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Abstract— This work studies the problem of analyzing and,
subsequently, optimizing the stabilization capabilities of a
class of controllers for input constrained nonlinear systems.
The proposed techniques apply to continuous, state feedback
controllers which are defined in a subset of the state space where
the time derivative of a known, candidate Control Lyapunov
Function (CLF) can be made negative definite under the input
constraints. This set is associated with the domain of this
class of controllers and depends on the CLF. The analysis
problem concerns approximating the domain and is posed
via appropriately formulated set containment relationships
through the generalized S-procedure with sum of squares (SOS)
constraints. The optimization problem is concerned with the
adjustment or enlargement of the domain and constitutes a
way of controller synthesis. These objectives are pursued via
optimizing over the coefficients of polynomial CLFs, through
a sequence of semidefinite programming (SDP) problems with
SOS constraints. By partitioning the state space based on the
structure of the input value set and building upon earlier results
on SOS methods, the SDP problems are subject to only convex
constraints, rendering thus the proposed techniques computa-
tionally viable. The capabilities of the proposed algorithms are
demonstrated through numerical examples.

I. INTRODUCTION

Control design based on Control Lyapunov Functions
(CLFs) constitutes a common way to stabilize a nonlinear
system [1]. For instance, by utilizing the backstepping algo-
rithm [2], a wide class of nonlinear systems can be brought
into the control affine form; using an appropriate CLF,
the system can then be stabilized to the origin. Numerous
extensions have also been proposed, covering topics such
as robustness to disturbances and uncertainties [3], inverse
optimality [3], [4], connections to receding horizon control
[5], and constrained systems [6], [7].

Constraints in the system’s input constitute a common
nonlinearity, originating from the physical limitations of most
systems’ actuation mechanisms. A closed loop system may
suffer a performance degradation or even become unstable,
when its input constraints become active. In this paper, we
focus our attention on the class of continuous feedback
control laws for systems with nonlinear dynamics subject to
polytopic input constraints. For this case, [6] proposed non-
predictive control laws which are based on an appropriately
formulated, state-dependent Quadratic Programming (QP)
optimization problem, given a CLF and certain performance
parameters. The subset of the state space where this QP
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problem is pointwisely feasible depends on the particular
dynamics and the CLF; not on the performance objective.
It is possible to associate a particular CLF with all such
control laws based on it, and obtain in this way a family
of controllers. Two critical tasks arise with regards to the
domain of such a QP-based controller, which is defined as
the set where the QP problem is and remains feasible, and
the controller is guaranteed to work and stabilize the system:
(i) Calculating the domain of the controller family, for a
given CLF. This analysis problem has connections to the
problem of characterizing the region of attraction of a control
system.
(ii) CLF techniques are powerful, yet, they may yield conser-
vative results. Properties of the closed loop system, such as
the domain of the family of controllers, can vary significantly
as functions of the particular CLF. The second question
of interest concerns the optimization of CLFs in order to
reshape or enlarge the domain, for a given system and input
value set. In this way, one can better utilize the system’s
resources and capabilities. Starting with some initial CLF and
optimizing over the set of CLFs can result in new families
of controllers, with improved properties (at least in terms of
their domain); one can, therefore, regard this process as a
method of controller design or synthesis.

Studying the behavior of dynamical systems with numer-
ical means is often necessary in order to verify attributes
of interest. Such problems often involve the search over the
set of nonnegative functions with certain properties; this is
an (at least) NP-complete problem. Parameterizing, though,
the set of nonnegative functions of interest as multivariate
polynomials which are sums of squares (SOS) can yield
semidefinite programming (SDP) problems with linear ma-
trix inequality (LMI) constraints; such problems are convex
and can be solved in polynomial time [8]. Although SDP
problems, such as the ones resulting from the parsing of SOS
constraints, can still be of rather high dimension and, thus, be
computationally demanding, the decrease in computational
complexity is remarkable and has resulted in a significant
body of work in the field. SOS methods have been used
in Lyapunov-based analysis and verification of autonomous
systems [8], [9], [10], [11], while results on a control
synthesis problem, without, however, input constraints, have
been presented in [12], [13].

