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Abstract— We consider the problem of characterizing a
spatial partition of the position space of a team of vehicles
with double integrator kinematics. The proximity relation s
between the vehicles and an arbitrary target point in the
partition space is the minimum control effort required for each
vehicle to reach the latter point with zero miss distance and
exactly zero velocity at a prescribed final time (both the finite
and the infinite horizon are considered). We show that the
solution to the generalized Voronoi partitioning problem can be
associated with a class of affine diagrams whose combinatorial
complexity is comparable to the standard Voronoi diagram.
For the computation of the latter class of affine diagrams,
we utilize a partitioning algorithm, which is decentralized in
the sense that each vehicle can compute an approximation of
its own cell independently from the other vehicles from the
same team. Numerical simulations that illustrate the theoretical
developments are also presented.

I. I NTRODUCTION

This paper deals with a spatial partitioning problem for
a team of vehicles with double integrator kinematics. In
particular, each vehicle is associated with a subset of its
operating environment, which we refer to as theRegion of
Influence(ROI), in the sense that a target or a task associated
with a location within the latter set is automatically assigned
to this particular vehicle. In contrast to our previous workon
similar partitioning problems, where we have employed cen-
tralized computational techniques, in this work, we propose a
decentralized partitioning algorithm that allows each vehicle
to independently compute its own cell from the partition (or
ROI).

The problem considered in this work can be put under the
umbrella of generalized Voronoi partitioning problems with
respect tostate-dependentproximity (pseudo-) metrics [1],
[2]. In contradistinction with distance functions that stem
from geometric considerations solely [3], state-dependent
proximity metrics account explicitly for the vehicle dynam-
ics. Partitioning problems with respect to state-dependent
metrics for vehicles with single integrator and second order
linear dynamics can be found, respectively, in [1], [2], [4]–
[6] and [7], [8]. In these references, the proximity metric
is taken to be the minimum control effort required for the
transition of each vehicle to a neighborhood of a target
point with a small terminal speed. In particular, Ref. [7]
addresses the partitioning problem by utilizing computational
techniques, whereas in [8] it is shown that the same problem
can be directly associated with a particular class of power
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diagrams in higher dimensional partition spaces, for which
efficient algorithm exist in the literature. The main drawback
of the techniques presented in both [7] and [8] is that they
do not allow any vehicle to compute its associated cell
independently from the other vehicles from the same team
(centralized partitioning algorithms).

In this work, we propose a generalized Voronoi parti-
tioning problem whose proximity metric corresponds to the
value function of either a finite horizon minimum control
effort problem or an infinite horizon linear optimal control
problem with an “observable” quadratic cost. Each vehicle
is required to reach an arbitrary target point with zero miss
distance and with exactly zero terminal velocity either at a
given terminal time (finite horizon) or asymptotically (infinite
horizon). In both cases, we show that the characterization of
the generalized Voronoi partition reduces to the computation
of an affine Voronoi diagram. It is shown that both of the
proposed partitioning problems can be addressed by means
of a partitioning algorithm, which isdecentralizedin the
sense that a vehicle can compute an approximation of its
corresponding cell from the partition (or ROI), without com-
puting by itself or receiving any information about the cells
that correspond to any other vehicles from the same team.
The proposed algorithms build upon some recent results on
the parallel computation of generalized Voronoi diagrams in
normed spaces by Reem [9], [10].

The rest of the paper is organized as follows. Section II
presents the formulation of the optimal control problem for
a single vehicle. The partitioning problem is formulated and
subsequently solved by means of a decentralized partitioning
algorithm in Section III. Section IV presents numerical
simulations, and finally, Section V concludes the paper with
a summary of remarks.

