, f , c2, f }. Since the competitive fringe takes prices as given, its

perceived pricing function in each state a constant, Q̃ f (A, z) = q̃(z) for some function
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q̃(z). The fringe’s decision problem is

U f = max
σf

c1 f + ∑
z

π(z)u f (c2, f (z)) (2)

s.t. c1 f = e−∑
z

q̃ f (z)a f (z),

c2, f (z) = e2, f (z) + a f (z).

A strategy σj,i for strategic agent j of type i consists of asset positions, investments,

and consumption, σj,i = {{aj,i(z)}z∈Z , sj,i, k j,i, c1,j,i, c2,j,i (z)}. When deciding on an opti-

mal strategy, strategic agents must form beliefs over the residual inverse demand func-

tion that maps aggregate asset portfolios into prices, given the asset positions of all other

agents as summarized by the vector of other agents’ strategies σ−j,i. We denote the per-

ceived pricing function used by agent j of type i to forecast her influence on the price of

security z by Q̃i,j(A, z). The associated decision problem is

Uj,i = max
σj,i

u
(
c1,j,i

)
+ ∑

z∈Z
π (z) u

(
c2,j,i (z)

)
(3)

s.t. µc1,j,i = µe− µk j,i − µsj,i − µ ∑
z∈Z

Q̃i,j(A, z)aj,i (z) ,

µc2,j,i (z) = µyi (z) k j,i + µaj,i (z) + µRsj,i.

We define preferences and controls in this manner recognizing that the consumption of

strategic agent j of type i is actually µc1,j,i and µc2,j,i (z) at dates 1 and 2, respectively, and

similarly with optimal asset holdings and investment. Given homothetic utility, however,

optimal policies are invariant to µ.

Definition 1 A Cournot-Walras equilibrium consists of a strategy σj,i for each strategic agent, a

strategy σf for the competitive fringe, and pricing functions Q(A, z) for all z ∈ Z such that:

1. Fringe optimization: σf solves decision problem (2) given {q̃ f (z)}z∈Z

2. Strategic agent optimization: For each agent j of type i, σj,i solves decision problem (3) given

(i) other agents’ strategies {σ−j,i, σf } and perceived pricing functions {Q̃j,i(A, z)}z∈Z .

3. Market-clearing: Each market clears with zero excess demand according to (1).

4. Consistency: all agents have rational expectations, which requires for strategic agents that

Q̃j,i(A, z) = Q(A, z) for all i, j and z.
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Similar to product market models of Cournot competition, strategic interaction in

financial markets is intermediated by a group of price-taking agents, i.e., the competitive

fringe. While a strategic agent takes the asset positions of other strategic agents as given,

he does internalize how his own demand impacts equilibrium asset prices by altering the

marginal utility of the fringe. Through this channel, how one strategic agent type trades

affects how another strategic agent trades by altering the price and price impact that agent

faces. When he increases his demand, asset prices and price impact increase. This reduces

the demand of other strategic agents and worsens strategic distortions. Although the

utility function and size (i.e., m f ) of the fringe does affect the shape of the equilibrium

price function, it does not change the manner in which strategic agents fundamentally

impact each other’s behavior.

2.2 Model Discussion

We now briefly discuss several of our modeling assumptions. First, we model the objec-

tive of strategic agents as expected utility maximization. This is equivalent to the more

standard approach of shareholder value maximization for the case of a single large private

shareholder, and can be easily extended to the case of heterogeneous large shareholders

with fixed holdings across agents (i.e., common ownership) provided we specify how

voting rights are allocated. A subtlety of our analysis is that although financial markets

are complete, such large shareholders would not necessarily agree on production plans

because the strategic agents in which they invest do not share risks efficiently in equilib-

rium. This renders the problem similar to those studied in the intractable “stock market”

equilibria of Radner (1974) and Dréze (1974).7 We opt for this parsimonious objective to

avoid these issues and focus on the unique implications of our channel of how strategic

trading in financial markets interacts with firm behavior.

Second, we consider a model with only two dates. One might worry with multiple

periods that imperfect risk sharing would be irrelevant for production decisions because

agents can self-insure with cash or credit lines in lieu of trading in financial markets (e.g.,

Bolton, Chen, and Wang (2011)). This is not the case for two reasons. First, the return to
7Issues of the objective of the firm with heterogeneous shareholders are not specific to our mechanism

of imperfect competition in financial markets, and are beyond the scope of our paper. How a firm chooses
its marginal valuation of production across states (i.e., its shareholder-aggregated state prices) is irrelevant
to our insight that the firm will choose its financial asset positions to put a wedge between these private
valuations and market prices.
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a risk-free portfolio in financial markets is bounded from below by that on storage R and

would be from above by the competitive lending rate on any private credit line. As such,

financial market participation is preferable to self-insurance unless market concentration

distortions are sufficiently severe, which our model captures. Second, firms under-insure

regardless of initial wealth. As shown in Neuhann and Sockin (2023) in the context of

forward-looking investors, such investors become even more exposed to their own in-

come shocks over time, amplifying their strategic under-diversification. The distortions

we characterize will therefore remain relevant in a dynamic setting.

3 Equilibrium

We now characterize the equilibrium. In models of strategic interaction, a key object is the

equilibrium functional that determines prices and price impact. The first step is to derive

this object in closed form. This then allows us to prove the existence of equilibrium and

discuss the distortions induced by imperfect competition in financial markets.

3.1 Equilibrium Demand System and Price Impact

We derive the equilibrium pricing functional using the decision problem of the compet-

itive fringe. Since the competitive fringe takes prices as given, the first-order conditions

for portfolio optimality require that asset prices are equal to the fringe’s marginal util-

ity. This delivers an analytic solution for the pricing functional and price impact. This

demand system has many useful properties. In particular, there is no arbitrage and the

equilibrium is invariant to the introduction of redundant securities.

Proposition 1 (Demand System and Law of One Price) The Law of One Price holds. All

available assets are traded, but investment, consumption, and prices are invariant to the introduc-

tion of redundant assets. Arrow security prices are given by:

Q(A, z) = q (z) ≡ π(z)u′f
(
c2, f (z)

)
where c2, f (z) = e2, f (z)−

1
m f

A(z). (4)

Price impact of strategic agent i is symmetric across agents and satisfies

∂Q̃j,i(A, z)
∂ai(z)

=
µ

m f
q′(z) where q′(z) ≡ ∂q(z)

∂A(z)
= −π(z)u′′f

(
c2, f (z)

)
> 0. (5)
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Because the competitive fringe takes price as given, its first-order condition yields a resid-

ual demand curve for every Arrow security.8 Strategic agents optimize against this resid-

ual demand curve, taking as given the quantities demanded by other strategic agents.

Large agents’ portfolios thus pin down the level of fringe consumption, while price im-

pact reflects the degree to which a marginal change in quantities affects fringe marginal

utility at that level of consumption. Since marginal utility is nonlinear under standard

preferences, strategic interactions among large traders influence both the level and slope

of prices, giving rise to a price impact function. This extends the central insight from

the literature following Kyle (1989) to an environment with endogenous cash flows, rich

heterogeneity, wealth effects, and non-linear price impact.

Invariance with respect to redundant securities arises because any combination of

assets that delivers the same consumption process to the competitive fringe induces the

same prices and price impact. The role of µ is to scale each strategic agents’ influence on

the consumption of the competitive fringe. When µ → 0, this influence is negligible and

price impact disappears. We are then back to the competitive benchmark. Finally, the

price impact function is unique because it is fully pinned down by fringe marginal util-

ity. This nullifies any strategic uncertainty that would give rise to equilibria multiplicity

through self-fulfilling coordination on different price impact functions.9

That price impact depends on the fringe’s consumption level also creates a link

between aggregate output and strategic considerations. In particular, variations in output

affects price impact as long as marginal utility varies with consumption. This lead to one

direction of the feedback loop between real investment and financial markets, which is

that declines in output due to misallocation or productivity shocks can boost price impact.

Corollary 1 (Real Allocations and Price Impact) Define aggregate output in state z to be Y(z) =

∑N
i=1 yi(z)ki + Rsi + m f e f (z), and let fringe preferences satisfy convex marginal utility (such as

CRRA). Holding investment choices fixed, a decline in aggregate output in state z because of lower

productivity {yi (z)}N
i=1 and/or less risky investment ki leads to higher price impact in state z.

In complete markets, a decline in output must lead to a marginal decrease in consumption

for all agents in the economy. Since price impact co-moves positively with fringe marginal

8Quasi-linearity ensures this residual demand curve is state-specific, but plays no substantive role.
9Kyle (1989) shows in the special case of the CARA-normal setting that the unique residual demand

curve is linear. More generally, there may be many residual demand curves that can support an equilibrium.
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utility when marginal utility is convex, shocks to productivity or to the efficient allocation

of capital can raise price impact and the incentives for strategic distortions.

3.2 Optimal Strategic Portfolios and Investment Wedges

We now study the optimal policies of strategic agents, taking as given the demand system

derived above. Without loss of generality, we assume all strategic agents of type i behave

symmetrically. We define the state price Λi(z) for state z and an agent of type i as the ratio

of expected marginal utility in state z and marginal utility at date 1:

Λi (z) ≡
π (z) u′ (c2,i (z))

u′ (c1,i)
. (6)

We can then characterize optimal portfolios and investment policies as follows.

Lemma 1 (Equilibrium Existence and Optimal Strategies) There exists an equilibrium in

which the optimal policies of agents of type i for ai (z), ki and si, are homogeneous of degree 1 in e

conditional on asset prices q (z). These policies satisfy the optimality conditions

ai(z) : Λi (z) = q (z) +
µ

m f
q′(z)ai (z) ,

ki : ∑
z∈Z

Λi (z) yi(z) ≤ 1 (and = if ki > 0),

si : ∑
z∈Z

Λi (z) ≤ 1, (and = if si > 0).

Conditional on state prices, the optimality conditions for risky investment and storage

are standard: agents equate the state price-weighted expected return to the marginal cost

of investing. Moreover, agents always invest some amount of capital in risky capital be-

cause it has higher returns than storage on average. In equilibrium, however, investment

policies are distorted because price impact distorts state prices.

This can be seen in the first-order conditions for optimal portfolios. Rather than

aligning state prices with market prices, optimal portfolios are shaped by endogenous

wedges that appear because agents voluntarily misalign their state prices to tilt asset prices

in their favor. Since buyers of a particular Arrow security reduce demand to lower prices,

and sellers of the same Arrow security reduce supply to raise prices, state-specific wedges
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wi(z) are negative for sellers and positive for buyers,

wi(z) ≡
µ

m f
q′(z)ai(z). (7)

One component of the investment wedge is the degree of price impact: if price

impact increases, so must the wedge. This creates the opposite direction of the feedback

loop from Corollary 1, which showed that changes in allocative efficiency can increase

price impact. (For simplicity, we engineer an increase in price impact simply by varying

the endowment of the competitive fringe. But we could also change fringe preferences,

or the degree of market concentration.)

Corollary 2 (Price Impact and Investment Wedges) Suppose the competitive fringe has con-

vex marginal utility and we reduce its endowment in state z, e f (z). Then, both prices q(z) and

price impact q′(z) (weakly) increase. As such, investment wedges must increase.

