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Abstract— We consider the problem of characterizing an
evasion strategy for an agent under pursuit by multiple in-
dependent agents that are distributed in a convex polygon. The
proposed evasion strategy is centrally dependent on a general-
ized Voronoi partition of the polygon, whose proximity metric
is the time of capture of the evader by the nearest pursuer.
Specifically, the boundaries of the Voronoi cells determine a
set of preferable paths for the evader that will safely take
it to a prescribed target set. The motion of the pursuers is
accounted for by sequential re-partitioning and re-planning. A
novel method for the computation of the generalized Voronoi
partition, which exploits the structure of the solution to a
two-player differential game, is presented. It is shown that
the proposed method is significantly faster (by at least one
order of magnitude) than two known methods in the literature;
this expedites computation of the proposed evasion strategy.
Numerical simulations that illustrate the effectiveness of the
proposed evasion strategy are presented.

I. INTRODUCTION

Evasion of a single agent from a group of pursuers is a
phenomenon found in a number of natural and man-made
environments. The pursuers may be behaving cooperatively
or engaged in individual/relay pursuit. In this paper, we
are concerned with the successful evasion of a single agent
from a non-cooperative group of agents, resulting in a multi-
player non-zero sum game. Limiting the game to a convex
polygonal domain, we propose a strategy for evasion where
the evader stays close to the boundaries of the Voronoi
cells of the pursuers. The proximity metric of the Voronoi
paritioning problem is non-Euclidean and discontinuous. The
evader seeks to reach the goal edge (target set) of the convex
polygon unharmed, if possible (goal-oriented evasion). We
assume perfect information for all players.

Literature survey: Rufus Isaacs in [1] analyzed Pursuit
Evasion Games (PEGs) and focused on the characterization
of a saddle point solution for zero-sum games with two
players. Alternative techniques to solve for the optimal
strategy in PEGs, including variational methods and methods
to compute stroboscopic strategies are found in [2]-[5]. The
existence of saddle points and Nash Equilibria for non-
zero sum games with multiple players is examined in [6],
[7]. Recent literature on cooperative multiple agent PEGs
is rich. For instance, cooperative defense of one or more
agents against a single pursuer is studied in [8]-[11]. A
probabilistic framework is used to model a multiple pursuer
- multiple evader PEG in [12]. A number of heuristic pursuit
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strategies are compared in [13] for a multi-player PEG
with incomplete information. In [14], a group of pursuers
aided by a sensor network coordinate and minimize time of
capture of multiple evaders. Non-cooperative/decentralized
pursuit of a single evader by multiple pursuers is discussed
in [15], [16]. A switching strategy using Voronoi partitions
for multiple agents pursuing a single evader is presented in
[17]-[19]. In [20], the evader traverses a convex polygon
while maximizing the time of capture by any of the pursuing
agents. To achieve this, [20] proposes a roadmap evasion
policy where the evader travels on the boundaries of the
Voronoi cells generated by the pursuers’ positions. However,
the work in [20] assumes that only one pursuer goes after the
evader whereas the other pursuers are static (this problem can
essentially be addressed in one step). Further, [20] suggests
methods in literature such as the Direct Diffusion algorithm
[21] to quickly obtain the generalized Voronoi partition of a
given space for any given proximity metric. However, Direct
Diffusion does not correctly calculate Voronoi-like partitions
composed of disconnected cells as in our case.

Main contributions: In this paper, we present an algo-
rithm for effective evasion from moving pursuers under
the assumption of complete capturability of the evader.
The evader’s path is determined by standard graph search
algorithms using a cost function that is highly tuned for
goal-oriented evasion. We propose an algorithm based on
expanding isochrones to quickly and incrementally generate
a non-Euclidean Voronoi partition of the convex domain.
Our method is faster than the approach in [21], while
also generating the correct disconnected Voronoi cells for
our proximity metric. Our algorithm also facilitates easy
extraction of the roadmap from the Voronoi partition, which
is used to generate a feasible route through the domain.
Finally, we contrast our evasion policy with a simple policy
and show that our approach is highly effective in a large
number of cases.