II. FORMULATION OF THE OPTIMAL STEERING PROBLEM

We are given a team ofn vehicles which are located at
n distinct pointsx̄i ∈ R2 with prescribed initial velocities
v̄i ∈ R2, wherei ∈ In := {1, . . . , n}. We denote byX :=
{x̄i ∈ R2 : i ∈ In} and V := {v̄i ∈ R2 : i ∈ In},
respectively, the set comprised of the initial positions and
velocities of all the vehicles. The motion of thei-th vehicle
from the team, wherei ∈ In, is described by the following
set of equations

ẋi = vi, xi(0) = x̄i,

v̇i = ui(t), vi(0) = v̄i, (1)



where xi := [xi, yi]
T ∈ R

2 (x̄i := [x̄i, ȳi]
T ∈ R

2) and
vi := [vi, wi]

T ∈ R2 (v̄i := [v̄i, w̄i]
T ∈ R2) are, respectively,

the position and velocity vectors of thei-th vehicle at time
t (at time t = 0). In addition, ui(·) ∈ L2([0,∞),R2) is
the control input of thei-th vehicle, whereL2([0,∞),R2)
denotes the space of square integrable functions attaining
values inR2. Furthermore, we denote byzi := [xT

i , v
T
i ]

T and
z̄i := [x̄T

i , v̄
T
i ]

T the state of thei-th vehicle (concatenation
of position and velocity vectors) at timet and t = 0,
respectively. Finally, we denote byZ := {z̄i ∈ R4 : i ∈ In}
the set comprised of the initial positions and velocities ofall
the vehicles.

Let us now define theterminal position spaceto be the
hyperplaneX0 := {[xT

i , v
T
i ]

T ∈ R4 : vi = 0}. Next, we
formulate the problem of steering thei-th vehicle from a
point in Z to a target point inX0 as an optimal control
problem.

Problem 1 (Finite Horizon):Let x ∈ R2 and let the final
time τ > 0 be given. Then, determine a control inputu◦i (·) ∈
L2(R2, [0,∞)) that minimizes the cost function

J(ui(·)) := 1
2

∫ τ

0

|ui(t)|2dt (2)

subject to the dynamic constraint (1) and the following
boundary conditions:zi(0) = z̄i, zi(τ) = z(x), where
z(x) := [xT, 0]T ∈ X0.

Problem 1 is a classical minimum control effort problem,
whose solution in the special case whenxi is a scalar can be
found, for example, in [11]. In our case, it can be shown (the
reader is referred to the Appendix for more details) that the
optimal controlu◦i (·) that solves Problem 1 is a time-varying
feedback law, which is given by

u◦i (t, x; τ, z̄i) = α(x; τ, z̄i) + tβ(x; τ, z̄i), (3)

where

α(x; τ, z̄i) :=
6
τ2 (x− x̄i − τ v̄i) +

2
τ
v̄i,

β(x; τ, z̄i) := − 12
τ3 (x− x̄i − τ v̄i)− 6

τ2 v̄i. (4)

Note that the gains of the optimal controlu◦i (·) depend
explicitly on the final timeτ . Next, we define thevalue
function of the optimal control problem to be the cost
J(u◦i (·)), whereJ(·) is defined in Eq. (2). In other words,
the value function is the minimum control effort required for
the transition of thei-th vehicle from̄zi to a pointz(x) ∈ X0,
provided that the latter is driven by the optimal control law
u◦i (t, x; τ, z̄i), for t ∈ [0, τ ]. We denote this function by
x 7→ J◦(x; τ, z̄i), where

J◦(x; τ, z̄i) :=
1
2

∫ τ

0

|u◦i (t, x; τ, z̄i)|2dt. (5)

As shown in the Appendix, Eqs. (3)-(5) yield

J◦(x; τ, z̄i) =
6
τ3 |x− x̄i|2 − 6

τ2 〈v̄i, x− x̄i〉+ 2
τ
|v̄i|2. (6)

Remark 1 Note that asτ → ∞, then, for everyx ∈ R2, both
u◦i (t, x; τ, z̄i) → 0, for all t ∈ [0, τ ], andJ◦(x; τ, z̄i) → 0.
Note, however, that the application of an identically zero

input will not, in general, steer thei-th to an arbitrary point in
X0. This is a well known problem encountered in minimum
control effort problems, which may become ill-posed when
the terminal timeτ → ∞.

