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Abstract

Recent approaches to asset pricing involve the estimation of demand systems for

financial securities in which investors are permitted to have non-pecuniary tastes over

cash flow-irrelevant asset characteristics. We investigate theoretical foundations of

demand-system asset pricing using multiple approaches to integrating tastes with

portfolio choice. Our analysis raises several conceptual issues, including the defini-

tion of no arbitrage, the pricing of “redundant” assets, and the cardinal interpretation

of taste parameters. These issues imply multiple barriers to identifying demand sys-

tems for financial securities from observational data, and raise questions about the

structural interpretation of financial demand elasticities. We discuss how these issues

affect counterfactuals constructed from estimated demand systems.
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1 Introduction

Recent approaches to asset pricing following Koijen and Yogo (2019) involve the estima-

tion of demand systems for financial assets in which investors are permitted to have tastes

(or dogmatic beliefs) over both pecuniary and non-pecuniary attributes of financial assets,

such as environmental and social scores or the identity of the issuer. According to this ap-

proach, data on portfolio holdings can be used to identify investor tastes and beliefs, and

encodes information absent from prices that can inform researchers about the equilibrium

response to a variety of counterfactual shocks, such as evolving tastes or changes in the

wealth distribution across investor types (Koijen, Richmond, and Yogo, Forthcoming).

This focus on non-pecuniary tastes and portfolios represents a sharp break from

neoclassical asset pricing, which emphasizes the fungibility of securities up to cash flows

and focuses on price data disciplined by no arbitrage (Ross, 2004). Given the unsatisfac-

tory empirical record of neoclassical approaches, this stark dichotomy may well be an ad-

vantage. However, introducing preferences over the provenance of cash flows also means

jettisoning much of the well-established theoretical foundations that underlie the neoclas-

sical approach. Thus, as we move forward in this direction, it is important to establish

solid foundations for this approach and understand their implications for empirical work.

In this paper, we examine the theoretical foundations of demand-based asset pric-

ing by way of synthesis with canonical models of portfolio choice. In particular, we enrich

an endowment economy as in Lucas (1978) with potentially payoff-irrelevant character-

istics that affect investors’ tastes over assets, and derive portfolio demand functions that

are sensitive to risk, return and tastes.1 This allows us to distinguish “hedonic character-

istics,” such as environmental scores or issuer identify, from “cash flow characteristics”

that can be used to summarize the statistical properties of the cash flow distribution.

The incorporation of hedonic characteristics forces us to revisit some fundamen-

tal conceptual issues in theoretical asset pricing, such as the appropriate definition of

no arbitrage and the use of cardinal versus ordinal utility indices for tastes. With re-

spect to arbitrage, we find that, depending on the security menu, there may not exist

price systems that preclude arbitrage opportunities for all investors simultaneously. This

1As will become clear, there is close correspondence between preference-based tastes and dogmatic be-
liefs about asset returns. We focus on tastes to ease the exposition, but our results apply to dogmatic beliefs
as well.
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concern is particularly salient when there are assets with similar cash flows over which

investors have different tastes, such as stocks and “replicating portfolios” of derivatives

that do not inherit the same tastes. Non-pecuniary tastes can thus invalidate the organiz-

ing principles underlying stochastic discount factors and state prices, making it difficult

to construct demand systems that are stable under counterfactuals. With respect to the

modeling of non-pecuniary tastes, we find that integrating risk and return with tastes

requires a cardinal interpretation of taste parameters. In empirical contexts, this implies

that estimated demand systems may be highly sensitive to the assumed asset span and

(arbitrary) changes in the unit of measurement for tastes, and particularly so if short sales

are either prohibited or unobserved. As such, demand systems estimated using state-of-

the-art methods may produce valid counterfactuals only for a narrow range of scenarios.

Why do these challenges rise? Demand estimation is perhaps the central problem

in industrial organization. Accordingly, researchers have developed a rich set of tools to

estimate preferences parameters from observational data (Berry and Haile, 2021). Yet, fi-

nancial assets present a number of unique challenges that differ sharply from the demand

for nonfinancial goods typically studied in industrial organization. Thus, as we discuss,

the application of existing techniques to financial securities is far from straightforward.

The first challenge pertains to no arbitrage and the pricing of redundant securities.

In contrast to most consumer good settings, investors who find a security too expensive

are not forced to exit the market; they can (short) sell the asset. Importantly, they may

do so either directly or by trading an alternative portfolio that replicates the asset’s cash

flows. To discipline equilibrium prices and trading behavior given these considerations,

neoclassical asset pricing uses the notions of the law of one price and no arbitrage, which

is the idea that investors should not be able to receive “something for nothing.”

When investors have tastes over non-pecuniary characteristics, two assets with

identical cash flows need no longer have the same price. Thus, we need to modify the

definition of the law of one price to account for the provenance of the cash flows. Yet,

even with this broader understanding of the value of an asset, we find that with suffi-

ciently dissimilar tastes (given a set of allowable trades) in general there would not exist

a pricing function (stochastic discount factor) that leaves no arbitrage opportunities. This

has direct implications for equilibrium existence, incentives for short sales, and for the

use of demand systems for pricing untraded securities. In applied contexts, estimated
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demand systems may be quite sensitive to misspecified investment universes (i.e., the set

of assets investors can trade, and the extent to which investors can engage in short sales).

The second pertains to investor preferences. Models of portfolio choice are based

on theories of choice under uncertainty, such as expected utility theory. As is well known,

expected utility theory imposes a cardinal interpretation of utility, which is a stronger re-

quirement than the ordinal rankings typically assumed in consumer good demand sys-

tems. Under a cardinal interpretation of tastes, identifying financial demand systems

requires identification of the intensity of tastes relative to risk-return considerations, not

just their ordinal ranking. In order to integrate non-pecuniary tastes with risk and return,

one must therefore admit a cardinal interpretation of taste parameters as well.

This fact has practical relevance. For counterfactuals, preference parameters must

be estimated for inframarginal investors as well. Moreover, portfolio choice is generically

sensitive to rank-preserving transformations of tastes, such as changes in the units of mea-

surement. Yet, investors may not agree on how to evaluate the “greenness” of an asset.

They may also find little consensus on how to aggregate multiple hedonic characteristics,

such as a firm’s environmental social scores, into a single asset-level score. Empirical

demand systems may be sensitive to such choices.

Having discussed these conceptual issues, we use a fully specified model of port-

folio choice under tastes to examine questions of identification and counterfactuals based

on observational data. The model is a variant of the Lucas (1978) endowment economy

in which assets (“trees”) may be endowed with payoff-irrelevant hedonic characteristics,

and investors can differ in their tastes for these characteristics. Addressing the question

of cardinal preferences, we work within the expected utility framework. This leads to a

framework where investors trade off tastes against canonical risk-return considerations,

and asset-level taste parameters can be interpreted in marginal utils.

Our model nests two important benchmarks. First, if two assets offer identical cash

flows but differ in their hedonic characteristics, then an investor may prefer to buy only

the one that aligns with his tastes. In this case, tastes lead to equilibrium sorting. Second,

if all investors have the same tastes, then the model is equivalent to the canonical Lucas

tree framework that considers only risk and return. When both channels are active, prices

are affected by both fundamental cash flows and taste distributions.

This framework has several useful features. First, since we fully specify the model,
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we can explicitly solve for the “correct” counterfactual response to various shocks. Sec-

ond, we can explicitly model common identification strategies that rely on mandates (i.e.,

exogenous restrictions on the type of assets an investor can hold) to obtain variation in

prices. Hence, it is a useful laboratory for evaluating identification strategies and their

challenges.

In general, demand system estimation requires price instruments whose variation

is sufficient to identify tastes for specific assets. For a general portfolio choice problem,

this is exceedingly difficult because the principle of diversification implies that any two

assets may exhibit non-linear patterns of complementarity and substitutability that are

shaped by the investor’s overall portfolio holdings. Hence, in general, even “clean” varia-

tion in a single asset price is not enough to identify demand systems because endogenous

portfolio changes create demand shocks in other assets (Berry and Haile, 2021).2

Even if price instruments are available, they may not suffice for identifying all

taste parameters required to construct counterfactuals based on observational data. Given

taste-based demand, an investor may only purchase her most preferred option in equi-

librium, and may short sell less-preferred options. If short sales are prohibited, observed

portfolio holdings may allow for inference on the ordinal ranking of a choice set, but there

may not be enough information to estimate cardinal tastes for assets not purchased in

equilibrium. When short sales are allowed but unobservable to the econometrician, as

they often are in practice, demand systems may be misspecified. As we illustrate using

our general equilibrium model, in either case it may be difficult to estimate taste pa-

rameters with sufficient accuracy to perform counterfactuals. More broadly, our analysis

points to a critical question that must be addressed empirically, which is to what extent,

if any, derivative securities inherit some of the taste properties of the underlying asset.