The other component of the wedge is the trading volume ai(z), which determines

the inframarginal benefit of a price change. This mechanism relates the market power

friction to fundamental trading needs, such as idiosyncratic risk exposures that can be

offset through financial markets. Under perfect competition, any increase in idiosyncratic

dispersion is absorbed through higher trading volumes without affecting allocations or

prices. With strategic agents, instead, an increase in gains from trade also increases incen-

tives for rent-seeking behavior, and agents respond by distorting trading volumes more

and realizing fewer gains from trade. We illustrate this insight in Corollary 3.

Corollary 3 (Cross-Sectional Dispersion and Distortions) Fixing an investment policy, state

price dispersion and financial market wedges are increasing in mean-preserving spreads of {yi(z)}.

An important implication of this result is that, even absent changes in market con-

centration, the equilibrium consequences of market concentration may grow more severe

if the need to share risk and reallocate capital increases. Empirical evidence indicates that

idiosyncratic dispersion has indeed been increasing over the past two decades. In Section

4, we exploit this fact to evaluate trends in corporate investment through the lens of our

model. Dispersion is also known to increase during recessions. According to our model,

both strategic distortions and the benefits from trading are consequently counter-cyclical.

Eisfeldt and Ramipini (2006) document that capital misallocation is pro-cyclical while the

benefits of reallocation are counter-cyclical.
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The previous results show that price impact distorts investment policies. However,

it is not yet clear whether this induces over- or under-investment at the firm-level and in

the aggregate. In this regard, a useful feature of our complete-markets setting is that the

decision to buy or sell a particular security can be directly linked to an agent’s production

technology. An agent sells if she has high income in a particular state of the world, and

buys if she has low income. Financial market distortions thus lead to a specific form

of state price distortions: relative to the competitive benchmark, the marginal value of

income goes down in states with high output and up in states with low output.

Lemma 2 (State price expansion) Fixing investment decisions, price impact leads to a nega-

tive wedge when the agent is a seller and a positive wedge when the agent is a buyer. Price impact

therefore leads to a decline in an agent’s state prices in all states where the agent has above average

output, and an increase in all states where the agent has below average output.

The overall effect of price impact on optimal investment decisions is then apparent

if we use the first-order conditions for optimal trading to substitute state prices. Optimal-

ity conditions for risky investment and storage, respectively, can be expressed as:

∑
z

q(z)yi(z) + ∑
z

wi(z)yi(z) = 1 and ∑
z

q(z)R + ∑
z

wi(z)R ≤ 1. (8)

Similar to standard q-theory, an agent optimally invests to the point where the marginal

private benefit is equal to the marginal cost (which is equal to one here.) However, price

impact forces a wedge in valuations that is sensitive to asset prices and price impact.

Agents for whom the net wedge ∑z wi(z)yi(z) is negative under-invest based on market

prices q(z) (i.e., ∑z q(z)yi(z) > 1) because they retain too much of their own production

risk. Similarly, agents for whom the net wedge is positive over-invest because they buy

too few securities from financial markets.

An important implication of this result is that, when markets are concentrated,

market prices are not appropriate measures of private investment incentives. In particu-

lar, our model predicts a disconnect between firm investment hurdle rates and the return

to capital measured at market prices. Such wedges are observed in practice (e.g., Ja-

gannathan, Matsa, Meier, and Tarhan (2015)). Most recently, Gormsen and Huber (2022)

provide evidence of a wedge in discount rates and financial market returns that acts as

a drag on investment, consistent with the “factorless” income documented in Karabar-
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bounis and Neiman (2018). This can explain not only low investment by a firm with a

high Tobin’s q, but also an increasing share of its profits accruing to shareholders. Most

strikingly, Gormsen and Huber (2022) show that wedges are systematically larger when

risk-free rates are lower. We show below this is precisely what our model predicts.10 In

Section 4, we use moments from Gormsen and Huber (2022) to discipline an empirical

exercise using our model.

3.3 Equilibrium Investment and Misallocation

We now map wedges in the optimality conditions for investment into implications for

the equilibrium allocation of capital in the cross-section of investment opportunities. In

particular, we show that highly productive agents tend to under-invest when financial

markets are concentrated, while unproductive agents tend to over-invest. These results

depend critically on the fact that our model permits rich cross-sectional heterogeneity in

investment opportunities, which is a novel contribution for models with price impact.

Formally, we identify high- and low-productivity agents by comparing their privately-

optimal investment scales under two benchmarks: the efficient benchmark with perfect

competition (zero price impact), and financial autarky (no financial markets). A high-

productivity agent is one who invests more in the competitive benchmark than in autarky;

a low-productivity agent is one who invests relatively more under autarky. Underlying

this idea is the notion that the production technologies of agents who invest less under

perfect competition than under autarky must be dominated by those of other agents.

Proposition 2 shows that market concentration distorts an agent’s investment poli-

cies in a manner that depends on individual productivity levels. A high-productivity

agent chooses a lower scale of production than under perfect competition. This is because

it would be efficient for her to borrow from and share risks with low-productivity agents,

but price impact hampers the realization of these gains from trade. A low-productivity

agent, in contrast, chooses a higher scale of production than under perfect competition

as price impact deters the reallocation of capital to the more productive agents. When

market concentration is high, agents also increasingly rely on inefficient storage to self

insure. Through these mechanisms, market concentration lowers aggregate investment

10Pushing the interpretation further, our mechanism offers an explanation for the declining labor share
of profits in recent decades, i.e., the labor share puzzle. It is particularly compelling because we abstract
from product market competition, which Rognlie (2018) shows cannot explain the labor share puzzle.
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and induces misallocation.

Proposition 2 (Equilibrium Investment) As a result of market concentration µ:

(i) the optimal scale of risky production for high-productivity firms is lower,

(ii) the optimal scale of risky production for low-productivity firms is higher,

(iii) for µ sufficiently large, aggregate risky investment and average productivity are lower,

(iv) corporate cash holdings (investment in safe storage) are (weakly) higher.

3.4 Two Canonical Examples

We now use two canonical examples to illustrate how strategic considerations alter in-

vestment decisions and feed back into price impact. In the first, we analyze ex-ante sym-

metric agents with purely diversifiable risk to show how strategic interactions in financial

markets reduce risky investment. In the second, we examine two agents when one has a

dominated technology that would not be utilized in the competitive equilibrium to show

how they can lead to cross-sectional misallocation. For simplicity, in these two examples

we focus on a limit in which the size of the competitive fringe, m f , is arbitrarily small (i.e.,

m f → 0), while each strategic agent’s relative size is fixed, (i.e., µ
m f

= κ).11

We first consider two equally productive types facing pure idiosyncratic risk. The

efficient outcome in this case is that agents invest in their risky technologies and then

fully share risks via financial markets. The key effect of financial market concentration is

to distort risk sharing, which then feeds back into inefficiently low investment.

11The limit in which the fringe becomes arbitrarily small (i.e., m f → 0) is a specific equilibrium in which
asset prices are equal to the average state prices across the strategic agents

q (z) =
1
N ∑

z∈Z
Λi (z) ∀ z. (9)

Price impact is given by κq′ (z), and still measures how a marginal change in the demand of a strategic
agent affects the asset price q (z) by altering the competitive fringe’s marginal utility. Although the fringe
absorbs a trivial amount of the strategic agents’ net asset demand when m f = 0, i.e., A (z) = 0, the ratio
A (z) /m f can converge to a nontrivial limit so the relation

q′ (z) = lim
m f→0

u′′f

(
e f (z) +

A (z)
m f

)
, (10)

holds. Consequently, the strategic interactions of Cournot competition are preserved when m f → 0, with
the fringe providing the equilibrium price (impact) function but not buying or selling any asset.
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Example 1 (Ex-ante Symmetry and Diversifiable Risk) There are two equally likely states

at date 2, z ∈ {1, 2} with π(z) = 1
2 , and two ex-ante symmetric types of strategic agents,

i ∈ {1, 2}. All agents have an initial endowment ȳ. Strategic agents face diversifiable production

risk: yi(i) = ȳ + ∆ and yi(−i) = ȳ− ∆. That is, in either state one type has a high return and

the other has a low return. The fringe, in contrast, receives ȳ in every state.

Since strategic agents are ex-ante symmetric, search for an equilibrium where each agent

sells aS units of the claim on the state in which she has high income, and buys aB units of the claim

on the other state. By market clearing in the limit where the fringe is small, we have aS = −a∗

and aB = a∗ for some a∗. All states must therefore have the same prices q∗ and price impact q′∗.

Moreover, net expenditures on financial claims at date 1 is 0. As such, a∗ must satisfy

Seller optimality:
1
2 u′((ȳ + ∆) k− a∗)

u′(ȳ− k)
= q− κq′a∗.

Buyer optimality:
1
2 u′((ȳ− ∆) k + a∗)

u′(ȳ− k)
= q + κq′a∗.

Under perfect competition, a∗ = ∆k. As such, 0 < a∗ < ∆k with market concentration. Aggre-

gating the wedges across states of the world gives the following net wedge:

−(ȳ + ∆)κq′a∗ + (ȳ− ∆)κq′a∗ = −2∆κq′a∗ < 0.

That is, the net wedge is negative for both types. As such, both agents will opt to invest less than

under perfect competition because they cannot efficiently share production risks.

Two further implications follow. First, as long as ∆ is large enough, a sufficiently large

increase in µ leads agents to start self-insuring using cash. Hence, market concentration can lead

to an increase in corporate savings. Second, because there is less output in every state when agents

shift away from the (efficient) risky technology, prices and price impact must rise. Hence there is a

two-way feedback between real allocations and price impact.

Next, we turn to a setting with scope for misallocation. The efficient allocation is

that only Type 1’s technology is used, but in equilibrium both types may invest.

Example 2 (Asymmetry with dominated technologies) There are two types of strategic agents,

i ∈ {1, 2}. Production technologies satisfy y1(z) = yh and y2(z) = yl ∈ (R f , yh) so that Type

2’s production technology is strictly dominated. All agents have an initial endowment ȳ. The

fringe receives ȳ in every state. Preferences are of the CRRA type.
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Since there is no risk, we can search for an equilibrium where agent 1 sells a1 units of

the claim to its production and agent 2 buys a2 units. By market clearing in the limit where the

fringe is small, we have a1 = −a2 = −a∗ for some a∗. This claim has price q∗ and price impact

q′∗. Moreover, strategic agents net expenditures on assets at date 1 are k1 − qa∗ and k2 + qa∗,

respectively. As such, a∗ must satisfy

Seller optimality:
u′(yhk1 − a∗)

u′(ȳ + qa∗ − k1)
= q− κq′a∗.

Buyer optimality:
u′(ylk2 + a∗)

u′(ȳ− qa∗ − k2)
= q + κq′a∗.

Under perfect competition, k2 = 0 and a∗ > 0. As such, a∗ > 0 with market concentration. The

wedges gives the following net wedges:

Type 1 : −yhκq′a∗ < 0.

Type 2 : ylκq′a∗ > 0.

Since the wedge is negative for Type 1 agents and positive for Type 2 agents, the agent with

the dominated technology over-invests relative to the competitive benchmark. Since this reduces

output, prices and price impact must rise. As such, misallocation feeds back into price impact.