Proposition 1: The value function of the optimal control
Problem 1 can be written as follows

J◦(x; τ, z̄i) :=
6
τ3 |x− q(z̄i; τ)|2 + δ(v̄i; τ), (7)

where q(z̄i; τ) := x̄i +
τ
2 v̄i, and δ(v̄i; τ) := 1

2τ |v̄i|2. In
addition, the functionx 7→ J◦(x; τ, z̄i) attains its minimum
value atx = q(z̄i; τ). In particular,

J◦(q(z̄i; τ); τ, z̄i) = min
x∈R2

J◦(x; τ, z̄i) = δ(v̄i; τ).

Proof: From Eq. (6) and by completing the square, we
have that

J◦(x◦; τ, z̄i) =
6
τ3

(

|x− x̄i|2 − τ〈v̄i, x− x̄i〉+ τ
4 |v̄i|2

)

+ 1
2τ |v̄i|

2

= 6
τ3 |x− x̄i − τ

2 v̄i|
2 + 1

2τ |v̄i|
2. (8)

The result follows readily.

A. Infinite Horizon Optimal Control Problem

As we have already mentioned, the minimum control effort
problem formulated in Problem 1 becomes ill-posed when
τ → ∞. For this reason, we consider an alternative optimal
control problem.

Problem 2 (Infinite Horizon):Let x ∈ R2 be given, and
let 0 < ǫ ≪ 1 be given. Then, determine a control input
u◦i (·) ∈ L2(R2, [0,∞)) that minimizes the cost function

J∞(ui(·); x) := 1
2

∫ ∞

0

(

ǫ|zi(t)− z(x)|2 + |ui(t)|2
)

dt, (9)

where z(x) := [xT, 0]T ∈ X0, subject to the dynamic
constraint (1) and the boundary conditionzi(0) = z̄i.

Note that Problem 2 is an infinite horizon linear optimal
control problem with an “observable” quadratic cost. It
follows (see for example [12]) that the optimal control law
u◦i (·) is a (time-invariant) feedback control law, which is
given by

u◦i (x; z̄i) = −P(z̄i − z(x)),

and the value functionJ◦
∞(x; z̄i) satisfies the following

equation

J∞(x; z̄i) =
1
2 〈P(z̄i − z(x)), z̄i − z(x)〉, (10)

wherez(x) := [xT, 0]T ∈ X0 andP = PT ≻ 0 is a solution
to the following Algebraic Riccati Equation (ARE)

0 = PA+ATP+Q−PBBTP (11)

A =

(

02 I2
02 02

)

, B =

(

02

I2

)

, Q = ǫI4. (12)

Note that actuallyP is the unique positive definite solution
to the ARE given that the pairs(A,B) and (A,

√
ǫI4) are,

respectively, controllable and observable [12, Problems,3.2-
2, 3.2-4, p. 50].



Proposition 2: Let P = PT ≻ 0, where

P =

(

P1 P2

PT
2 P3

)

,

wherePℓ ∈ R
2×2, ℓ ∈ {1, 2, 3}, be the unique positive-

definite solution to the ARE (11). Then,

J◦
∞(x; z̄i) =

1
2 〈x− p(z̄i),P1(x− p(z̄i))〉 + µ(v̄i), (13)

where

p(z̄i) := x̄i +P−1
1 P2v̄i,

µ(v̄i) :=
1
2 〈v̄i, (P3 −PT

2P
−1
1 P2)v̄i〉. (14)

In addition,J◦
∞(x; z̄i) attains its minimum value atx = p(z̄i).

In particular,

J◦
∞(p(z̄i); z̄i) = min

x∈R2

J◦
∞(x; z̄i) = µ(v̄i).

