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Abstract
Given the increasing use of threat conditioning and generalization for clinical-
translational research efforts, establishing test–retest reliability of these para-
digms is necessary. Specifically, it is an empirical question whether the same 
participant evinces a similar generalization gradient of conditioned responses 
across two sessions with the identical contingencies and stimuli. Here, 46 human 
volunteers participated in an identical auditory threat acquisition and generali-
zation protocol at two sessions separated by 1-to-2 weeks. Skin conductance re-
sponses (SCR) and trial-by-trial shock risk ratings served as primary measures. 
We used linear mixed effects modeling to test differential threat responses and 
generalization gradients, and Generalizability (G) theory coefficients as our pri-
mary formal assessment of test–retest reliability of intraindividual stability and 
change across time. Results showed largely invariant differential conditioning 
and generalization gradients across time. G coefficients indicated fair reliability 
for acquisition and generalization SCR. In contrast, risk rating reliabilities were 
mixed, and reliability was particularly low for acquisition risk ratings. Our find-
ings generally support reliability of the threat conditioning and generalization 
paradigm for shorter test–retest intervals and highlight their utility for assess-
ments of behavioral interventions in mental health research, but challenges re-
main and further work is needed. Threat conditioning and generalization tasks 
are increasingly used for translational efforts to improve behavioral interven-
tions, and thus test–retest reliability for these tasks needs to be established. Our 
results support the test–retest reliability of threat conditioning and generalization 
over a relatively short (1-to-2 week) interval, but this depends on the measure 
used (physiological vs. self-report). Overall, these tasks could be appropriate for 
repeated testing over the course of a short-duration intervention study, but more 
research is needed, particularly in regard to longer-duration studies.
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1   |   INTRODUCTION

For well over a century, Pavlovian conditioning para-
digms have served as one of the most popular, reliable, 
and validated experimental tools for investigating learn-
ing and memory processes across species (Vervliet & 
Boddez,  2020). Pavlovian conditioning paradigms are 
increasingly popular for mental health research applica-
tions, as conditioning-based models provide a theoretical 
foundation for the etiology and treatment of a number of 
psychopathologies, such as anxiety disorders, obsessive–
compulsive disorder, and posttraumatic stress disor-
der (Cooper & Dunsmoor,  2021; Dunsmoor et al.,  2022; 
Pittig et al.,  2018). Conditioning paradigms also provide 
objective measures for assessing the efficacy and poten-
tial mechanisms of therapeutic interventions, such as 
exposure therapy (Ball et al., 2017; Forcadell et al., 2017; 
Raeder et al., 2020).

In the standard human threat conditioning design, 
participants learn that a conditioned stimulus (CS; e.g., a 
picture or a tone) predicts an aversive unconditioned stim-
ulus (US; e.g., a shock or a loud noise). Through the ac-
quisition of the CS-US association, the CS alone can elicit 
increases in autonomic arousal (e.g., skin conductance 
response), subjective expectancy of the US, and changes 
in affective judgments of valence and arousal toward the 
CS. These conditioned responses (CR) tend to generalize 
to other stimuli that are perceptually and/or conceptually 
related to the CS, but have not been directly paired with 
the US (Dymond et al.,  2015). The threat generalization 
paradigm is increasingly popular for clinical translational 
research efforts, as the overgeneralization of defensive re-
sponses toward stimuli that resemble known threats is a 
possible transdiagnostic marker that cuts across anxiety-
related disorder categories (Cooper, van Dis, et al., 2022; 
Dunsmoor & Paz, 2015; Lissek, 2012). A key assumption 
underlying these paradigms is that conditioning-related 
laboratory indices reflect traits that are stable within indi-
viduals across time. Consequently, Pavlovian conditioning 
paradigms should provide test–retest reliability. Given the 
steady use of Pavlovian conditioning and generalization 
paradigms in basic and translational sciences and contin-
ued work to align these paradigms with clinical practices 
(e.g., Adolph et al.,  2022), efforts to confirm their test–
retest reliability are needed.

Whether consistent patterns of responses to learned 
and generalized threats can be reproduced within the 
same individual across time is not a simple matter and re-
quires multiple investigations with different parameters to 
approach a consensus. As conditioning is a learning para-
digm, there could be substantial differences at a follow-up 
test merely because participants learned the CS-US associ-
ation at the initial test. For instance, human conditioning 

protocols commonly incorporate a discriminative design 
that includes an acquisition phase that uses a CS that pre-
dicts the US (i.e., CS+) and a CS that is never paired with 
the US (i.e., CS−). Therefore, when participants complete 
an acquisition phase a second time, they will presumably 
find it easier to discriminate between the CS+ and CS− 
due to their prior learning of the CS-US association and 
also due to familiarity with task procedures (commonly 
known as “practice effects” in other areas of psychology, 
e.g., Bird et al., 2003). This issue of prior learning is per-
haps even more consequential for conditioned gener-
alization paradigms, as the generalization test typically 
involves a number of ambiguous generalization stimuli 
(GS) that are never paired with the US, but might nonethe-
less elicit CRs in proportion to their similarity to the CS+. 
Thus, upon a follow-up generalization test, participants 
might remember from their initial experience that no GS 
was paired with the US. This memory of the previous ses-
sion could systematically lower within-subject stability of 
generalization across time due to near non-responding on 
follow-up tests.

Individual differences in psychophysiological mea-
sures, including skin conductance responses (SCR) and 
fear-potentiated startle (FPS), are well documented in 
human conditioning literature, with considerable vari-
ability across subjects that could potentially translate to 
across time variability (Lonsdorf & Merz,  2017). Some 
arousal variability might be explained by individual vari-
ability in psychological traits that broadly affect condi-
tioning indices, such as intolerance of uncertainty (e.g., 
Hunt et al., 2019; Mertens & Morriss, 2021) or trait-anxiety 
(e.g., Barrett & Armony, 2009). However, intraindividual 
changes in psychophysiological arousal could fluctuate 
across sessions for a number of other reasons. For exam-
ple, the first test session could generate relatively higher 
arousal because the participant is nervous to participate 
in a study with electrical shocks; but by the next session 
arousal has decreased because they are acquainted with 
the procedure and aware that the shock is not as painful as 
they feared. Another potential influence on test–retest re-
liability of conditioning paradigms is that arousal during 
a given experimental session is likely impacted by state 
variables (e.g., emotional state, sleep) with no guarantee 
that arousal levels will be consistent in the same individ-
ual across testing sessions.