3.5 Asset Pricing Implications

Financial market distortions are central to our theory of investment. Hence it is important

to assess the model’s asset pricing implications. Taking a cross-sectional average of the

first-order condition for ai(z) yields the following expression for the price of the Arrow

security for state z:

q(z) = E∗[Λi(z)]−mkt (z) , (11)

where E∗ [·] is the cross-sectional average and mkt (z) = q′(z)A(z)
N the average market con-

centration in state z. The state price- and market-implied risk-free rates, r∗f and rm
f , are12

r∗f =

[
∑

z∈Z
E∗ [Λi (z)]

]−1

and rm
f =

[
∑

z∈Z
q(z)

]−1

12The wedge between r∗f and rm
f is determined by market concentration: 1

r∗f
− 1

rm
f
= ∑z mkt (z).
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The market risk premium is the expected excess return on the tradable portfolio that owns

all risky production:

RPmkt =
E
[
∑N

i=1 yi (z) ki

]
∑z∈Z q (z)∑N

i=1 yi (z) ki
− rm (12)

Lemma 3 shows that the market risk premium can be decomposed into two pieces.

The numerator of the right-hand side of (13) is the classical risk premium based on the

covariance of the market portfolio with the state prices of the competitive fringe. The

denominator represents the total distortion to the marginal value of capital from strategic

trading with price impact. Firms that under-invest because of limited corporate hedging

have an inflated Tobin’s q, while those that over-invest have a depressed Tobin’s q. This

distorts the cost of the market portfolio and consequently the market risk premium.

Lemma 3 (Market Risk Premium) The market risk premium, RPmkt, satisfies:

RPmkt = −
Cov

(
q(z)

∑z∈Z q(z) , ∑N
i=1 yi (z) ki

)
∑N

i=1 ki − µ ∑z∈Z q′ (z)∑N
i=1 ai (z) yi (z) ki

. (13)

Having defined key asset pricing objects, we now turn to the effects of an increase

in market concentration. To isolate the pure effects of financial market concentration on

rates of return, in the following we assume the fringe is passive in the counterfactual com-

petitive equilibrium, by which we mean that the fringe holds a non-negative position in

every asset if µ = 0. (There always exists a fringe endowment process such that this con-

dition is satisfied.) This assumption is not necessary but convenient because it ensures

that price differences between the market and the competitive counterfactual equilibrium

are primarily governed by the interactions of strategic agents. It also rules out the case of

a quasi-monopsony or monopoly in which all strategic agents trade in the same direction.

Assumption 2 (Passive Fringe) {e2, f (z)}z∈Z is such that a f (z) ≥ 0 when µ = 0.

Our key asset pricing result for this section is a sharp characterization of the com-

parative statics of returns in the benchmark case where there is small number of large

investors who are relatively similar ex-ante (but not ex-post). Analogous results obtain in

the “strategic limit” where the mass of the fringe is small. This is the case we exploit in

our numerical analysis below.
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Definition 2 (Type-Symmetric) Two agent types are type-symmetric if they have ex-ante sym-

metric income risks so that they face identical decision problems.

Proposition 3 then establishes that market concentration raises all asset prices, depresses

the risk-free, and simultaneously lowers the market risk premium.

Proposition 3 (Asset Prices and Risk-free Rate) Suppose all strategic agents types are sym-

metric and that Assumption 2 holds. Then, as a result of market concentration µ:

(i) If agents do not invest in storage, asset prices are higher state-by-state than in the competitive

equilibrium. If agents employ storage, then some states may instead have lower prices.

(ii) The risk-free rates, (state-price implied) r∗f and (market-implied) rm
f , are lower than in the

competitive equilibrium and bounded below by the rate of return on storage R.

(iii) The market risk premium is lower than in the competitive equilibrium.

Market concentration lowers the risk-free rate primarily because imperfect risk

sharing raises the value of insurance. It lowers the market risk premium through both

a quantity and a price of risk channel. The quantity of risk channel is straightforward.

When investment misallocation is severe, such as when storage is employed, then there

is less total risky production in the economy, and the quantity of risk falls. This lowers

the market risk premium. The price channel is more subtle. For fixed investment policies,

market concentration distorts trading in financial markets, and if the distortions to state

prices favors sellers, this inflates security prices and reduces their correlation with total

production. Both effects reduce the price of risk.

The most interesting implication is that market concentration can lead to a joint de-

cline in investment, risk-free rates and the risk premium, a trend that has been observed

in the U.S. over the past few decades. This combination is a priori surprising because low

rates of return should lower costs of capital, leading to an increase in risky investment. In

our setting, however, all three effects are symptoms of the same underlying cause, which

is that strategic distortions in asset markets lead to misallocation and hamper risk shar-

ing. Our result that strategic incentives are greater in periods of greater cross-sectional

dispersion (such as recessions) further amplifies this mechanism.

Away from the symmetric benchmark, our mechanism is co-mingled with the well-

known result that asset prices more closely reflect the preferences and/or strategic deci-

sions of the largest agents. For instance, a single “monopolist” would push prices up for
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all securities he chooses to sell and push them down for all securities he buys. The nu-

merical exercise in the following section considers a setting with a number of asymmetric

traders, and finds that the risk-free rate continues to decline in market concentration.

4 Recent Trends Through the Lens of the Model

A prominent literature (e.g., Gutiérrez and Philippon (2017), Crouzet and Eberly (2021))

documents that starting in the early 2000s, there has been a sharp decline in corporate

investment and productivity when compared to previous trends and, more specifically,

relative to financial measures of the cost of capital and investment opportunities (i.e, To-

bin’s Q) over the same period. One particular manifestation of this is the observation in

Gormsen and Huber (2022) that firms’ self-reported discount rates (or hurdle rates) far

exceed their perceptions of their weighted average cost of capital, and that the wedge

between the two has increased. In particular, discount rates have been relatively stable

since 2002 despite sizable declines in the risk-free rate and the cost of capital. (See Figures

3 and 4 in Appendix B, which also includes a detailed description of the data).

Our theory suggests that market concentration can generate such a wedge between

discount rates (i.e., firm-level marginal valuations of investment) and market-based costs

of capital (i.e., the return on assets measured using market prices). However, it is not

obvious that we can also capture the key time series pattern, which is that the wedge

increased sharply from 2002 to 2016 while market concentration grew only modestly over

the same time period. Using a simple calibration exercise, we show our model can indeed

capture most of the observed stability in discount rates alongside the decline in risk-free

rates and costs of capital. The reason is that the distortions induced by market power

can be amplified by then secular increase in cross-sectional productivity dispersion even

when market concentration is held fixed. When we also allow for a small increase in

market concentration, we fully account for the lower weighted-average costs of capital in

2016, as well as a decline in real investment but an increase in cash holdings.

Setup. To illustrate the evolution of discount rates and investment wedges over time,

we consider a simple overlapping generations version of the model. Time is discrete and

indexed by t = {0, 1, 2, ...}. At each date, a new generation of young strategic agents and

a competitive fringe enters the economy. Each strategic agent has additive time-separable
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CRRA utility over consumption at dates t and t + 1, and receives an initial endowment

e. They can invest, consume, and trade Arrow securities in complete financial markets

alongside a competitive fringe, and we consider the limit as in Section 3.4 in which the

fringe is arbitrarily small (m f → 0) but the relative size µ
m f

converges to a constant, κ.

Young agents make their investment and consumption decisions at date t and produce at

date t + 1. Old agents consume their output and exit the economy. With this setup, the

decision problem of a strategic agent is identical to the one in equation (3).

There are four types of strategic agents (i.e., N = 4) indexed by their production

technologies. There are green and red agents and, within each color type, volatile and

stable firms. Consequently, we index an agent by i ∈ {gs, gv, rs, rv} for “green stable”,

“green volatile”, “red stable”, and “red volatile”, respectively. The stochastic process for

risky investment returns for type i, yi (z), is composed of an aggregate component, YzA

for aggregate state zA ∈ {L, H}, and an agent-specific component. The aggregate state

follows a persistent two-state Markov process with transition matrix

Π =

[
ρH 1− ρH

1− ρL ρL

]

where ρH > ρL. Agent-specific productivity is driven by a four-state process that is inde-

pendent of aggregate productivity and across time, and whose realizations are boom, fa-

vorable, unfavorable, and busts. Favorable and unfavorable states each occur with prob-

ability 0.45, while boom and bust states each occur with probability 0.05. If a green agent

receives a boom shock, there is a red agent who receives a bust shock, and vice versa.

The same is true for favorable versus unfavorable shocks. Hence, these shocks are, in

principle, perfectly diversifiable.

The difference between safe and volatile agents is safe agents have no exposure to

booms and busts, while volatile firms have higher average productivity. We parameterize

distributional production risk by δ(zA), volatile production risk by ∆(zA) > 0, and aver-

age productivity gap by b > 0. The resulting state-contingent distribution of productivity

for green agents is shown in Table 1. Since the productivity distribution of red agents is

the mirror image, red and green firms of each type are ex-ante identical.

Due to the productivity gap b, it is immediate that only volatile firms invest in

the competitive benchmark. This is because risk sharing among red and green agents is
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Green Agent Productivity
Boom Favorable Unfavorable Bust

Volatile firm Y(zA) + b + δ + ∆, Y(zA) + b + δ Y(zA) + b− δ Y(zA) + b− δ− ∆
Stable firm Y(zA)− b + δ, Y(zA)− b + δ Y(zA)− b− δ Y(zA)− b− δ

Table 1: State-contingent productivity for green agents. Red agent productivity is the mirror image.

sufficient to eliminate all distributional risk. As a result, any investment by stable firms

in our model is indicative of misallocation induced by market power.

Mapping model to data. We would like to speak to data on corporate discount rates

and costs of capital. In the model, strategic agent i’s discount rate, which is an internal

hurdle rate, corresponds to the return on the wealth portfolio evaluated at her state prices

(i.e., private valuations):

DiscountRatei =
∑z π (z) c2,i (z)

e− c1,i −∑z Λi (z) (yi (z) ki + Rsi)− ki − si
. (14)

The perceived WACC is the analogous expression, but evaluated at market prices:

WACCi =
∑z π (z) c2,i (z)

e− c1,i −∑z q (z) (yi (z) ki + Rsi)− ki − si
, (15)

We construct cross-sectional averages of these moments by weighting with model-implied

market values of each firm type.

Experiment. To explore trends in rates of return and investment, we conduct the fol-

lowing thought experiment. First, we fit our model to the risk-free rate and corporate

returns from Gormsen and Huber (2022) in 2002. One of the key parameters of the model

is ∆, which determines the dispersion in firm-level productivity. We fix this parameter to

match 1/2 times the interquartile range of 0.3258 estimated using Census data by Cun-

ningham, Foster, Grim, Haltiwanger, Pabilonia, Stewart, and Wolf (2022), or 0.1629. We

then feed in the 2016 level of ∆ implied by the same paper, and ask to what extent our

model matches the change in the risk-free rate and the rates of return reported by Gorm-

sen and Huber (2022). We focus on the years 2002 to 2016 because this is the period of

maximum overlap between the two data series. Appendix B provides details.