Proof: BecauseP = PT ≻ 0, it follows that P1 =
PT

1 ≻ 0. Equation (10) can be written as follows

J◦
∞(x; z̄i) =

1
2

(

〈z̄i,Pz̄i〉+ 〈z(x),Pz(x)〉
)

− 〈z̄i,Pz(x)〉
= 1

2

(

〈z̄i,Pz̄i〉+ 〈x,P1x〉
)

− 〈x̄i +P−1
1 P2v̄i,P1x〉

= 1
2 (〈z̄i,Pz̄i〉+ 〈x,P1x〉

)

− 〈p(z̄i),P1x〉
= 1

2 〈z̄i,Pz̄i〉
+ 1

2

(

〈x,P1x〉 − 2〈p(z̄i),P1x〉
)

= 1
2

(

〈z̄i,Pz̄i〉 − 〈p(z̄i),P1p(z̄i)〉
)

+ 1
2

(

〈x,P1x〉 − 2〈p(z̄i),P1x〉
+ 〈p(z̄i),P1p(z̄i)〉

)

= 1
2

(

〈z̄i,Pz̄i〉 − 〈p(z̄i),P1p(z̄i)〉
)

+ 1
2 〈x− p(z̄i),P1(x− p(z̄i))〉

= ψ(z̄i) +
1
2 〈x− p(z̄i),P1(x− p(z̄i))〉,

whereψ(z̄i) := 1
2

(

〈z̄i,Pz̄i〉−〈p(z̄i),P1p(z̄i)〉
)

. It is easy to
show thatψ(z̄i) = µ(v̄i) and the result follows readily.

III. T HE PARTITIONING PROBLEM

Next, we formulate the generalized Voronoi partitioning
problem with respect to the value function of the minimum
control effort problem, when the final timeτ is finite.

Problem 3: Let Z := {z̄i ∈ R
4 : i ∈ In} be given. Then,

determine a partition or diagramV = {Vi : i ∈ In} of X0

such that

1) X0 =
⋃

i∈In

Vi,
2) intVi ∩ intVj = ∅, for all i, j ∈ In, i 6= j,
3) A point z(x) = [xT, 0]T ∈ X0 belongs toVi if, and

only if, J◦(x; τ, z̄i) ≤ J◦(x; τ, z̄j), for all j ∈ In,
whereJ◦(x; τ, z̄ℓ), ℓ ∈ {i, j}, is given by Eq. (6).

We also consider the partitioning problem, when the time-
horizon is infinite.

Problem 4: Address Problem 3 when the proximity metric
is the value function of the infinite horizon optimal control
problemJ◦

∞(x; z̄i), which is given by Eq. (13), in lieu of
J◦(x; τ, z̄i), for i ∈ In.

A. The Finite Horizon Case

Let z̄i, z̄j ∈ Z. Then, their corresponding bisector inV,
that is, the loci of the pointsz(x) ∈ X0, whereJ◦(x; τ, z̄i) =
J◦(x; τ, z̄j), is determined by the following equation

〈x, χ(z̄i, z̄j ; τ)〉 = m(z̄i, z̄j ; τ), (15)

where

χ(z̄i, z̄j ; τ) := q(z̄j ; τ)− q(z̄i; τ),

m(z̄i, z̄j ; τ) :=
1
2 (|q(z̄j ; τ)|

2 − |q(z̄i; τ)|2)
+ τ3

12 (δ(v̄j ; τ)− δ(v̄i; τ)).

Note that Eq. (15) describes a straight line inX0.