Structure of the paper: Section [lI| introduces and formu-
lates the evasion problem. In Section the algorithm of
expanding isochrones is presented along with our evasion
algorithm. Comparison with other algorithms via numerical
simulations are provided in Section Concluding remarks
are presented in Section

II. FORMULATION OF THE EVASION PROBLEM

In this section, we first state briefly the group pursuit-
evasion problem, which has been described in detail in [20].
Let us consider a group of n pursuers, within a convex
polygon S in R2. The boundary of S is denoted by 9S, and
consists of m edges, &;,j € {1,2,...,m}. At any instant



of time ¢, the position of the i*" pursuer is denoted by x;

and its velocity by v;, and the index i € Z := {1,2,...,n}.
The motion of the i*" pursuer is governed by the following
equations:

T; = v, U; =Fu; — kv, (D

with initial conditions x;(0) = &; and v;(0) = ©;. The
acceleration F' > 0 is a constant, the coefficient of friction
is k > 0, and wu; is the unit vector which acts as the input. It
is to be noted here that the limiting velocity of each pursuer
is given by F'/k. The position of the single evader at time ¢
is denoted by x. and its velocity by v.. The evader follows
simple dynamics:

.(0) = &, @)

T, = WU,

where u. is a unit vector that is the evader’s directional input.
The evader’s speed w is a constant. Capture is defined by
positional proximity to a user-specified tolerance [ > 0.

Problem 1 (Goal-oriented evasion problem): There are n
pursuers, at known initial locations inside a convex polygon
S C R2. The evader’s initial position is on an edge &, s €
{1,2,...,m} of S. Find a sequence of control inputs u, that
will steer the evader to the specified goal edge £;,9 # s,
while it is true that min;ez ||&; — x| > [ for all ¢ € [0, T],
where T, > 0 denotes the time at which the evader reaches
&, for the first time.

Group of pursuers: The pursuers are in constant motion
and engage in relay pursuit [18]. Each pursuer operates
independently, and tries to minimize its own time of cap-
ture. Let us consider the it" PEG, that is, the zero-sum
game involving the i*" pursuer and the evader alone. It is
noteworthy here that we assume the evader can be captured
in finite time regardless of its initial position inside S. This
makes the problem of successful evasion non-trivial from
the evader’s perspective. A complete analysis of the two-
player game within the capturability assumption is provided
in [1], wherein it is referred to as the isotropic rocket game.
When the condition for capture is satisfied, the value function
Tup(xi, vi, Te) of the it PEG is the least positive root of
the equation

r? = 2(r;, vi)n + vin® = Q*(T), 3)

where 7; := x, —x;, 1 := (1 —e*)/k, and Q(T) :=
l —wT + F(T —n) /k. The set of positive real solutions
to is denoted by Tyoi(x;, vs, @), and Tsp(x;, vs, x) is
the minimum value in Ty (;, v;, €. ). The value function is
also the time of capture in the i*" two-player PEG. Now, we
define the lower envelope function T (x.) as follows:

T (xe) = mIinTSp(:Bi,vi,we) =Tp(i,,vi,, ), (4)

where 1, is the index of the neareslﬂ pursuer (defined by 7,),
at any time ¢. This pursuer is the active pursuer. At each
instant of time, only the active pursuer proceeds to capture
the evader. The other pursuers passively maintain a localized
periodic orbit. We assume here that the active pursuer will
only attempt to capture the evader if T3 () < Tmax
where Ti,.x is a chosen threshold. Beyond this threshold,

UIf the argmin is not unique, we pick the lowest index

the pursuer will be indifferent to the presence of the evader.
This assumption is relevant to situations where for each
pursuer, there is a trade-off between capturing the evader
and patrolling its local area in S. Analysis of the multi-
player game as a whole requires extensive computation, and
is possibly intractable. By assuming the model of a relay
pursuit as suggested in [18], at any instant of time ¢, we
concern ourselves only with the computation of the lower
envelope function, as defined in (). Since the pursuers
act independently, the PEG described in this paper can be
approximated to n concurrent two-player isotropic rocket
PEGs. It is to be noted that the n + 1 player PEG is not
zero-sum as in the two-player case. However, at each time
step, the active pursuer acts as if it were engaged in a two-
player zero-sum game with the evader.