To evaluate these concerns, we use our framework to model common identifica-

tion approaches used in the demand-system asset-pricing literature. For example, Koijen

and Yogo (2019) use the sparsity of observed portfolios to construct instruments for as-

set prices. As the argument goes, sparse portfolios indicate that the investor may have

tightly prescribed mandates that make it costly to hold other stocks. If mandates and

2One way around this problem is to restrict attention to settings where optimal portfolio weights are
linear functions of own prices and characteristics (Koijen, Richmond, and Yogo, Forthcoming). In a static
setting, this is possible with, e.g., CARA preferences and normally distributed shocks to payoffs. However,
even these assumptions would not suffice in a dynamic setting. Given the importance of taste for portfolio
choice, prices would be a function of endogenous changes in the wealth distribution.
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fund flows are sufficiently exogenous to current investment opportunities, variation in

the extent to which a particular stock is present in observed portfolios may be used to

construct a demand shifter that is independent of prices. We use our model to assess this

identification strategy, taking as given the exogeneity of mandates and fund flows. An

important concern is that mandates and tastes may be observationally equivalent given

equilibrium play, even as they have potentially very different implications for counter-

factuals. The reason is that mandate investors are insensitive to price changes, whereas

taste-based investors are not. As such, misjudging the share of mandate investors can lead

to qualitatively different counterfactual prices in response to shocks. In addition, even if

a given mutual fund has a particular mandate, investors in said fund can still reallocate

their holdings across funds. As we discuss in Section 4.1, the identification strategy fails

if this is the case.

These concerns are naturally entangled with wealth effects. While price changes

always induce income and substitution effects, in most consumer good settings wealth ef-

fects are likely to be negligible and are thus frequently ignored when modeling demand.

In contrast, financial assets are investment goods, and so wealth changes may have first-

order effects in portfolio choice. In particular, an investor’s measured elasticity for two

otherwise identical assets may be very different depending on if they already hold the

asset in their portfolio or not.3 Hence, it is important to control for the evolution of port-

folios when estimating demand elasticities.

We end by discussing the structural interpretation of demand elasticities. First, we

discuss how the structural interpretation of demand elasticities depends critically on the

investment universe. In particular, when there are close substitutes available, asset-level

demand elasticities may be very high even when consumption-level elasticities are low.

Second we show that even in canonical general equilibrium frameworks such as Lucas

(1978), demand elasticities can range from near zero to infinite, depending on whether

the driving shocks are common to all investors or merely introduce reallocative tades

between investors. For these reasons, it is difficult to discriminate between models of

asset pricing based on estimated demand elasticities alone.

The rest of the paper is structured as follows. The rest of this section discusses re-

lated literature. Section 2 discusses the fundamental identification problem and its impli-

3This concern is amplified when interpreting investors as financial intermediaries, since capital flows
from households can induce wealth changes even when intermediary constraints and preferences are fixed.
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cations with regards to incorporating non-pecuniary tastes in an asset pricing framework.

Section 3 presents our framework. Section 4 studies the implications on identification and

counterfactuals. Section 5 discusses the structural interpretability of asset demand elas-

ticities. Section 6 provides concluding remarks.

Related Literature

This paper studies the theoretical foundations of two closely-related literatures: demand-

based asset pricing that tries to model equilibrium returns using estimated portfolio choice

models as in Koijen and Yogo (2019), and models in which investors may hold certain fi-

nancial securities because of non-pecuniary values associated with them (Starks, 2023).

Demand-based approaches have been used to address a number of substantive

questions. These include computing counterfactuals for price informativeness and sus-

tainable investing in response to changing non-pecuniary tastes or changes in the size

distribution of institutional investors (Koijen, Richmond, and Yogo, Forthcoming), global

imbalances and currency returns (Jiang, Richmond, and Zhang, 2023) or corporate bond

returns (Bretscher, Schmid, Sen, and Sharma, 2022).

The fact that estimated demand systems appear to reveal that financial institutions

exhibit rather low demand elasticities has also been used to argue that financial markets

as a whole are inelastic, with implications for the equity premium (Gabaix and Koijen,

2020). We show that such elasticities may not always be interpretable as deep param-

eters, and may differ by the level of aggregation and the nature of the shock. Inelastic

trading patterns are also often attributed to mandates, and these are used as instruments

to identify demand parameters. Our analysis suggests that it is difficult to empirically

distinguish between mandates and “tastes,” and this matters for counterfactuals.

Valued-based approaches have been used to study investment in so-called “green

assets,” such as stocks or bonds associated with sustainable, environmentally-friendly

firms or government expenditures. Pastor, Stambaugh, and Taylor (2021) provide an

equilibrium model of such sustainable investment, whereby firms differ in their “green

scores,” but the set of marketable securities consists only of firm shares and a risk-free

asset. We address implications and micro-foundations of such sustainable investing for

financial market equilibrium with redundant securities under various forms of tastes, and

ask how such tastes might be identified in equilibrium.
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Pastor, Stambaugh, and Taylor (2022) provide early evidence that such tastes may

be reflected in yield differences between otherwise identical German government bonds,

while D’Amico, Klausmann, and Pancost (2023) show that the underlying “greenium”

appears to have shrunk over time. Our analysis shows that, in the presence of short sell-

ing by at least some investors, premiums extracted from marginal prices (i.e., prevailing

market prices) may not be informative about infra-marginal preferences, and thus may

not be sufficient to infer counterfactuals. More generally, we argue that counterfactu-

als are sensitive to the precise modeling of environmental concerns, including to simple

monotone transformations of taste parameters. As such, one conclusion of our paper is

that there is research in modeling the precise foundations of tasted-based investment.

2 The Identification Problem and its Implications

We begin by reviewing the fundamental identification problem as it relates to estimating

demand systems for financial assets from observational data. Since demand estimation

is a classic issue, particularly in industrial organization, we focus mainly on the novel

features introduced by modeling demand for financial assets. We then examine the theo-

retical implications of models that permit features thought to be useful for identification.

In general, the goal of demand estimation is to measure market participants’ will-

ingness to pay for different assets. The main difficulty is that, since quantities and prices

are generally jointly determined, simple regressions of quantities on prices do not identify

structural parameters. Figure 1 illustrates this basic problem, as well as a potential solu-

tion. The left panel shows the canonical supply and demand diagram in an endowment

economy for financial assets where the supply curve S is vertical. In the panel, D1 and

D2 are demand curves for individual market participants, and DA is aggregate demand.

Quantities may become negative because financial assets can be sold short.

A common empirical strategy is to trace out demand respones to exogenous changes

in supply. However, this is not feasible in an endowment economy with fixed supply,

which is the basic framework used in demand-system asset pricing. Even outside of en-

dowment economies, it is difficult to find changes in the supply of a given financial asset

that are not influenced by prevailing prices. To circumvent this issue, the literature on

demand-system asset pricing focuses on variation in net supply, defined as aggregate sup-
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Figure 1: The basic identification issue in an endowment economy.

ply minus demand of a subset of market participants. The basic idea is illustrated in

the right panel: rather than finding exogenous shocks to aggregate supply S, researchers

aim to estimate the structural parameters of demand function D1 by finding exogenous

variation in residual supply S− D2. Put differently, the empirical strategy is to construct

exogenous shocks to the residual supply curve faced by a particular investor by finding

exogenous shocks to the demand functions of other investors.

This approach places stringent constraints on the type of variation that can be used

to identify demand systems. In particular, researchers must find settings in which there

are changes in residual supply (which is itself a type of demand shock) that are uncor-

related with the demand of remaining investors. In the context of financial markets, this

implies that one must find changes to market prices that are not driven by correlated

shocks to discount rates and/or expected payoffs. Since financial assets are investment

goods whose current value generically depends on their resale value, these requirements

extend not only to preferences over current cash flows, but also expected future prices.

This presents additional identifiation challenges which we discuss in more detail in Sec-

tion 2.5.

Two broad approaches for such shocks have been proposed. The first relies on

cross-investor heterogeneity in tastes for particular assets, holding fixed a certain notion

of expected cash flows. Such taste differences could be due to differences in investor pref-

erences over the provenance of cash flows, such as when some investors prefer to invest

in environmentally-friendly firms, while another does not care. Or, investors may have

dogmatic heterogeneous beliefs about future cash flows that are orthogonal to the beliefs
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of other investors, so that investors do not update their own beliefs in response to changes

in residual demand.

