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Abstract—We consider the problem of characterizing a diagrams in higher dimensional partition spaces, for which
spatial partition of the position space of a team of vehicles efficient algorithm exist in the literature. The main drawka
with double integrator kinematics. The proximity relations of the techniques presented in both [7] and [8] is that they

between the vehicles and an arbitrary target point in the d t all hicle t te it iated i
partition space is the minimum control effort required for each 0 not allow any venhicle 10 compute 1S associated ce

vehicle to reach the latter point with zero miss distance and independently from the other vehicles from the same team
exactly zero velocity at a prescribed final time (both the finie  (centralized partitioning algorithms).

and the infinite horizon are considered). We show that the . . . .
solution to the generalized Voronoi partitioning problem can be N this work, we propose a generalized Voronoi parti-
associated with a class of affine diagrams whose combinatati ~ tioning problem whose proximity metric corresponds to the
complexity is comparable to the standard Voronoi diagram. value function of either a finite horizon minimum control
For the computation of the latter class of affine diagrams, effort problem or an infinite horizon linear optimal control

we utilize a partitioning algorithm, which is decentralized in problem with an “observable” quadratic cost. Each vehicle
the sense that each vehicle can compute an approximation of :

its own cell independently from the other vehicles from the IS required to reach an arbitrary target point with zero miss
same team. Numerical simulations that illustrate the theoetical ~ distance and with exactly zero terminal velocity either at a

developments are also presented. given terminal time (finite horizon) or asymptotically (inifie
horizon). In both cases, we show that the characterizafion o
|. INTRODUCTION the generalized Voronoi partition reduces to the compaornati

of an affine Voronoi diagram. It is shown that both of the

This paper deals with a spatial partitioning problem foproposed patrtitioning problems can be addressed by means
a team of vehicles with double integrator kinematics. Iof a partitioning algorithm, which iglecentralizedin the
particular, each vehicle is associated with a subset of itense that a vehicle can compute an approximation of its
operating environment, which we refer to as fRegion of corresponding cell from the partition (or ROI), without com
Influencg(ROI), in the sense that a target or a task associatgditing by itself or receiving any information about the sell
with a location within the latter set is automatically assid that correspond to any other vehicles from the same team.
to this particular vehicle. In contrast to our previous work The proposed algorithms build upon some recent results on
similar partitioning problems, where we have employed certhe parallel computation of generalized Voronoi diagrams i
tralized computational techniques, in this work, we pr@as normed spaces by Reem [9], [10].

decentralized partitioning algorithm that allows eachigieh The rest of the paper is organized as follows. Section Ii

g)(;?)dependently compute its own cell from the partition (Olbresents the formulation of the optimal control problem for
: a single vehicle. The partitioning problem is formulated an

The problem considered in this work can be put under thsubsequently solved by means of a decentralized partitipni

umbrella of generalized Voronoi partitioning problemstwit algorithm in Section 1ll. Section IV presents numerical

respect tostate-dependerproximity (pseudo-) metrics [1], simulations, and finally, Section V concludes the paper with

[2]. In contradistinction with distance functions thatrate a summary of remarks.

from geometric considerations solely [3], state-depehden

proximity metrics account explicitly for the vehicle dynam

ics. Partitioning problems with respect to state-dependeH: FORMULATION OF THE OPTIMAL STEERING PROBLEM

metrics for vehicles with single integrator and second prde . ) )

linear dynamics can be found, respectively, in [1], [2]{4] We are given a team of vehicles which are located at

[6] and [7], [8]. In these references, the proximity metric’ distinct pointsx; € R? with prescribed initial velocities

is taken to be the minimum control effort required for the’s € R?, wherei € Z,, := {1,...,n}. We denote by¥ :=

transition of each vehicle to a neighborhood of a target € R® : i € Z,} andV = {V; € R? : i € I},

point with a small terminal speed. In particular, Ref. [7]'e€spectively, the set comprised of the initial positionsl an

addresses the partitioning problem by utilizing compotzai velocities of all the vehicles.-The mqtion of thieh vehic!e

techniques, whereas in [8] it is shown that the same probleffPm the team, where € 7,,, is described by the following

can be directly associated with a particular class of powset of equations
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wherex; = [z;, ]" € R? (%; := [%;, 7:]" € R?) and inputwill not, in general, steer thieth to an arbitrary point in
vi == [vg, w;]" € R? (v; := [v;, w;]" € R?) are, respectively, X,. This is a well known problem encountered in minimum
the position and velocity vectors of theth vehicle at time control effort problems, which may become ill-posed when
t (at timet = 0). In addition, u;(-) € £%([0,00),R?) is the terminal timer — oo.