Proposition 3: Let τ > 0 be given and letV := {Vi, i ∈
In} denote the generalized Voronoi diagram that solves
Problem 3 for a given set of generatorsZ := {z̄i, i ∈ In}.
In addition, let Q := {Qi, i ∈ In} be the generalized
Voronoi diagram ofR2 that is generated by the point-set
Q := {q̄i = q(z̄i; τ), i ∈ In}, whereq(z̄i; τ) := x̄i + τ/2v̄i,
with respect to the (generalized) proximity metricJ◦ : x 7→
J◦(x; τ, q̄i, v̄i), where

J◦(x; τ, q̄i, v̄i) :=
6
τ3 |x− q̄i|2 + 1

2τ |v̄i|
2. (16)

For a givenx ∈ R2, the pointz(x) = [xT, 0]T ∈ X0 belongs
to the cellVi ∈ V if, and only if, the pointx belongs to the
cell Qi ∈ Q. In addition,Q := {Qi, i ∈ In} is an affine
diagram with combinatorial complexityΘ(n)1.

Proof: Equations (6) and (16) imply thatJ◦(x; τ, z̄i) =
J◦(x; τ, q̄i, v̄i), provided thatq̄i = q(z̄i; τ). Therefore, a
point z(x) = [xT, 0]T ∈ X0 belongs to the cellVi ∈ V,
if, and only if, J◦(x; τ, z̄i) ≤ J◦(x; τ, z̄j), for all i 6= j, or
equivalently,J◦(x; τ, q̄i, v̄i) ≤ J◦(x; τ, q̄j , v̄i), where q̄ℓ =
q(z̄ℓ; τ), for ℓ ∈ {i, j}. Consequently,z(x) ∈ Vi ∈ V if, and
only if, x ∈ Qi, whereQi ∈ Q.

Finally, the bisectorBij that corresponds to the pair of
generators(q̄i, q̄j) ∈ Q×Q, wherei 6= j, satisfies Eq. (15),
which is the equation of a straight line inR2. Consequently,
Q is an affine Voronoi diagram inR2. The result on the
combinatorial complexity ofQ follows immediately from
Theorem 18.2.3 in [13, p. 439].

Remark 2 We wish to highlight at this point that the affine
diagramQ can be computed inΘ(n logn + n) time [13].
The previous bound on the time complexity holds provided
that one computes the partition by utilizing specialized
algorithms for this particular class of partitions, as explained
in [13]. Unfortunately, these algorithms are centralized,and
consequently, they are not suitable for applications of multi-
vehicle systems.

B. The Infinite Horizon Case

In this case, the bisector that corresponds to two generators
z̄i, z̄j ∈ Z, that is, the loci of the pointsz(x) ∈ X (0)

1We denote byΘ(f(n)) the set of functionsF : N 7→ [0,∞) for which
there existc1, c2 > 0 andn0 ∈ N such thatc1f(n) ≤ F (n) ≤ c2f(n),
for all n ≥ n0.



whereJ◦
∞(x; z̄i) = J◦

∞(x; z̄j), is determined by the following
equation

〈P1(x− p(z̄i)), x− p(z̄i)〉 = 〈P1(x− p(z̄j)), x− p(z̄j)〉
+ 2 (µ(v̄j)− µ(v̄i)) ,

from which it follows that〈x, χ∞(z̄i, z̄j)〉 = m(z̄i, z̄j), where

χ∞(z̄i, z̄j) := 2P1(p(z̄j)− p(z̄i)),

m(z̄i, z̄j) := 〈P1p(z̄j), p(z̄j)〉
− 〈P1p(z̄j), p(z̄j)〉+ 2(µ(v̄j)− µ(v̄i)).

Proposition 4: Let τ > 0 be given, and letV := {Vi, i ∈
In} denote the generalized Voronoi diagram that solves
Problem 4 for a given set of generatorsZ. In addition, let
P := {Pi, i ∈ In} be the generalized Voronoi diagram
in R2 that is generated by the point-setP := {p̄i =
p(z̄i; τ), i ∈ In} with respect to the (generalized) proximity
metric J◦

∞ : x 7→ J◦
∞(x, p̄i, v̄i), where

J◦
∞(x; p̄i, v̄i) =

1
2 〈P1(x− p̄i), x− p̄i〉+ µ(v̄i),

and wherep(z̄i) and µ(v̄i) are given by Eq. (14). For a
given x ∈ R

2, the point z(x) = [xT, 0]T ∈ X0 belongs
to Vi ∈ V if, and only if, x ∈ Pi, wherePi ∈ P. Finally,
P := {Pi, i ∈ In} is an affine diagram with combinatorial
complexityΘ(n).