The second approach relies on the idea is that, if some funds are unable to invest

in a particular asset for exogenous reasons, then it appears plausible that this asset will

be cheaper than a similar asset that can be held by these funds. This approach is im-

plemented empirically by trying to infer (unobservable) constraints that affect investor’s

investment opportunities, such as short-sale constraints or differences in investment man-

dates across investment funds.

Both approaches are relevant in practice: a growing literature documents that in-

vestors may care about non-pecuniary asset characteristics such as ESG scores (Starks,

2023), and models with belief differences have a long history in asset pricing. Finally, a

wide array of funds are subject to a variety of investment mandates that constrain their

portfolio choices.

At the same time, there are a number of open questions regarding the theoretical

foundations of asset pricing with heterogeneous tastes, and about the feasibility of identi-

fying demand systems in the presence of tastes and (unobserved) constraints. Moreover,

well-established tools from industrial organization may have only limited applicability

to financial markets because financial assets differ from consumer goods in at least three

important ways: (i) assets can be flexibly bundled and unbundled using portfolios, (ii)

preferences must admit a cardinal (rather than merely ordinal) interpretation, and (iii)

there are resale considerations that affect current valuations.

The rest of this section addresses implications of these issues in more detail. Sec-

tion 2.1 provides two ways of incorporating tastes in a canonical asset-pricing framework.

Section 2.2 argues that asset pricing with tastes requires cardinal interpretations of taste

parameters. Hence identifying these parameters presents greater challenges than in many

classical settings from industrial organization that aim to identify ordinal rankings only.

Section 2.3 demonstrates that tastes may invalidate standard notions of no arbitrage. This

means that portfolio choice will generally be sensitive to assumptions on the security

menu, and also that introducing tastes will generally require supplemental assumptions

on the strategy space. Section 2.4 shows that typical (combinations of) utility functions,

asset menus, and investment constraints generate cross-asset complementarities in port-

folio choice, and that this renders it difficult to estimate asset demand systems. Finally,
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Section 2.5 considers implications of dynamic trading in settings where investors differ in

terms of their tastes.

2.1 Heterogenous Tastes for Financial Assets

Demand-based asset pricing allows investors to have preferences over asset characteris-

tics that need not be directly related to cash flows. Incorporating tastes within canonical

asset pricing frameworks requires making a number of conceptual decisions that can alter

some of the key theoretical underpinnings of asset pricing theory. This is because theories

of choice under uncertainty place relatively stringent constraints on preferences.

The basic framework is standard. In line with Koijen and Yogo (2019), we consider

a one-shot portfolio choice problem in which an investor can choose to consume at date

0 and/or at date 1. A random state of the world z ∈ Z ≡ {1, . . . , Z} is realized at date

1, and the probability of state z is πz ∈ (0, 1). The set of assets is J ≡ {1, . . . , J}. Asset

j ∈ J offers state-contingent cash flows yj(z) in state z. There is a set of investors indexed

by i. Investor i has a von Neumann-Morgenstern utility function defined over lotteries.

Within this framework, we consider two main taste specifications. The first is

consumption-augmenting tastes, defined as additional “consumption-equivalent” value

that is generated by an asset of particular provenance. The second is additive-separable

tastes, by which we mean that the investor obtains some additional value (or disutility)

from holding certain assets that is separable from risk-return considerations. We show

that both formulations deliver essentially identical conclusions.

Consumption-Augmenting Tastes. Under consumption-augmenting tastes, investor i

evaluates her payoffs from holding portfolio (ai
j)j∈J by both the cash flows it generates

and her tastes (θi
j)j∈J over assets, where θi

j > 0. In particular, we assume that prefer-

ences are defined over the effective units of consumption delivered by a portfolio (ai
j)j∈J for

investor i in state z, and define these as

c̃i
1(z) ≡ ∑

j∈J
θi

jyj(z)ai
j + wi

1(z),
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where wi
1(z) ≥ 0 is a non-marketable endowment.4

Investor i’s portfolio maximization problem is to maximize expected utility over

effective consumption subject to budget balance:

max
(ai

j)j∈J
(1− β)ui(ci

0) + β ∑
z∈Z

πzui(c̃i
1(z)) (P-CA)

s.t. ci
0 = wi

0 − ∑
j∈J

pj(ai
j − ei

j)

c̃i
1(z) = ∑

j∈J
θi

jyj(z)ai
j + wi

1(z),

where β is the discount factor, ui is the utility function, pj is the price of asset j, wi
0 is initial

wealth, and ei
j is investor i’s endowment of asset j.

Effective consumption is useful for capturing the notion that an investor may, for

example, value cash flows produced by environmentally-friendly firms more than an

identical cash flows stream produced by other firms. As such, tastes differentiate effective

consumption from pure consumption ci
1(z) = ∑j∈J yj(z)ai

j + wi
1(z).

Remark 1 There is a close correspondence between consumption-augmenting tastes and hetero-

geneous beliefs. In particular, it is generally possible to enrich the state space over which payoffs

are defined to include “taste-based payoffs.” Heterogeneous tastes can then be mapped into hetero-

geneous beliefs if we let investors differ in their probability assessments over this augmented state

space. An important consideration in this regard is that such taste-related beliefs are dogmatic:

investors must agree to disagree, and in particular they may disagree on whether a particular state

of the world can be realized. Interestingly, such strong disagreement is desirable when trying

to construct instruments for residual demand because it allows for the possibility of orthogonal

demand shocks. However, we show below that it also comes with more undesirable consequences.
4One can also define consumption-augmenting tastes in an additive manner: c̃i(z) = ∑j(θ

i
j + yj(z))ai

j +

wi
1(z). The main difference is that tastes operate like a ”risk-free” component of returns for every asset,

with obvious implications for portfolio choice. Overall, however, the main conclusions are unchanged.
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Additive-Separable Tastes. Next we consider additive-separable tastes. Fix a function

Gi that maps portfolio (ai
j)j∈J into utils, and define the investor’s decision problem as:

max
(ai

j)j∈J
(1− β)ui(ci

0) + β ∑
z∈Z

πzui(ci
1(z)) + Gi

(
(ai

j)j∈J
)

(P-AS)

s.t. ci
0 = wi

0 − ∑
j∈J

pj(ai
j − ei

j)

ci
1(z) = ∑

j∈J
yj(z)ai

j + wi
1(z).

In this problem, the utility index ui is defined in the standard way over pure consumption

ci
1(z) = ∑j∈J yj(z)ai

j + wi
1(z), but the overall objective is augmented by an additive value

to holding a portfolio. This specification captures the idea that an investor may earn a

“warm glow” from holding some stocks, or a disutility from holding others. As such,

additive tastes are closely related to the way in which some people model “convenience

yields,” an idea that goes all the way back to Sidrauski (1967)’s model of money demand.

Additive-separable tastes differ from consumption-augmenting tastes in that non-

pecuniary benefits of holding certain assets do not directly depend on the properties of

the utility function. For example, tastes do not necessarily induce wealth or substitution

effects in portfolio choice. While this may be an advantage for particular applications, it

also has the drawback that it is generally difficult to discipline the particular functional

form of Gi, even though the functional form will generally determine the trade-off be-

tween pecuniary and non-pecuniary aspects of portfolio choice.5

2.2 Cardinal Interpretation of Tastes

Given the nature of the questions studied, standard methods in industrial organization

are mainly developed for settings where it is sufficient to identify ordinal preferences over

alternatives. This is because standard consumer preference rankings can be fully repre-

sented by ordinal utility functions. This simplification does not apply in the context of

portfolio choice, where expected utility theory requires admitting a cardinal interpreta-

tion of utility functions. As we now establish, this has the consequence that even linear

5A further consideration is that if we have taste shocks (both aggregate and idiosyncratic) this would be
another risk factor to contemplate when forming optimal portfolios. We abstract in the current paper from
the additional considerations for identification this would entail.
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transformations of taste parameters which leave ordinal rankings unchanged may lead to

different portfolio choices.

We start with formulating the optimality conditions under heterogeneous taste

specifications. To that end, under consumption-augmenting tastes, we define investor

i’s marginal rate of substitution over effective consumption in Program (P-CA) as:

Λ̃i(z) ≡
πzβui′(c̃i

1(z))
(1− β)ui′(ci

0)
,

where ui′ is marginal utility. Under additive-separable tastes, investor i’s marginal rate of

substitution over pure consumption in Program (P-AS) is analogous:

Λi(z) ≡
πzβui′(ci

1(z))
(1− β)ui′(ci

0)
.

Then, the optimality condition for ai
j under consumption-augmenting tastes is:

θi
j ∑

z∈Z
yj(z)Λ̃i(z) = pj.