In this paper, we study the problems of analyzing and, sub-
sequently, synthesizing CLF-based controllers for nonlinear
systems with polynomial dynamics subject to polytopic input
constraints. To this end, we formulate appropriate SDP op-
timization problems with SOS constraints. Both the analysis
and the synthesis problems refer to families of controllers



(and as opposed to individual, polynomial control laws),
which are parameterized based on the CLF. To the best of the
authors’ knowledge, the present work is the first application
of SDP optimization with SOS constraints to analysis and
synthesis of input constrained nonlinear controllers based
on CLFs. The input itself is not a variable of the SDP
problems; only the values of the vertices of the input value
set are utilized, following an appropriate partitioning of
the state space. In this way, we avoid significantly large
SDP problems or potentially intractable bilinearities, which
could both occur otherwise. The efficacy and tractability of
the proposed techniques are illustrated through numerical
examples.

II. PRELIMINARIES

A. Notation
The set of n-dimensional real vectors is denoted by Rn.

The set of polynomials in x ∈ Rn of a maximum degree
2d which are SOS is Σ2d. We denote by Q � 0 and Q �
0 a (symmetric) positive definite and semidefinite matrix,
respectively. For a C2 function h : Rn → R, ∇h denotes its
gradient (row vector), while ∇2h is the Hessian matrix. In is
the n×n identity matrix. For any x ∈ Rn, we denote the 2-
norm by ‖x‖, while given y ∈ Rn we denote the respective
element-wise inequality by x � y. The boundary and the
interior of a set S are denoted by ∂S and Int(S), respectively.
Br := {x ∈ Rn : ‖x‖ < r} is the open ball around x = 0
with radius r > 0.

B. Nonlinear control based on Control Lyapunov Functions
We consider nonlinear control systems with dynamics

ẋ = f(x) + g(x)u, x(0) = x0, (1)

where x ∈ D is the state vector at time t with initial value
x0, and D ⊆ Rn is an open set with 0 ∈ Int(D). Also, u
is the input vector with u(t) ∈ U ⊆ Rm for all t ≥ 0, and
f : D → Rn, g : D → Rn×m are vector and matrix valued
polynomial functions of the state x, respectively, with f(0) =
0. Given a continuous, feedback control law uc : Dc → U,
where Dc ⊆ D with 0 ∈ Int(Dc), the solution of (1) at
time t is denoted by φ(t;x0, uc(·)); note that for φ to be
well defined, it is assumed that φ(τ ;x0, uc(·)) ∈ Dc for
τ ∈ [0, t). We assume that U is a convex, compact polytope,
with vertices vi for i = 1 . . . q and 0 ∈ Int(U), which can
be parameterized by U := {u ∈ Rm : Au � b}, where
A ∈ Rp×m and b ∈ Rp with b � 0.

We are interested in stabilizing (1) with control designs
and methods based on Control Lyapunov Functions.

Definition 1: A C1 function V : Rn → R is a Control
Lyapunov Function (CLF) for system (1), if it is positive
definite, radially unbounded, and there is a set Xf ⊆ D with
0 ∈ Int(Xf ) such that V satisfies

inf
u∈U

ψ(x, u) < 0, (2)

for all x ∈ Xf \{0}, where ψ : D×U→ R with ψ(x, u) :=
∇V (x) (f(x) + g(x)u).
Depending on the dynamics, U, and the choice of V , (2) may
only be satisfied in a subset of D \ {0}, hence the need to
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Fig. 1: Subsets of the state-space Rn of interest for problem.

consider the set Xf := {x ∈ D : infu∈U ψ(x, u) < 0} ∪ {0}
where a CLF-based controller is pointwisely feasible. We are
interested in mappings uc : Dc → U, where Dc ⊆ Xf with
0 ∈ Int(Dc), such that (2) holds recursively for all trajecto-
ries emanating from a positively invariant, compact subset of
the control law’s domain Dc. A convenient parametrization
of such a set can be given in terms of sublevel sets of the
CLF V . First, let ΩV,γ := {x ∈ Rn : V (x) ≤ γ}. We also
denote the largest γ such that ΩV,γ ⊆ Xf by γ∗. In this work
it is assumed that such a finite γ∗ exists.