The model period is one year, and we interpret all returns to be nominal. We
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choose the return process to be broadly in line with U.S. aggregate data. As discussed

above, we set the distributional production risk ∆ to be 0.1629. We choose the additional

production volatility of volatile firms δ to be 0.10, which is approximately one quarter of

the cross-sectional sales-growth volatility among Compustat firms. We set the productiv-

ity gap b to 0.01 and the gross return on storage to 1 (i.e., cash). The initial wealth of each

strategic agent, e, is 3. To broadly measure the duration of booms and recession, we set

the persistence of the high aggregate state, ρH to 2/3, and of the low aggregate state, ρL,

to 0.10. We also set the aggregate productivity in the low state, YL, to 0.97.

Parameter Interpretation Value

R Gross return to storage 1.000
e Endowment of Strategic Agents 3.000
b Productivity Gap 0.010
δ Volatile Production Risk 0.100
∆ Distributional Production Risk 0.163

ρH Persistence of High State 0.666
ρL Persistence of Low State 0.100
YL Aggregate Productivity Low State 0.970
YH Aggregate Productivity High State 1.243

γ, γ f Agent Risk Aversion 5.014
κ Relative Size of Strategic Agents 0.393

Table 2: Parameter choices for the baseline calibration to 2002.

We calibrate the three remaining parameters using a simulated method of mo-

ments approach. Given our time frame, we focus on model-implied moments during

booms only. We choose the aggregate productivity in the high state, YH, to match the

2002 1-year risk-free rate of 1.67%. We set the risk aversions of strategic agents and the

competitive fringe to be the same (i.e., γ = γ f ), and target γ to match the 2002 perceived

weighted average cost of capital (WACC) from Gormsen and Huber (2022) of 9.65%. Fi-

nally, we set the relative size of strategic agents κ to match the 2002 corporate discount

rate from Gormsen and Huber (2022) of 15.20%. Table 2 reports the model parameters.

We are able to achieve an exact correspondence between model and data. However, this

fact should not be understood as model validation because we have more parameters

than moments.
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Moment 2002 Data Model
Discount Rate 15.2% 15.20%

WACC 9.65% 9.65%
Risk-free Rate 1.67% 1.67%

Aggregate Investment - 5.752
Aggregate Savings - 0

Table 3: Data and model moments for the baseline calibration.

Moment 2016 Data Experiment 1 Experiment 2
Discount Rate 16.47% 15.20% 15.06%

WACC 8.3% 8.56% 8.29%
Risk-free Rate 0.6% 0.63% 0.50%

Aggregate Investment - 5.753 5.697
Aggregate Savings - 0 0.030

Table 4: Data and model moments for the experiments. Experiment 1 considers an increase in ∆
from 0.3258 to 0.3578. Experiment 2 additionally raises market concentration κ from 0.39 to 0.41

Interpreting Changes from 2002 to 2016. We now evaluate the extent to which increase

in productivity dispersion and/or the degree of market concentration can account for

the joint decline in the risk-free rate and costs of capital observed during the 2000s, as

well as the decline in investment relative to firms’ cost of capital and the increase in cash

holdings. In our first experiment, we fix parameters at the 2002 values (given in Table

2), and exogenously feed in the change in productivity dispersion from Cunningham,

Foster, Grim, Haltiwanger, Pabilonia, Stewart, and Wolf (2022), who estimate that the

interquartile range in firm productivity rose from 0.3258 in 2002 to 0.3578 in 2016. This

corresponds to a 10% increase in productivity dispersion. Importantly, this change is fully

determined outside of our model.

Column 3 of Table 4 shows data and model-implied moments for 2016 given the

exogenous change in dispersion. In line with the data, the risk-free rate falls to 0.63%, the

WACC to declines to 8.57%, and the discount rate is unchanged at 15.20%. Investment

does increase modestly for both safe and volatile firms, although it is small relative to the

decline in the cost of capital. This is because the stark decline in the WACC weakly raises

the value of individual production for both types despite worse risk sharing. Although

these effects are not driven by rising market power, they are tightly related to the level

of market concentration: if markets were perfectly competitive, equilibrium outcomes

would be unaffected by dispersion.
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To isolate the direct effects of market concentration, we conduct a second experi-

ment, in which we modestly increase market concentration κ = µ
m f

from 0.39 to 0.41. Such

a mild increase is broadly in line with the data from Kwon, Ma, and Zimmermann (2023),

who show that market concentration was high but only modestly increasing starting from

2002. Column 4 of Table 4 shows our findings. A small increase in market concentration

allows us to match the level of the WACC, and mildly lowers the risk-free rate and the

discount rate. In contrast to the first experiment, risky investment declines and cash hold-

ings (i.e., storage) increase relative to 2002 This is because the substitution effect induced

by poor risk sharing now dominates the wealth effect.

Interestingly, our findings suggest it may be difficult to assess the full extent of

distortions from market concentration using standard measures of price impact, such as

price elasticities in financial markets. In particular, price elasticity in our model13 is 0.324

for our baseline parameters, 0.351 under Experiment 1, and 0.362 under Experiment 2.

Despite an increase in the underlying risk sharing friction, the elasticity is stable because

both the quantity and price of risk is changing alongside trading volumes. This is con-

sistent with Koijen and Yogo (2019), who estimate that price impact in equity markets is

high but relatively stable over the time period in question.

Figures 1 and 2 illustrate the underlying mechanisms using comparative statics

with respect to relative market concentration κ = µ
m f

and productivity dispersion ∆. Pa-

rameters are fixed at their 2016 values. The dashed vertical lines indicate the parameter

values for 2016. The left panel of Figure 1 shows that, as concentration increases, all three

rates of return fall. This in part because imperfect risk sharing raises the value of insur-

ance, and in part because investment by the less productive type (the stable type) reduces

the average return to investment (see also the right panel). The right panel shows that,

when market concentration is sufficiently high, firms begin self-insuring through storage.

This leads to a steeper decline in risky investment, flattens the decline in the risk-free rate,

and accelerates the decline in risky rates of returns. When all types employ storage, the

risk free rate must be equal the zero net return offered by storage.

Figure 2 considers changes in productivity dispersion ∆. All else equal, higher dis-

persion leads to higher trading needs. In concentrated markets, this raises the distortions

from market power. This effect is mild as long as dispersion is not too high, in which

13For agent i and asset z, the elasticity is q′(z)
q(z) µai(z). We report the cross-sectional average across i and z.
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Figure 1: Comparative statics with respect to market concentration µ, where κ = µ/m f . The dis-
persion parameter ∆ is set to its 2016 value. The dashed vertical line shows the calibrated value of
κ for 2016. Values on the x-axis are rounded.

Figure 2: Comparative statics with respect to dispersion ∆. 2016 value of ∆ shown in dashed
vertical line. Values on the x-axis are rounded.

case agents continue to invest primarily in the risky technology. Since the distribution

of income across states is thus approximately constant, the response is initially reflected

through a rise in asset prices. This lowers the WACC and the risk-free rate. Once agents

begin to employ storage, however, increasing productivity dispersion leads to a decline

in the investment of both stable and volatile types, which reduces both output and pro-

duction risk in the economy. This change in the quantity of risk and in future expected

income further depresses all three rates of return.

Taken together, the model gives rise to a sharp nonlinearity in the relative response
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of real quantities and returns. An increase in market concentration primarily exacerbates

capital misallocation among strategic agents while an increase in productivity disper-

sion is principally reflected in inflated asset prices until storage is employed. Both lead

to declines in not only the risk-free rate, but also in strategic agents’ perceived WACC

and discount rates. Such risk compression is qualitatively in line with recent data (e.g.,

Bianchi, Lettau, and Ludvigson (2020)).

5 Additional Empirical Implications

In addition to the evidence on firm wedges in discount rates and aggregate co-movement

between investment, risk-free rates, and the cost of capital, our model makes several addi-

tional predictions. First, a necessary condition for our mechanism to operate is that large

firms hedge but under-diversify their risks. That large firms hedge is well-documented in

the literature (e.g., Allayannis and Weston (2001), Purnanandam (2008) Batram, Brown,

Gregory, and Fehle (2009), Panaretou (2014)). Regarding under-diversification, Guay and

Kothari (2003) provide evidence that 234 large non-financial corporations only minimally

hedge against interest rate, exchange rate, and commodity price fluctuations with deriva-

tives. Amel-Zadeh, Kasperk, and Schmalz (2022) also document that up to one-fifth of

the largest U.S. firms have a single large nonfinancial blockholder or insider. A unique

prediction of our theory is a negative relation between hedging activities and Tobin’s Q.

Our theory also has connections to the production-based asset pricing literature,

which uses the absence of arbitrage to relate the returns on a firm’s equity and debt to the

return on its assets. In the canonical theory (e.g., Cochrane (1996)), the return on assets is

determined by how the firm values its marginal return on investment. In our theory, this

relationship is modified by a wedge between the market’s and an insider’s valuation of a

firm’s assets. Notice we can express the first-order conditions from equation (8) as:

∑
z

RI (z)− rm
f = −Cov

(
q (z)

∑z q (z)
, RI (z)

)
︸ ︷︷ ︸
Market Risk Premium

+ −∑
z

wi(z)
∑z q (z)

RI (z)︸ ︷︷ ︸
Strategic Trading Premium

. (16)

where RI (z) =
yi(z)ki+Rsi

ki+si
is the state-contingent return on investment. The second piece is

a non-marketed excess return the firm garners from strategic trading in financial markets.
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From equation (7), this piece is a function of price impact and a firm’s financial positions,

ai (z). Consequently, this piece is not a conventional risk premium, and is related to the

firm’s financial activities. Since it is difficult to measure a firm’s financial positions in

practice, characteristics that predict a firm’s positions, such as those examined in Koijen

and Yogo (2019), can proxy as factors to help explain cross-sectional equity excess returns.

6 Conclusion

We construct a model of concentrated financial markets in which large risk-averse firms

invest in risky projects and internalize their price impact when trading state-contingent

claims in financial markets. This results in cross-sectional misallocation of capital and

aggregate under-investment that exacerbates financial market illiquidity in an adverse

feedback loop. In line with recent trends, increased market concentration can lead to a

joint decline in the risk-free rate, risk premia, investment, and productivity. Our analysis

can also explain the documented wedge between firm investment hurdle rates and finan-

cial market returns, and how it varies with the risk-free rate, as well as the rise of cash

holdings among nonfinancial corporations. Our framework is tractable and useful for

studying the economic consequences of financial market concentration more generally.
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A Proofs of Propositions

A.1 Proof of Proposition 1:

Step 1: The Problem of the Fringe:

From the first-order condition for a f (z) from the competitive fringe’s problem (2),

we can recover the pricing equation of the Arrow-Debreu claim to security z

q̃ (z) = π(z)u′f
(
c2, f (z)

)
= Λ f (z) ,

where Λ f (z) is the competitive fringe’s state price. Since c2, f (z) = e2, f (z) + a f (z), impos-

ing the market-clearing condition, (1), reveals that

q̃ (z) = π(z)u′f

(
e2, f (z)−

1
m f

A(z)

)
.

In equilibrium, this must be the realized price of the claim, Q(A, z). Consequently, the

competitive fringe’s Euler Equation pins down asset prices in the economy. As this price

is a function of state variables from the perspective of the fringe, we designate the realized

price more concisely as:

q (z) = Q(A, z).