The optimality condition for ai
j under additive-separable tastes is:

∑
z∈Z

yj(z)Λi(z) + gi
j

(
(ai

j)j∈J
)
= pj,

where gi
j is the partial derivative of Gi with respect to ai

j.

These conditions relate the standard risk-return tradeoff, measured by the distri-

bution of marginal utility across states, to investor tastes. The solutions to these programs

depend on the functional form of tastes and are not invariant to simple monotone trans-

formations. This means that identifying demand systems requires measuring the inten-

sity of tastes, not just their ordinal ranking.

Proposition 1 (Sensitivity to Rank-preserving Transformations) 1. The solution to Pro-

gram (P-CA) is sensitive to rank-preserving transformations of θi = (θi
j)j∈J , including

positive linear transformations and mean-preserving spreads of taste parameters.

2. The solution to Program (P-AS) is sensitive to monotone transformations of Gi, includ-

ing linear positive transformations such as the re-scaling of the units in which tastes are

13



measured.

The intuition for this result is straightforward. In the case of consumption-augmenting

tastes, increasing the nominal value of θj increases the consumption-equivalent value of

holding asset j, leading the investor to allocate more funds to this asset and distorting the

overall portfolio. Increasing tastes for all assets simultaneously raises the value of holding

all assets, which leaves portfolio weights unchanged but alters the consumption-saving

decision between dates 0 and 1.

In the case of additive-separable tastes, portfolio choices trade off the marginal in-

crease in non-pecuniary values against the risk-return trade-off as measured by marginal

utility over consumption. Since expected utility is cardinal, any rank-preserving transfor-

mation (such as a change in units) will alter the optimal portfolio.

2.3 No Arbitrage with Tastes

So far, we have discussed two methods for integrating tastes with portfolio choices and

clarified their link to models of heterogeneous beliefs. We also argued that tastes may

be useful for identification because they leave open the possibility of orthogonal demand

shocks. At the root of this identification argument is that investors may have dogmatic

differences in asset valuations. We now argue that this same feature may invalidate a key

organizing principle of asset pricing and portfolio choice, namely no arbitrage.

No arbitrage is the notion that an equilibrium price system should not admit trades

in which an investor receives something for nothing. Under no arbitrage, one can turn

the problem of asset pricing into the problem of pricing state-contingent payoffs, which

is much simpler than pricing individual assets when there is a large number of assets and

potential portfolios, some of which may have (partially) redundant cash flows.6

Operationalizing no arbitrage requires a theory of value. In the neoclassical ap-

proach, the appropriate notion of value is cash flows, and an arbitrage is “something for

nothing,” or, more formally, “an investment strategy that guarantees a positive payoff in

some contingency with no possibility of a negative payoff and no initial net investment”

(Ross, 2004). Hence a payoff space X (the set of attainable payoffs) and a pricing function

p are sufficient to define no arbitrage.

6Such concerns do not arise in, say, consumer good settings, where a consumer is unable to combine
parts of multiple cars to arrive at a more desirable bundle of characteristics.
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Definition 1 (No Arbitrage (Cochrane, 2005)) A payoff space X and pricing function p leave

no arbitrage opportunities if, every payoff x ∈ X that is weakly positive (i.e., x ≥ 0) almost surely

and strictly positive (i.e., x > 0) with some positive probability has positive price: p(x) > 0.

This definition is critical for deriving basic properties of price systems, including the ex-

istence of positive stochastic discount factors. It has also been used to underpin the Arbi-

trage Pricing Theory which forms the backbone of factor approaches to modeling returns

that is used in Koijen and Yogo (2019) to reduce the dimensionality of the asset space.

When investors differ in their tastes, Definition 1 is not sufficient to define no ar-

bitrage because investors do not evaluate investment opportunities on the basis of cash

flows alone. In particular, they may have subjective views on what constitutes “some-

thing for nothing” and thus a payoff space alone is not sufficient for defining valuations.

We illustrate this concern using consumption-augmenting tastes (analogous results ob-

tain with additive-separable tastes).

To define an appropriate notion of no arbitrage with tastes, we provide two pre-

liminary definitions. First, letting a subset A of RJ denote the set of feasible portfolios

and denoting by pj the price of asset j, pricing function P : A → R maps a portfolio

a = (aj)j∈J into its price according to P(a) ≡ ∑j∈J pjaj. Second, investor i has a taste

function vi : A → RZ that maps a portfolio a into a 1× Z vector vi(a) of state-contingent

taste-augmented payoffs for investor i. In the absence of tastes, denoting by Y = (yj(z))j,z

the J×Z matrix of cash flows, all investors care only about cash flows as in standard asset

pricing: vi(a) = a′Y. With these notations, below we define no arbitrage with tastes.

Definition 2 (No Arbitrage with Tastes) Let taste functions vi be given for all investors i. The

pricing function P leaves no arbitrage opportunities if, for any investor i and any portfolio a ∈ A
such that the effective payoff is weakly positive (i.e., vi(a) ≥ 0) almost surely and strictly positive

(i.e., vi(a) > 0) with strictly positive probability, the associated price is positive: P(a) > 0.

We then have the following result regarding no arbitrage with tastes.

Proposition 2 (Generic Arbitrage Opportunities with Tastes) Fix taste functions vi for all

investors. There does not exist pricing function P that leaves no arbitrage opportunities if and

only if:

there exist a, i, and i′ such that vi(a) > 0 and vi′(a) ≤ 0. (C)

A sufficient but not necessary condition for (C) is that there exist assets j and j′ such that
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(i) both assets have identical cash flows:

yj(z) = yj′(z) for all z ∈ Z ;

(ii) there exist investors i and i′ with sufficiently heterogeneous tastes with respect to these assets:

vi
j ≥ vi

j′ and vi′
j ≤ vi′

j′ with at least one inequality strict,

where vi
j is the marginal taste with respect to asset aj.

Hence, no arbitrage fails if tastes are sufficiently heterogeneous and the asset menu

is sufficiently rich. This can be most transparently seen in the following example.

Example 1 (Green and Red Assets) There are a green asset and a red asset with prices denoted

by pg and pr, respectively. Both assets deliver a unit payoff with certainty. There are two investor

types that differ in their relative taste for the two assets. For each investor type i, the taste function

is given by vi(ag, ar) = θi
gag + θi

rar with the following properties: while type 1’s taste-augmented

payoffs for green and red assets satisfy θ1
g > θ1

r , type 2 has θ2
g < θ2

r .

We consider a long-short portfolio consisting of selling one unit of the green asset and

buying one unit of the red asset: a = (−1, 1). The price of this portfolio is P(a) = pr − pg.

Hence, investor i’s taste-augmented payoff is vi(a) = θi
r − θi

g. If there exists a pricing function

P∗ that leaves no arbitrage opportunities, then the absence of arbitrage opportunities for type 2

requires that P∗(a) < 0. Since type 1 can conduct the trade in reverse, no arbitrage for that type

requires P∗(a) > 0, which is a contradiction. Hence, there does not exist pricing functions that

leaves no arbitrage opportunities.

The result is a direct implication of the facts (i) that investors care about non-

pecuniary factors, (ii) that taste differences are invariant to quantities (i.e., marginal val-

uation differences are invariant to portfolio holdings), and (iii) that investors are free to

short either asset. Price changes are then not sufficient to equilibriate asset markets.

Two remarks are in order. First, it is well-known that problems of arbitrage and

mispricing may also arise in models of dogmatic differences in beliefs.7 To address these

difficulties, theoretical models with heterogeneous beliefs generally impose strong restric-

tions on feasible strategies that preclude the existence of risk-free arbitrages. Prominent
7See, for instance, Hong and Stein (2007) for a survey on implications of heterogeneous beliefs on asset

pricing.
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examples include short sale constraints or sparse asset menus, such as restricting atten-

tion to one risk-free asset and one risky asset, with disagreement only about the dividends

of the risky asset. It follows that models with tastes must generally rely on similar restric-

tions to ensure the existence of equilibria with desirable pricing properties. However, this

gives rise to an additional concern that equilibrium outcomes are highly sensitive to the

precise form of these restrictions. This presents challenges when trying to empirically

estimate demand systems without a-priori knowledge of the precise investment oppor-

tunities and constraints faced by investors.8

Second, violations of no arbitrage may exist even if the law of one price (LOOP)

holds conditional on the asset “color.” In particular, in the presence of tastes, LOOP can

be defined as requiring that two assets which deliver identical taste-augmented payoffs

must have the same price. As the example shows, even if LOOP holds for individual

assets, one can still construct portfolios over which investors have strict disagreements.