Empirical research quantifying the stability of indi-
vidual differences in CRs in humans across time are lim-
ited, but so far provides mixed evidence for test–retest 
reliability within the same individuals. The majority 
of this work does not include a generalization test and 
focuses on differential threat acquisition and, in some 
cases, extinction (for a detailed survey of study parame-
ters and results, see Klingelhöfer-Jens et al., 2022). The 
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earliest example, by Fredrikson et al. (1993), tested par-
ticipants 20 days apart and only assessed SCR reliability 
using simple Pearson correlation for CS+ and CS− sep-
arately. Although test–retest was in the moderate-to-
strong range, these correlations are sub-optimal for 
determining test–retest reliability (Heise,  1969). Other 
studies added to the literature with more modern test–
retest metrics: Zeidan et al.  (2012) found moderate-
to-strong test–retest reliability for SCRs across three 
identical test sessions separated by up to 3 months each, 
and Ridderbusch et al. (2021) reported relatively weaker 
reliability for rating and neural measures across two 
testing sessions separated by 13 weeks. More recently, a 
comprehensive study by Klingelhöfer-Jens et al. (2022) 
tested participants six months apart and found fair-to-
moderate test–retest reliability for multiple behavioral 
(SCR, fear ratings) and neural measures using several 
different quantification approaches (an important and 
timely topic in the literature, see Kuhn et al.,  2022). 
This effort suggests that threat acquisition reliabili-
ties are generally modest and can substantially differ 
by type of dependent measure. There is only one prior 
study directly testing test–retest reliability of general-
ization. Torrents-Rodas et al.  (2014) also found mixed 
test–retest reliability for acquisition and threat general-
ization using visual stimuli (shapes) in the same indi-
viduals across two test sessions separated by 8 months. 
Measures included SCR, FPS, and shock expectancy risk 
ratings. Generalization test–retest reliability was highest 
for SCR, but notably lower for FPS and risk ratings. In 
a notable departure from prior studies, Torrents-Rodas 
et al. (2014) employed more complex test–retest reliabil-
ities estimates that were appropriate for assessing the 
stability of generalization patterns, which are necessary 
given that generalization tests typically include more 
than 2 stimulus classes.

The above discussed studies provide promising, if 
mixed, evidence of test–retest reliability across condi-
tioning indices. However, work in this area is scarce, 
and the majority used relatively long intervals between 
tests (i.e., several months). Over long testing inter-
vals, subjects may forget specific stimulus attributes 
of the CS and GSs, as well as crucial elements of the 
experimental protocol (Jasnow et al.,  2012; Riccio & 
Joynes, 2007). Notably absent from the literature of re-
liability of conditioning paradigms are investigations of 
shorter interval test–retest reliability, particularly stud-
ies of temporal stability on the scale of weeks as opposed 
to months. These relatively shorter test–retest intervals 
are important, as many exposure therapy studies assess 
changes in symptoms and related psychological vari-
ables (e.g., treatment mediators) every week or biweekly 
(e.g., Kothgassner et al., 2019; Mataix-Cols et al., 2017). 

Further, some studies administer self-report measures 
designed explicitly to test components of conditioning 
models (e.g., expectation violation; Elsner et al., 2022), 
but do not assess objective in vivo measures of condi-
tioned responding (e.g., psychophysiology). If interven-
tion scientists seek to directly test temporal dynamics of 
candidate conditioning-related mechanisms of change 
during a treatment study, the reliability of conditioning 
tasks on the scale of weeks must be established.

The goal of this report is to investigate the test–retest 
reliability of threat acquisition and generalization and 
contribute to an important literature on the psychomet-
ric properties of these commonly used tasks. For in-
stance, a strong base of test–retest evidence, comprised 
of multiple studies, is necessary to support condition-
ing tasks as reliable probes into the neurobehavioral 
mechanisms of anxiety-related psychology. In the cur-
rent study, we employed an auditory threat general-
ization paradigm that was retested after a 1-to-2-week 
period in a sample recruited for elevated intolerance 
of uncertainty. We predicted that SCR and expectancy 
generalizes in a graded fashion, such that responses 
gradually diminish in magnitude as auditory stimuli de-
creasingly resemble the CS+ along a frequency dimen-
sion (Dunsmoor, Kroes, et al., 2017; Dunsmoor, Otto, & 
Phelps, 2017). Informed by Torrents-Rodas et al. (2014), 
we predicted that these generalization gradients would 
show significant test–retest reliability (i.e., coefficient 
95% confidence intervals [CIs] do not contain zero) 
across a 1-to-2-week period.

2   |   METHOD

2.1  |  Participants

Participants were recruited through West Virginia 
University's psychology department participant pool 
and through flyers posted in the psychology depart-
ment. Interested individuals completed the Intolerance 
of Uncertainty Scale (IU; 27-item) online, and those 
with elevated IU (IU ≥72.22; one SD about the mean in 
a previous student sample; Buhr & Dugas,  2002) were 
invited to participate. A total of 72 participants provided 
consent. Of these 72, we excluded 18 participants who 
only completed the threat generalization task at the 
first session, five who returned for their second session 
after 15 days or longer, and three participants were ex-
cluded due to unusable SCR data (technical issues or all 
zero values, which would result in artificially perfect 
test–retest reliability and were therefore inappropri-
ate for our analyses), leaving N  =  46 for the analyses 
described in the current effort. We did not apply any 
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performance-based exclusions (such as the common 
practice of excluding based on poor discrimination dur-
ing acquisition, for critical discussion and compelling 
argument against this practice see Lonsdorf et al., 2019). 
Participants all completed a hearing test at the conclu-
sion of the study to ensure the ability to perceptually 
discriminate between the tone frequencies used in the 
experiment. No participants were excluded based on 

the results of a hearing test. See Table  1 for sample 
characteristics.