the control input of thei-th vehicle, where£? ([0, 0o), R?)
denotes the space of square integrable functions attaini
values inR?. Furthermore, we denote kay := [x], v]|" and

z; .= [x], v]]T the state of the-th vehicle (concatenation Jo(x;7,2;) = S |x — q(zi; 7)|* + 0V 1), 7
of position and velocity vectors) at timé and¢ = 0,

respectively. Finally, we denote I := {z; ¢ R*: i € T,,}
the set comprised of the initial positions and velocitiesbf

Proposition 1: The value function of the optimal control
PPoblem 1 can be written as follows

where q(z;;7) = X + Vi, and 6(vi;7) = 5[] In
addition, the functiorx — J°(x;7,Zz;) attains its minimum

the vehicles. value atx = q(z;; 7). In particular,
Let us now define théerminal position spacéo be the J(a(zi;7); 7, 2i) = min J (% 7,2) = 6(Vi; 7).
X

hyperplaneX, := {[x], v]]T € R* : v; = 0}. Next, we

formulate the problem of steering theth vehicle from a Proof: From Eq. (6) and by completing the square, we

point in Z to a target point inX, as an optimal control have that
problem. I z) = & (jx =%l =m0, x = %) + 510 ]%)
Problem 1 (Finite Horizon):Let x € R? and let the final + % V|2
time > 0 be given. Then, determine a control inpujt-) € = O ix — % — | + vl @)
L2(R2,]0,00)) that minimizes the cost function T L
- The result follows readily. ]
T =4 [ it @ o
0 A. Infinite Horizon Optimal Control Problem
subject to the dynamic constraint (1) and the following . .
boundary conditionsz;(0) — z, z(r) — z(x), where As we have already mentioned, the minimum control effort

T AT problem formulated in Problem 1 becomes ill-posed when
z(x) :=[x', 0]" € X. . ) ) .
T — oo. For this reason, we consider an alternative optimal
Problem 1 is a classical minimum control effort problemcontrol problem.
whose solution in the special case whens a scalar can be - . ] 9 .
found, for example, in [11]. In our case, it can be shown (thF tPOrobIem 2 glnkl?mte_ Horlgl%n).Leé Xt < R be g|vin,lqnd ¢
reader is referred to the Appendix for more details) that thet Y < € < € given. Then, determine a control inpu

of. 2(TR2 inimi i
optimal controk?(-) that solves Problem 1 is atime—varyingui( ) € L5(R%, [0, 00)) that minimizes the cost function

feedback law, which is given by Joo(ui(');x) — %/ (€|Zi(t) . Z(X)|2 + |ui(t)|2) dt, (9)
0

u?(t,x; T, 21) = OL(X; T, 21) +tﬁ(x7 T, 21)3 (3)
h where z(x) := [x", 0]T € Ap, subject to the dynamic
where constraint (1) and the boundary conditiaf{0) = z;.
a(x;7,2;) 1= 7_62(X =% —7TV;) + %‘7% Note that Problem 2 is an infinite horizon linear optimal
Bl 7,2i) = =B (x — % — 7V;) — 3V, (4) control problem with an “observable” quadratic cost. It

) ) follows (see for example [12]) that the optimal control law
Note _that the gains of the optimal contrqf(-) depend 2(+) is a (time-invariant) feedback control law, which is
explicitly on the final timer. Next, we define thevalue given by
function of the optimal control problem to be the cost W (x:Z;) = —P(Z — 2(x))

J(ug(-)), where J(-) is defined in Eq. (2). In other words, R ’ ’

the value function is the minimum control effort required fo and the value function/3, (x;z;) satisfies the following
the transition of the-th vehicle fromz; to a pointz(x) € A;, equation

provided that the latter is driven by the optimal control law

£

5\ — Lip(s -
uS(t,x;7,2;), for t € [0,7]. We denote this function by oo (%:2i) = 3(P(2i = 2(x)),Z: — 2(x)), (10)
x = J°(x; 7,2;), where wherez(x) := [x", 0]T € A, andP = PT - 0 is a solution
T to the following Algebraic Riccati Equation (ARE)
J(x;7,2;) := %/ |ug (t,x; 7,2;)|*dt. (5) T -
0 0=PA+A"P+Q-PBB'P (11)
As shown in the Appendix, Egs. (3)-(5) yield A <8; (1)22) B- ((1)22) Q= (12)

JO(X;T,ZZ'):%lx—)_(i|2—%<\_/i,><—)_(i>+%|\_/i|2. (6)
Note that actuallyP is the unique positive definite solution
Remark 1 Note thatas — oo, then, for everx € R?, both  to the ARE given that the pairsA, B) and (A, \/el,) are,
uf(t,x;7,2z;) — 0, for all t € [0,7], andJ°(x;7,Z;) — 0. respectively, controllable and observable [12, Proble3ri,
Note, however, that the application of an identically zer@, 3.2-4, p. 50].