Lemma 1: Let γ > 0 be such that ΩV,γ ⊆ Xf . There
exists a feedback control law uc : ΩV,γ → U such
that V̇ < 0 holds for all x ∈ ΩV,γ \ {0}. Moreover,
φ(t;x0, uc(·)) ∈ ΩV,γ for all t ≥ 0 and all x0 ∈ ΩV,γ ,
and limt→∞ φ(t;x0, uc(·)) = 0.

Proof: Since ΩV,γ ⊆ Xf , inequality (2) holds for all
x ∈ ΩV,γ\{0}. This implies that at every x ∈ ΩV,γ , there is a
u∗ ∈ U such that V̇ < 0. The invariance and attraction results
follow from typical Lyapunov analysis arguments [14].

The various subsets of Rn introduced are illustrated in
Fig. 1. The reader should note that there may be trajectories
emanating from Dc \ ΩV,γ∗ , which, still, enter ΩV,γ∗ and
ultimately converge to the origin. Focusing only on ΩV,γ∗

introduces some conservatism in our results. Nevertheless,
the advantage of obtaining a compact parametrization of
the domain, such as ΩV,γ , can potentially outweigh this
conservatism by allowing us to pose and solve the analysis
and synthesis problems via a sequence of convex Semidefi-
nite Programming problems with sum of squares constraints,
which are introduced next.

C. Semidefinite Programming optimization
Semidefinite Programming (SDP) is concerned with the

minimization of cTx, subject to linear matrix inequality
(LMI) constraints, that is, F0 +

∑n
i=1 xiFi � 0, where

x = [x1 . . . xn]T ∈ Rn is the decision variable, and c ∈ Rn,
Fi ∈ Rn×n with Fi = FT

i for i = 0 . . . n are known. These
problems are convex and can be solved efficiently with poly-
nomial time algorithms, such as interior point methods [15],
[16]. This work ultimately utilizes SDP feasibility problems,
that is, a set of LMI constraints without an objective function.

D. Sum of squares polynomials
We briefly discuss polynomials which are sums of squares,

as well as their applications in the subsequent derivations.



Definition 2: A polynomial p : Rn → R of degree no
greater than 2d is a sum of squares (SOS), that is, p(x) ∈ Σ2d

for all x ∈ Rn, if p(x) =
∑k
i=1 g

2
i (x), where gi : Rn → R,

for i = 1 . . . k, are polynomials of degree no greater than d.
As a direct consequence of Definition 2, SOS polynomials

are nonnegative for all x ∈ Rn.
Lemma 2: [17] A polynomial p(x) of degree no greater

than 2d is SOS if and only if it can be written as p(x) =

zT[d](x)Qz[d](x), where z[d] : Rn → Rnd with nd = (n+d)!
n!d!

is the vector of monomials of degree less than or equal to d
and Q ∈ Rnd×nd with Q � 0.

The existence of such a Q for a given p(x) is an LMI
feasibility problem, as shown in [8]. The process of symbol-
ically converting SOS constraints into LMI constraints and
formulating corresponding SDP problems can be automated
with specialized libraries [18], [19]. In this work, we utilize
SOS constraints within SDP problems in two different ways:
(a) in order to enforce that a particular polynomial has an
SOS decomposition, and (b) as a means to prove appropri-
ately formulated set containment relationships.

