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Abstract— This work studies the control problem for non-
linear affine systems, subject to polytopic input constraints.
A new paradigm is suggested as an alternative to the min-
norm approach, to regulate the system while allowing it to
operate within or at its saturation limits and minimizing a given
pointwise performance index. The control input is obtained
through the solution of a quadratic programming optimization
problem. The applicability and efficacy of the method are
illustrated on the input constrained attitude control problem.

I. INTRODUCTION

In most control applications, the actuation process is
typically achieved through electromechanical means, like,
for example, servomechanisms, other motors in general or
valves. All these devices are inherently subject to saturation
limits with regards to the maximum control that they can
apply to the dynamical system. The presence of input satura-
tion introduces a nonlinearity in the system, which can cause
a performance degradation in the closed loop dynamics or,
even worse, destabilize the system. The design of controllers
which can handle input constraints is, therefore, an important
topic in control theory and applications.

Related Work A simplistic solution to account for input
saturation could be to appropriately tune the design param-
eters of an existing controller (which, itself, is unaware of
the saturation limits) so that the largest anticipated reference
signals will generate admissible control inputs. This trial
and error approach, however, is not very straightforward in
the case of nonlinear systems, and most likely will result
in reduced performance. For linear systems, [1] provides
a systematic way to design controllers by taking the input
constraints into consideration. For a chain of integrators, [2]
suggests an appropriate bounded control scheme. As far as
nonlinear systems are concerned, optimal control solutions
can account explicitly for input constraints [3], however, their
derivation is usually rather challenging. Receding horizon
controllers for nonlinear systems can also take input con-
straints into consideration explicitly [4]; yet, their online
computational requirements may render their implementation
unfeasible in real time. As far as the stabilization of nonlin-
ear, control-affine systems is concerned, unit ball and p-norm
unit ball input constraints have been considered in [5] and
[6] respectively. A backstepping based solution which results
in bounded control input and input rates for nonlinear affine
systems with a scalar input has been proposed in [7].

For the same class of nonlinear, affine systems, the
control design problem based on the concept of Control
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Lyapunov Functions (CLF) is studied in [8], where it is
suggested that it can be cast as a minimization problem.
This formulation, usually referred in the literature as min-
norm control, attempts to minimize the norm of the control
input at every point in time, while providing performance
equal to or better than a specified performance index based
on the rate of decrease of the associated CLF. The desired
performance requirement is imposed to the system through
a constraint in the control norm minimization problem. Ref.
[9] further elaborates on the min-norm control paradigm, for
the case of polytopic input constraints, by parameterizing the
corresponding pointwise optimization problem and casting
it as a quadratic programming problem. Input constrained,
CLF-based controllers have been further analyzed in [10]. A
problem-specific extension has been developed in [11], utiliz-
ing the satisficing algorithm. An extension of unconstrained
pointwise min-norm CLF control to receding horizon control
has been suggested in [12], [13], while [13] also discusses
briefly the effect of input constraints on the pointwise min-
norm CLF controller. Since the literature on the topic is
considerably rich, the references mentioned here do not,
by any means, form an inclusive list. However, they are
indicative of the different approaches to the problem.

Contributions  Using the development in [8], [9] and
the min-norm paradigm as a starting point for control of
nonlinear affine systems, we identify certain pitfalls of this
method. We propose a new solution to the problem of nonlin-
ear control subject to polytopic input constraints. Asymptotic
stability is provided in an enlarged subset of the state space
where the controller is and remains feasible, the given
polytopic input constraints not violated and the performance
gap between the CLF decrease rate and a prescribed, state-
dependent function is minimized. The minimization assumes
the form of a quadratic programming problem and takes
place pointwisely in time. Contrary to the standard min-norm
controller, the formulation presented in this work allows
for the input constraints to become active; the controller
ensures asymptotic stability and the satisfaction of the input
constraints while trying to minimize the performance gap.
The proposed formulation results in a feasibility region that
is significantly larger than the one corresponding to the min-
norm controller for the same input value set and CLF.

To illustrate the capabilities of the proposed controller in
terms of its overall performance and, especially, its handling
of the constraints, we solve the attitude control problem
and we compare the results with an a posteriori constrained
backstepping controller. Based on the results, we identify
significant performance advantages.