This suggests a deeper question, which is whether and to what extent assets that are

redundant in terms of their cash flows inherit the non-pecuniary benefits of underlying

assets. For example, does a portfolio of an option and a bond generate similar tastes as

a stock? Answers to questions such as this appear critical for developing a full-fledged

theory of taste-based asset pricing and a necessary first step for proper measurement.

2.4 Mandates and Demand Complementarities

Koijen and Yogo (2019) emphasize the role of (unobserved) portfolio constraints and in-

vestment mandates in creating non-fundamental variation in asset prices that can serve to

identify demand systems. To evaluate this strategy, we enrich decision problem (P-CA) by

assuming that the investor faces (unobserved) constraints on portfolio choices. We then

show that demand complementarities emerge whenever such constraints admit some de-

gree of substitutability of assets.

Formally, we assume that investor i faces (unobserved) K ≥ 0 constraints on port-

8An alternative approach is to restore no arbitrage using a notion of decreasing marginal tastes, whereby
the marginal taste function converges to zero for sufficiently large asset holdings. This allows investors to
potentially agree on marginal valuations even if they differ in their infra-marginal tastes. The empirical
downside of this approach is that one must now identify an entire taste function.

17



folio choices. The k-th constraint is defined as

Fi
k(ai, p) ≤ 0,

where ai = (ai
j)j∈J is investor i’s portfolio, p = (pj)j∈J is the price vector, and the func-

tion Fi
k(·) is twice continuously differentiable in ai

j for all j. For ease of exposition, we

assume that the set of feasible portfolios induced by constraints Fi
k ≤ 0 is convex.

A variety of constraints can be modeled in this way. First, a short-sale constraint

on asset j says that ai
j ≥ −aj for some constant aj. Second, an investor cannot invest in an

asset when ai
j ≤ 0 and ai

j ≥ 0. Finally, an investment mandate which constrains portfolio

weights can be modeled as follows. Let χ denote a vector of asset characteristics, where

C(χ) is the set of assets that share these characteristics. Given (a, p), the portfolio weight

of assets with characteristic χ in investor i’s portfolio is

ωi(χ) =
∑j∈C(χ) pjai

j

∑j∈J pjai
j

.

An investment mandate over χ is then a restriction that ωi(χ) ≥ ω(χ) and ωi(χ) ≤ ω(χ)

for some constants ω(χ) and ω(χ).

Given these assumptions, investor i’s portfolio maximization problem is

max
ai

(1− β)ui(ci
0) + β ∑

z∈Z
πzui(c̃i

1(z))

s.t. ci
0 = wi

0 − ∑
j∈J

pj(ai
j − ei

j)

c̃i
1(z) = ∑

j∈J
θi

jyj(z)ai
j + wi

1(z)

Fi
k(ai, p) ≤ 0 for all k.

Define λi
k to be the Lagrange multiplier associated with constraint k, and f i

k,j(ai, p)

to be the partial derivative of Fi
k(ai, p) with respect to ai

j. Then optimal portfolios are

determined by the following system of first-order optimality conditions:

pj = θi
j ∑

z∈Z
yj(z)Λ̃i(z) + ∑

k
λi

k

f i
k,j(ai, p)

(1− β)ui′(ci
0)

for all j ∈ J . (1)
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The system of equations defined by (1) features two forms of cross-asset restric-

tions that are generally of first-order importance in financial markets. First, due to the

benefits of diversification, an investor’s desired position in a particular asset depends on

the holdings of all other securities (in particular, its covariance with the rest of the portfo-

lio). As such, marginal rates of substitution across time and states generically depend on

the entire vector of portfolio holdings.

Second, another form of cross-asset restrictions stems from portfolio constraints

and operates whenever these constraints admit some degree of substitutability of assets.

We provide three examples. The first example is a bond fund which may face a require-

ment to invest a certain proportion of its wealth in high-yield bonds but has flexibility

over which particular bonds to invest in. The second example is an index fund that is de-

signed to track a particular index but is permitted to have some degree of tracking error.

The third example is a constraint on market-weighted portfolio shares held in different

asset classes, for example, x% in stocks of firms with a high ESG score or a value-weighted

ESG score.

In demand estimation, such interdependence between multiple goods (or assets)

is referred to as demand complementarities and is known to have sharp implications for

identification. In particular, given demand complementarities, even exogenous variation

in a single price is generally not sufficient to identify specific demand parameters such

as own-price elasticities (Berry and Haile, 2021). This is because complementarities in-

duce endogenous movements in the prices of related goods, thereby contaminating the

demand response to price changes. In financial markets, these issues are likely to be

of first-order importance precisely because of the possibility of diversification and the

prevalence of price-weighted mandates with tracking error.

Koijen and Yogo (2019) rely on instruments defined at the asset level, and impose

restrictions on the decision problem to circumvent demand complementarities. In par-

ticular, they mute portfolio diversification considerations by modeling mean-variance in-

vestors with linear marginal utility who invest in characteristics-based portfolios that are

suitably orthogonal to each other.9 They address cross-asset restrictions in mandates by

considering only extensive margin quantity restrictions on individual assets, whereby in-

vestors can hold positive quantities of only some assets (the so-called investment uni-

9Rationales for this approach must be statistical, since, as we demonstrated, no arbitrage does not nec-
essarily hold under tastes.
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verse), and no short positions at all. Since these constraints are purely asset-specific, they

rule out the empirically relevant case where mandates permit some degree of substitution

across assets. In addition, they rule out an important class of constraints where mandates

depend on prevailing asset prices. Hence, the validity of the identification strategy de-

pends on the realism of these restrictions in applied contexts.

Even taking this approach as given, it is important to note that asset-by-asset price

instruments are generally not sufficient to separately identify tastes and constraints on

portfolio holdings. In particular, different combinations of tastes and constraints can in-

duce the same observed choices given a particular shock to market prices, but they may

lead to different outcomes in counterfactuals. Hence, evaluating the validity of counter-

factuals requires even more information on the underlying economy. Lastly, an additional

issue that can contaminate the analysis is that even if individual funds are restricted by

mandates, the individual investors are not.

2.5 Dynamic Trading

Another major difference between financial assets and consumer goods is that assets are

investment goods whose value is at least partially determined by expected future resale

considerations. In particular, irrespective of their personal valuation of the underlying

cash flows, investors are willing to pay more for an asset today when the asset is expected

to fetch a high price tomorrow. This means that investor valuations for long-lived assets

will generally depend on other investors’ valuations.

This can be seen in the classical framework of Harrison and Kreps (1978). In this

model, different types of investors dynamically trade a single stock subject to short sale

constraints and heterogeneous beliefs about future dividends. These assumptions are

similar to those made in demand-system asset pricing: investors differ in their tastes for

an asset, and they are subject to investment restrictions that preclude actionable arbitrage

opportunities. The main difference is that Harrison and Kreps (1978) consider dynamic

trading, which is a first-order concern in practice.

The main result in Harrison and Kreps (1978) is that asset prices are shown to admit

a speculative component, whereby investors are willing to pay more for a stock than they

would be if obliged to hold it forever. The reason is that short-sale constraints prevent

pessimistic beliefs from affecting prices today, and investors are willing to pay a high
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price today if they get to resell to a future optimist.

This has direct implications for identifying asset demand systems in practice: since

current willingness to pay depends on both private valuations and expected future mar-

ket valuations, it is not clear which demand parameters (individual or market) can be

measured by shifts in current quantities. Moreover, the fixed point problem between

individual and market demand renders it infeasible to separately identify individual de-

mands investor by investor.

3 Analytical Framework: Lucas (1978) with Tastes

The previous section discussed theoretical issues related to non-pecuniary tastes in asset

pricing and requirements for identification of demand systems. This discussion left open

the precise biases generated by these concerns and did not discuss broader meaning and

counterfactual implications of estimated demand systems. We now construct a fully-

specified model economy based on Lucas (1978) to address these issues.10

Environment. There is a single period of trading and all information is public. Asset

payoffs depend on the realization of an aggregate state z ∈ {1, 2} that is realized at date

1. The probability of state z is given by πz ∈ (0, 1). Associated with each state z is a Lucas

tree that pays off y(z) if the state is z. Trees are perfectly divisible, and the aggregate

supply of each tree is equal to one.

There are two equally-sized trees associated with aggregate state 1 (but only with

state 1): red and green. Conditional on aggregate state 1, the green tree pays yg(ι) and the

red tree pays yr(ι), where ι ∈ {r, g} is a distributional shock that determines which of the

two trees offers more cash flows. In particular, let

yg(ι) =

y(1)− ε if ι = r

y(1) + ε if ι = g
and yr(ι) =

y(1) + ε if ι = r

y(1)− ε if ι = g
.