Proof: The proof is similar to the one of Proposition 3
and is omitted.

C. A Decentralized Spatial Partitioning Algorithm

Next, we present a decentralized algorithm, which com-
putes the partitionV = {Vi, i ∈ In} that solves Problem 3.
Problem 4 can be addressed similarly. In light of Proposi-
tion 3, instead of computing the partitionV of X0 that is
generated byZ ⊂ R4, it suffices to compute the partition
Q of R2 generated byQ ⊂ R2. We will henceforth assume,
based on practical considerations, that our partition space is
a convex polygonS ⊂ R2.

Before we proceed, we make the following assumption:

Assumption 1:Let τ > 0 andX = {x̄i, i ∈ In} ⊂ int(S)
be given. Let alsōqi := x̄i +

τ

2
v̄i, for i ∈ In. Then, the

following condition holds
6

τ3
|q̄i − q(z̄j ; τ)|2 + δ(v̄j ; τ) ≥ δ(v̄i; τ), (17)

for all i ∈ In andj ∈ In\{i}.

Remark 3 It is easy to show that when Assumption 1
holds, then the point̄qi ∈ Q will belong to the interior
of its corresponding cellQi from the partitionQ. Note that
condition (17) is trivially satisfied when, for example, allthe
vehicles have the same initial speed, that is,|v̄i| = |v̄j | for
all i, j ∈ In.

Next, we present a partitioning algorithm that takes advan-
tage of the following special property the affine diagramQ
that solves Problem 3: For each pointx ∈ Qi, the line
segment fromq̄i to x, which is denoted by[q̄i, x], will

belong to the cellQi. Conversely, letΓ(q̄i, e) denote the
ray emanating from̄qi that is parallel to a vectore ∈ S1,
where S1 denotes the unit circle. Then, if there exists a
point y ∈ Γ(q̄i, e) ∩ int(Qj), for which J◦(y; τ, q̄j , v̄j) <
J◦(y; τ, q̄i, v̄i), wherej ∈ In\{i}, thenΓ(y, e) ∩ Qi = ∅.
Based on the previous observation, we propose an algorithm
that, for a givene ∈ S1, seeks for the furthest point in
Γ(q̄i, e) for which J◦(x; τ, q̄i, v̄i) ≤ J◦(x; τ, q̄j , v̄j), for
all j ∈ In\{i}. We will denote the latter point, which
corresponds to the intersection of the rayΓ(q̄i, e) with the
boundary of the cellQi, by xbd(e, q̄i). Note that the set
⋃

e∈S1
xbd(e, q̄i) corresponds to the boundarybd(Qi) of the

cell Qi.

For the implementation of this algorithm, we first dis-
cretize the unit circleS1 into a mesh ofL nodes, call it
E . Then, we characterize the pointxbd(e, q̄i) ∈ bd(Qi), for
each unit vectore ∈ E . To this aim, we employ a bisection
algorithm similar to the one presented in [9], [10] for the
computation of generalized Voronoi partitions in normed
spaces. The main steps of the algorithm are described next:

Step 1: Initially, we setxbd(e, q̄i) := x
[0], where x

[0] :=
Γ(q̄i; e)∩bd(S). In addition, we setρ[0](e) := |q(z̄i)− x

[0]|
andJ [0](e) := J◦(x[0]; τ, q̄i, v̄i).

Step 2: IfJ [0](e) ≤ J◦(x[0]; τ, q̄j, v̄j), for all j ∈ In\{i},
then we setxbd(e, q̄i) := x

[0] and we go to step 5). Other-
wise, we setx[1] := q̄i + ρ[1](e)e, whereρ[1](e) := 1

2ρ(e),
andJ [1](e) := J◦(x[1]; τ, q̄j , v̄j).