Paper Structure The problem statement for the input
constrained nonlinear control problem is given in Sec. II-



A. A brief review of the min-norm solution is provided in
Sec. II-B, followed by a discussion on its main limitations
through a motivating example in Sec. II-C. The main result is
presented in Sec. III. The application on the attitude problem
under input constraints is studied in Sec. IV. Numerical
simulations follow in Sec. V. Sec. VI concludes the paper.

Notation The symbols >, <, =, < refer to pointwise
vector inequalities, in contrast to their scalar counterparts
>, <, >, <. Positive definite and semidefinite (symmetric)
matrices are denoted by A > 0 and B > 0, respectively.
Z denotes the set of integers. The n x n identity matrix is
denoted by I,,. The symbol “denotes the 3 x 3 cross product
matrix operator, that is ab = a x b for any a,b € R3. Its
inverse is denoted with V, that is (&)v = a, for any a € R3.
Let Sk(A) := % (A - AT), for any real, square matrix A.
The boundary of a set S is denoted by 0S. SO(3) denotes the
set of 3 x 3 orthogonal rotation matrices R with det(R) = 1.

II. PRELIMINARIES
A. Problem Statement

We consider nonlinear systems with dynamics which are
affine in the control, that is,

&= f(z) + g(x)u, z(0) = xo, (1)

where = € R"™ is the state vector at time ¢ with initial
value xg, u is the input vector, with u(t) € U C R™
for all ¢ > 0, and f : R* - R", g : R* — R™»*™
are locally Lipschitz continuous, vector and matrix valued
functions of the state z, respectively, with f(0) = 0. The
solution of (1) at time ¢ is denoted as ¢(¢; xo, u(-)), where
u(+) denotes here the time history of the control input in the
time interval [0, t). The convex and compact set U, described
by U:={u e R™: Au < b}, where A € RP*™ and b € RP
with b > 0 (note that 0 € U), contains the values which the
input u is allowed to attain.

A C! function V : R® — R is a Control Lyapunov
Function (CLF) for (1) if it is positive definite, radially
unbounded, and satisfies [8]

inf (a,u) <0, )

where ¢ @ R” x U — R U {£oo} and ¢(z,u) :=
VV (z) (f(x) + g(x)u). Given the convex and compact input
value set U, and a CLF such that (2) is true, the control
problem for system (1) is reduced, in a pointwise way, to
finding a v* € U such that ¢(x, u*) < 0 for all z € R™\{0}.
The criteria with respect to which the choice of u* takes
place are free to be determined by any particular control
algorithm, as will be shown next.

B. Review of Pointwise Min-norm Control

The pointwise min-norm control paradigm assumes the
presence of a prescribed minimum rate of decrease for V,
along the closed loop system trajectories [8], that is

52% w(x7u) < —Oé(.’l?), (3)

for all x € R™ \ {0}, where o(z) > 0. A reasonable choice
would be a(z) = €V (z), where € > 0 is a tuning parameter.

Assuming convex polytopic input constraints and follow-
ing [9], the stabilization problem for (1) reduces to the

satisfaction of (3) at every time ¢. The min-norm paradigm
suggests minimizing the norm of u pointwisely (with respect
to time), which results in a “locally” minimum effort con-
troller. This can be cast as a quadratic programming (QP)
problem. In particular, the QP problem is

J(u) = u'u, 4

.t {VV(SU)Q(CU)] u =< [—a(x) = VV(z)f(x) NG
A b

and it has m decision variables subject to 1 + p poly-
topic constraints. We denote by X%, where X¢ =
{z e R"\ {0} : infyey ¥(z,u) < —a(z)}, the subset of
R™ where the QP problem (4), (5) is feasible. Additionally,
given the feedback control law resulting from the solution
of (4), (5) at each x € Xy, let it be up,, : R" — U,
we denote the set of recursive feasibility by X[, where
Xqy = {zo € X§ o(t; o, umn(+)) € XVt > 0}.
The min-norm controller possesses certain inverse optimality
attributes, on which we do not elaborate in this work (the
reader may refer to [14], [8]). We focus, instead, on the effect
of input constraints on the stabilization problem.