The evader: The evader has a two-fold mission: (1) evade
from each pursuer successfully, (2) reach the goal edge &,
in minimum time. The control choice made by the evader at
every instance reflects a trade-off between the two aspects
of the mission. This means that the evader may engage in
sub-optimal play with respect to the active pursuer, as the
optimal evasive action might not steer it towards the goal.
The evasion policy presented in this paper relies significantly
on a Voronoi-like partition that is generated by the pursuers’
positions using the lower envelope function defined in
as the proximity metric. The Generalized Voronoi Diagram
(GVD) is denoted by U, which is defined as U := {U,, i €
7}, where

U :={2€8: Ty(zi,vi,z) =Ty, (2)} %)

The cell U; consists of all evader starting points in S that
result in capture by the i*" pursuer before all others. It is the

region of dominance of the i pursuer within S.

III. SOLUTION TO EVASION PROBLEM

In this section, we discuss the solution to the goal-oriented
evasion problem. In particular, the solution comprises two
steps: (i) obtaining the GVD with as the metric, and (ii)
finding a feasible path through the domain of interest using
the GVD and graph search methods. The notion of a feasible
path will be explained later. The computation of the Voronoi
partition and the subsequent graph search are described in
this section.

A. Partitioning algorithm

Straightforward partitioning algorithms construct approxi-
mations of the desired partitions by utilizing a discretization
grid, say G, over the space to be partitioned. Some charac-
teristic examples are the exhaustive classification and Direct
Diffusion algorithm [21]. We use an alternative approach to
construct the GVD from level sets of the lower envelope
function associated with each generator. We call this the
“method of isochrones.”

1) Exhaustive classification and Direct Diffusion: Using
the lower envelope function 7,(-) as the proximity metric,
each grid point of the discretized space is individually
assigned to the nearest pursuer. Due to the fact that the
proximity metric is discontinuous, we get a Voronoi partition



whose cell boundaries are intricate at certain locations. The
grid employed must capture these geometric details.

2) Method of isochrones: In this paper, we propose a
partitioning algorithm in which the GVD is composed as
an image using overlapping isochrones. The isochrone cor-
responding to a pursuer for a particular time T is the spatial
boundary of points the pursuer can “reach” in time [0, 7).
For the time of capture metric discussed in this paper, the
boundary is a circle with a moving center and time-varying
radius, as we show next. The isochrone curves in R2 are
obtained by substituting specific values for time in (3). For
the i*" pursuer, initially given x; and wv;, let the isochrone
at time 7' > 0 be denoted by C!" and be defined as C] :=
{x. € R?: T € Tyo1(xi,v;, ) }. Note that isochrones may
intersect with each other. The level set at time 7', denoted by
LT is defined as LT = {x. € R?: Ty, (x4, vi,ze) = T}
Note that £I' C CI" and LT N {Up<t<7Cl} = @.

Proposition 1: The isochrone at time ¢ = 7T that is
associated with the " agent, CiT , is a circle with radius
R;(T) = Q(T) that is centered at the point ¢;(T") :=
x; + nv;.

Proof: Let r; := x. — x;. From (3), adding ||z; +nv;||? on
both sides, we have for any x. € C/,

e |* = 2{xe.x: + ni) + e D)|1* = QX(T) — n*|lvi?
= 2(@i,nvi) = llail* + lles (T, 6)

where ¢;(T) := x;+nv;. After simplifying (6) and collecting
terms, we have that the equation for the isochrone at time T’

is
e — ci(T)]| = VQ(T). (7
Because the condition for capturability in the isotropic rocket

PEG is satisfied, we have that Q(7') is real and non-negative
[1], which in turn implies that R;(T) = Q(T). |

The GVD is composed by expanding the overlapping
isochrones backwards in time, starting from 7" = T}, until
T = 0. For each pursuer, the boundary points of the current

input : Thax, n, 07T, i, v; S
output: A composed partition of S

Preliminary steps
T = Tmax;
Create blank image M of S;
while 7" > 0 do
for i < 1 to n do
Render the isochrone C; on the existing image M
Update new position of pursuer c¢;;
end
T —T—90T;
end