Next, we briefly describe the latter method, commonly
referred to as the generalized S-procedure [8], [12]. Let
f0 : Rn → R and fi : Rn → R, for i = 1 . . .m, be known
polynomial functions, and consider the set containment rela-
tionship defined by the inequality f0(x) ≥ 0 for all x ∈ Rn
satisfying fi(x) ≥ 0. One can search for SOS polynomials
si(x) ∈ Σ2d such that f0(x) −

∑m
i=1 si(x)fi(x) ∈ Σ2d.

The existence of such si(x) for i = 1 . . .m implies that⋂m
i=1{x ∈ Rn : fi(x) ≥ 0} ⊆ {x ∈ Rn : f0(x) ≥ 0}. The

S-procedure is a sufficient condition for the set containment
relationship in question to hold, and it is known to introduce
a certain level of conservatism, since the success of the
method depends on the existence of the SOS decompositions
involved. Also, the conservatism level depends not only on
the specified maximum degree of the involved polynomials,
but, at a more practical level, on the attributes and capabilities
of the numerical libraries utilized, as well. However, the fact
that proving complicated set containment relationships can
be potentially achieved via solving a convex SDP problem, as
opposed to a non-convex, nonlinear programming problem,
offers significant computational advantages.

E. Problem statements

For the class of the CLF-based nonlinear controllers
described before, the shape and size of Dc depend on the
particular dynamics, the input value set U and the chosen
CLF. In an effort to add some structure to the problem,
we focus our attention to sublevel sets of the CLF which
are contained in Dc. For some γ̂ > 0 with γ̂ ≤ γ∗, we
define the analysis problem as the calculation of the inner
approximation estimate ΩV,γ̂ ⊆ ΩV,γ∗ ⊆ Dc, given (1), U
and a known CLF V . The synthesis problem is defined as the
modification or enlargement of the set ΩV,γ∗ , via means of
varying the CLF coefficients. For the synthesis problem to be
well-posed in this case where the coefficients of the CLF are
among the decision variables, we associate the adjustment or
enlargement of ΩV,γ∗ with the maximization of the level set
of an appropriately shaped, positive definite function, which

is constrained to be contained in ΩV,γ∗ .

III. PARTITIONING THE STATE-SPACE

In this Section, we derive results which are necessary in
order to subsequently pose and solve the analysis and syn-
thesis problems as SDP optimization problems. In contrast
to the earlier results in the literature on the analysis of au-
tonomous systems using SOS polynomials, the S-procedure
set containment relationships cannot be readily applied in
the case of feedback control systems with dynamics given
by (1) under input constraints. Here, we propose a solution
which enables the use of the S-procedure. Our development
relies on partitioning the set Xf based on the vertices of
U; the analysis and synthesis problems will contain a set
containment relationship corresponding to each element of
the partition. It will be shown why the proposed combination
of set containment relationships can yield level sets of the
CLF which are contained in Xf . This result essentially solves
the analysis problem and paves the way for developing an
algorithm for the synthesis case.

The reader should note that the upcoming derivations
and results do not suggest controlling the system using
exclusively the vertices of U; the use of the vertices herein
is limited in the context of the analysis and synthesis
computations. A corresponding control law uc (either based
on an existing CLF, or on an optimized one) may or may not
saturate on the vertices of U. This possibility depends on the
desired performance and the particular CLF; the proposed
partitioning scheme used for computational purposes here
has no effect whatsoever. The results of the analysis and
synthesis algorithms will guarantee, though, that if the state
of the closed loop system is inside ΩV,γ∗ and the input
saturates, this will be safe in the sense that the condition V̇ <
0, which serves as our indication of asymptotic stabilization,
will still hold.

A. Partitioning Xf based on the vertices of U
We will use a fundamental result from linear program-

ming, which will, then, allow us to partition Xf into subsets
corresponding to each vertex of U.

Proposition 1: (Prop. 3.4.2, [20]) Let P be a polytope
which has at least one extreme point. A linear function which
is bounded from below over P attains a minimum at some
extreme point of P.
It is straightforward to apply Proposition 1 to the CLF
property (2), yielding the following Lemma.