10We use the consumption-augmenting approach to modeling tastes because this allows us to use much
of the theoretical scaffolding of expected utility theory. It also it aligns closely with existing approaches in
the literature (e.g., Koijen, Richmond, and Yogo, Forthcoming). However, the main results carry over to the
case of additive-separable tastes.
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Given these payoffs, it is clear that the distributional shock is fully diversifiable because

y(1) =
1
2

yg(ι) +
1
2

yr(ι) for all ι ∈ {r, g}.

Parameter ε ∈ [0, y(1)) determines the substitutability of red and green trees. If

ε = 0, then red and green trees are perfect substitutes with respect to their cash flows. If

ε > 0, they are complements because holding both serves to diversify distributional risk.

The probability of the red tree doing better is denoted by Pr(ι = r) = ρ.

Given this structure, one can think of assets as having two “characteristics:” the

aggregate state of the world in which their payoffs accrue (i.e., 1 or 2), and their color.

These characteristics determine in which states cash flows accrue (and thus serve as useful

statistical summaries of the overall cash flow distribution), and they can also be used to

define non-pecuniary tastes. When type 1 trees are perfect substitutes (ε = 0), the color

characteristic is irrelevant for cash flows and only matters through its link with tastes.

When type 1 trees are imperfect substitutes (ε > 0), even investors without tastes (θi
j = 1)

care about the color characteristic because it summarizes cash flow risk.

To focus on variation in the price of red and green trees, we use the following

assumption in all of our numerical examples.

Assumption 1 (Aggregate symmetry) Aggregate payoffs are y(1) = y(2) = 1, and the prob-

ability of each aggregate state is equal to one half, π1 = 1
2 .

Investors. There are two types of investors indexed by i.11 Types determine an in-

vestors’ endowment, tastes, and mandates. Specifically, let investor i be endowed with

ei
g, ei

r and ei
2 units of green, red, and state 2 trees, where aggregate feasibility dictates that

∑
i

ei
j =

1
2

for j ∈ {g, r} and ∑
i

ei
2 = 1.

Although this is not necessary, it is helpful to work with a relatively symmetric

setting. Hence we will typically assume that type 1 owns share ω ≥ 1
2 of the aggregate

endowment of each tree, e1
g = e1

r = ω
2 and e1

2 = ω.

Investor i takes positions ai
j in asset j ∈ J ≡ {g, r, 2}, and may be subject to short

sale constraints: ai
j ≥ 0. The investor evaluates the payoffs of his portfolio using effective

11Our results readily generalize to many types, or to a continuum of types.
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units of consumption. Similarly to Section 2.1, this object is defined as

c̃i(ι) ≡ ∑
j∈J

θi
jyj(ι)ai

j for each ι ∈ {g, r, 2}.

Note that c̃i(r) and c̃i(g) represent effective consumption depending on whether the red

or green tree offers relatively higher cash flows in state 1, respectively, and that c̃i(2) is

effective consumption in state 2. In the definition of effective consumption c̃i(ι), the taste

parameters (θi
j)j∈J represent agent i’s private tastes over assets. Taste parameters allow

us to nest characteristics-based demand as distinct from cash-flowed based risk-return

considerations.

For simplicity, we assume that tastes are irrelevant for tree 2: θi
2 = 1 for all i. Hence,

tastes only affect relative preferences for red and green trees. Since Section 2.2 has shown

that rank-preserving variation in the taste distribution can have independent effects on

portfolio choice, for transparency we will mainly focus on the sparse specification θ1
g =

1+ t and θ1
r = 1− t, while θ2

g = 1− t and θ2
r = 1+ t. This means that type 1 prefers green

while type 2 prefers red. However, this choice is not necessary.

Investors care only about consumption at date 1. Relative to Section 2, this sim-

plifies matters in that variation in the level of non-pecuniary tastes cannot distort any

consumption savings decision. Hence, we can focus on identifying cross-sectional asset

pricing and portfolio choice effects. We work within the expected utility framework. In

particular, we assume that investor preferences over state-contingent effective units of

consumption are given by a CRRA utility function u. Our numerical examples use log

utility.

Investors (or delegated managers) may also face different mandates, which are ex-

ogenous restrictions on permissible portfolios. We incorporate mandates because they

have been argued to be useful for identification of demand systems (Koijen and Yogo,

2019). Since tastes only affect red and green trees, we define mandates over these assets

as well. Given market prices pg and pr, define the portfolio share of green trees among

red and green trees as

wi
g =

pgai
g

pgai
g + prai

r
.
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A mandate is a restriction that imposes, for parameters wi
g and wi

g,

wi
g ∈ [wi

g, wi
g].

Decision Problem. We normalize the price of tree 2 to p2 = 1. The budget constraint is:

ai
2 + pgai

g + prai
r = ei

2 + pgei
g + prei

r.

Substituting consumption in state 2, the decision problem of investor i is:

max
ai

g,ai
r≥0

π1

[
ρu
(

θi
gyg(r)ai

g + θi
ryr(r)ai

r

)
+ (1− ρ)u

(
θi

gyg(g)ai
g + θi

ryr(g)ai
r

)]
(2)

+ π2u
(

ei
2 + pg(ei

g − ai
g) + pr(ei

r − ai
r)
)

s.t. wi
g ∈ [wi

g, wi
g].

Our equilibrium concept is a competitive equilibrium.

Definition 3 (Competitive Equilibrium) A competitive equilibrium consists of asset prices

(pg, pr) and portfolios (ai
g, ai

r, ai
2) for each i such that:

1. Given asset prices, portfolios solve decision problem (2) for each i.

2. Markets clear for every asset:

∑
i

ai
j =

1
2

for j ∈ {r, g} and ∑
i

ai
2 = 1.

3. The goods market clears.

The rest of this section solves for equilibrium demand systems and prices when

mandates do not bind for any investor. Section 3.1 provides the first-order conditions for

optimal portfolios. As a benchmark, Section 3.2 solves for an equilibrium demand system

without tastes. Finally, Section 3.3 solves for an equilibrium. We study implications of

mandates and short-sales constraints in Section 4.
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3.1 Optimal Portfolio Choice

It is instructive to begin with the case where mandates do not bind for any investor. In

this case, demand functions are determined by the following first-order conditions:

ai
g : π1ρθi

g(y(1)− ε)u′
(

c̃i(r)
c̃i(2)

)
+ π1(1− ρ)θi

g(y(1) + ε)u′
(

c̃i(g)
c̃i(2)

)
≤ (1− π1)pg;

ai
r : π1ρθi

r(y(1) + ε)u′
(

c̃i(r)
c̃i(2)

)
+ π1(1− ρ)θi

r(y(1)− ε)u′
(

c̃i(g)
c̃i(2)

)
≤ (1− π1)pr.

These conditions hold with equality whenever the investor chooses a positive quantity of

the associated asset. Whether this is the case in equilibrium depends on the distribution

of tastes.

This demand system is non-linear and exhibits complementarities: a change in the

price of one asset alters the demand for all other assets. This is because, when ε > 0, there

is a diversification benefit to holding both red and green trees. As Berry and Haile (2021)

point out, in settings with demand complementarities it is generally not enough to have

a valid instrument for a particular price.

Asset demand is also sensitive to the intensity of tastes. By this we mean that vari-

ation in θi
j will drive changes in portfolios even when the ordinal preference ranking is

preserved. This is not necessarily true in some discrete choice models of durable good

purchases, where the outcome of interest is a binary choice. An implication is that the

estimation of counterfactual asset demands generally requires identifying cardinal values

of tastes. In the language of asset pricing, defining a stochastic discount factor requires in-

corporating the exact value of the marginal investor’s tastes. The difficulty in identifying

such a SDF is that tastes may be latent given equilibrium play.

3.2 Representative Agent Benchmark: No Tastes

To build intuition, we first solve the model without tastes: θi
j = 1. As in Lucas (1978),

this leads to the representative agent framework in which the representative agent holds

the aggregate endowment in equilibrium, and is thus well-diversified in aggregate state

1. Given that total output in state 1 is constant, we can define by

p1 ≡
pg + pr

2
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the price of a sure claim on one unit of consumption in state 1. Then prices are determined

by

p1 =
π1

1− π1
y(2) and pr − pg = 2ε

π1

1− π1
(2ρ− 1)

y(2)
y(1)

.

The prices of claims on aggregate states reflect the relative scarcity of aggregate consump-

tion across the two states, and price differences between red and green assets are driven

by the distribution over the distributional shock ρ. With symmetric aggregate states (i.e.,

y(1) = y(2) = 1 and π1 = 1
2 ), this yields

p1 = 1 and pr = 1 + (2ρ− 1)ε.