2.2  |  Threat generalization task

The experimental task contained two phases, acquisition 
(discriminative threat conditioning) and generalization 
based on Dunsmoor, Kroes, et al.  (2017), see Figure  1. 
Stimuli consisted of pure tone sine waves presented at a 
moderate volume (<60 decibels) through two dedicated 
Dell Computers external speakers for 2.5 s each and sepa-
rated by a 7–8 s inter-trial interval. Stimulus presentation 
was controlled using E-Prime 2.0 (Psychology Software 
Tools, Sharpburg, PA). CSs were a 1000 Hz and 550 Hz 
tone that signaled the presence (CS+) or absence (CS−) 
of the US, respectively. The acquisition phase included 
12 presentations each of unpaired CS+ and CS−, and an 
additional 8 CS+ trials paired with the US (8 of 20 CS+ 
trials; 40% reinforcement rate). We excluded all CS+ tri-
als paired with the US from analysis to mitigate potential 
confounds introduced by the US given the relatively short 
duration CS.

After threat conditioning, participants received 6 novel 
GS tones of ranging between the CS− and CS+ (650, 800, 
and 900) and extending beyond the CS+ (1100, 1200, and 
1350) During the generalization test, each tone (including 
unpaired CS+ and CS−) were presented 7 times each, for 
a total of 42 trials. We also included an additional 5 CS+ 
trials paired with the US during generalization to prevent 
extinction and habituation over the course of the lengthy 
generalization test (steady-state generalization testing; 

T A B L E  1   Sample and characteristics (N = 46)

Age

Mean (SD) 20.2 (2.97)

Gender

Female 35 (76.1%)

Male 11 (23.9%)

Race

American Indian/Alaska Native 1 (2.2%)

Black/African origin 1 (2.2%)

East Asian 2 (4.3%)

Other or Unknown 6 (13.0%)

White/European origin 36 (78.3%)

Ethnicity

Hispanic or Latino 8 (17.4%)

Not Hispanic or Latino 38 (82.6%)

Education

Associate's Degree 1 (2.2%)

Bachelor's Degree 3 (6.5%)

High School Graduate 4 (8.7%)

Some College 38 (82.6%)

F I G U R E  1   Threat conditioning design. Discriminative threat conditioning included pure tone conditioned stimuli paired (CS+, 
1000 Hz) or unpaired (CS−, 550 Hz) with an aversive US. Generalization stimuli were novel tones spanning a frequency continuum between 
the CS− and CS+ and beyond the CS+. CS−, conditioned safety cue; CS+, conditioned threat cue; US, unconditioned stimulus.
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see also Blough,  1975; Dunsmoor et al.,  2009; Lissek 
et al., 2008).

In all phases, we collected SCRs and trial-by-trial shock 
expectancy risk ratings. These ratings consisted of a three 
alternative-forced-choice scale corresponding to ‘1/no 
risk,’ ‘2/moderate risk,’ and ‘3/high risk’ for receiving the 
US, based on prior generalization studies (scored as 1–3, 
e.g., Lissek et al.,  2008). We informed participants that 
their button presses did not affect the outcome on a trial 
to mitigate the potential for participants to attribute the 
outcome to their choice or reaction times (i.e., to prevent 
an illusory correlation). We instructed participants to try 
to learn the association between the tones and the shock, 
but no explicit information was given regarding the CS-
US contingencies. Presentation was pseudo-randomized 
so that no more than 3 presentations of the same tone oc-
curred in a row. After generalization testing, participants 
underwent a hearing test, which validated that all partici-
pants had normal hearing and the capacity to discriminate 
between each tone frequency used in the experiment.

2.3  |  Psychophysiology collection and 
shock delivery

SCRs were acquired from the hypothenar eminence of 
the left palmar surface using disposable pre-gelled snap 
electrodes connected to the MP-100 BIOPAC System 
(BIOPAC Systems). We did not filter SCR data. Analysis 
of SCRs used previously described procedures (Dunsmoor 
et al.,  2015; Dunsmoor, Kroes, et al.,  2017). In brief, an 
SCR was considered related to CS presentation if the 
trough-to-peak deflection occurred 0.5–3  seconds fol-
lowing CS onset, lasted between 0.5 and 5.0  s, and was 
greater than 0.02 microsiemens (μS). Responses that did 
not fit these criteria were scored as zero. SCR values were 
obtained using a custom MATLAB (The Mathworks Inc., 
Natick, MA) script that extracts SCRs for each trial using 
the above criteria (Green et al.,  2014) and subsequently 
inspected by an independent blinded rater. CS+ trials 
paired with the US were excluded from all analyses. Raw 
SCR scores were square root transformed prior to statis-
tical analysis to normalize the distribution (Lykken & 
Venables,  1971). This analytic approach was chosen to 
align our test–retest work with the bulk of prior generali-
zation studies, and threat conditioning studies in general, 
that use the same approach to quantifying SCR (Lonsdorf 
et al., 2017).

Two electrodes were attached to the participants' right 
wrist to deliver shocks, which functioned as the US in this 
study. Shocks were generated by the BIOPAC STIMISOC 
adapter and lasted 200 ms. Each participant completed a 
shock work-up to determine a shock level that was highly 

annoying but not painful. In this procedure, shocks were 
calibrated using an ascending staircase procedure starting 
with a low voltage setting near a perceptible threshold and 
continuing until the participant endorsed the shock that 
was at a four or five on a 10-point intensity scale.

2.4  |  Procedure

The data in this paper are from a larger 4-session study, 
assessing the effect of cognitive bias modification for in-
terpretations (CBM-I) compared to a control condition 
(sham CBM-I, designed not to affect interpretations) on 
IU. The primary aims and outcomes of this intervention 
are described elsewhere; briefly, only participants with 
higher IU were recruited, and results from this interven-
tion revealed that the active CBM-I condition showed 
improvements compared to the control condition for task-
assessed interpretation bias and self-reported symptoms. 
Preliminary analyses determined the intervention did not 
influence any conditioning task variables. This manu-
script describes data from the threat generalization task 
completed at timepoint 1 (here, “initial session/session 
1”) and timepoint 4 (here, “follow-up session/session 2”), 
which were 1-to-2-weeks apart (median days = 9, mean 
days = 9.43, SD = 1.41, range = 7–14, IQR = 2). Trained 
researchers attached SCR and shock electrodes to partici-
pants and then guided them through the shock workup 
procedure. Participants then received task instructions 
and completed the threat generalization task. After the 
task, participants completed brief post-task question-
naires and a hearing test.