Step 3: IfJ [1](e) ≤ J◦(x[1]; τ, q̄j, v̄j), for all j ∈ In\{i},
then we setρ[2](e) := ρ[1](e) + 1

2 (ρ
[0](e) − ρ[1](e)). Other-

wise, we setρ[2](e) := ρ[1](e) − 1
2 (ρ

[0](e) − ρ[1](e)). Then,
we setx[2] := q̄i+ ρ[2](e)e andJ [2](e) := J◦(x[2]; τ, q̄i, v̄i).

Step 4: We repeat the steps 1) - 3) until|ρ[k](e)−ρ[k−1](e)| <
ε or |J [k](e) − J [k−1](e)| < ǫ, for some given threshold
ε > 0 and a positive integerk.

Step 5: We repeat the Steps 1-4, for all theL unit vectors in
e ∈ E .

The output of the previous procedure will be a point-set
bdE(Qi) := {x ∈ S : x = xbd(e, q̄i), for e ∈ E}, which
approximates the boundarybd(Qi) of the cellQi.

Remark 4 The previously described decentralized, yet ap-
proximate (in the sense that the computed partition is an
approximation of the actual one), partitioning algorithm has
time complexityO(n2), wheren is the number of vehicles,
as is claimed in [9], [10].

Remark 5 Note that the algorithm for the computation of
the solution to Problem 4 can be designed similarly by just
replacingq̄ℓ andJ ◦(·; τ, q̄ℓ, v̄ℓ) in the previous discussion
with, respectively,̄pℓ andJ ◦

∞(·; p̄ℓ, v̄ℓ), whereℓ ∈ {i, j}.

IV. N UMERICAL SIMULATIONS

In this section, we present numerical simulations that
illustrate the previously presented theoretical developments.
In particular, we consider a setZ that consists of ten



generators. Figure 1 illustrates the solutions to Problem 3
for final time τ = 2 (Fig. 1(a)), which corresponds to an
affine diagram generated by the point setQ, and Problem 4
(Fig. 1(b)), which corresponds to an affine diagram generated
by the point setP. The red crosses and the black arrows in
both Fig. 1(a) and Fig. 1(b) denote, respectively, the initial
positions and velocities of all the vehicles. Furthermore,the
magenta crosses correspond to the point-setsQ (Fig. 1(a))
and P (Fig. 1(b)), respectively. Both of the two partitions
which are illustrated in Figure 1 have been computed by em-
ploying a naive centralized approximation algorithm whose
main steps are summarized below: First, we define a uniform,
fine grid G on the partition space (here, we consider a
400×400 grid). Subsequently, we assign to each node of the
grid the index of the vehicle that can reach this node with
zero terminal speed (exactly or asymptotically, respectively)
with smaller transition cost than any other vehicle. Note that
this naive partitioning scheme has time complexityO(n|G|),
where|G| denotes the cardinality of the gridG, that is, the
number of its nodes [14]. Typically, the size of the grid
depends on the number of vehicles; the higher the number
of vehicles, the finer the grid should be. For example,|G|
should be at leastO(nq), with q > 2. The blue circles
centered at points from the setX , which are illustrated in
both Fig. 1(a) and Fig.1(b), correspond to the level sets
of the value function of the finite horizon optimal control
problemJ ◦(·; τ, z̄i) restricted to the cellQi ∈ Q and the
value function of the infinite horizon optimal control problem
J ◦
∞(·; z̄i) restricted to the cellPi ∈ P, respectively, for all

i ∈ In. Finally, the green dashed lines correspond to the
standard Voronoi diagram generated by the point-setX . We
observe that both of the affine diagrams differ significantly
from their corresponding standard Voronoi diagrams.