Algorithm 1: Method of Isochrones

isochrone are calculated by explicitly substituting the value
of T"in (6) and (7). This guarantees the correctness of the
isochrones. The intersections of the isochrones corresponding
to different agents are the boundaries of the Voronoi cells. By
expanding backward in time, at each step, we eliminate the
need to keep track of points which were covered by previous
isochrones. The composition of the image is done by super-
imposing (visual stacking [22]) new isochronic circles on top

of the image of previously expanded isochrones. The absence
of explicit traversal through a grid makes this method much
faster than exhaustive classification or Direct Diffusion, as
we will see in Section [V}

B. Feasible path to goal

The graph search for a feasible path for the evader through
S is based on the GVD Y. The precise cost metric used for
the graph search dictates the behavior of the evader. In this
context, we define a “pessimistic” time of capture based only
on Euclidean distance from the active pursuer.

1) Pessimistic time of capture: The pessimistic time of

capture, which is denoted by T),(x.), is defined as T),(x.) :=
|xe—a;, | /(F/k), where iy is the index of the active pursuer
as defined in (@). From the perspective of achieving evasion,
this is a more conservative estimate of the time of capture
as Tp(xe) < T3 (x.), for all z. € S.
The risk of capture associated with a location on the map is
the inverse of the least time of capture for the evader at that
location. Hence, the risk of capture based on the pessimistic
time of capture is defined as: R.p(z.) := 1/(T,(z.))>.

2) Roadmap from GVD: Let 0% denote the set of all
the boundary points of each Voronoi cell that lie in the
interior of S, that is, 0U := (Uz0%;)\0S. The evading
roadmap I' associated with the generalized Voronoi diagram
is the set of all continuous paths whose traces are in 9.
On the output image from Algorithm [T} we use gradient-
based edge extraction [22] to obtain the boundaries of the
Voronoi cells and thus the set 9. The pixel grid is treated
as an equivalent uniform Cartesian spatial grid. For a given
origin and destination in 08, the objective is to determine
the optimal path ; among all the continuous paths in S that
lead from the initial edge to the goal edge. Optimality is
determined based on the cost function defined below.

3) Cost function and parameters for graph search: All
the grid points including O are then represented as vertices
of a directed graph G := (V,E). V is the set of vertices
(nodes) and F is the set of edges. Each element (u,v) in
L indicates a transition from one node u to another node v
on the graph. A cost function €(-) is defined for each edge
(u,v) in E. The cost incorporates two factors: (1) the risk
of capture at node v given by _# (v), and (2) the time to the
goal node, 7,. Let node(-) be a function that takes in a pair
of spatial coordinates and returns the corresponding node ID
in V. The inverse of this function is denoted by node ™" (-).
Let u° and u! be the start and goal nodes respectively. An
edge cost from node v € V to node v € V is assigned as
shown in Algorithm [2]

For nodes v that are not covered by the Voronoi regions of
any generators, the risk of capture is zero. This is due to the
upper limit 77,,, on the time of capture for the pursuers. For
points that are in the set 92U or have neighboring grid points
in 00, we scale the risk of capture by a factor « or 3, where
0 < a < B < 1. The total cost associated with each edge also
includes a penalty on the time to cover the Euclidean distance
to the goal node. The weight ¢ for each node v in the set *U is
given by & = exp (—|[node™" (u) — z;, ). For other nodes,
& = 0. The value of the weight £ represents the priority given



input : u, v, w, 07, a, B
output: Cost of transition € from u to v
7, = |[node™ (u!) — node™* (v)||/w;
if v €0y then
‘ F ()= aRcp(node™ (v));
C(u,v) =€ 7 (v) + (1 - &3
else
p:=any neighbor node of v other than u
if p €0y then
| 407 PRt )
% (u,v) =& 7 (v) + (1 = §)75;
else
7 (v) = Rep(node™ " (v));
@ (u,v) = €7 (v) + (1= &7

end
end

Algorithm 2: Cost assignment for graph search

to evading capture, while the value (1 — &) is the priority
for reaching the goal. A graph search algorithm is used on
the directed graph G to get the path from the start node to
the goal node. In this paper, A* search has been used (the
heuristic part of the cost is chosen so it is admissible). The
path yielded by A* is given as & = {u®,ul, ..., u'}, where
I+ 1 is the number of nodes in the path. The corresponding
path in spatial coordinates is ;. The parameters « and
[ determine the adherence of the path to the generated
roadmap.