2.5  |  Analytic plan

All data and code for the current analyses can be found on 
this project's OSF repository, https://osf.io/zqfkj/​?view_
only=b8fcf​a394f​77443​8aed2​7a911​7ebaec4.

2.5.1  |  Linear mixed models

We used linear mixed models (i.e., linear mixed-effects re-
gression) to model and test generalization gradients (see 
Vanbrabant et al., 2015 for applicability of these models to 
generalization data), All models were fit with the lme4 li-
brary for R (Barr et al., 2013; R Core Team, 2022). For both 
dependent variables, trial-level data for each stimulus was 
averaged and submitted to analysis. All models contained 
a random-intercept of participant and fixed effects of 
stimulus, session, and the Stimulus × Session interaction. 
The addition of a session and stimulus random-effect was 
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tested for improved fit using Likelihood-ratio tests (LRTs) 
comparing models with and without the term, per stand-
ard mixed-effects regression recommendations (e.g., Barr 
et al., 2013; Gelman & Hill, 2006). We report standardized 
betas, 95% CIs, and Wald t-tests using Satterwhite ap-
proximated degrees of freedom for all terms from primary 
models. We also used linear mixed models for manipula-
tion checks of differential conditioning during acquisition 
and to determine if participants continued to differenti-
ate between the CS+ and CS− during the generalization 
phase; these models contained a fixed effect of stimulus 
with only CS+ and CS− trials included.

2.5.2  |  Psychometric framework and 
calculations

As our primary measures of test–retest reliability, we cal-
culated coefficients based on generalizability (G) theory. 
Briefly, G theory is a psychometric approach that decom-
poses an observed score into multiple sources of variance 
to produce coefficients that describe different types of reli-
ability (G coefficients), which expands on the classical test 
theory concept of reliability that recognized only single 
sources of non-error variance (Brennan, 2001; Cronbach 
et al., 1972; Shrout & Lane, 2012). G theory is a particu-
larly for factorial experimental tasks that use psycho-
physiological measures, as these types of designs contain 
multiple sources of variances due to their signal-to-noise 
properties, multiple experimental parameters, and other 
attributes that together make classical test theory a poor 
fit to assess their reliability. In the current effort, for SCRs 
and risk ratings in both phases, we first used the psych 
and lme4 libraries for R to obtain variance components 
via the “mlr” and “lmer” functions (Bates et al.,  2015; 
Revelle, 2017) and used functions from the gtheory library 
(Moore, 2016) to extract components. With these compo-
nents, we calculated two G coefficients. The first of these 
we term RIRS and was proposed by Hinz et al. (2002) as a 
metric of “individual response stability”, the proportion of 
within-person responding to experimental stimuli that is 
stable across time and is best suited to capturing the sta-
bility of patterns of stimulus generalization. Equation (1) 
was used to calculate RIRS:

In Equation (1), �2
Participant×Stimulus

 refers to individual 
variability in response to the experimental stimuli, and 
�
2
Residual

 refers to error variance that is not accounted for 
by other components (i.e., variance that cannot be 

explained by the tested factors). Notably, RIRS was the G 
coefficient reported in the only prior study of test–retest of 
threat generalization, Torrents-Rodas et al. (2014),1 which 
also collected SCR and ratings. Thus, we have the opportu-
nity to directly compare this form of reliability between 
two different studies. Larger RIRS coefficients indicate that 
a pattern of individual responding is consistent across 
time and can increase confidence that conditioning tasks 
are capturing a relatively stable associative learning 
process.

In addition to RIRS, we report RC (Equation 2), which 
was first proposed by Cranford et al.  (2006) and further 
discussed by Shrout and Lane (2012) as a measure of the 
reliability of change in responses across individuals be-
tween timepoints, as opposed to stability of a particular 
response pattern:

In Equation  (2), �2
Participant×Session

 refers to individual 
variability at each session (i.e., across time). The �2

Residual
 

term continues to refer to error variance, but in this case, 
it is divided by m number of sessions, which results in a 
fixed effect coefficient (i.e., the estimate is specific to num-
ber of sessions specified, which is 2 in the current study). 
We report RC due to the continued interest in and prac-
tice of using conditioning tasks as biobehavioral measures 
of underlying pathological mechanisms that are targets 
of intervention research, particularly exposure therapy 
research (Craske et al., 2014; Raeder et al., 2020). Larger 
RC coefficients would provide initial support for a mea-
sure being useful to track systematic changes in response 
over time, as opposed to change as a result of random 
error (which is represented by the �2

Residual
 residual term 

in Formula 2). This coefficient is perhaps most applica-
ble to intervention work, as it is vital to ensure interven-
tion change (i.e., systematic change) is not conflated with 
error-related change.

RC coefficients complement RIRS coefficients by quan-
tifying a person's non-stable variance (i.e., the variance 
that is unreliable according to RIRS) and determining how 
much of said variance is related to change across time-
points. Accordingly, it is possible to have both adequate RC 
and RIRS coefficients from the same measure, but as one 
increases, the available variance to quantify for the other 
measure decreases. It is therefore not possible to have 

(1)RIRS =
�
2
Participant×Stimulus

(

�
2
Participant×Stimulus

+ �
2
Residual

)

 1Torrents-Rodas et al. (2014) refer to the RIRS coefficient with the more 
general notation for a G coefficient, Eρ2. We instead use the notation 
from Hinz et al. (2002) to align with G theory work by Cranford et 
al. (2006), Shrout and Lane (2012), and others, and to facilitate 
additional investigations using these coefficients.

(2)RC =
�
2
Participant×Session

(

�
2
Participant×Session

+
[

�
2
Residual

∕m
]

)
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very high RC and RIRS simultaneously. Of note is that high 
values for both RC and RIRS simultaneously would not be 
desirable for a treatment measure, because it would sug-
gest that measure is not amenable to intervention-related 
change.