min
u

C. Motivating Example

We consider a pendulum which we intend to stabilize at its
upper, unstable equilibrium point. The pendulum’s dynamics
are given by § = w and w = sinf + u, where 6 € R
is the angular displacement at time ¢, measured from the
upper vertical position, with #(0) = 6y, w € R is the
angular velocity at time ¢, with w(0) = wp, and v € U
is the input, with U = {v € R : =2.2 < u < 2.5}. Our
objective is to stabilize the system at § = 0. A suitable CLF
is V(60,w;cr,c2) = c1(1 — cosb) + Lea(sinf + w)?, where
c1,co > 0. This CLF takes the periodicity of the problem
into account and penalizes the distance from the unstable
equilibrium (0, w) = (2km,0) for k € Z. Due to symmetry,
the analysis that follows and the resulting solutions are non-
global, since there is an ambiguity at (6,w) = ((2k+1)7,0)
where VV((2k + 1)m,0) = 0. Moreover, V' is unbounded
only along the +w axis. This is an issue inherent to rotational
systems, however, it is not limiting for the purposes of our
analysis. We refer to [15] for global solutions to a similar
problem.

The desired pointwise performance is parameterized as
a(f,w) = eV (f,w). We choose ¢; = 1.5, ¢co = 1. Fig. 1
illustrates the X% regions in the (6, w) plane where the min-
norm controller is feasible for v € U, that is, where the
pointwise QP problem (4), (5) has a solution for different
values of e. Additionally, Fig. 1 illustrates the closed loop
system trajectories, under the min-norm controller for € =
0.4. One can observe that X is shrinking for increasing e
values, as a consequence of the fact that the constraint (5)
becomes increasingly harder to satisfy with respect to the
same U. The input history which stabilizes the system for
(60, wo) = (%,0.49) and € = 0.4 is illustrated in Fig. 3. It is
clear that the input does not saturate, as it moves away from
the boundary OU. To improve the rate of convergence, the
necessary increase of € will render the controller unfeasible
instead of using any available control authority. Similarly,
changing the initial condition to (6p,wp) = (%,0.5) results
to loss of feasibility, unless ¢ is lowered.



Fig. 1: Regions of feasibility X¢ (shaded) for the min-norm controller, for
various € and v € U. The white regions indicate unfeasibility. The closed
loop trajectories for € = 0.4 are indicated with blue lines and arrows. The
solid orange lines indicate the level sets of V. Apart from the shrinking of
X;‘} for increasing e, it can also be seen that the min-norm controller cannot

“escape” the regions close to the attractive equilibrium (£7,0) under the
given problem formulation (that is, the chosen CLF and its weights) and U.

The common cause for both the shrinking of X% and
the reduced performance of the min-norm controller is that
this controller cannot effectively tolerate the presence of
input saturation. The same argument is also true for a wider
class of dynamical systems, beyond the pendulum example.
When the satisfaction of the minimum desired performance
constraint (5) requires additional control authority than it is
available, the QP problem (4), (5) becomes unfeasible and
the min-norm controller fails. If one wishes to enlarge the
Xfé region, € has to decrease, reducing the overall closed
loop performance and resulting in slower convergence. It
is true that for points x ¢ Xj‘c, there could be a different
choice of €, or even a completely different a(x), which
can yield stabilizing inputs taking values in U. In any
case, though, two questions arise. First, is it possible to
decouple the performance of the input constrained controller
from its feasibility? Additionally, since control inputs on
the saturation limits JU are allowed, could operating on the
OU limits offer any performance or other benefits? This is
apparently not always possible with the min-norm controller.
Our alternative framework attempts to improve upon these
issues, by decoupling feasibility and performance and by
providing a formulation which can tolerate control inputs
getting saturated.