Lemma 3: Let U be a compact, convex polytope
with vertices vi, for i = 1 . . . q, and ψ(x, u) :=
∇V (x)(f(x)+g(x)u). Then, Xf =

⋃q
i=1 Xfi , where Xfi :=

{x ∈ D : ψ(x, vi) < 0} ∪ {0}.
Proof: For a fixed x∗ ∈ D, ψ is linear in u. Moreover,

since u ∈ U, where U is a compact and convex polytope, ψ is
bounded. If at the point x∗ the inequality infu∈U ψ(x∗, u) <
0 holds true, then x∗ ∈ Xf . According to Proposition 1,
though, infu∈U ψ(x∗, u) = min{ψ(x∗, vi), i = 1 . . . q}, that
is, the infimum is attained and that can only happen at some
vertex vi. Therefore, x∗ belongs to at least one of the Xfi
sets, that is, Xf ⊆

⋃q
i=1 Xfi . Now let x∗∗ ∈

⋃q
i=1 Xfi ,



that is, x∗∗ ∈ Xf` for ` ∈ {1 . . . q}. Then, by definition,
x∗∗ ∈ Xf as well, which implies that

⋃q
i=1 Xfi ⊆ Xf . We

therefore conclude that Xf =
⋃q
i=1 Xfi .

Under the assumption that 0 ∈ Int(Dc), we deduce that
the function λ : D → R, where λ(x) = infu∈U ψ(x, u),
has to be negative in a neighborhood around x = 0.
Depending on the particular dynamics and CLF, λ may
increase along certain directions; this is typically the case
when the unforced dynamics are neutrally stable or unstable.
The details of the exact behavior of λ are not of interest for
the results of this Section; it is only necessary to discuss the
general structure of the sets involved, and, in particular, to
qualitatively describe the boundaries of the Xfi sets.

Let one consider the scalar, continuous function ψi(x) :=
ψ(x, vi) for any fixed vi, the set Γi := {x ∈ D : ψi(x) = 0},
which corresponds to the boundary of Xfi , ∂Xfi , and note
that:
(i) Due to the continuity of ψi and the fact that ψi(0) = 0,
since ∇V (0) = 0, we deduce that there exists a hypersurface
which satisfies ψi(x) = 0, passes through the origin and, by
definition, belongs to Γi.
(ii) Since, by assumption, there exists a finite γ∗ (correspond-
ing to the largest ΩV,γ to be contained in Xf ), there must
exist some x ∈ D \ {0} such that λ(x) = 0. By definition,
all x satisfying λ(x) = 0 form the boundary ∂Xf ; moreover,
according to Proposition 1, if λ(x) = 0, then u = v` for
some ` ∈ {1 . . . q}. This implies that Γ` also consists of
points x ∈ D away from x = 0.
We conclude, then, that each Xfi set, for all i ∈ {1 . . . q}
is contained between a manifold passing through the origin
and, potentially, other manifolds which do not contain the
origin, as illustrated in Fig. 2.

B. Further partitioning of the Xfi sets

One can expand ψ(x, vi) around x = 0 for a given vi as
a Taylor series; since ψ(0, vi) = 0, this yields ψ(x, vi) =
∇ψ(0, vi)x + o(‖x‖), with limx→0 o(‖x‖)/‖x‖ = 0. Let
ηi := ∇ψT(0, vi), and note that ηi = ∇2V (0)g(0)vi.

Lemma 4: Let X0i := {x ∈ D : ηTi x ≤ 0}. There exists
Br ⊂ Xf , such that Br ∩Xfi ⊆ Br ∩X0i for all i = 1 . . . q.

Proof: For sufficiently small ‖x‖, ψ(x, vi) ∼= ηTi x. Let
Br be the open ball which contains all such x. If x∗ ∈ Xf` for
some ` ∈ {1 . . . q}, then ψ(x∗, v`) < 0; if, additionally, x∗ ∈
Br ∩ Xf` , then ψ(x∗, v`) < 0 implies ηT` x < 0, therefore
x∗ ∈ Br ∩ X0i , which proves the Lemma.