For both types of coefficients, we constructed 95% con-
fidence intervals using the method provided in tab. 7 in 
McGraw and Wong  (1996). CIs that do not contain zero 
within its interval indicate that the coefficient is signifi-
cantly different from zero. We also provide qualitative de-
scriptions of coefficient size based on commonly applied 
recommendations (i.e., .4–0.75 is considered “fair-to-
good” reliability, >0.75 considered “excellent” reliability, 
see Matheson, 2019), although we caution against strin-
gent application of these standards for conditioning tasks 
for two reasons. First, there is limited work in this area and 
disagreement on firm guidelines regarding interpretation 
of within-person reliability (Matheson, 2019). Second, re-
liability cut-offs are typically based on psychometric work 
on self-report measures of psychological traits and states 
and thus are likely overly conservative for metrics with ad-
ditional potential sources of error, including psychophysi-
ological measurements.

To supplement our G coefficients and to provide ad-
ditional points of comparison to prior studies, we pro-
vide individual stimuli intraclass correlation coefficients 
(ICCs) as commonly reported in the broader test–retest 
literature (Fisher,  1992). Specifically, we provide ICCs 
that measure absolute agreement between timepoints and 
assumes a random interval between timepoints (ICC2 in 
McGraw & Wong, 1996), which is appropriate given the 
variable number of days between Session 1 and Session 2 
for some participants.

3   |   RESULTS

3.1  |  Differential threat conditioning

3.1.1  |  SCR

Successful differential conditioning, operationalized as 
significantly larger CS+ responses (session 1: M  =  0.51, 
SD = 0.33; session 2: M = 0.51, SD = 0.44) compared with 
CS− responses (session 1: M = 0.28, SD = 0.17; session 2: 
M = 0.17, SD = 0.14), was evident during acquisition at 
both sessions (session 1: β = 1.3, t(87) = 6.26, p < .001, 95% 
CI [0.89, 1.72]; session 2: β = 2.37, t(88) = 6.13, p < .001, 
95% CI [1.6, 3.13]). Participants continued to respond 
more strongly to the CS+ compared with the CS− dur-
ing generalization at both sessions (session 1: β  =  .36, 
t(88)  =  2.25, p  =  .027, 95% CI [0.04, 0.67]; session 2: 
β = 1.45, t(88) = 3.92, p < .001, 95% CI [0.72, 2.19]).

3.1.2  |  Ratings

Successful differential conditioning, operationalized as 
significantly larger CS+ risk ratings (session 1: M = 2.57, 
SD = 0.36; session 2: M = 2.63, SD = 0.34) compared with 
CS− ratings (session 1: M  =  1.24, SD  =  0.22; session 2: 
M = 1.18, SD = 0.21), was evident during acquisition at 
both sessions (session 1: β = 5.91, t(72) = 19.58, p < .001, 
95% CI [5.31, 6.51]; session 2: β  =  6.76, t(84)  =  30.27, 
p < .001, 95% CI [6.31, 7.2]). Participants continued to 
expect the US more for the CS+ compared with the CS− 
during generalization at both sessions (session 1: β = 1.46, 
t(76)  =  6.67, p < .001, 95% CI [1.02, 1.89]; β  =  2.26, 
t(83) = 11.31, p < .001, 95% CI [2.19, 3.12]).

3.2  |  Generalization gradients

3.2.1  |  SCR

A model with a random-effect of testing session was 
the best fit for SCR data, χ2(2) = 277.34, p < .001. In this 
model, both stimulus, β  =  .13, t(729)  =  5.88, p < .001, 
95% CI [0.09, 0.17], and session, β  =  −.11, t(729)  =  −2, 
p =  .036, 95% CI [−0.22, −0.01], predictors were signifi-
cant. The Stimulus × Session interaction was not signif-
icant, β  =  .02, t(728)  =  1.84, p  =  .066, 95% CI [0, 0.03]. 
Follow-up estimated marginal means analyses revealed 
that the CS− was the only stimulus to significantly differ 
across sessions, b = 0.11, t(188) = 2.85, pbonferroni =  .034, 
95% CI [0.03, 0.19], with CS− magnitude larger at session 
1 compared with session 2. See Figure  2a for visualized 
generalization gradients at each testing session.

The CBM intervention did not significantly affect gra-
dients, as assessed through an additional model that in-
cluded a Stimulus × Session × CBM Group interaction, 
β  =  .001, t(724)  =  1.56, p  =  .876, 95% CI [−0.01, 0.01]. 
Mean IU interacted with the Stimulus × Session term, 
while controlling for change in IU between sessions, was 
also not significant, β =  .005, t(723) = −0.919, p =  .358, 
95% CI [−0.01, 0]. Rerunning primary models with CBM 
Group and IU terms included as a separate fixed-effects 
yielded almost no change in the reported coefficients and 
did not change their significance.

3.2.2  |  Ratings

A model with a random-effect of testing session was also 
the best fit for risk rating data, χ2(2) = 55.61, p < .001. In 
this model, both stimulus, β = .19, t(700) = 6.03, p < .001, 
95% CI [0.13, 0.25], and session, β = −.17, t(700) = −4.44, 
p < .001, 95% CI [−0.24, −0.09], predictors were significant, 
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but as with the SCR data, the Stimulus × Session inter-
action was not significant β  =  −.001, t(699)  =  −0.07, 
p = .938, 95% CI [−0.02, 0.02]. Follow-up estimated mar-
ginal means analyses revealed that ratings for the CS−, 
b  =  0.26, t(506)  =  3.29, pbonferroni  =  .007, 95% CI [0.1, 
0.42], CS900, b  =  0.23, t(491)  =  2.92, pbonferroni  =  .025, 
95% CI [0.07, 0.38], and CS1350, b  =  0.27, t(491)  =  3.52, 
pbonferroni =  .003, 95% CI [0.12, .43], significantly differed 
across sessions, with ratings for all three of these stimuli 
significantly higher at session 1 compared with session 2. 
See Figure  2b for visualized generalization gradients at 
each testing session.