The reader should be warned that any pointwise control
scheme can exhibit a particular limitation under input con-
straints. Specifically, as one can observe in Fig. 1, X% is not
invariant under the min-norm controller for ¢ = 0.4, since
there are trajectories pointing towards the unfeasible regions.
This issue is not related exclusively to the choice of ¢, the
particular problem in question or the min-norm algorithm.
It is a limitation of the pointwise concept employed in the
solution and in the formulation of the associated QP problem.
In particular, a pointwise scheme is inherently lacking some
form of prediction of the state evolution or some sense of
the proximity of the current state to 9X¢. In Fig. 1, though,

one can identify an invariant set X7, C X% which provides
recursive feasibility.

III. PROPOSED CONTROLLER

Enforcing a minimum required rate of decrease for V' as
a hard constraint for the system, following the min-norm
paradigm, can be rather strict for an input constrained system.
Such a controller may not, actually, tolerate constraints which
inevitably cause a performance degradation, that is, slower
convergence, to the system. We propose an optimization
based solution, which can effectively handle polytopic input
constraints and minimize an objective function pointwisely
in time. We assume that the desired pointwise performance
along the closed loop trajectories is V' (x) = —f(x), where
B(x) > 0 for all x € R™\ {0}. We define the performance
gap for the system, when the latter attains the state z, as
follows: H (u; ) := (1b(x,u) + B(x)). Expanding H yields

H(u; ) = (VV(2)f(2))* + (VV (2)g(z)u)” + B*(x)
+2VV (2) f(2)B(x) + 2VV (2)g(z)uf(z)
+2VV(x)f(x)VV(x)g(z)u.

If we drop the terms which do not contain u and, thus, would
play no role in a pointwise minimization of the performance
gap, we can define J(u;z) := L(z)u + u' Q(x)u, where

L(x) == 2VV (2) [f()VV (2) + B(x)] g(z),  (6)
Qz) = g"(x) (VV(2))" VV(2)g(@) + plm.  (7)

The term p1,,,, where p is a small positive number, is added
in order to guarantee that Q(z) > 0.

Definition 1: Let uy : R" — U be a feedback control
law for (1). We define the sets of feasibility and recursive
feasibility as Xy := {z € R"\ {0} : inf,cy ¢(z,u) < 0}
and X, r(us(+) == {zo € Xy : ¢(t;20,ur(-)) € Xy, Vit >
0}, respectively.

Definition 2: Let V be a CLF for the system (1) and let the
sets Xy and X,.; be defined as in Def. 1. Then, the feedback
control law uy : R™ — U is said to be asymptotically
stabilizing over Xy, if for all zy € X,.s(uy(-)) the function V'
decreases monotonically along the trajectories ¢(¢; o, uy(+))
of the system for all ¢ > 0.

Proposition 1: Suppose that V is a CLF for (1), U :=
{ueR™: Au < b} is a compact set, and let X;, X,
which are defined as in Def. 1, be non-empty. The feedback
control law uy : R™ — U, with us(x) = u* being the
solution of the linearly constrained QP problem

min J(u;2) = L(z)u + ' Q(z)u, ®)
st [TV@@)] o < [FIV@IE) =V @) )

where x = ¢(t; zo,us(-)), L(z) and Q(x) are given by (6),
(7), and 0 < v < 1, is asymptotically stabilizing over Xy,
in the sense of Def. 2, for all g € X, ¢(us(-)). In addition,
the mapping ¢ — uy(x(t)) is continuous.

Proof: First we show that the QP problem is feasible
and admits a unique solution uw*. To this aim, we note
that (9) determines a set in R™ that is necessarily convex
and closed as the intersection of a finite number of closed
half-spaces in R™. In addition, by hypothesis, the set U is