4) Graph search: Cost assignment is done as described in
Algorithm [2] with 3 < 1 and o < 3. While the roadmap is
the preferred set of paths, A* calculates a route through the
interior of the Voronoi cells if the goal node is not reachable
through the roadmap. This guarantees completeness of the
graph search, despite possibly incurring high cost. This has
some important implications on the outcome of the evasion
problem, as will be shown in Section m

5) Evasion based on updated GVD: The GVD changes
due to the pursuers’ movement. The cell boundaries move
and reshape in a possibly discontinuous manner, owing to
the proximity metric 7;,(-). A new GVD of S is generated
at each stage, and the graph search algorithm is applied to
determine a path from the current position of the evader
to the goal edge. However, replanning the GVD at every
time step could produce graphs which cause the evader to
endlessly loop around in the position space. This in turn
means that the global path search algorithm is not complete.
Completeness is ensured by introducing a decision routine.
Let the current position of the evader be ., € S, and
dist(z,&,) be the shortest distance of a point z from the
goal edge. In addition, let SR be the set of rejected path
coordinates, defined as R = {z € ~ : dist(z,&;) >
dist(xe,Ey)}. The next “best” spatial coordinates for the
evader are given by the first element of ], where 7, = v, \9A.
The argument for the completeness of the evasion algo-
rithm is as follows. Suppose there exist graphs G and G’
where the “best” position of the evader is at the nodes
u € G and v/ € G'. Let G’ be generated after replan-
ning from G, and vice-versa. If either u or v’ is on the
goal edge, the A* algorithm will terminate, followed by
the termination of the replanning routine. If neither w or
u' is on the goal edge, the evader will alternate between

b
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(a) GVD from exilaustive classifi-  (b) GVD from Direct Diffusion.
cation, taken from [20]

Fig. 1. GVD for a scenario with eight pursuers. It can been seen in (b)
that a yellow region in the lower left, and a blue region in the upper right,
are missing compared to (a).

positions node™ ! (u) and node™!(u/) without termination.
Let dist(node™ ' (u'), &,) > dist(node™ " (u), &,). Then, the
decision routine applied to the optimal path of graph G will
ensure that the node ' is removed from the path. Then,
when the graph G’ is generated subsequently, the evader will
be in a new node v € G’ that is different from u’, such
that dist(node™" (v), &,) < dist(node™* (u), &,). Hence the
alteration between v and v’ is not possible when the decision
routine is implemented. This routine ensures that the evader’s
distance to the goal monotonically decreases. The algorithm
terminates automatically when the goal edge is reached.

IV. NUMERICAL SIMULATIONS AND COMPARISON

We consider a scenario where the number of pursuers
n = 8, and use the following data: w = 0.6, F = 1,1 =
02,k = 0 and S = [—4,4] x [—4,4]. For the case of
k = 0, the proximity metric can be obtained by solving a
quartic equation [1], which is simpler than the transcendental
equation in (3).

A. GVD generation

The partitioning of the convex polygon S using T3, (-)
as the proximity metric has been attempted using three
methods: (i) Exhaustive classification of grid points, (ii)
Classification of grid points by Direct Diffusion, and (iii)
Composition of the GVD using expanding isochrones. The
partitioning obtained from exhaustive classification for one
particular set of initial conditions is shown in Fig. [I(a)] The
corresponding GVD from Direct Diffusion is illustrated in
Fig. [[(b)] The time complexity of Direct Diffusion when
generators are sufficiently far apart is O(|G|), where |G|
is the number of grid nodes. Exhaustive classification has
time complexity in O(n|G|). Thus, Direct Diffusion, while
faster || than exhaustive classification, is unable to properly
identify and obtain disconnected partitions [21], should they
exist. In our case, the disconnected partitions exist due to
the discontinuous proximity metric. Fig. 2] shows stages of
evolution of the GVD using the method of isochrones. The
envelopes belonging to different agents are differentiated by
color. All points inside the envelope of each pursuer are
designated to it. Fig. 2(d)| shows the composed image at Ty =
0. The method of isochrones is an order of magnitude faster

2Worst case complexity when generators are too close is same as
exhaustive classification [21].