Step 2: Equilibrium Price Impact:

We next impose a consequence of our Cournot-Walras equilibrium concept. Since

agents of type i take the demands of other agents (even within their type) as given. As

a consequence,since u f (z) is twice continuously differentiable and each agent’s position

size scales by its mass µ, we can derive each agent’s perceived price impact:

∂Q̃j,i(A, z)
∂aj,i (z)

= − µ

m f
π(z)u′′f

(
c2, f (z)

)
= − µ

m f

∂q(z)
∂A (z)

,

which also implies that price impact is symmetric across all strategic agents. Defining

q′ (z) = ∂q(z)
∂A(z) yields the expression in the statement of the proposition.
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Step 3: The Law of One Price:

The Law of One Price holds because the competitive fringe prices all assets. To see

this, suppose there are two assets j and k with payoffs xj (z) and xk (z). Then:

qj = ∑
z∈Z

xj (z)Λ f (z) = ∑
z∈Z

xk (z)Λ f (z) = qj.

Since the fringe participates in all asset markets, no arbitrage is satisfied in our setting.

Step 4: Market Structure Invariance:

Suppose we have some arbitrary asset span indexed by the |Z| × |Z| matrix X

that is of full rank. In the special case of Arrow-Debreu assets, X = I|Z|, i.e., the identity

matrix of rank |Z|. Let xk index the kth row vector of X, and xk (z) be the dividend asset

k pays in state z.

If the competitive fringe trades assets with asset span X, from the first-order con-

ditions of the competitive fringe’s optimization problem that the vector of asset prices~qX

satisfies:

~qX = X ~Λ f = X~q, (17)

where ~Λ f is the vector of the fringe’s state prices and~q the vector of Arrow asset prices.

The quasi-linear competitive fringe now maximizes u f

(
y f (z)−∑|Z|k=1 x (z) xk (z) Axk (z)

)
+∑|Z|k=1 x (z) qxk Axk (z), where Axk (z) is the total demand for asset k of the strategic agents.

It follows that the price impact function can be summarized by the matrix Γ:

Γ = XUX′, (18)

where U is the diagonal matrix with diagonal entries − µ
m f

π(z)u′′f
(
c2, f (z)

)
.

We now establish that whether the complete markets span is I|Z| or X has no im-

pact on allocations. Our arguments are similar in spirit to those in (Carvajal (2018)),

but applied to our setting with production and do not impose quasi-linearity of strate-

gic agents. If there are no real effects, the consumption allocations of the fringe, c f 1 and

c2, f (z), and its state prices, Λ f (z), must be the same in both economies.
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Notice we can stack the first-order conditions for strategic agent i with asset span

I|Z| from equation (26) as:
~Λi = ~Λ f + U~ai, (19)

where ~Λi are the stacked state prices of agent i, ~ai is the vector of her asset positions, and

we have substituted for Arrow-Debreu prices~q with ~Λ f .

Let ~ai,x be the vector of asset positions of agent i when she instead trades with

the asset span X. Imposing invariance of the consumption allocations of strategic agent i

requires that:

~ai = X′ ~ai,x. (20)

Substituting with equation (20), we can manipulate equation (19) to arrive at:

X~Λi = X~Λ f + XUX′ ~ai,x = X~Λ f + Γ ~ai,x, (21)

where we have also substituted with equation (18). This is the identical stacked first-order

conditions if strategic agent instead traded asset span X.

Consequently, if the competitive fringe’s consumption allocations are unchanged

between asset spans, then so are the optimal portfolios of each strategic agent. If all

strategic agents have the same asset demands, then their aggregate demand for asset

exposures in each state z are the same. By market clearing, then, the state-specific asset

exposures of the competitive fringe are the same in both asset spans, and consequently so

are their consumption allocations, confirming our conjecture.

What remains to show is that capital and savings choices and budgets sets of strate-

gic agents are unchanged across asset spans. This, however, is trivial because no arbi-

trage makes invariant the cost of state-specific asset exposures. Consequently, financing

the same portfolio of state-specific asset exposures costs the same with asset span I|Z| as

with asset span X. Given the same capital and savings choices, ki and si for each i, the

marginal utility of each agent with market structure X is the same state-by-state as with

market structure I|Z|, confirming that ki and si are also optimal with market structure X.
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A.2 Proof of Corollary 1:

Suppose the competitive fringe has convex marginal utility in addition to strictly con-

cave utility. Then a decrease in its consumption at date 2 in state z not only increases its

marginal utility but the derivative of its marginal utility in state z. From Proposition 1,

this raises both the price of the Arrow security referencing state z and price impact in that

market.

If total resources Y (z) in state z fall because of lower productivity (yi (z)), strategic

agents’ demand for insurance against state z from the fringe must weakly increase. This

is because they have less aggregate resources with which to insure each other. If the

fringe supplies sells more securities against state z, then it consumes less in state z and

the claim in the corollary follows. If strategic agents invest less efficiently in risky capital

and consume more at date 1, then there are again less aggregate resources among strategic

agents at date 1, and the claim again follows.

A.3 Proof of Lemma 1:

Step 1: The Problem of Strategic Agents:

We first consider the optimization problem of strategic agent j of type i, (3). In

what follows, we attach the Lagrange multiplier ϕi to the budget constraint. The first-

order necessary conditions for c1,i, ki, si, and {ai (z)}z∈Z are then given by:

c1,j,i : u′
(
c1,j,i

)
− ϕj,i = 0, (22)

k j,i : ∑
z∈Z

π (z) u′
(
c2,j,i (z)

)
yi (z)− ϕj,i ≤ 0

(
= i f k j,i > 0

)
, (23)

sj,i : ∑
z∈Z

π (z) u′
(
c2,j,i (z)

)
R− ϕj,i ≤ 0

(
= i f sj,i > 0

)
, (24)

aj,i (z) : π (z) u′
(
c2,j,i (z)

)
− ϕj,i

(
Q̃j,i(A, z) +

∂Q̃j,i(A, z)
∂aj,i(z)

ai,j (z)

)
= 0. (25)

The above represents the first-order necessary conditions for agent j of type i’s problem.

From (22), it is immediate that ϕj,i = u′
(
c1,j,i

)
≥ 0 because marginal utility is nonnegative.

Now that we have derived the first-order necessary conditions for agent j of type

i’s optimal asset demands, we can impose the consistency required of a Cournot-Walras
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equilibrium with the competitive fringe. Since strategic agent i has rational expectations,

her perceived price impact must coincide with her actual price impact from (5) in Propo-

sition (1). Consequently, the first-order necessary condition (25) reduce to:

aj,i (z) : Λj,i (z) = q (z) +
µ

m f
q′(z)aj,i (z) ∀ z ∈ Z , (26)

where Λj,i (z) is the state price of strategic agent j of type i in state z, i.e., Λj,i (z) =

π (z)
u′(c2,j,i(z))

u′(c1,j,i)
.

We next establish that the correspondence for admissible controls from the con-

straint set of strategic agent j of type i is compact-valued.

Notice first that strategic agent j, i would never take an infinite position in any

asset. If a strategic agent takes an infinite negative position in asset z, aj,i (z)→ −∞, then

there are two cases to consider for the right-hand side of (26). First, if another strategic

agent takes an off-setting position in the asset, then q (z) and q′ (z) remain positive and

well-defined, and the right-hand side tends to −∞ because of the aj,i (z) term. Second, if

the fringe is forced to absorb the supply, then q (z) falls because the fringe’s state prices

are decreasing in the fringe’s consumption. Either the prices remain positive, in which

case, the previous conclusion that the left-hand side is −∞ holds, or prices tend to zero

and the left-hand side tends to zero. In both cases, the left-hand side remains positive and

may tend to ∞ because initial consumption c1,i becomes infinite, c1,i → ∞. This is clearly

a contradiction as the seller would not want to be a buyer in that security market.

A similar argument applies to infinite demand, in which case the right-hand side

of (26) tends to positive ∞ (the demand is either offset by a strategic agent or absorbed by

the fringe through infinitely negative date 2 consumption in state z). The left-hand side,

however, tends to zero with infinite consumption at date 2, which contradicts the equality

of the first-order condition. As such, no strategic agent will take an infinite position in any

security.

Notice next that the capital and storage choices by strategic agent j, i, k j,i and sj,i,

respectively, are also bounded. First, they are restricted to be nonnegative by feasibility.

Second, because no agent would ever take an arbitrarily negative asset position, the total

resources available for capital and storage are consequently also bounded.

Finally, consumption at both dates is bounded. At date 2, this is the case because

endowments and production payoffs are bounded, and storage and capital decisions are
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also bounded. At date 1, this is the case because all security positions are bounded.

Consequently, we can bound all controls of strategic agent j, i’s problem, {c1,j,i,

{aj,i (z)}z∈Z , k j,i, sj,i}, in a closed and bounded set. By the Heine-Borel Theorem, this set

is compact.

We now recall from Proposition (1) that the pricing functional Qj,i(A, z) is con-

tinuously differentiable in A because it is the marginal utility of the competitive fringe

in state z, π (z) u′f
(
c2, f (z)

)
. Since the state prices of the strategic agents and the price

impact functional are continuous because all utility functions are C2, strategic agent j, i’s

choice correspondence set is also continuous in the optimization problem’s primitives

(i.e., production processes and initial endowments). As such, the choice correspondence

of strategic agent j, i’s problem is continuous and compact-valued.

It then follows because the objective function of strategic agent j, i is continuous (in

fact, differentiable), and the choice correspondence is continuous and compact-valued,

that by Berges’ Theory of the Maximum a solution to the decision problem of strategic

agent j, i exists. As the choice of j, i was arbitrary, this holds for all agents j of type i and

all types i ∈ {1, ..., N}.

Step 2: Existence:

As a result of Berge’s Theory of the Maximum, the optimal policies of each strate-

gic agent are upper-hemicontinuous correspondences. We can then construct a mapping

from a conjectured set of investment and asset decisions for all strategic agents to an op-

timal set of investment and asset decisions using the market-clearing conditions (1) and

the optimal policy correspondences as an equilibrium correspondence whose image is a

compact space. Since the budget constraints of strategic agents are not necessarily convex

because of price impact, we allow for randomization of consumption bundles to ensure

that the compact space is also convex. We can then apply Kakutani’s Fixed Point Theorem

to conclude that an equilibrium exists.

Step 3: Homogeneity of Optimal Policies in Initial Wealth:

Suppose that the optimal policies of strategic agent j of type i satisfy c1,j,i = ĉj,i,1e,
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c2,j,i (z) = ĉ2,j,i (z) e, k j,i = k̂ j,ie, sj,i = ŝj,ie, and aj,i (z) = âj,i (z) e. We then rewrite the

FONCs (23), (24), and (26) for strategic agent j of type i, given the homotheticity of strate-

gic agent preferences as:

k̂ j,i : ∑
z∈Z

π (z)
u′
(
ĉ2,j,i (z)

)
u′
(
ĉ1,j,i

) yi (z)− 1 ≤ 0
(
= i f k j,i > 0

)
, (27)

ŝj,i : ∑
z∈Z

π (z)
u′
(
ĉ2,j,i (z)

)
u′
(
ĉ1,j,i

) R− 1 ≤ 0
(
= i f sj,i > 0

)
, (28)

âj,i (z) : π (z)
u′
(
ĉ2,j,i (z)

)
u′
(
ĉ1,j,i

) − q (z)− µ

m f
q̂′(z)âj,i (z) = 0, (29)

where we recognize that q̂′(z) = 1
e q′(z), where q̂′(z) =

∂Q̃j,i(A,z)
∂âj,i(z)

. It then follows that,

conditional on prices q (z), the optimal policies of strategic agent j of type i are indeed

homogeneous of degree 1 in e.