Proposition 2: It is true that D =
⋃q
i=1 X0i .

Proof: Let x ∈ D\{0}, and y = αx, where α ∈ (0, 1].
Since 0 ∈ Int(Xf ), there exists r > 0 such that Br ⊂ Xf .
For α < r/‖x‖, we have y ∈ Br and, therefore, y ∈ Xf .
Following Lemma 3, there is at least one ` ∈ {1 . . . q} such
that y ∈ Xf` . For sufficiently small α, Lemma 4 holds and
y ∈ Xf` implies y ∈ X0` , as well. As a consequence of
the latter argument, ηT` y < 0, which in turn yields ηT` x < 0.
Therefore, by definition of X0` , it is true that x ∈ X0` , which
implies D ⊆

⋃q
i=1 X0i . The converse argument,

⋃q
i=1 X0i ⊆

D, holds true by definition, proving the Proposition.

0

∂Xf`

∂Xf`V (x) = γ̂

Xf

(∇2V (0)g(0)v`)
Tx = 0

Xf`

X0`

D

Fig. 2: A qualitative depiction of the Xf` , X0` sets, for some v` with
` ∈ {1 . . . q}. For the analysis and synthesis problems, we are interested in
containing the sublevel set ΩV,γ∗ in Xf =

⋃q
i=1 Xfi .

C. CLF level set containment in Xf
It is now possible to assemble a number of S-procedure

set containment relationships which will subsequently allow
us to prove containment of level sets of the CLF inside Xf .

Proposition 3: Let one consider the S-procedure set con-
tainment relationships with SOS constraints given by

hi(x)− ski(x)ki(x)− spi(x)p(x) ∈ Σ2d, i = 1 . . . q,

where ski , spi ∈ Σ2d, p : Rn → R, and hi, ki : Rn → R for
i = 1 . . . q are polynomial functions, with hi(x) ≥ 0 for all
x ∈ Xfi and ki(x) ≥ 0 for all x ∈ X0i . The existence of ski ,
spi such that all q set containment relationships are satisfied
simultaneously implies that {x ∈ D : p(x) ≥ 0} ⊆ Xf .

Proof: The existence of polynomials ski , spi ∈ Σ2d for
some i ∈ {1 . . . q} implies that {x ∈ X0i : p(x) ≥ 0} ⊆ Xfi .
If there exist ski , spi for all i = 1 . . . q, then all q set
containment relationships are satisfied simultaneously, and⋃q
i=1 {x ∈ X0i : p(x) ≥ 0} ⊆

⋃q
i=1 Xfi . However, Xf =⋃q

i=1 Xfi and D =
⋃q
i=1 X0i , according to Lemma 3 and

Proposition 2, respectively. Therefore, {x ∈ D : p(x) ≥
0} ⊆ Xf , which proves the Proposition.

IV. ANALYSIS ALGORITHM

In the analysis problem, we are looking for the largest
γ∗ > 0 such that ΩV,γ∗ ⊆ Xf , given the dynamics (1), U
and a (fixed) CLF V . To this end, one can build on the results
of the previous Section, and, in particular, Proposition 3, in
order to assemble a corresponding SDP problem.

We can approximate γ∗ with the solution γ̂ of the
optimization problem of maximizing γ > 0, subject to
spi(x), ski(x) ∈ Σ2d and

spi(x)(V (x)− γ) + ski(x)(∇2V (0)g(0)vi)
Tx

−∇V (x)(f(x) + g(x)vi)− εxTx ∈ Σ2d, (3)

for i = 1 . . . q, where εxTx with 0 < ε � 1 enforces the
strict inequality employed in the definition of Xfi .

This optimization problem is bilinear due to the prod-
ucts spi(x)γ. Nevertheless, this particular bilinearity can
be circumvented rather efficiently by employing a bisection
algorithm. For a fixed γ we consider an SDP feasibility



problem consisting of the constraints given by (3); we denote
this problem by SDP(γ, f, g,U, V ). For some initial values
γl, γh > 0 such that SDP(γl, f, g,U, V ) is feasible while
SDP(γh, f, g,U, V ) is not, the bisection procedure proceeds
as described by Algorithm 1.