Proposition 2: Let P = PT ~ 0, where A. The Finite Horizon Case

P= <P} P2) , Let z;, z; € Z. Then, their corresponding bisector 9,
Py Ps that is, the loci of the points(x) € Ay, whereJ°(x;7,z;) =

where P, € R?*2, ¢ ¢ {1,2,3}, be the unique positive- J°(x; 7,z;), is determined by the following equation
definite solution to the ARE (11). Then,

. B L B ~ - <XaX(2i72j;T)> :m(ii,zj;T), (15)
JE067) = Hx = p(z:), Pi(x — p(@) + (@), (13)
where o ~ -
(2) = % + P-Pyy X(zi,2;;7) :=q(z;;7) —(zi57),
Zi) =X Vi, 7.7 z z
Plaajimoa Tl R, m(zi,2;37) = L(la(z;; 7)I? — la(zi7)]?)
,LL(VZ) = §<Vi, (P3 — P2P1 P2)Vi>. (14) 3 _ _
. o + 3(0(v557) —0(vi; 7).
In addition,J2, (x; z;) attains its minimum value at= p(z;). ) ) o
In particular, Note that Eq. (15) describes a straight lineA.
I (p(2:):z:) = min JS, (x; Z;) = p(v:) Proposition 3: Let 7 > 0 be given and le® := {;, i €
CONATE I T T er2 TV a 7.} denote the generalized Voronoi diagram that solves
Proof: BecauseP = PT =~ 0, it follows that P, = Problem 3 for a given set of generatds:= {z;, i € Z,,}.
P] > 0. Equation (10) can be written as follows In addition, letQ := {Q;, i € Z,} be the generalized

Voronoi diagram ofR? that is generated by the point-set

Toob62i) = 5 (20, P2) + (209, P2(9)) = (20 P2()) G2 (g, = q(zii7), i € T}, whereq(z;; 7) := % + 72,

= 3((z:, Pz;) + (x, P1x)) with respect to the (generalized) proximity metsé : x
— (% + PT'Pyv;, Pyx) J°(x; 7,43, Vi), where
= %(<21‘,P2i>+ <X,P1X>) JO(X;T,ai,Vi) = %|X—C_|i|2+ %l\_/i|2. (16)
— (p(zi), P1x) For a givenx € R?, the pointz(x) = [x, 0]T € A, belongs
= %(21-, Pz;) to the cell®y; € U if, and only if, the pointx belongs to the
i a2 Gl S nadon 5 0
_ _ _ _ n)-.
= 5((z:, Pzi) — (p(z:), P1p(2:))) gP . Equations (6) and (12) imply thatt (xc 7. 2,)
L Py — 2(p(z,). P roof: Equations (6) an imply X;T,Z;) =
T (<7X’ %) - (p(z:), P1x) J°(x;7,4q:,v;), provided thatq; = q(z;;7). Therefore, a
+{p(z:), P1p(z:))) point z(x) = [xT, 0] € A, belongs to the celiy; € 9,
= 1((z,Pz) — (p(z:),P1p(z:))) if, and only if, J°(x;7,2;) < J°(x;7,2;), for all i # j, or
O N e S
° _ _ Ze;T), i,7}. X i ,
= (z:) + Hx = p(z:), P1(x - p(2:))), o ! e

only if, x € Q;, whereQ; € Q.

Finally, the bisector3;; that corresponds to the pair of
generatorgq;, q;) € Q x Q, wherei # j, satisfies Eq. (15),
lIl. THE PARTITIONING PROBLEM which is the equation of a straight line R?. Consequently,
Q is an affine Voronoi diagram iR2. The result on the
Next, we formulate the generalized Voronoi partitioningcombinatorial complexity ofQ follows immediately from
problem with respect to the value function of the minimumrheorem 18.2.3 in [13, p. 439]. ]
control effort problem, when the final time s finite.