A.4 Proof of Corollary 2:

It is immediate if the competitive fringe has a lower endowment e f (z) in state z, then it

also consumes (weakly) less in state z. This raises the price of the Arrow security referenc-

ing state z q (z) and with convex marginal utility, price impact µ
m f

q′ (z). This is because

the Arrow price is equal to the fringe’s marginal utility in that state from Proposition 1.

Holding fixed the investment policies of strategic agents for the moment, the rise in

the asset price q (z) implies a larger gap between Λi (z) and q (z) for seller i, i.e., Λi (z)−
q (z) = µ

m f
q′ (z) ai (z) from the first-order condition for ai (z) in Proposition 1 becomes

more negative. This may, however, involve more selling of securities ai (z) despite the rise

in price impact µ
m f

q′ (z). This raises i’s investment wedge in state z wi (z) =
µ

m f
q′ (z) ai (z)

in state z. From Proposition 1, this increase distorts his investment choice further from its

competitive choice of investment.

As such, there is more capital misallocation by sellers in Arrow market z.

A.5 Proof of Corollary 3:

First fix the capital investment of all agents, ki, si ∀ i, and consider the competitive equi-

librium in which µ = 0. Suppose we alter agents’ production technologies to reduce
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productivity in states in which agents overlap in production and increase it in states in

which they do not, such that total output in each state remains unchanged. Let the new

productivities be indexed by {ỹi (z)}N
i=1 , and the new asset positions from retrading after

the redistribution be ai (z). For instance, with two agents and two states of production, we

can shift productivity so that agent i now produces all output in state 1, yi (1) +
ki′
ki

yi′ (1) ,

and agent j produces all output in states 2, yi′ (2) +
ki
ki′

yi (2) .

Because agents can insure each other against states in which they differ in produc-

tion compared to states in which they jointly produce, gains from trade increase in the

economy. With perfect competition, agents would trade until state prices are equalized,

and consequently the redistribution of productivity is irrelevant to the equilibrium con-

sumption allocation. The trading volume in their asset positions for claims in state z is

then ∑N
i=1 |ãi (z)− ai (z)| , where ãi (z) = c1,i (z) − ỹi (z) ki − Rsi and c2,i (z) is agent i′s

consumption in the competitive equilibrium.

Suppose instead agents are strategic. Because agents now internalize their price

impact, however, they ration their asset demands and supplies to tilt prices in their favor,
∂q(z)
∂A(z)∆ai (z) for a change in position of ∆ai (z) = ãi (z)− ai (z), from manipulating prices.

As such, total trading volume is bounded from above by ∑z∈Z ∑N
i=1 |∆ai (z)|, which are

positive related to total gains from trade. Because agents can always choose to trade fully

their differences in risk exposures, the distortions must be (weakly) larger with this in-

crease in pure agent-specific risk.

A.6 Proof of Lemma 2:

The claim is immediate from inspection of the first-order conditions for strategic agent

i’s optimal portfolios from Lemma 1. In markets where Λi (z) > q (z) (i.e., a buyer),

the wedge is positive µ
m f

q̂′(z)âj,i (z) > 0. Similarly, in markets where i is a seller, or

Λi (z) < q (z), then the wedge is negative µ
m f

q̂′(z)âj,i (z) < 0. With declining marginal

utility, an agent has low state prices relative to asset prices in states in which he has high

output, and high state prices relative to asset prices in states in which he has low output.

With perfect competition, all agents equate their state prices with asset prices state-

by-state. As such, the aforementioned wedges reflect the consequences of price impact.
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A.7 Proof of Proposition 2:

Let kCE
i be the scale of capital an agent would choose in the competitive equilibrium with-

out price impact. Further, let kAut
i be the scale of capital an agent would choose in autarky.

Two forces impact the choice of capital with price impact. The first is that all agents are

more exposed to their own production than in the competitive environment because they

trade less. This reduced risk sharing distorts the investment choices of all agents toward

their autarky values. The second is that sellers sell less assets, which lowers their state

prices relative to the competitive equilibrium, while buyers buy less assets, which raises

their state prices relative to it. This depresses the investment of agents that are systematic

sellers across security markets and raises the investment of systematic buyers.

Suppose now agent i chooses its capital such that kCE
i > kAut

i . As a result of im-

paired risk sharing, it chooses a lower scale of production in the market equilibrium,

converging to its autarky value when markets are sufficiently concentrated. If instead

kCE
i ≤ kAut

i , then we have the opposite result. The agent chooses a higher scale of produc-

tion in the market than in the competitive equilibrium, converging to its autarky value

when markets are sufficiently concentrated.

For the third part, because total risky investment eventually converges to its au-

tarky value, in which it is lower, for µ sufficiently large, total risky investment declines

relative to the competitive equilibrium because of market concentration. Since price im-

pact acts as an effective tax on the joint production among agents, capital misallocation

rises, which lowers average productivity.

For the final part, if inefficient storage is used in the competitive equilibrium in

which agents perfectly share risk, then it is also used in the market equilibrium and au-

tarky. The converse, however, is not true: if storage is employed under the market, it need

not be employed in the competitive equilibrium because the latter is efficient. As such,

storage is always (weakly) higher in the market than in the competitive equilibrium.
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A.8 Proof of Lemma 3:

We define the market risk premium RPmkt as E[∑i yi(z)ki]
∑ q(z)∑i yi(z)ki

− rm. Direct manipulation of

the FOCs for optimal investment and asset holdings in state z from Proposition 1 reveals

∑
z∈Z

q (z) yi (z) ki = ∑
z∈Z

q (z) E [yi (z) ki] + Cov (q (z) , yi (z) ki)

= ki −
µ

m f
∑

z∈Z
q′ (z) ai (z) yi (z) ki,

from which follows that

E [∑i yi (z) ki]

∑z∈Z q (z)∑i yi (z) ki
− 1

∑z∈Z q (z)
= −

Cov
(

q(z)
∑ q(z) , ∑i yi (z) ki

)
∑z∈Z q (z)∑i yi (z) ki

−
Cov

(
q(z)

∑z∈Z q(z) , ∑i yi (z) ki

)
∑i ki − µ

m f
∑z∈Z q′ (z)∑i ai (z) yi (z) ki

.

Given that 1
∑z∈Z q(z) is the inverse of the market-implied riskless rate rm, we arrive at the

statement in the proposition.

A.9 Proof of Proposition 3:

Step 1: Asset prices compared a pseudo-competitive equilibrium:

For now, let us fix all investment decisions from the market equilibrium to be the

investment decisions in the competitive equilibrium. Denote this pseudo-competitive

equilibrium by the superscript CE1. This is equivalent to assuming all agents are in an

endowment economy. We will return to the impact of market concentration on produc-

tion in the sequel. We first consider the case in which agents do not employ storage in the

market equilibrium.

We start with the aggregated FOCs (11):

q (z) +
1
N

µ

m f
q′ (z) A (z) = E∗ [Λi (z)] . (30)

Consider the net demand of strategic agents A (z). Suppose that net demand is weakly

greater than under the competitive equilibrium, ACE1 (z), i.,e., A (z) ≥ ACE1 (z) for all
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security markets. Then, because q (z) = π(z)u′f
(

e2, f (z)− 1
µ A(z)

)
from Proposition (1),

it follows that q (z) ≥ qCE1 (z), and we are done.

We therefore focus on the case in which A (z) < ACE1 (z) and attempt to establish

a contradiction. Notice, if A (z) < ACE1 (z), then from (30):

q (z)− qCE1 (z) = E∗ [Λi (z)]−ΛCE1 (z)− 1
N

µ

m f
q′ (z) A (z) , (31)

where E∗
[
ΛCE1

i (z)
]
= ΛCE1 (z) because state prices are all aligned in the competitive

equilibrium (Lemma 1).

We now make use of Assumption 1 that the competitive fringe’s trading positions

in the competitive equilibrium satisfy a f (z) ≥ 0, which implies by market-clearing (1)

that ACE (z) ≤ 0. This consequently also implies that A (z) < ACE (z) ≤ 0 given our

focus on the case in which A (z) < ACE (z). Imposing this observation in (31) implies:

q (z)− qCE1 (z) ≥ E∗ [Λi (z)]−ΛCE1 (z) . (32)

Suppose all types are symmetric (i.e., productivity risk is such that all types face

symmetric problems). Then all types make the same investment decisions, ki = k and si =

s, and total asset expenditures ∑z∈Z q (z) a (z). It is then apparent that initial consumption

is the same c1i = c1.

In this case, we can make use of the assumption that strategic agent marginal utility

u′ (·) is homothetic and strictly convex to apply Jensen’s Inequality:

E∗ [Λi (z)] = π (z)E∗
[

u′
(

c2i (z)
c1i

)]
≥ π (z) u′

(
E∗
[

c2i (z)
c1i

])
. (33)

Since c1i = c1 is the same across all agents, (33) reduces to:

E∗ [Λi (z)] ≥ π (z) u′
(

1
N ∑N

i=1 c2i (z)
c1i

)
= π (z) u′

(
∑N

i=1 yi (z) k + A (z)
N (e− s− k) + m f

(
e− c1, f

)) . (34)

because:

Nc1 = N (e− s− k) + m f
(
e− c1, f

)
,

by market clearing.
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Since A (z) < ACE1 (z), by assumption, we recognize that:

∑N
i=1 yi (z) k + A (z)

N (e− s− k) + m f
(
e− c1, f

) <
∑N

i=1 yi (z) k + ACE1 (z)

N (e− s− k) + m f

(
e− cCE1

1, f

) , (35)

because A (z) < ACE1 (z) also implies that resources are transferred from the second to

first period through asset purchases by the competitive fringe.

The following Lemma characterizes state prices in the competitive equilibrium.

Lemma 4 State prices in the competitive equilibrium, ΛCE (z) satisfy

ΛCE (z) = π (z) u′

 ∑N
i=1 yi (z) k + ACE (z)

N (e− s− k) + m f

(
e− cCE

1, f (z)
)
 .

Given that marginal utility is decreasing in consumption growth with homothetic

preferences, Lemma 1 and (35) implies that:

E∗ [Λi (z)] ≥ π (z) u′

 ∑N
i=1 yi (z) k + ACE1 (z)

N (e− s− k) + m f

(
e− cCE1

1, f

)
 = ΛCE1 (z) . (36)

Consequently, substituting (36) into (30) reveals:

q (z) ≥ qCE1 (z) , (37)

which implies A (z) ≥ ACE1 (z) from Proposition (1), which is a contradiction.

This establishes that asset prices are higher state-by-state compared to a pseudo-

competitive economy in which we fixed all investment decisions to be the same as in the

market equilibrium. This is true when agents do not employ storage.

Suppose now agents employ storage. Since they are symmetric across types, they

either all will use storage or they all will not. For an agent who uses storage, the sum of

his state prices is fixed at 1
R , or

E [Λi (z)] =
1
R
∀i ∈ 1, ..., N.