compact; consequently, the domain of the QP problem, call
it D, is compact as the intersection of a closed set and a
compact set. Moreover, D is convex as the intersection of
convex sets. Furthermore, D is non-empty for all x € Xy,
where X is non-empty by hypothesis. Consequently, the
QP problem is feasible for all x € X;. Additionally, since
Q(z) is a (symmetric) positive definite matrix, Q(z) > 0,
the QP problem admits a unique solution (Prop. 3.1.1, [16]);
we denote this solution by u*. Next, we show that the
feedback control law uy : R™ — U, where uf(w) = u*,
is asymptotically stabilizing over Xy in the sense of Def.
2. From (9), it follows readily that uy(z) € U for all
x € R", and that V decreases monotonically along the
system trajectories, provided that x = @(t; o, uyr()) € Xy
for all ¢ > 0, which is always true, since by hypothesis, zo €
X, f(us(-)). Finally, we show that the mapping t — uy(z(t))
is continuous. As shown in [17], the mapping = — u*(x)
is continuous. In addition, the mapping ¢ — x(t), where
x(t) = ¢(t; xo,us(-)), is (at least) continuous as the solution
of the differential equation (1), whose right hand side is a
locally Lipschitz continuous function. (Note that if z(t) is
well defined at some time ¢ = 7, then the mapping ¢ — ()
is continuous and well defined for all ¢t € (7 — ¢, T + ¢€), for
some € > (). Consequently, we can deduce that the mapping
t — us(x(t)) is continuous for all ¢ > 0, as the composition
of continuous functions. [ ]

Remark 1: The term «V(z) is included in (9) in order
to maintain compatibility with the strict inequality in the
CLF property (2). It has no effect on the performance of
the closed loop system and the feasibility regions, since
one can choose a rather small v value, even v ~ 0. The
reason is that the regulation action of the proposed controller
results from the effort to minimize the pointwise performance
objective J. In contrast, the regulation action of the min-
norm controller results from the presence of a(x) in (5).
The term «(z), though, has a significant, potentially adverse,
effect on performance and feasibility. Let a(z) = €V (z).
In the example in Section II-C, we have shown that large
values of ¢, which would yield fast convergence, can cause
unfeasibility, depending on the particular input saturation
limits. Smaller € values tend to result in increasingly slower
convergence.

Remark 2: The feasible set of the proposed controller, X,
is a superset of the feasible set of the min-norm controller,
X;}, that is, X‘]’: C Xy for the same f, g, V, U and for
any function o(z) with a(x) > 0 for = # 0. This follows
trivially from the definitions of X% and X.

Remark 3: The proposed QP problem minimizes the per-
formance gap J, whereas the associated constraints are
related to asymptotic stability, in the sense of Def. 2, and
the input value set U. In this way, the algorithm respects
the input constraints and ensures stability, while allowing
for the inevitable performance degradation when the input
constraints become active.

Remark 4: In general, X; is not invariant under the pro-
posed controller, similarly to X% for the min-norm controller.
It is possible that some trajectories may drive the system
towards x € X;. The pointwise QP problem (8), (9), is non-
predictive in nature and thus it cannot proactively steer the
system away from the unfeasible region. Nevertheless, the

fact that the Xy set is “maximized”, following Remark 2,
has been observed to cause a corresponding enlargement to
the X,.; set as well, providing some additional assurance for
recursive feasibility compared to the min-norm controller (for
the same system, CLF, and U). Incorporating information
about 0X in the formulation of the proposed controller in
order to further enlarge X, s is a topic for future work.

IV. AN APPLICATION OF THE PROPOSED CONTROLLER
TO THE ATTITUDE CONTROL PROBLEM

If we represent the attitude of a rigid body at time ¢ using
the rotation matrix R € SO(3), then its rotational dynamics
and kinematics with three degrees of freedom are given by

Jo=—-0Jw+71, R=R®, (10)

where w € R? is the angular velocity around the 1-2-
3 body fixed axes at time ¢ with initial value wgy, Ry
is the initial attitude, J € R3*3  J > 0, is the inertia
tensor, and 7 is the torque input [18]. We assume that
7(t) € T for all ¢ > 0, where T is a convex, compact
polytope given by T = {r € R®: A7 < b} with b = 0.
Our objective is to design a controller capable of tracking a
trajectory (Rq(t),wq(t)), while respecting the torque input
constraints. First, we formulate the attitude error dynamics
in control affine form, following the standard backstepping
algorithm [19]. Subsequently, the problem is solved using
the controller proposed in this work. Moreover, we also
utilize the backstepping algorithm to complete the control
design and obtain an unconstrained backstepping-based static
feedback controller, as proposed in [20] for a quaternion
attitude parametrization and in [21] for the combined position
and attitude control problem using a rotation matrix attitude
representation. In the backstepping design, we do not account
for the input constraints; however, the resulting control inputs
are saturated a posteriori, as they are applied to the system.
We compare the two solutions in order to demonstrate the
performance and stability improvements provided by our
approach.