Problem 3: Let Z := {z; € R*: i € Z,,} be given. Then,
determine a partition or diagrafi = {0, : i € Z,,} of A}

wherey(z;) := 1((z:, Pz;) — (p(z:), P1p(2:))). It is easy to
show thaty)(z;) = u(v;) and the result follows readily. m

Remark 2 We wish to highlight at this point that the affine
diagram® can be computed i®(nlogn + n) time [13].
The previous bound on the time complexity holds provided

such that that one computes the partition by utilizing specialized
1) X = UieIn 0, algorithms for this particular class of partitions, as expéd
2) intY, NintY,; = @, forall i,j € Z,,, i # 7, in [13]. Unfortunately, these algorithms are centralizadd

3) A pointz(x) = [x", 0]T € A, belongs to; if, and  consequently, they are not suitable for applications oftimul
only if, J°(x;7,z;) < J°(x;7,25), for all j € Z,, vehicle systems.
where J°(x; 7,2¢), £ € {i,7}, is given by Eq. (6).

We also consider the partitioning problem, when the timeB' The Infinite Horizon Case

horizon is infinite. In this case, the bisector that corresponds to two genarator

Problem 4: Address Problem 3 when the proximity metricZ:» z; € 2, that is, the loci of the pointg(x) € X/(0)
is the value function of the infinite horizon optimal control . ,
We denote byo(f(n)) the set of functiong” : N — [0, co) for which

problem J3, (x; z;), which is given by Eq. (13), in lieu of iere existe;, s > 0 andno € N such thatc; f(n) < F(n) < caf(n),
J°(x;1,2;), fori € Z,. for all n > ng.



whereJ, (x;z;) = J3,(x;Z;), is determined by the following belong to the cellQ;. Conversely, letl’(g;,e) denote the
equation ray emanating frong; that is parallel to a vectos € S!,
- _ _ _ where S! denotes the unit circle. Then, if there exists a
(P1(x = p(z:),x — p(2:)) = (Pa(x - p(zj))’j( —p()) pointy € I'(qi,e) N int(L;), for which J°(y; 7,d;,v;) <
+ 2 (u(v5) — (Vi) , J°(y;7,Gi, Vi), Wherej € Z,\{i}, thenT'(y,e) N Q; = @.
Based on the previous observation, we propose an algorithm

from which it follows that o (Zi,Z7)) = m(z;,z;), where . I
0 xoo(20:25)) = m(zi, 25) that, for a givene € S', seeks for the furthest point in

Xoo(Zi,Z5) :=2P1(p(z;) — p(z:)), I'(g;,e) for which J°(x;7,q;,v;) < J°(x;7,4;,V;), for
m(zi,z;) := (P1p(z)), p(z;)) all j € Z,\{i}. We will denote the latter point, which
—(P1p(z;), p(z;)) + 2(u(¥;) — p(%)) corresponds to the intersection of the g, e) with the

boundary of the cellQ;, by x,q4(e,q;). Note that the set

Proposition 4: LetT > 0 be given, and 6% := {T;, i €  [J,.cq1 xba(e, i) corresponds to the bounday(Q;) of the
7.} denote the generalized Voronoi diagram that solvesell 9,.
Problem 4 for a given set of generatags In addition, let
B := {P,;, ¢ € Z,} be the generalized Voronoi diagram
in R? that is generated by the point-s@ := {p, =
p(z:;7), i € T, } with respect to the (generalized) prOX|m|tyea
metric J3, : x — J (X, ps, Vi), Where

For the implementation of this algorithm, we first dis-
cretize the unit circleS! into a mesh ofL nodes, call it
£. Then, we characterize the poiaiq(e, g;) € bd(Q;), for
ch unit vectoe € £. To this aim, we employ a bisection
algorithm similar to the one presented in [9], [10] for the
J2 (% Bi, Vi) = %<P1(X —Bi)sx — Pi) + pl¥s), computation of generalized Voronoi partitions in normed
i spaces. The main steps of the algorithm are described next:
and wherep(z;) and u(v;) are given by Eq. (14). For a R ~ 0] 0]
given x € R?, the pointz(x) = [x, 0] € X, belongs St(?p 1: Initially, we sgb_(bd(e,qi) :=0>< , wher_ex ;0:
to U; € U if, and only if, x € B;, where3; € B. Finally, F(qi;e)oﬁ bd(S). In gddnpni we sepl®l(e) := |q(z;) — x|
B = {P,, i € Z,,} is an affine diagram with combinatorial and 71%(e) := J° (% 7,G;, V).