The CBM intervention did not significantly affect gra-
dients, as assessed through an additional model that in-
cluded a Stimulus × Session × CBM Group interaction, 
β = −.003, t(695) = −0.416, p = .677, 95% CI [−0.01, 0.01]. 
Mean IU interacted with the Stimulus × Session term, 
while controlling for change in IU between sessions, was 
also not significant, β = −.004, t(694) = −0.589, p = .556, 
95% CI [−0.02, 0.01]. Rerunning primary models with 
CBM Group and IU terms included as a separate fixed-
effects yielded almost no change in the reported coeffi-
cients and did not change their significance.

3.3  |  Test–Retest reliability

Table 2 displays all variance components for each phase 
which were submitted to generalization coefficient calcu-
lations. Figures S1–S4 plot individual-level raw values and 
change slopes for all dependent variables, which can be 
used to visually assess variability of cross-session effects 
within each participant.

3.3.1  |  Acquisition

Although the largest source of variance at acquisition was 
the stimulus component for both SCR and ratings, the 
magnitude of this component notably varied. For SCR, the 
stimulus component accounted for 30% of variance, with 
the Participant × Stimulus (23%) and Participant × Session 
(13%) interactions accounting for smaller proportions of 
variance. These components indicate that a modest major-
ity of the variance resulted from differences in the average 
responding to each stimulus (i.e., “main effect”), as would 
be expected during differential conditioning, but that re-
sponses also notably varied depending on the person and 
the testing session, as would be expected of a psychophysi-
ological variable. Residual variance was also comparable 
to these components (17%), indicating a notable propor-
tion of error variance in SCR measurements. In contrast, 
the largest variance component for risk ratings was also 
stimulus, but with this component accounting for 92% of 
variance, with the negligible remainder mostly accounted 
for by the Participant × Stimulus interaction (2%) and re-
sidual (7%) terms. Accordingly, variance in risk ratings 
was almost entirely accounted for by the difference in 
stimuli and was consistent across all participants.

Test–retest coefficients for this phase also differed de-
pending on the measure (see Figure  3). The reliability 
of within-person patterns of responding (similarity, i.e., 
RIRS) slightly varied depending on measure, with SCR 
demonstrating higher reliability, RIRS = .44, 95% CI [0.17, 

F I G U R E  2   Conditioned generalization gradients at initial 
and follow-up session. All plotted values are fitted values from the 
linear mixed effects models described in text. Error bars represent 
95% confidence intervals adjusted for random effects of the model. 
Panel a displays square-root transformed SCR generalization 
gradients; panel b displays risk rating gradients. CS−, conditioned 
safety cue; CS+, conditioned threat cue; SCR, skin conductance 
response; US, unconditioned stimulus.
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0.64], than risk ratings, RIRS = 0.28, 95% CI [−0.01, 0.53]. 
Reliability of change (i.e., RC) across time also differed by 
measure. SCR reliability, RC  =  0.67, 95% CI [0.47, 0.80], 
was notably higher than risk rating reliability, RC = 0.11, 

95% CI [−0.17, 0.38]. Of note is that the risk rating RIRS 
and RC coefficients were the only generalizability coeffi-
cients calculated in the current effort that were not signif-
icant. In terms of individual stimulus reliabilities, those 

T A B L E  2   Variance component analysis results

Component

Acquisition Generalization

SCR Ratings SCR Ratings

Variance % Variance % Variance % Variance %

Participant 0.02 15 0.011 1 0.025 38 0.051 18

Session 0 0 0 0 0.001 2 0.013 5

Stimulus 0.04 30 0.97 92 0.001 2 0.064 23

Participant × Session 0.017 13 0.004 0 0.016 24 0.021 8

Participant × Stimuli 0.03 23 0.016 2 0.009 14 0.04 15

Session × Stimuli 0.002 2 0 0 0.001 1 0.005 2

Residual 0.022 17 0.058 6 0.013 20 0.082 30

Note: Each variance component was extracted from a linear mixed model constructed for each dependent variable in each phase. Here, we report both variance 
values and percentage of total variance for each component.
Abbreviations: ACQ, acquisition; GEN, generalization; SCR, skin conductance response.

F I G U R E  3   Test–retest reliabilities of SCR and risk rating data at each testing phase. The left panel displays stability (i.e., within-subject 
stability of response pattern) coefficients (RIRS); the right panel displays change (i.e., within-subject reliability of change) coefficients (RC). 
Error bars reflect 95 confidence intervals; CIs that do not overlap with zero indicate the coefficient is significantly different from zero. 
ACQ, acquisition phase; CS−, conditioned safety cue; CS+, conditioned threat cue; GEN, generalization phase; RR, risk rating; SCR, skin 
conductance response; US, unconditioned stimulus.
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10 of 16  |      COOPER et al.

for SCRs were lower for the CS−, ICC = 0.34, 95% CI [0.04, 
0.58], compared with the CS+, ICC = 0.59, 95% CI [0.36, 
0.75]. This pattern was reversed for risk ratings, with CS− 
reliability, ICC  =  0.43, 95% CI [0.17, 0.64], higher than 
CS+ reliability, ICC = 0.28, 95% CI [−0.01, 0.52], which 
was not significantly different than zero. See Figure 4 for 
visualized individual stimulus ICCs.

3.3.2  |  Generalization

The pattern of variance components for generaliza-
tion markedly differed from those from acquisition 
(see Table 2). For SCR, the largest variance component 
was the participant component (38%), followed by the 
Participant × Time (24%) and Participant × Stimulus 
(14%) interactions. This indicates that the majority of 
variation was across participants (i.e., differences in 
average physiological responding), but also dependent 

on the testing session and, to a lesser extent, each per-
sons' pattern of responding to each stimulus. Residual 
variance also accounted for a notable proportion of vari-
ance (20%), indicating marked error variance in SCR 
at this phase. In contrast, the largest predictor vari-
ance component for risk ratings was the stimulus com-
ponent (23%), followed by participant (18%) and the 
Participant × Stimulus interaction (15%). Of note is that 
for risk ratings, residual variance also accounted for the 
overall largest proportion of variance (30%), indicating 
a substantial amount of variance could not be explained 
by the predictors.