Because only the sum of his state prices are constrained, state prices still are higher by

Jensen’s Inequality. If all agents employ storage, however, then the sum of all state prices
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is constrained, and so is the cross-sectional average of the sum. Then, because average

state prices cannot all be higher than in the pseudo-competitive equilibrium, the cross-

sectional average must cease to change; otherwise, the sum would exceed 1
R , a contradic-

tion. In this case, the state prices of high marginal utility states are higher while those of

low marginal utility states are lower, so that their sum is fixed at 1
R . Consequently, while

all Arrow-Debreu prices initially rise with market concentration, those of low marginal

utility states start to fall when all agents employ storage. Although they fall, they remain

elevated above their competitive equilibrium.

Step 2: Asset prices compared to the competitive equilibrium:

Since we have established that state prices are (weakly) higher with market con-

centration than in an equivalent endowment economy with the same capital and sav-

ings decisions, what remains is to compare the competitive equilibrium to this pseudo-

competitive equilibrium with perfect risk sharing but the capital allocation decisions from

the market equilibrium. Then, our claim will follow by transitivity.

It is immediate that the competitive equilibrium achieves the first-best allocation

by the First Welfare Theorem. The competitive equilibrium is consequently equivalent to

solving the Planner’s problem:

U0 = sup
{ki,si,c1i,c2i(z)}N

i=1,s,c f 1,c2, f (z)

E

[
N

∑
i=1

u (c1,i) + u (c2,i (z))− c f 1 + u f
(
c2, f (z)

)]

s.t. :
N

∑
i=1

c1,i + c f 1 + ki + s = Ne + m f e,

:
N

∑
i=1

c2,i (z) + m f c2, f (z) = m f e2, f (z) +
N

∑
i=1

yi (z) ki + Rs,

where s is the aggregate storage.

The solution to this problem is characterized in Lemma 1, in which there is a

unique social state price ΛCE (z) that determines all consumption sharing and produc-

tion decisions. By construction, the distribution of investment with market concentration

can achieve no higher utility than under the optimal centralized policy with the same

resource constraint. As such, there exist improvements that (weakly) raise c2,i (z) in all
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states by shifting investment away from less toward more productive technologies

From Proposition 2, agents that would invest in capital in the first-best under-

invest in the noncompetitive economy because of strategic frictions, while those that do

not invest may start to invest because of diminished opportunities to finance the pro-

duction of other agents. For the same resources transferred intertemporally, ∑N
i=1 e− c1,i,

the first-best employs more efficient technologies without cross-sectional misallocation.

As such, while some agents may under-invest and others over-invest with price impact,

aggregate investment and investment efficiency falls. As such, state prices are (weakly)

higher in all states in the pseudo-competitive equilibrium.

Finally, we consider the role of storage. If storage is used in the competitive equi-

librium, then it is also employed in the market equilibrium, although the converse need

not be true. When storage is employed by all agents, then the sum of their state prices is

constrained to be 1
R . As such, since capital allocation is less efficient in the market equi-

librium, and the sum of state prices is constrained, it follows that prices increase for high

marginal utility and decrease for lower marginal utility states to leave the average un-

changed. If there is storage in the competitive equilibrium, then this effect is there for all

µ, otherwise it becomes operative once all agents employ storage. It then follows that:

ΛCE1 (z) ≥ ΛCE (z) ,

as required.

Step 3: Risk-free Rate:

The second part of the claim follows directly Steps 1 and 2. Because q (z) is higher

state-by-state than in the competitive equilibrium, it follows that ∑z∈Z q (z) is also larger

than in the competitive equilibrium. Because rm
f is the inverse of the sum of the state

prices, the claim then follows. Moreover, rm
f ≥ R because storage can be traded without

market impact.

The floor of r∗f is also R because, from the FOCs in Proposition 1, if there is storage,

then E
[
u′2
(

c2,i(z)
c1,i

)]
= 1

R . To see that this is a lower bound, a necessary condition that

agent i to invest in capital in its production technology is E [yi (z)] > R, with the strict

inequality necessary to embed a risk premium for the agent. Consequently, as long as
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agent i holds storage, then E
[
u′2
(

c2,i(z)
c1,i

)]
= 1

R , and only once it exhausts all its resources

in state contingent claims and capital, then E
[
u′2
(

c2,i(z)
c1,i

)]
< 1

R . Because this holds for all

agents, it follows that r∗ ≥ R.

Step 4: Market Risk Premium:

In the special case in which strategic agents are symmetric across types, all types

choose the same level of capital ki = k, and the market risk premium (12) reduces to:

RPmkt =
E [∑i yi (z)]

∑z∈Z q (z)∑i yi (z)
− rm

= rm
∑z∈Z q (z) E [∑i yi (z)]−∑z∈Z q (z)∑i yi (z)

∑z∈Z q (z)∑i yi (z)

= −rm
Cov [q (z) , ∑i yi (z)]

E [q (z)∑i yi (z)]
.

It is immediate that the market-implied risk-free rate rm is lower from Step 3 and that as-

set prices q (z) are higher in the denominator in the market compared to the competitive

equilibrium (from Step 2). In addition, and more subtle, is that the covariance between

state prices and aggregate productivity, Cov [q (z) , ∑i yi (z)] < 0, is less negative because

all asset prices are inflated to reflect market concentration beyond underlying risk. Con-

sequently, the market risk premium is lower in this special case.

A.10 Proof of Lemma 4:

In this lemma, we characterize the competitive equilibrium without market concentra-

tion. The standard first-order conditions for optimal consumption and asset holdings

align state prices for all agents state-by-state:

q (z) =
π (z) u′ (c2i (z))

u′ (c1i)
= π (z) u′f

(
c2, f (z)

)
= ΛCE (z) , (38)

which implies for the N types of agents with homothetic preferences:

c2i (z)
c1i

=
c2j (z)

c1j
= η (z) , (39)

53



and for the competitive fringe:

c2, f (z) = η f (z) = u−1
f
(
u′ (η (z))

)
.

The first-order conditions for investment and savings are the same as with imperfect com-

petition in financial markets.

Substituting for date 2 consumption into the budget constraint at date 1, the inter-

temporal budget constraint for agents of type i is:

c1i + ki + si + ∑
z∈Z

q (z) c2i (z) = e + ∑
z∈Z

q (z) (yi (z) ki + Rsi) . (40)

Substituting the first-order conditions for ki and si into (40), we arrive at:

c1,i + ∑
z∈Z

q (z) c2i (z) = e. (41)

Finally, substituting c2i(z)
c1i

= η (z) from (39) into (41), and recognizing q (z) = π (z) u′ (η (z)),

we find that:

c1i =
e

1 + ∑z∈Z π (z) u′ (η (z)) η (z)
,

and therefore

c2i (z) =
η (z) e

1 + ∑z∈Z π (z) u′ (η (z)) η (z)
,

Consequently, strategic agents consume in proportion to their initial endowments. Notice

that this implies that:
∑N

i=1 c2i (z)

∑N
i=1 c1i

= η (z) . (42)

Consider the type-symmetric case in which all agents have the same initial wealth e. Sub-

stituting the market clearing conditions at both dates into (42), and equating η (z) with

consumption growth in (38) and state prices in (39), we arrive at:

ΛCE (z) = π (z) u′

 ∑N
i=1 yi (z) k + ACE (z)

N (e− s− k) + m f

(
e− cCE

f ,1)
)
 . (43)

54



B Data Sources

In this Appendix, we discuss the data we use in Section 4. Our data come from three

main sources. We measure risk-free rates using data on nominal rates on 1-year Trea-

sury bills from the St. Louis Fed FRED database. Specifically, we use data series RIF-

SGFSY01NA (1-Year Treasury Bill Secondary Market Rate, Discount Basis, Percent, An-

nual, Not Seasonally Adjusted). This series shows values of 1.67% on 01/01/2002, and

0.6% on 01/01/2016. Figure 3 plots the data. Because there are missing values for the

1-year bill, we also plot 6-month bill rates in blue.

Figure 3: Interest rate data.
.

Data on corporate discount rates and weighted average cost of capital is from

Gormsen and Huber (2022), who make data available at www.costofcapital.org. We use

the raw average of annual rates. The data was retrieved on June 28, 2023. In our model,

we refer to the “perceived cost of capital” of Gormsen and Huber (2022) as the working

average cost of capital (WACC), and to the hurdle rate as the discount rate. Figure 4 plots

the data series we use to calibrate our model.

We obtain data on firm-level dispersion using the interquartile range of firm-level

Total Factor Productivity (TFP) from Figure 4, Panel b of Cunningham, Foster, Grim,

Haltiwanger, Pabilonia, Stewart, and Wolf (2022). We thank the authors for sharing the

underlying data. Our focus is on the years 2002 and 2016. Because of year-to-year vari-
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Figure 4: Data on cost of capital and discount rates.
.

ation in estimated TFP, comparing these two years only masks the underlying trend in

dispersion over time. We therefore compute linear trends and calibrate to one half of the

difference between the 75th percentile and the 25th percentile of this trend.

Figure 5: Interquartile range of firm-level TFP. Raw data is plotted in solid lines, linear trend is
plotted in dashed lines. .

.
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Online Appendix for Financial Market Concentration and
Misallocation

Comparing Equilibrium-in-Demand-Schedules and Cournot-Walras
Equilibrium

Daniel Neuhann and Michael Sockin

Our model of strategic trading in financial markets uses Cournot-Walras equilib-

rium as our equilibrium concept. This equilibrium concept differs from a long tradi-

tion following Kyle (1989), which focuses on Equilibrium in Demand Schedules (also

known as double auctions). While both equilibrium concepts allow strategic traders to

submit price-contingent demand schedules taking into account their impact on equilib-

rium prices, they have subtle differences that render each particularly suitable for some

applications but not for others.

To understand these differences, we now present a canonical one-asset CARA-

normal model that allows us to clarify commonalities and differences in the Equilibrium-

in-Demand-Schedules and Cournot-Walras equilibrium concepts. We first solve for the

competitive case as a benchmark, and then the Equilibrium-in-Demand-Schedules and

Cournot-Walras approaches, respectively. We then discuss the outcomes of the two strate-

gic equilibrium concepts.

Consider a two period model where all agents have CARA utility overall final

wealth with parameter γ. A single risky asset is traded in period 1 and pays dividend X

in period 2 where X ∼ N (X̄, σ2
X). There is no discounting across periods and there is a

riskless asset that pays zero interest in elastic supply.

There are N types of traders. Each type i consists 1
µ agents with mass µ . Each agent

of type i has initial endowment µzi of shares of the asset so that their total endowment is

zi. The total endowment is consequently Z = ∑N
i=1 zi.

An agent k of type i submits demand schedule ak,i(p) per its unit of mass to solve

the following optimization problem:

uj,i = max
aj

E[−e−γ((zk+ak)(X−p(ak))+p(ak)zk)]

In what follows, we will conjecture and verify that the equilibrium asset price is normally

distributed. In this case, the optimization program of agent k of type i can be expressed

57



as:

max
ak

pzk + (zk + ak)(X̄− p)− γ

2
(zk + ak)

2σ2
X.