A. Formulation of Attitude Error Dynamics

Following [21], [22], we define an attitude error metric as
eo(R, Rq) := 3 Tr(I3 — RR)). Its time derivative is

éo = (Sk (RdTR)V)T (W — wa) .- (1)

We define the Lyapunov function Vi(eg;ko) = koeo,
where kg > 0 is a tuning parameter. Along the system’s

trajectories, we have Vi = ky (Sk (RdTR)V>T (W —wyq) .
According to the standard backstepping algorithm, w is
chosen as w = wyg — Sk (R}R)v + e,. The new error
variable e, (R, R4,w,wq) has dynamics given by é, =
Sk (RgR) V} . Analytical calculation of the time

w—wq+ %
derivative term and substitution of R from (10) yield

b =—Jr0Jw+ T — g
+Sk (0T RTR+ RyRa)" . (12)

We now define an augmented Lyapunov function as
Va(eg, ew; ko, ko) := Vi(eo; ko) + %kwelew, where k, > 0



is a second tuning parameter. The time derivative of V5 along
the attitude error trajectories is

Vo = — ko |8k (R}R)VH2 + ko Sk (RIR) e,
+ kyel, ( — T Jw+ T — g
+Sk (O RJR + RYR&)” )

An appropriate 7 will make Va negative semidefinite and
thus allow us to conclude that the attitude error dynamics, in
the absence of control input constraints, are Lyapunov stable.
Using LaSalle’s invariance principle, asymptotic stability is
deduced.

B. Solution Using the Proposed Controller

Let x = [eg e]]7. By combining (11) and (12), the error
dynamics can be written in the control-affine form (1), with

.
(Sk (RgR)V) (w — wa)
—J '@ Jw — @ + Sk (O RTR + RYR&)”

9@ = ]

An asymptotically stabilizing, in the sense of Def. 2, control
input 7 € T can be found by solving the QP problem (8),
(9), given the attitude error dynamics, the CLF V5 and the
input value set T. The constants kg, k, which appear in V5,
as well as the parameter € in 3(eg,e,) = €Va(eg,e,), can
be used to tune the solution.

fx) =

C. Unconstrained Backstepping-Based Solution

By completing the backstepping design, the stabilizing 7
for the unconstrained case is obtained as

r=J [J—lew + g — Sk (GIRTR + RIRG)”

T
— e, — :—9 (Sk (RdTR)V> } (13)
The ratio kg /k,, is a tuning parameter, affecting the magni-
tude of the control input. However, as it will be demonstrated
in Section V, this controller does not necessarily make V' < 0
along the system’s trajectories for all ¢, under the given input
constraints.

V. SIMULATIONS

Pendulum Stabilization Example We consider again the
pendulum problem of Section II-C, with the same dynamics,
CLF, and input value set U. The desired pointwise perfor-
mance is parameterized as 5(6,w) = €V (6,w). For the min-
norm controller, we choose again ¢ = 0.4; higher values,
which would yield faster performance, render the min-norm
controller unfeasible for (6, wo) = (%,0.49), as it has been
already discussed. There are no such restrictions for the
proposed controller, since feasibility Xy and performance
B(0,w) are essentially decoupled; we therefore choose € = 1
to demonstrate the potential for performance improvement.

Fig. 2 illustrates the feasible set Xy for the proposed
controller, which is independent of €, on top of the feasible
sets X% for the min-norm case for different e. The input

histories, state trajectories and V are illustrated in Fig. 3

Fig. 2: Regions of feasibility for the proposed controller, X¢, and for the
min-norm controller for different e, X;’; C Xy. The trajectories correspond
to the closed loop system under the proposed controller for ¢ = 0.7. The
system does not exhibit any problems near the attractive equilibria (£, 0)
for any (6, w), in contrast to the min-norm solution.