The pattern of test–retest generalizability coefficients 
for the generalization phase was largely similar to the pat-
tern observed in acquisition. However, all coefficients were 
significant for this phase (see Figure 3). The reliability of 
within-person patterns of responding was again higher 
for SCR, RIRS = 0.41, 95% CI [0.13, 0.62], compared with 
risk ratings, RIRS = 0.33, 95% CI [0.05, 0.56]. This was also 

F I G U R E  4   Individual stimuli test–retest ICCs for SCR and risk rating data across testing phases and sessions. Lighter blue panels 
indicate larger ICCs (i.e., higher test–retest reliability). ICC values are located in the gray boxes within each panel. ACQ, acquisition phase; 
CS−, conditioned safety cue; CS+, conditioned threat cue; GEN, generalization phase; ICC, intraclass correlation coefficient; RR, risk rating; 
SCR, skin conductance response.
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      |  11 of 16COOPER et al.

the case for reliability of change (SCR: RIRS = 0.9, 95% CI 
[0.84, 0.94]; risk ratings: RIRS = 0.67, 95% CI [0.48, 0.80]).

In terms of individual stimulus reliabilities, SCR 
reliability was highest for the CS+, CS1200, and CS1350 
(ICCs ≥ 0.56), while the CS− and CS1100 demonstrated the 
lowest reliability (ICCs = 0.39). For risk ratings, the CS+ 
again demonstrated the highest reliability, ICC  =  0.55, 
95% CI [0.31, 0.72], and the CS− again demonstrated the 
lowest reliability (ICC = 0.22). Additionally, the CS− and 
CS1100 risk ratings were the only individual stimuli reli-
abilities to be non-significantly different from zero. See 
Figure 4 for visualization of all individual stimulus ICCs.

4   |   DISCUSSION

Given the prominent role of threat conditioning paradigms 
in preclinical and clinical-translational research, it is im-
portant to assess the reliability of these protocols over time 
in the same individuals. Here, we investigated the test–
retest reliability of two behavioral measures during audi-
tory threat acquisition and stimulus generalization tests, 
SCR and risk ratings, across a 1-to-2-week interval. Our 
primary goal was to assess the test–retest of threat gen-
eralization. For SCR, reliability was generally fair across 
two types of G coefficients, one indexing within-person 
stability of response patterns and the other indexing reli-
ability of change across time. However, reliability was no-
tably poorer for risk ratings. Additionally, generalization 
gradients did not significantly differ at each time-point, 
although there was some across session variability at the 
level of individual stimuli. These results provide moderate 
support for the conclusion that threat generalization gra-
dients remain relatively stable using an identical protocol 
at two timepoints, but in line with prior work, that reli-
ability is modest in magnitude and related to the specific 
type of measure. These findings provide useful informa-
tion regarding the utility of these paradigms for pre-to-
post measures on the efficacy of behavioral interventions 
aimed at reducing generalized fear and arousal (e.g., 
cognitive behavioral therapy or cognitive bias modifica-
tion for anxiety disorders; Cristea et al.,  2015; Steinman 
et al., 2021).

We measured two types of reliability in our analyses: 
stability of responses within individuals, and reliability 
of change across sessions. The first is most important for 
understanding how generalization profiles are stable over 
time, the second for clarifying if changes across time are 
systematic (e.g., related to between-session interval or in-
tervention) or random error. In this study, we found that 
within-person stability of behavioral generalization was 
fair for SCR, and poorer for risk ratings. Despite the rel-
atively lower risk rating coefficients in the current study, 

all coefficients were larger than those found in the other 
reliability study of threat generalization (Torrents-Rodas 
et al., 2014) that retested generalization after an 8-month 
interval. Specifically, test–retest stability across the 8-
month interval ranged from RIRS  =  0.23 to RIRS  =  0.34, 
compared to RIRS = 0.28 to RIRS = 0.44 in the current study. 
Differences in reliability at different intervals is a key issue 
in determining the utility of repeated testing of condi-
tioned generalization. One possibility is that generaliza-
tion stability is improved over a short test–retest interval 
compared with longer intervals. In contrast, a longer inter-
val between testing sessions could result in forgetting the 
details of stimulus attributes and the experimental proce-
dure, and subsequently promote increased generalization 
(Jasnow et al., 2016; Riccio & Joynes, 2007). Also possible 
is that test–retest at an even shorter interval, such as 24 or 
48 h, would result in poorer reliability due to participants 
likely having strong explicit memory that would bias their 
responding relative to the initial, naïve testing session.

We also found that test–retest reliabilities differed for 
individual stimuli during generalization. Both risk ratings 
and SCRs for the CS− were among the lowest test–retest 
reliabilities (ICC), and mean CS− for both measures also 
significantly differed between sessions. This result poten-
tially points to participants during Session 1 forming a 
stable and enduring memory of the CS−, which then fa-
cilitates much lower Session 2 responses. Additionally, the 
CS− is the only unambiguous stimulus, as CS+ is not al-
ways reinforced with shock and the intermediary CSs are 
ambiguous by design due to their increasing similarity to 
the CS+. Also relevant is that lower reliabilities for some, 
but not all, stimuli might be a key contributor to lower 
reliabilities for the full generalization gradients. Given 
the number of stimulus classes commonly used in gen-
eralization tests, this suggests alternative generalization 
quantification strategies that can mitigate the influence of 
individual stimuli are needed. One option is to use a lim-
ited number of parameters that describe the shape of the 
gradient (for discussion, see Lee et al., 2020). Another op-
tion is to apply a latent variable approach and to assess the 
reliability of latent generalization variables that underlie 
manifest generalization indicators (e.g., latent growth 
curves, for applied example see Gazendam et al., 2020).

Taken together, the current results suggest that a 
1-to-2-week interval results in generally stable generaliza-
tion over time, with some exceptions. Theory and limited 
prior results suggest that much shorter or longer intervals 
might pose some issues for reliability (as is seen in other 
memory-related tasks, for meta-analysis see Scharfen 
et al., 2018). However, further reliability studies at vary-
ing time-intervals are warranted to detail the optimal in-
terval for pre-to-post testing of generalization protocols. 
It also must be emphasized that the current effort cannot 
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necessarily be extrapolated into inferences regarding much 
longer periods of time and refer readers to studies testing 
over long periods (see Klingelhöfer-Jens et al., 2022).