There is also a competitive fringe. In accordance with the tradition following Kyle (1989),

it acts as noise traders for now. They demand a random position −U ∼ N (0, σ2
U) net of

the asset supply. For simplicity, U and X are independent. Market clearing imposes that

N

∑
i=1

ai (p) = U. (44)

Case 1: The Competitive Case

It is straightforward to show when all agents are price takers that

zi + ai =
X̄− p
γσ2

X
.

Imposing market clearing (44), we recover the asset price

p = X̄−
γσ2

X
N

(Z + U) .

This completes our characterization of the competitive case.

Case 2: The Case with Equilibrium-in-Demand-Schedules

We now consider strategic behavior when the equilibrium concept is Equilibrium-

in-Demand-Schedules. In this case, each strategic agent internalizes that they can influ-

ence the price p by shifting each other strategic agents’ demand curves. Let us conjecture

strategic agents of type i have a linear demand schedule:

ai(p) = a0 + ap p− zi . (45)

Imposing market clearing (44), one has that:

N

∑
i=1

ai(p) = U,
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and by substituting with (45), strategic agent i’s inverse demand curve is:

p = − µ

ap

ai

N − µ
− a0

ap
+

1
ap

Z + U
N − µ

.

This implies by rational expectations that strategic agent i’s price impact is:

∂p
∂ai

= − 1
ap

µ

N − µ
. (46)

The first-order condition for agent k of type i’s optimal holdings is:

ai =
X̄− p

µ
∂p
∂ai

+ γσ2
X

− zi. (47)

Consistency of the optimal holdings with the conjectured demand schedule implies:

ap = − 1

µ
∂p
∂ai

+ γσ2
X

,

from which follows by substituting with (46):

ap = − 1
γσ2

X

N − µ− µ2

N − µ
,

a0 =
1

γσ2
X

N − µ− µ2

N − µ
X̄,

such that:

ai(p) =
N − µ− µ2

N − µ

X̄− p
γσ2

X
− zi . (48)

The equilibrium price is then:

p = X̄− N − µ

N − µ− µ2
γσ2

X
N

(Z + U) , (49)

and equilibrium price impact from (46) is:

∂p
∂ai

=
µ

N − µ− µ2 γσ2
X. (50)

This completes our characterization of the equilibrium-in-demand-schedules case.
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Case 3: The Case with Cournot-Walras Equilibrium

We now turn to Cournot-Walras Equilibrium. The key difference between the Equilibrium-

in-Demand-Schedules approach and Cournot-Walras is whose demand curve strategic

agents internalize. In the former, it is the functional form of the other strategic agents. In

the latter, it is that of the competitive fringe. To this end, we now modify the competitive

fringe to have CARA utility and an endowment U. This implies a demand a f from the

fringe similar to agents in the competitive case:

a f =
X̄− p
γσ2

X
−U.

Market clearing now imposes that

N

∑
i=1

ai (p) +
X̄− p
γσ2

X
= U. (51)

This demand schedule of the competitive fringe implies by market clearing (51) that:

p = X̄ + γσ2
X

N

∑
i=1

ai (p)− γσ2
XU. (52)

The demand of strategic agent k of type i again is:

ai =
X̄− p

µ
∂p
∂ai

+ γσ2
X

− zi. (53)

Substituting with (55), i.e., ∂p
∂ai

= γσ2
X, this implies:

ai =
1

1 + µ

X̄− p
γσ2

X
− zi. (54)

Substituting (54) into (52), the equilibrium price is:

p = X̄− 1 + µ

N + 1 + µ
γσ2

X (Z + U) , (55)
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and the equilibrium price impact is again:

∂p
∂ai

= γσ2
X (56)

Comparing Equilibrium Concepts

We now discuss the key similarities and differences between the two strategic equilibrium

concepts. We then highlight several advantages of each concept to conclude the note.

Similarities

The most important similarity is that strategic agents face identical portfolio trade-offs in

both equilibrium concepts. In particular, the optimization problem of the strategic agents

are the same in the precise sense that (48) and (54) are identical. This is because strate-

gic agents in both the Equilibrium-in-Demand-Schedules and Cournot-Walras concepts

submit price-contingent demand schedules that balance the benefit of a better portfolio

allocation against the cost of price impact. In both concepts, portfolio choices ai therefore

encode the same trade-offs. Moreover, the degree to which agents extract rents by manip-

ulating prices based on the illiquidity of financial markets, measured by the price impact

term ∂p
∂ai

.

Differences

The key difference between the two equilibrium concepts is the precise origin of the price

impact term. This difference is driven by differences in the identity of the agents whose

demand strategic agents believe they can manipulate. In the Equilibrium-in-Demand-

Schedules approach, it is the demand curves of other strategic agents (i.e., the price input

to their demand schedules). This is appealing because such models often feature exoge-

nous noise traders, who are insensitive to the price, and allows for a rich variety of strate-

gic interactions among large agents. However, it is perhaps less well-suited to settings

where agents can trade many assets with varies counterparties in different markets, and

assets may be fungible with respect to the risk exposure they deliver. In such markets, in-

verse demand functions for individual assets and certain participants may be difficult to

forecast, and they may not be sufficient statistics for price impact. In such settings, there
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is an advantage to directly deriving price impact in terms of the change in the distribution

of risk induced by a trade.

This is what occurs in the Cournot-Walras approach, where price impact is derived

from the demand curve of a price-taking competitive fringe. That is, the sufficient statis-

tic for price impact is the demand function of the relatively unsophisticated investors (the

competitive fringe), which is a simpler object to characterize and is valid for any asset

with any payoffs as long as one knows the payoffs. Accordingly, the equilibrium price

impact term in our example model is (56), which reflects only the incremental change in

risk borne by the market γσ2
X. This is because each strategic agent takes other strategic

agents’ demands as given, so that the competitive fringe absorbs this incremental de-

mand.

As we discuss below, this approach has the advantage that it can be flexibly adapted

to any market structure and allows for general equilibrium effects as well investment.

Moreover, the approach is rooted in a rich tradition studying product market competition

among Cournot oligopolists. As such, the equilibrium concept has well-known desirable

properties.

Several Advantages of Cournot-Walras

Although the Equilibrium-in-Demand-Schedules concept is an appealing concept, it has

several drawbacks that Cournot-Walras does not. First, is that solving the equilibrium

becomes extremely difficult outside of the CARA-normal setting. This is because a strate-

gic agent must correctly forecast the demand schedules of other strategic agents to form

beliefs about her equilibrium price impact, which is a fixed-point object. Outside of the

CARA-normal setting, this inverse demand curve need neither be linear nor unique; in

fact, only in the CARA-normal case is the unique inverse demand curve linear. Con-

sequently, there can be multiple equilibria in which demand curves take non-obvious

functional forms that are highly dependent on the setting being analyzed. This has lim-

ited most applications of the Equilibrium-in-Demand-Schedules approach to the CARA-

normal paradigm where the payoffs of assets must be exogenously specified and cannot

be determined in equilibrium.

The Cournot-Walras approach does not have this drawback. As long as one can

specify the preferences of a competitive fringe, price impact is uniquely determined by
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the fringe’s preferences for any payoff structure. This not only avoids the issue of con-

jecturing and verifying an inverse demand curve, but also shuts down strategic uncer-

tainty among large agents as to which equilibrium price impact function will prevail (i.e.,

among many potential price impact functions with other strategic equilibrium concepts).

In this sense, even in the limit that the fringe becomes arbitrarily small, and market clear-

ing becomes effectively internal among strategic agents, we have a well-defined selection

mechanism for identifying an unique price impact function.

This flexibility allows the Cournot-Walras approach to be applied in quite general

settings with quite general preferences. This may be more appropriate for examining the

market-wide consequences of market concentration, in which it is not obvious that large

agents face regular trading partners over time. In such a context, the competitive fringe

has a natural interpretation as households and other retail traders. It also does not restrict

the market structures that one can study to a linear asset of normal random variables,

which is a very incomplete market structure.

Several Advantages of Equilibrium-in-Demand-Schedules

The Equilibrium-in-Demand-Schedules concept offers several advantages over Cournot-

Walras. First, is that it allows for more complex forms of strategic interaction among

large agents. Such nuanced interactions can give rise to interesting forms of equilibrium

behavior. This is often why papers in this literature focus on this rich object. In addition,

such an approach may be more appropriate in thin markets that are dominated by a few

large market participants that do not vary much over time. In this situation, it makes

sense that large agents would understand and internalize how each other will react to

their trading strategies. Finally, one does not need to take a stand on the preferences of a

competitive fringe that pins down equilibrium price impact.

That equilibrium price impact is determined by the trading behavior of the strate-

gic agents is an appealing advantage over the Cournot-Walras concept, in which price

impact is less nuanced. Price impact in the Cournot-Walras setting is instead derived

from the marginal utility of a competitive fringe after market clearing is imposed. This

anchors the strategic interactions among large agents to the choice of the fringe’s prefer-

ences and optimization problem, which may be an undesirable degree of flexibility.
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Conclusion

As we have demonstrated in a canonical CARA-normal setting, the Equilibrium-in-Demand-

Schedules and Cournot-Walras approaches are not that different. Both lead to similar

trade-offs for strategic agents when choosing their optimal portfolios. What is different is

how we arrive at equilibrium price impact. With the Equilibrium-in-Demand-Schedules

approach, this price impact is based on how each other strategic will react to a marginal

change in demand. With Cournot-Walras, price impact is determined by how a competi-

tive fringe will react to a marginal change in demand.

Both concepts consequently have their advantages and drawbacks, and which is

more appropriate likely depends on the setting and given application. Important for

many applications, such as examining how market concentration interacts with risk shar-

ing and wealth effects, is allowing for curvature in the marginal utilities among strategic

agents. This gives rise to asymmetries in the marginal benefits / costs of trading an ad-

ditional unit depending on whether the strategic agent is a buyer or a seller, or wealthier

or poorer. In CARA-normal settings, marginal utility is linear, and there is therefore no

asymmetry between buying or selling an additional unit, although differences in risk

aversions can lead to differences in marginal benefits / costs between strategic agents.

In such situations, the limitations of relegating equilibrium price impact to effectively a

primitive for strategic agents (since we can specify the competitive fringe’s utility how-

ever we want) may be outweighed by the ability to examine these important issues.

64


	Introduction
	Related literature.

	Model
	Decision Problems and Equilibrium Concept
	Model Discussion

	Equilibrium
	Equilibrium Demand System and Price Impact
	Optimal Strategic Portfolios and Investment Wedges
	Equilibrium Investment and Misallocation
	Two Canonical Examples
	Asset Pricing Implications

	Recent Trends Through the Lens of the Model
	Additional Empirical Implications
	Conclusion
	Proofs of Propositions
	Proof of Proposition 1:
	Proof of Corollary 1:
	Proof of Lemma 1:
	Proof of Corollary 2:
	Proof of Corollary 3:
	Proof of Lemma 2:
	Proof of Proposition 2:
	Proof of Lemma 3:
	Proof of Proposition 3:
	Proof of Lemma 4:

	Data Sources
	Comparing Equilibrium Concepts
	Similarities
	Differences
	Several Advantages of Cournot-Walras
	Several Advantages of Equilibrium-in-Demand-Schedules

	Conclusion