complexity ©(n). Step 2: If 71%(e) < Jo(xI%; 7,q;,v,), for all j € Z,\{i},
Proof: The proof is similar to the one of Proposition 3then we Se'xb[dl](e 1Gi) = X[[O]] and we go t[cl)] step 5). Other-
and is omitted. m Wise, we se!! := g; + pl!l(e)e, wherepl'(e) := $p(e),
and 7M(e) := Jo(xY; 7, q;, V).
C. A Decentralized Spatial Partitioning Algorithm Step 3: If 71 (e) < Jo(x; 7, qJ, [7 for all j € Z,\{i},
{hen we sepl?(e) := plll (e) Oe) — pltl(e)). Other-

Next, we present a decentralized algorithm, which com
putes the partitio®d = {?, i € Z,,} that solves Problem 3. wise, w[e]sel;om( )['2]7 pll(e) - 2§p[0]( ) op[l[JQEe)).iTrlen,
Problem 4 can be addressed similarly. In light of Proposi®’® setx? := q; + p¥(e)e and T (e) = J°(x%; 7, G;, Vi).
tion 3, instead of computing the partitici of A that is  Step 4: We repeat the steps 1) - 3) ufif! (e)—plF=1(e)| <
generated byZ C R?, it suffices to compute the partition ¢ or |J¥l(e) — JlF~1(e)| < ¢, for some given threshold
0 of R? generated byd c R?. We will henceforth assume, ¢ > 0 and a positive integek.
based on practical considerations, that our partition esp&c

a convex polygors ¢ R Step 5: We repeat the Steps 1-4, for all theinit vectors in

ecé.

Before we proceed, we make the following assumption: ¢ output of the previous procedure will be a point-set

Assumption 1let7 > 0andX = {x;, i € Z,,} C int(S) bde(Q;) = {x € S: x = xpa(e,q;), for e € £}, which
be given. Let alsay; := %; + %\71-, for ¢ € Z,. Then, the approximates the boundahbd(Q;) of the cell ;.

following condition holds ) ) )
Remark 4 The previously described decentralized, yet ap-

Slai — a(zs 7)1 + (55 7) > 6(vi; 7, (17)  proximate (in the sense that the computed partition is an
approximation of the actual one), partitioning algorithash
time complexityO(n?), wheren is the number of vehicles,
as is claimed in [9], [10].

foralli € Z, andj € Z,,\{:}.

Remark 3 It is easy to show that when Assumption 1
holds, then the point; € Q will belong to the interior
of its corresponding cel; from the partitionQ. Note that
condition (17) is trivially satisfied when, for example, ik
vehicles have the same initial speed, that|is|, = |v,| for
all 4,5 € Z,,.

Remark 5 Note that the algorithm for the computation of
the solution to Problem 4 can be designed similarly by just
replacingg, and J°(-; 7,d¢,V¢) in the previous discussion
with, respectivelyp, and 72 (-; pe, Ve), Wherel € {3, j}.

T ) IV. NUMERICAL SIMULATIONS
Next, we present a partitioning algorithm that takes advan-

tage of the following special property the affine diagram In this section, we present numerical simulations that
that solves Problem 3: For each pointe Q;, the line illustrate the previously presented theoretical develepis:
segment fromg; to x, which is denoted by[g;,x], will In particular, we consider a sef that consists of ten



generators. Figure 1 illustrates the solutions to Problem 3
for final time = = 2 (Fig. 1(a)), which corresponds to an
affine diagram generated by the point §gtand Problem 4
(Fig. 1(b)), which corresponds to an affine diagram gendrate
by the point sefP. The red crosses and the black arrows in
both Fig. 1(a) and Fig. 1(b) denote, respectively, thedhiti
positions and velocities of all the vehicles. Furthermdine,
magenta crosses correspond to the point-gei§ig. 1(a))
and P (Fig. 1(b)), respectively. Both of the two partitions
which are illustrated in Figure 1 have been computed by em-
ploying a naive centralized approximation algorithm whose
main steps are summarized below: First, we define a uniform,
fine grid G on the partition space (here, we consider a
400 x 400 grid). Subsequently, we assign to each node of the
grid the index of the vehicle that can reach this node with
zero terminal speed (exactly or asymptotically, respebtjv
with smaller transition cost than any other vehicle. Not th
this naive partitioning scheme has time complexityn|G|),
where |G| denotes the cardinality of the grig, that is, the
number of its nodes [14]. Typically, the size of the grid
depends on the number of vehicles; the higher the number
of vehicles, the finer the grid should be. For examp{g,
should be at leas©(n?), with ¢ > 2. The blue circles
centered at points from the sat, which are illustrated in
both Fig. 1(a) and Fig.1(b), correspond to the level sets
of the value function of the finite horizon optimal control
problem 7°(-;7,z;) restricted to the cell; € Q and the
value function of the infinite horizon optimal control prebt
J2 (;z;) restricted to the cel3; € 3, respectively, for all