Next, we present the results of numerical simulations on
the computation of the generalized Voronoi partitions by
utilizing the decentralized partitioning algorithm, which was
presented in Section III-C. In particular, Fig. 2 illustrates
a cell of the partitionQ (finite horizon problem) which
was computed independently by its associated vehicle by
means of the decentralized partitioning algorithm. For the
computation of this cell, we have discretized the interval
[0, 2π) into a uniform mesh,T , which induces, in turn, a
discretization of the unit circleS1 into a mesh,E ; specifically,
each unit vectore(θ) = [cos θ, sin θ]T ∈ E corresponds
to a θ ∈ T , and vice versa. For our simulations, we have
considered a coarse grid that consists of 60 nodes (Fig. 2(a))
and a less coarse one (Fig. 2(b)), which consists of 120
nodes. The approximation of the cell obtained with the use of
the less coarse grid is actually very close to the one obtained
via the naive centralized partitioning algorithm, which is
illustrated in Fig. 1(a).

V. CONCLUSION

In this paper, we have addressed a spatial partitioning
problem that is relevant to applications of multi-vehicle
systems. The proximity metric of the proposed spatial par-
tition is a state-dependent generalized metric, namely the
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(a) The finite horizon case.
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(b) The infinite horizon case.

Fig. 1. Generalized Voronoi diagrams generated by a set of
ten points with respect to the minimum control effort metric
considering both a finite horizon and infinite horizon. The partitions
are computed via a naive centralized approximation algorithm that
employs a fine grid (400× 400) over the partition space.

minimum control effort required to steer a vehicle from a
team of vehicles with double integrator kinematics, to a
target point with zero miss distance and at zero terminal
velocity either at a given final time (finite horizon) or
asymptotically (infinite horizon). We have shown that the
solution to both problems can be associated with a class
of affine diagrams, which can be computed by means of
a decentralized partitioning algorithm. In particular, with
the utilization of the proposed algorithm, each vehicle can
compute its own cell independently from the other vehicles
from the same team, that is, without having to compute and
/ or receive information about the cells of any other vehicle
from the same team. Future work includes the design of
decentralized partitioning algorithms for problems involving
multi-vehicle systems with nonlinear dynamics.
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(a) Coarse approximation of a cell ofQ.
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(b) Fine approximation of a cell ofQ.

Fig. 2. A particular cell fromQ computed via the decentralized
partitioning algorithm using a coarse and a fine grid of 60 and120
nodes, respectively, for the unit circleS1.

APPENDIX

In this appendix, we briefly discuss the solution of Prob-
lem 1 (finite-horizon minimum control effort problem). To
this aim, we consider the variational Hamiltonian for Prob-
lem 1

H(λi
x
, λi

v
, xi, vi, ui) :=

1
2 |ui|

2 + 〈λi
x
, vi〉+ 〈λi

v
, ui〉,

wheret 7→ λi
x
(t), t 7→ λi

v
(t) are absolutely continuous func-

tions, thecostates, which satisfy the following differential
equations

λ̇i
x
(t) = 0, λ̇i

v
(t) = −λi

x
(t).

The stationaritycondition of the optimal control problem,

∂H
∂ui

(λi
x
, λi

v
, xi, vi, ui) = 0,

furnishes the following (candidate) optimal control law

u◦i (t) = α+ tβ, α = −λi
v
(0), β = λi

x
(0).

By integrating Eq. (1) fromt = 0 to t = τ , we obtain the
following equations

x = xi(τ) = x̄i + τ v̄i +
τ2

2 α+ τ3

3 β,

0 = vi(τ) = v̄i + τα + τ2

2 β,

which yield, after some algebraic manipulation, the expres-
sions forα andβ given in Eq. (4). In addition, by evaluating
the cost functionalJ(u◦i (·)), we obtain the following equa-
tion for the value function of Problem 1

J◦(x; τ, z̄i) =
1
2

(

τ |α|2 + τ2〈α, β〉 + 1
3τ

3|β|2
)

,

which yields Eq. (6).
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