Contrary to the reliability observed for generalization 
metrics, both stability and change in acquisition risk rating 
across testing sessions evidenced relatively poorer reliabil-
ity. An explanation for the overall poorer reliability for ac-
quisition risk ratings (and for risk ratings in general in this 
investigation) is that fewer response options (i.e., 3 response 
options, as used in the current study) tend to be associated 
with lower reliability (e.g., Weng, 2004). We strongly encour-
age future studies to use rating scales with more response 
options to circumvent this issue. Additionally, one plausible 
explanation for the poor change reliability (which was the 
lowest generalizability coefficient we found) is related to in-
terindividual differences in memory for the US contingency 
learned in the first session. Some participants will perfectly 
remember the relatively simple CS/US association and pro-
vide invariant risk ratings for acquisition during the second 
test. Others might have relatively more variable ratings 
during this phase, either due to poorer retention or more 
elaborate reasons (e.g., expecting a change in contingency 
or stimuli). Regardless of reason for this pattern, a subgroup 
of participants with near invariant responding at one time-
point will negatively bias change reliability scores, as there 
is essentially no change to measure (Shrout & Lane, 2012). 
Although this could not be tested in the current study given 
sample size limitations, future studies with larger sample 
sizes would benefit from subgroup analysis of those with 
and without near-invariant responding.

One limitation of the current study is that we did not col-
lect qualitative or quantitative data on participants' explicit 
memory for their prior testing session. Therefore, we could 
not account for whether performance at the second test 
was affected by participants' ability to recall explicit details 
of the task structure. Another limitation is that the sample 
was constrained to those with relatively higher IU scores. 
Although this might limit the generalizability of our find-
ings, the levels of IU in the current study still likely reflect 
a sizable proportion of the population and we contend our 
results are still broadly applicable. This suggests that those 
with markedly higher IU scores compared with those with 
lower scores would yield similar test–retest reliability on the 
threat generalization task. We also note that although IU is 
frequently an individual difference of interest in relation 
to threat conditioning, work on relating IU to threat gen-
eralization has been inconsistent (e.g., Bauer et al.,  2020; 
Hunt et al., 2019; Nelson et al., 2014), and would not nec-
essarily affect test–retest reliability. Further, psychometric 
approaches to test–retest reliability are predicated on the 
assumption that between-subjects variance is minimally 
influential compared with within-subjects variance, and 
does not require all participants have the same level of a 

particular trait (most clearly seen in psychometrics applied 
to self-report questionnaires, where the assumption is that 
there will be between-subjects variability on multiple traits 
related to the outcome of interest; e.g., Enkavi et al., 2019). 
Additionally, meta-analyses find that test–retest reliability 
does not differ by clinical individual differences in several 
commonly used cognitive neuroscience and neuropsychol-
ogy tasks (e.g., Calamia et al., 2013; Elliott et al., 2020). That 
said, the field would benefit from additional psychometric 
assessment of conditioning tasks where candidate individ-
ual differences, including IU, are comprehensively sam-
pled and systematically tested over different time periods. 
Further, when possible, we recommend assessing reliabil-
ity in a fully representative sample that has not been pre-
selected for a certain level of a trait. The possibility remains, 
both for the current work and similar future studies, that 
reliability would differ in a sample that has not been con-
strained based on a psychological variable of interest.

Another limitation in the current study is that partici-
pants in the current sample identified as primarily White 
and non-Hispanic or Latino, college-aged, and female. 
Replication with more demographically diverse samples 
is needed, particularly given evidence of demographic 
differences in threat conditioning metrics (e.g., Cooper, 
Hunt, et al.,  2022; Rosenbaum et al.,  2015). Finally, we 
note that the current investigation used a relatively small 
sample-size, although it was similar to the prior study of 
generalization test–retest by Torrents-Rodas et al. (2014). 
Future studies of generalization test–retest would benefit 
from increased sample-sizes to facilitate more compre-
hensive test–retest evaluations, such as those performed 
with the N = 120 sample of Klingelhöfer-Jens et al. (2022). 
An additional issue of note is in regards to psychophys-
iological data (SCR, in the current study). Different 
strategies for SCR quantification can impact inferential 
statistics (Kuhn et al.,  2022; Lonsdorf et al.,  2019) and 
reliability metrics (Klingelhöfer-Jens et al., 2022). In the 
current study, we use the most common SCR approach 
in the generalization literature to maximize the compati-
bility of our work with the prior literature. That said, the 
field would benefit from more formal analysis of different 
physiological quantification pipelines in relation to gen-
eralization reliability (in line with a move toward multi-
verse analyses, e.g., Klingelhöfer-Jens et al., 2022; Kuhn 
et al., 2022). One particularly important avenue for future 
research in this area are quantification approaches that 
minimize trial-by-trial variability (e.g., model-based ap-
proaches, see Kuhn et al., 2022), and therefore would po-
tentially limit the impact that initial learning trials during 
the first session have on overall test–retest reliability.

Future work is needed to add to the growing evidence 
base of reliability studies of threat conditioning tests, par-
ticularly those testing generalization. For generalization 
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studies, a study spanning multiple timepoints is the next 
step to determine differences in short and long-term reliabil-
ity. Further, the current study and prior work can only speak 
to generalization of passive-emotional Pavlovian learning. 
There has been substantial recent empirical attention on 
the overt behavioral consequences of threat generalization, 
most notably avoidance of threat (Pittig et al., 2020; Wong 
et al., 2022), which suggests that studies will be needed to 
clarify the reliability of generalized avoidance over time. 
More evidence is likely needed to form a strong conclusion 
on the utility of repeated generalization tests for interven-
tion research. Thus, the next reliability studies of threat 
generalization would benefit from testing a larger sample of 
participants with diagnosed psychopathology across multi-
ple timeframes and utilizing a design that resembles those 
from intervention studies, such as weekly testing sessions. 
However, the current study suggests that threat generaliza-
tion paradigms are reliable over a short interval and can be 
appropriate for assessing behavioral intervention effects.
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