10 15

Fig. 3: Input, state and V' as functions of time for the closed loop system
with (6o, wo) = (%,0.49) under the proposed controller and the min-
norm controller. The proposed controller is able to operate on OU. The
min-norm controller is forced to perform equal or better, in terms of V,
than «(f,w) at any time. The proposed controller is allowed to initially
exert significant control input, at the saturation limits, in order to attain the
“faster” performance objective 3(0,w).

as functions of time. One can observe that the proposed
controller exhibits a much shorter settling time. Initially it
falls short of its pointwise performance objective, as Fig.
3 shows. However, the proposed formulation utilizes the
available control authority to accelerate, and subsequently
reach its desired pointwise performance 3(6,w).

The results presented here reveal another interesting aspect
of both controllers. It can be seen that the difference in terms
of control input applied initially, from Os to 1.5s, is small.
Yet, subsequently, the proposed controller uses much less
control effort in total, compared to the min-norm controller
which, by definition, attempts to minimize the control effort
for every t. This is a consequence of both the particular
formulation of each controller, as discussed before, and the
common pointwise nature of the two solutions. In fact, due
to the absence of any kind of predictive element in the
formulation, the minimization of the control effort for every
t which the min-norm controller attempts does not cause
an equivalent minimization of control effort for the whole
maneuver. Such performance conclusions depend on many
factors, specifically, the system in question, the associated
CLF, the input constraints and the initial conditions. Nev-
ertheless, we anticipate that the capability of the proposed
controller to operate on the system’s saturation limits will
yield significantly improved performance using, potentially,
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Fig. 4: V5 and V> along the system’s trajectory as a function of time for the
two controllers. The dotted red line corresponds to the desired performance
objective for the proposed controller. The a posteriori saturated backstepping
controller exhibits temporary increases of V2 along the ensuing trajectory.
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Fig. 5: Torque inputs around the 1,2,3 body axes

less total control effort, for a wide class of dynamical
systems, compared to the min-norm controller.

Input Constrained Attitude Control ~We consider the
attitude dynamics derived in Sec. IV, for a rigid body
with J = diag(1.2,1.2,1.1) kgm?. The control inputs are
constrained in the asymmetric set [—0.35, —0.35, —0.2]T <
7 =< [0.35,0.35,0.35]" Nm. We choose kg = 5, k, =
1, ¢ = 04. At t = 0, the system is at rest at the
initial attitude corresponding to a rotation of 27/3 radians
around the [2/3,2/3,—1/3] axis, while the desired state is
(Ra,wq) = (I3,0rad/s). The backstepping control law (13)
is a posteriori saturated using the same constraint set T.

Fig. 4 illustrates the fact that the system converges a
little faster under the proposed controller. The backstepping
controller tends to generate rather aggressive control inputs,
as illustrated in Fig. 5. From the same data, it can be
observed that the control effort used for the same maneuver
is considerably lower for the proposed controller. It can also
be seen that the backstepping controller, when subjected to
input saturation, renders the system temporarily “unstable”
for short intervals around 4s, 9s, and 14s, in the sense
that V5 does not decrease monotonically along the ensuing
trajectories. This behavior does not prevent the backstepping
controller from ultimately achieving (in this particular exam-
ple) its regulation goal. Nevertheless, any kind of oscillatory
behavior, as exhibited here, is typically undesirable.

Choosing different values for kg and k., may prevent the
generation of control inputs that tend to exceed the system’s
saturation limits. However, such a conservative design would
result in lower performance and, eventually, longer settling
times with respect to the proposed controller.

VI. DISCUSSION AND CONCLUSION

A new solution to the input constrained control problem
of control-affine nonlinear systems has been presented. The
proposed CLF based controller is built around a pointwise

optimization problem with a state-dependent performance in-
dex. The particular formulation provides asymptotic stability,
provided that the closed loop trajectories stay in the feasible
state space, while it allows the system to operate at or close to
its input saturation limits. In addition, the proposed controller
can utilize the available control authority appropriately, in
order to provide as much performance is necessary, if it
is possible. Numerical simulations on the pendulum and
attitude stabilization problems have illustrated advantages of
the proposed controller over the min-norm controller and an
unconstrained, a posteriori saturated nonlinear controller, in
terms of performance, total control effort and stability.
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