Algorithm 1 Bisection based analysis algorithm
1: repeat
2: γm ← (γl + γh)/2
3: if SDP(γm, f, g,U, V ) is feasible then γl ← γm
4: else γh ← γm
5: end if
6: until (γh − γl)/γl ≤ εtol

The solution γ̂ is known to be contained in the interval
[γl, γh), which Algorithm 1 can approximate to the desired
relative accuracy level εtol = (γh − γl)/γl. The correctness
of the proposed Algorithm and its result, that is, the fact
that ΩV,γ̂ ⊆ Xf , follows from Proposition 3, with p(x) =
γ − V (x), hi(x) = −∇V (x)(f(x) + g(x)vi) − εxTx and
ki(x) = −(∇2V (0)g(0)vi)

Tx for i = 1 . . . q.

V. SYNTHESIS ALGORITHM

The objective of the synthesis problem is to adjust or
enlarge ΩV,γ∗ . This can be achieved by parameterizing the
CLF as an SOS polynomial of some fixed degree, and
optimizing over its coefficients. The positive definiteness
property, as well as (2), are enforced on this polynomial
via appropriate constraints. Following the approach typically
pursued in the literature of SOS methods for estimating the
region of attraction of autonomous systems, we introduce the
concept of a shape function P : Rn → R, with P (x) > 0 for
all x 6= 0, P (0) = 0, P (x)→∞ as ‖x‖ → ∞, and require
that ΩP,µ ⊆ ΩV,γ . Maximizing µ can then yield the desired
result in terms of reshaping or enlarging ΩV,γ∗ .

By appropriately augmenting the analysis problem from
Section IV, we can now define the optimization problem for
the synthesis case as maximizing µ > 0, subject to sµ(x) ∈
Σ2d, spi(x), ski(x) ∈ Σ2d for i = 1 . . . q, V (x) − εxTx ∈
Σ2d, V (0) = 0 and

spi(x)(V (x)− γ̂) + ski(x)(∇2V (0)g(0)vi)
Tx

−∇V (x)(f(x) + g(x)vi)− εxTx ∈ Σ2d, i = 1 . . . q, (4)

sµ(x)(P (x)− µ)− (V (x)− γ) ∈ Σ2d, (5)

where the εxTx term is utilized as in Section IV. In this
problem, the scalar γ̂ > 0 is a constant, as we will explain
next. This problem is bilinear in its decision variables, due
to the products spi(x)V (x), ski(x)(∇2V (0)) and sµ(x)µ.
Although the latter can be circumvented with a bisection
scheme, the two other cases enforce a different approach for
the synthesis algorithm.

For a fixed µ, we define two separate SDP feasibility
problems, which are affine in their decision variables:
• SDPS(µ, f, g,U, V, γ̂, P ), with decision variables sµ,
spi and ski , subject to (4) and (5);

• SDPV(µ, f, g,U, γ̂, P ), with decision variables sµ and
V , subject to (4) and (5), given fixed spi , ski ∈ Σ2d.

It is assumed that an initial CLF V is known for the system,
and that the analysis algorithm from Section IV has yielded a
γ̂, such that ΩV,γ̂ ⊆ Xf . A shape function P is subsequently
chosen according to the designer’s objectives, as well as an
initial µ, such that ΩP,µ ⊆ ΩV,γ̂ . The two SDP problems are
then solved iteratively, following Algorithm 2.