3.3 Equilibrium with Tastes: Endogenous Sorting

We now consider the case with tastes. Because different investors may disagree on the

marginal value of investing in a particular asset, there may be endogenous sorting in

equilibrium. By this, we mean that investors with a taste for green assets will hold only

green assets, while those with a taste for red assets will hold only red assets. (Of course,

both will hold tree 2 as well.)

We guess and verify that type 1 specializes in green assets, and vice versa. Then

type 1’s consumption in state 1 is θ1
gyg(ι)a1

g, and vice versa for type 2. By the first-order

conditions for optimal portfolios, demand functions are

Type 1: a1
g =

1
pg

π1

1− π1
a1

2;

Type 2: a2
r =

1
pr

π1

1− π1
a2

2;

and consider only the trade-off between tree 2 and one specific color. Observe that these

demand functions are independent of the particular intensity of tastes: since the equilib-

rium features sorting, only the ordinal ranking of tastes matters.

While this is reminiscent of consumer good settings (for example, discrete choice

over automobiles), sparse portfolio choices may be particularly problematic in financial

markets. In particular, under the cardinal interpretation of preferences required for ex-

pected utility framework, the intensity of tastes will affect portfolio choice when investors

hold both assets in equilibrium. Since taste intensities are latent on the equilibrium path

when sorting occurs (in particular, they can only be identified up to their ordinal proper-
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ties), counterfactuals are vulnerable to incorrect inference about taste intensities.

To illustrate this issue, we verify whether sorting can be sustained in equilibrium.

Evaluating the first-order condition for a1
r at a1

r = 0, it is indeed optimal for type 1 to

refrain from purchasing red trees if and only if

pr

pg
≥ θ1

r
θ1

g

[
ρ

y(1) + ε

y(1)− ε
+ (1− ρ)

y(1)− ε

y(1) + ε

]
.

This inequality states that the relative price of red trees must be high enough relative to

the relative taste for red trees, adjusted by the benefits of diversification within state 1. In

the equilibrium with sorting, moreover, relative prices are driven by wealth shares:

pr

pg
=

1−ω

ω
.

Hence, shocks to the wealth distribution or the degree of complementarity of red and

green trees (as determined by ε and ρ) can lead sorting to break down. Shocks to wealth

are precisely the type of counterfactual entertained by Koijen, Richmond, and Yogo (Forth-

coming).

We now demonstrate that equilibrium demand functions do indeed depend on the

intensity of taste parameters once there is partial sorting. We obtain simple closed-form

solutions for the case where trees are perfect substitutes, i.e., when ε = 0.

Proposition 3 (Equilibrium with and without sorting) Let θ1
r < θ1

g and assume ε = 0.

There exists a threshold ω for type 1’s wealth share ω such that type 1 buys only green trees

if ω ≤ ω and buys both red and green trees if ω > ω. When this is the case, prices are determined

by type 1’s taste parameters, pg = θ1
g and pr = θ1

r , and the quantity of red trees held by type 2 is

a2
r =

1−ω

2

1
2 E2 + θ1

gEg + θ1
r Er

θ1
r

,

where E2 = 1 and Eg = Er =
1
2 denote the aggregate endowments of each tree.

The result highlights that, conditional on a shock to the wealth distribution, prices

and quantities are now determined by the intensity of type 1’s tastes, not just their ordinal

ranking. Since these are latent conditional on equilibrium play, it is difficult to conduct

counterfactuals based on observational data that feature sparse portfolios. While we il-
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lustrate this in a setting with only two types, the insight naturally generalizes to many

types. In this case, equilibrium portfolios do not reveal preferences of infra-marginal in-

vestors. Yet, identifying preference parameters of inframarginal investor is critical for any

counterfactual in which investors may rebalance their portfolios on the extensive margin.

Figure 2 shows equilibrium prices for the entire range of wealth share ω and sub-

stitutability ε. The left panel shows the green price pg, and the right panel shows the price

of a sure claim on state 1, p1 =
pg+pr

2 . In the left panel, sorting occurs in the linear region

near the origin, but breaks down as either type 1 becomes too wealthy or the diversifica-

tion benefits become too large. In response to shocks, the relative price of green trees (and

thus the underlying demand system) is highly non-linear in fundamentals. In contrast,

the aggregate price of state 1 is flat in the entire region, as in the representative agent

benchmark. This is because, conditional on a well-specified stochastic discount factor that

takes into account tastes, every investor remains well-diversified within state 1.
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Figure 2: Green Price (Left) and State 1 Price pg+pr
2 (Right).

4 Identification and Counterfactuals

Having analyzed equilibrium demand systems without mandates binding in Section 3,

we study the implications for identification and counterfactuals when mandates or short-

sale constraints are present. We also discuss endogenous wealth effects.
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4.1 On Identification and Counterfactuals with Mandates

In addition to tastes, investors may be distinguished by their mandates. In practice, this

means that certain funds only invest in S&P 500 companies, or only in companies that

have high Environmental, Social, and Governance (ESG) scores. While mandates may

be a contributing factor to observed portfolio choices, they have also been put forth as

helpful for identifying demand systems (Koijen and Yogo, 2019). As the argument goes, an

asset that is inside the “investment universe” of many investors will be in higher demand,

and thus see higher prices, than an otherwise similar asset that is not widely held in

many investment universes. Putting aside for a minute the concern that mandates may

be chosen in response to investment opportunities, we can consider the implications of

this identification strategy in our model.

In particular, say there is a share m of type 1 investors that are not permitted to

invest in red trees. While this is a very stark mandate, it is the type of mandate that

would be ideal for the identification strategy in Koijen, Richmond, and Yogo (Forthcom-

ing) because it is entirely inflexible with respect to changes in investment opportunities.

Mandates are observed by investors, but not by the econometrician.

The demand function of mandate investors (superscript M) trades off green trees

with tree 2. Under log utility, they spend share π1 of their wealth on green trees:

aM
g = π1 ·

eM
2 + pgeM

g + preM
r

pg
.

Mandates and tastes for green assets are observationally equivalent to the extent that the

equilibrium features sorting; that is, tastes and mandates are both valid microfoundations

for sparse portfolios. However, they differ when non-mandate investors choose to hold

both red and green assets. This threatens the validity of counterfactuals. In particular,

shocks to the wealth of type 1 will result in different counterfactual prices when many

investors are subject to mandates versus when they are not.

Proposition 4 The equilibrium response to shocks to wealth share ω or substitutability ε may be

qualitatively different depending on the share of mandate investors m.

Figure 3 illustrates this result. When there are almost no investors with mandates,

a shock to ε creates more demand for diversification. Thus, the price of green trees is
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Figure 3: Green Price. Left: Low Mandate Share (m ≈ 0). Right: High Mandate Share (m = 0.85).

decreasing in ε if type 1 investors choose to hold both types of trees. Mandate investors

do not buy red trees at any price. Hence, shocks to ε do not reduce their demand for green

trees even as type 2’s demand increases. Thus, the price of green trees may be increasing

in ε when there are sufficiently many mandate investors. The observational equivalence

of tastes and mandates therefore creates the risk that counterfactuals are misspecified.

More broadly, identification based on mandates is threatened by the lack of a the-

ory of delegation. In practice, mandates are typically imposed on funds (such as mutual

funds), not end investors (such as households). This means that even very tight mandates

are irrelevant as long as end investors can flexibly reallocate investments across funds.

Proposition 5 Consider a two-layer structure where households invest through funds, and funds

are subject to mandates. Suppose further that there exist at least one red and one green fund.

Absent other frictions, equilibrium is invariant in mandates.

In practice, researchers have pointed out that households may be slow to rebal-

ance, or do so in predictable manners at regular intervals (i.e., quarter end). While it is

possible that this may help with identification, the argument is incomplete: if some in-

vestors are known to rebalance intermittently, other investors may trade preemptively

only to later sell. In this sense, intermittent rebalancers’ tastes may be reflected in market

demand even when they are not actively trading.
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4.2 Equilibrium Consequences of Short Sales

As discussed in Section 2.3, the neoclassical arbitrage pricing may fail to hold when in-

vestors differ in terms of their tastes. We now illustrate consequences of this fact by in-

troducing a set of investors who can freely sell short any asset. Such investors are likely

to have outsize implications for equilibrium prices. We show this mechanism under the

assumption that red and green trees are perfect substitutes in terms of their cash flows,

ε = 0. In this case, optimal portfolio choices are bang-bang, and the investor takes an

infinite short position whenever the relative price of red and green trees is misaligned

with her tastes.

Proposition 6 Let ε = 0. We enrich the model with a single investor type, indexed by S, who

can freely short. Then the relative price of red and green trees is given by

pg

pr
=

θS
g

θS
r

and is independent of any other parameters in the model.