i € Z,. Finally, the green dashed lines correspond to the
standard Voronoi diagram generated by the pointiseWe
observe that both of the affine diagrams differ significantly
from their corresponding standard Voronoi diagrams.

Next, we present the results of numerical simulations ofig- 1.  Generalized Voronoi diagrams generated by a set of
the computation of the generalized Voronoi partitions b)Zen points with respect to the minimum control effort metric

. . e . - onsidering both a finite horizon and infinite horizon. Thetifans
utilizing the decentralized partitioning algorithm, whias  _ o computed via a naive centralized approximation algorithat

presentEd in Section 1lI-C. In particular, Flg 2 illustrat employs a fine grid400 x 400) over the partition space.
a cell of the partitionQ (finite horizon problem) which

was computed independently by its associated vehicle by

means of the decentralized partitioning algorithm. For the

computation of this cell, we have discretized the interval

[0,27) into a uniform mesh;7, which induces, in turn, a

discretization of the unit circlB! into a mesh¢; specifically, o ] )
each unit vectore(d) = [cosf, sinf]T € & corresponds Minimum control effort required to steer a vehicle from a

to af e T, and vice versa. For our simulations, we havde€am of vehicles with double integrator kinematics, to a
considered a coarse grid that consists of 60 nodes (Fig). 2(49et point with zero miss distance and at zero terminal
and a less coarse one (Fig. 2(b)), which consists of 12¢locity either at a given final time (finite horizon) or
nodes. The approximation of the cell obtained with the use @ymptotically (infinite horizon). We have shown that the
the less coarse grid is actually very close to the one olaingolution to both problems can be associated with a class
via the naive centralized partitioning algorithm, which isof affine diagrams, which can be computed by means of

(b) The infinite horizon case.

illustrated in Fig. 1(a). a decentralized partitioning algorithm. In particular,tiwi
the utilization of the proposed algorithm, each vehicle can
V. CONCLUSION compute its own cell independently from the other vehicles

from the same team, that is, without having to compute and
In this paper, we have addressed a spatial partitioningor receive information about the cells of any other vehicle
problem that is relevant to applications of multi-vehiclefrom the same team. Future work includes the design of
systems. The proximity metric of the proposed spatial padecentralized partitioning algorithms for problems irving
tition is a state-dependent generalized metric, namely thulti-vehicle systems with nonlinear dynamics.
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(b) Fine approximation of a cell aof. [9]

Fig. 2. A particular cell fromQ computed via the decentralized
partitioning algorithm using a coarse and a fine grid of 60 a2@  [10]
nodes, respectively, for the unit circe. [11]

[12]

APPENDIX [13]

In this appendix, we briefly discuss the solution of Probyi4
lem 1 (finite-horizon minimum control effort problem). To
this aim, we consider the variational Hamiltonian for Prob-
lem 1

HOL N x5, vi,u;) = %|uz|2 + (AL vg) + (AL ),

wheret — M\.(t), t — \i(t) are absolutely continuous func-
tions, thecostates which satisfy the following differential
equations

A =0, A () = =A(0).
The stationarity condition of the optimal control problem,
S_Z (A)Z” )\;L/v Xis Vi ul) = Oa
furnishes the following (candidate) optimal control law

uf(t) = a+tB, a=-X,(0), B=\(0).

By integrating Eq. (1) from = 0 to ¢t = 7, we obtain the
3k + + + ] following equations

x=x;(7) =% +7V; + 7—22044— gﬁ,

0=vi(r) =¥ + Ta + 5,

which yield, after some algebraic manipulation, the expres
sions fora and g given in EqQ. (4). In addition, by evaluating
the cost functionall (u3(-)), we obtain the following equa-
tion for the value function of Problem 1

Jo(x7,2) = % (7ol + 7%(a, B) + 27°|B]%) ,

which yields Eg. (6).
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