Algorithm 2 Iterative synthesis algorithm
1: repeat
2: if SDPS(µ, f, g,U, V, γ̂, P ) is feasible then
3: update spi , ski multipliers, increase µ
4: else if SDPV(µ, f, g,U, γ̂, P ) is feasible then
5: update V , increase µ
6: end if
7: until SDPS and SDPV both unfeasible

VI. NUMERICAL EXAMPLES

We consider a system with dynamics

ẋ1 = x2, ẋ2 = −0.5x21 − x2 + u,

with −2 ≤ u ≤ 4. There exist trajectories φ(t;x0, 0) which
diverge away from the origin rapidly. This is due to the −x21
term in the dynamics, which can lead to solutions with a
finite escape time for various x0 6= 0. An unconstrained
control law could trivially cancel the pathological term and
globally stabilize the system. For the case where the input is
constrained, though, this is typically not possible. We employ
the proposed methods in order to examine, reshape or enlarge
the subsets of R2 inside which asymptotic stabilization with
a CLF-based controller is guaranteed to be possible.

We consider SOS polynomials of maximum degree 8.
Algorithm 1 calculated that the largest ΩV,γ contained in
Xf for the CLF V1(x) = 1.7x21 + 2x1x2 + 1.7x22 was given
for γ̂ = 12.896. Figure 3 illustrates ∂Xf and the level set
V1(x) = γ̂. One can see that there is no conservatism at all
in this calculation, since ∂ΩV1,γ̂ appears to locally coincide
with a segment of ∂Xf . Algorithm 2 was then invoked three
times, with the shape functions P2(x) = xTx, P3(x) =
4x21 + x22 and P4(x) = x21 + 4x22, respectively. The iterative
optimization results to µ̂2 = 6.578, µ̂3 = 16.891 and
µ̂4 = 7.580, for the new CLFs V2, V3 and V4, respectively.
The level sets of each CLF and the corresponding boundaries
∂Xf are illustrated in Fig. 3. The problem was processed
using YALMIP, and solved with MOSEK and SDPT3.

The shape function choice can be motivated by the re-
quirement to include particular regions of the state space
into the controller’s domain. For instance, requiring to extend
the domain towards larger values of x2 would result in a
shape function similar to P3, which, apparently, did not only
influence the domain, but resulted in an increase of the area
enclosed by ΩV,γ̂ , as well.

VII. DISCUSSION AND CONCLUSION

We have built on the fundamental SOS results in order
to analyze and, subsequently, synthesize families of CLF-
based controllers for input constrained, nonlinear systems.
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Fig. 3: ∂Xf for each CLF and the largest level sets V (x) = γ̂ contained
within them. The largest level sets of each shape function contained by the
respective ΩV,γ̂ are also illustrated.

The numerical examples presented indicate satisfactory per-
formance, in terms of indistinguishable conservatism and
success in adjusting the controller’s domain. The main ques-
tions which arise with regards to the proposed methods and
the prospects for further developments are three, namely, the
computational tractability, the conservatism imposed by the
SOS decompositions and, finally, the applicability of this
work to broad classes of dynamical systems.

The tractability issue becomes relevant as the order of the
underlying dynamical system or the degree of the involved
S-procedure multipliers grow. Replacing SOS polynomials
with alternative nonnegative functions, such as diagonally-
dominant SOS polynomials which result in linear or second
order cone programming problems [21], may be an interest-
ing extension of this work.

The existence of an SOS decomposition is only a suf-
ficient condition for the nonnegativeness of a polynomial,
potentially increasing, thus, the conservatism in the solution
of the corresponding problem. The same conclusion is also
true in the case where SOS polynomials are used within an
S-procedure expression to show set containments. Increasing
the degree of the involved polynomials can lead to less con-
servative results. Nevertheless, this benefit can be outweighed
by the increasing size of the corresponding SDP problem,
leading to the tractability issue mentioned above. The appro-
priate balance can be dictated by the designer’s requirements,
objectives and available computational resources.

SOS methods are inherently applicable to systems with
polynomial dynamics, such as the ones studied herein. Ex-
tensions which apply SOS methods to polynomial time-
delay [22] and hybrid [23] dynamics have been proposed.
Certain non-polynomial systems have been considered in
[24]. Combining such results with the methods developed in
this paper would be an interesting direction for future work.
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