The proposition states that an agent who can freely short trades until relative prices

are aligned with her tastes irrespective of any other parameters. In practice, there may

be short-sale constraints or other limits to arbitrage that prevent large short positions.

However, this merely means that researchers have to measure when they might bind.

Two considerations make this difficult in practice: researchers may not observe

short positions, nor do they have universal coverage of all investors in a given market.

These data limitations make it difficult to infer taste parameters from equilibrium play.

4.3 Endogenous Wealth Effects

We now discuss another important feature of financial markets—portfolios are regularly

marked to market. This means that, even holding preferences fixed, an individual who

already owns a particular stock will exhibit different demand elasticities in response to a

price change than an investor who does not. Hence standard instruments that may work

well in consumer good settings (where purchases are one shot) will not be sufficient to

identify asset demand systems.
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This simple logic also has implications for the case of “index deletions.”12 In par-

ticular, assume that an investor is mandated to hold only assets that are in a particular

index. Assume that green and red were initially the index, before red surprisingly drops

out. Hence, the investor must divest upon deletion. We call the short-run demand curve

the one that determines demand right upon deletion, and the long-run demand curve the

one that obtains once short-run adjustments have occurred. Assume for illustrative pur-

poses that the investor is not forward-looking, and that ε = 0. Then demand functions

satisfy

Short-run demand: aM
g = π1 ·

eM
2 + pgeM

g + preM
r

pg
;

Long-run demand: aM
g = π1 ·

eM
2 + pgeM

g

pg
.

The difference is due to the valuation of endowments. In the short run, changes in the

red price affect demand because wealth is marked to market. In the long run, demand is

independent of the red price because the investor was forced to divest. In general, there

are thus important dynamic considerations that differ from consumer markets, where

most purchases are generally not resold or marked to market.

5 On The Structural Interpretation of Demand Elasticities

Demand elasticities are one of the main objects of interest in industrial organization. The

reason is that a well-identified demand elasticity which can be related to, e.g., preferences

for automobiles may inform a policymaker of the quantity response to a tax policy that

raises automobile prices. In line with this view, researchers in demand-system asset pric-

ing often argue that demand elasticities are a useful diagnostic that might distinguish

their method from more neoclassical approaches. Against this background, we now dis-

cuss the structural interpretability of demand elasticities in financial markets.

An important difference between consumer goods and financial markets is that

portfolio choice is generally modeled, at least in part, using preferences over state-contingent

payoffs rather than asset characteristics alone. We will therefore argue that asset-level de-

12See, for instance, Chang, Hong, and Liskovich (2015) and Pavlova and Sikorskaya (2023) for recent
approaches to estimating demand elasticities from index deletions/additions.
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mand elasticities may not be informative about preference parameters whenever multiple

(portfolios) of assets can deliver the same state-contingent payoff stream. In particular,

the structural interpretation of demand elasticities depends on the security menu, as well

as on whether there are “outside options” for an investor to pursue in response to price

changes. This in turn is linked to the general equilibrium consequences of price changes.

5.1 Elasticities and the Security Menu

To establish a clean benchmark, we first show an example where asset-level demand elas-

ticities are informative about preferences. In particular, we assume that the security menu

consists only of the full set of Arrow securities, and that investors do not exhibit tastes

over assets. Since each asset is uniquely tied to a particular state, asset-demand elas-

ticities are then informative about state-contingent valuations. In particular, consider a

generic investor choosing Arrow security positions (a(z))z∈Z to solve:

max
(a(z))z

(1− β)u(c0) + β ∑
z∈Z

πzu(c1(z))

s.t. c0 = w0 − ∑
z∈Z

p(z)a(z)

c1(z) = a(z) + w1(z),

where p(z) is the price of security z and w1(z) an exogenous state-contingent endowment.

If we define the marginal rate of substitution (or the state price) associated with state z to

be

Λ(z) =
βπzu′(c1(z))
(1− β)u′(c0)

,

then the first-order condition is

p(z) = Λ(z).

The implicit function theorem yields an equation linking demand elasticities to preference

parameters,

ε(z)Λ(z)

[
− α(c1(z))

p(z)
− α(c0)

]
=

1
a(z)

+ Λ(z)α(c0),

where α(c) is the coefficient of absolute risk aversion at c and ε(z) = ∂a(z)
∂p(z)

p(z)
a(z) is the

price elasticity of demand for Arrow security z. Thus, when the security menu is the case
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of Arrow securities, suitable price instruments allow researchers to estimate preference

parameters Λ(z)α(c0) from portfolio data. With multiple price instruments, it may also

be possible to disentangle both components under mild parametric assumptions.

Next, consider the effects of changes in the security menu. To remove direct effects

on prices, we hold the set of marketable payoffs fixed. In particular, we begin with the

Arrow security menu and, for some generic state of the world z∗, introduce a new Arrow

security that also pays off only in state z∗. Denote the demand for the original security

by a0(z∗), and the demand for the new security by a1(z∗). If the Law of One Price holds,

then it must be the case that both assets have the same initial price, p0(z∗) = p1(z∗), and

the investor will be indifferent between holding both assets.

Proposition 7 (Elasticities with Redundant Assets) Suppose that the investor holds a posi-

tive position in both securities referencing state z∗. Now consider an exogenous increase in price

of the new security, holding all other prices fixed. Then the demand elasticity for the new security

is −∞, while the demand for consumption in state z∗ is unchanged. Hence, estimated demand

elasticities for the new security are uninformative about preference parameters.

While this example is deliberately stark, it is sufficient to highlight the critical role

of the security menu, and redundant assets, for the structural interpretability of demand

elasticities. Outside the case of Arrow securities, moreover, investors may need to com-

bine multiple assets in certain proportions to achieve a certain consumption stream, and

asset-level demand elasticities may only have structural interpretations when multiple

assets are considered jointly. Finally, when there are redundant assets, investor quanti-

ties may not be uniquely pinned down by optimality conditions, yet they will still affect

measured elasticities. It is precisely because of this indeterminacy that neoclassical asset

pricing has relied so extensively on no arbitrage relationships between prices.

5.2 Outside Goods

Next, we consider the role of outside options, and how they are shaped by general equilib-

rium forces. In industrial organization, it has long been recognized that the interpretation

of demand elasticities depends critically on the assumed notion of an “outside good,”

which is the alternative use of money available to a consumer that, for instance, chooses

not to buy a car (Berry and Haile, 2021). In consumer good settings, a common strategy
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is to model preferences as quasi-linear, with the implicit understanding that the outside

good is a consumption bundle whose utility scales approximately linearly with wealth.

Such an approach may be less viable in financial markets, at least as long as one is

interested in general equilibrium economies. To see this, return to our baseline Lucas Tree

economy from Section 3 and assume that the equilibrium features perfect sorting, with

only type 1 investors buying green trees and only type 2 investors buying red trees. In

this case, as in Section 3.3, type 1’s demand function for green trees satisfies:

a1
g =

1
pg

π1

1− π1
a1

2.

Differentiating this expression with respect to the price pg yields

∂a1
g

∂pg
= − 1

(pg)2
π1

1− π1
a1

2 +
1
pg

π1

1− π1

∂a1
2

∂pg

= −
a1

g

pg
+

a1
g

a1
2

∂a1
2

∂pg
.

The first term is the own price effect that is negative. The second is the cross-demand

elasticity of asset 2. As is well known, under natural assumptions, the overall response is

negative, with investors substituting away from green trees as their price increases.

However, this cannot be true in equilibrium for any fundamental shock that might

increase the price of green trees. Consider for example an increase in type 1’s wealth

share ω. Our preceding analysis shows that this must lead to an increase in pg. However,

since type 1 agents are symmetric within type and only type 1 investors buy green trees,

market clearing ensures that a1
g = 1

2 in equilibrium. Hence, the equilibrium elasticity is

zero, not negative, because there is no outside good for investors to move to.

In applied contexts, it is therefore critical to assess the degree of substitutability

between “inside” and “outside” assets. For example, corporate bonds may be a better

substitute for Treasury bonds than equities, and the degree of substitutability may differ

depending on the level of aggregation.
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6 Conclusion

We present a synthesis between neoclassical asset pricing and recent demand-system ap-

proaches to asset pricing, using multiple methods of incorporating non-pecuniary tastes

into equilibrium models of portfolio choice. Our analysis highlights important concep-

tual concerns, including the definition of no arbitrage, the pricing of redundant assets,

and the cardinal interpretation of taste parameters. Based on these concerns, we high-

light several barriers to identification of demand systems that may threaten the validity

of counterfactuals based on estimated demand systems.
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