(b) T = 3.02

@T=0

©T=10

Fig. 2. Incremental computation of the GVD using method of isochrones,
shown at different times T" where T" € [0, 4].

TABLE I
PARAMETERS OF DISTRIBUTION FOR INITIAL CONDITIONS

Variable | = Y v 0

5
u {165} [ {711} [o075 | 3
o? {051} | {105} [ 1 1

than Direct Diffusion and is independent of the placement
of generators inside S. In particular, the time complexity of
this approach turns out to be in O(n). The simulations were
carried out for sets of different number of pursuers, with
different initial conditions. The initial conditions (position
and velocity) for the pursuers were generated by random
sampling from different normal distributions on the area of
interest. A set of parameters used for the simulations in this
paper are given in Table [ The graph in Fig. 3 illustrates a
comparison of the time taken to generate the GVD in the
case of the exhaustive classification, the Direct Diffusion
method and the method of isochrones with 07" = 0.05 and
Tinax = 10. In all cases, |G| = 500.

g .
o
g & & o——0—0
=% 5 1
£
5 1
&8
a 05 !
§ e ————o— ¢
v} £ L L
H 7 3 9 0 n 12
Mumber of generators(pursuers)
Fig. 3. Time-comparison for generation of GVD. Blue: Direct Diffusion,

Green: exhaustive classification, Red: method of isochrones. The compu-
tations were performed on a platform with 8 GB RAM and 3.20 GHz
processor.

The determination of the optimal path is a recurrent step in
our evasion algorithm, as the GVD is updated. The method of
isochrones generates the GVD faster than the other methods
and consequently, the time to find the optimal path through
the roadmap is the least using that method.

B. Goal-oriented evasion from a group of pursuers

We view the PEG as a series of discrete moves, with
the players moving simultaneously. For this reason, it is
necessary to obtain a discretized model of the continuous
system in (I) to update the pursuer positions. In this paper,
evasion is accomplished by replanning at each time step
using current positions of all players to generate a new GVD.
In turn, this provides a new roadmap and a new optimal path
to the goal edge &, for the evader from its current position.

1) Roadmap evasion: The discontinuous value function
in the isotropic rocket PEG reflects the “swerving” capabil-
ity of the evader, which is a maneuvering advantage over
the pursuers. The pursuers, which follow double integrator
dynamics, cannot change direction instantaneously. For the
following example, we set @ = 0.01 and 8 = 0.25.
The path ; is optimal with respect to the current position
of the pursuers. However, in continuous global replanning,
optimality may not be preserved between two stages. Hence,
the notion of an optimal path is replaced by that of a feasible
path (globally) for the PEG. The globally feasible path v,
is obtained by concatenation of segments of locally optimal
paths 7; generated by A* search at each update. Different
stages of evasion using updated GVD for a scenario of eight
pursuers are illustrated in Fig. ] The set of grid points that
do not belong to U constitute the free regions within S as
seen in Fig. The free regions exist because there is a
limit T},,x on the capture time for the pursuers.

2) Comparison of replanning evasion with naive evasion:
In this section, the proposed evasion policy (using the
updated roadmap) is contrasted with a naive policy where
the evader does not make use of the Voronoi partition.
Naive evasion policy: In the naive policy, the evader pro-
gresses in a straight line trajectory towards the goal edge
&y as long as there is no pursuer in close proximity. The
threshold of proximity is fixed as 5 times that of the capture
radius [. While there is a pursuer of index 7 such that
le; — || < 5, the evader will employ the optimal evasive
action [1] for the two-person zero-sum PEG between the i
pursuer and the evader. If there is more than one pursuer
within the proximity threshold, the evader takes the optimal
action with respect to the closest pursuer. Once no pursuer
is within the threshold, the evader continues in its straight
line path to the goal. For the simulations comparing evasion
policies, we use the following parameter values: F' = 3, k =
1, w = 1, I = 02,Thax = 3. The target set (goal
edge)is & = {z € S, z=[4 z]"}. A large number
of simulations (of order ~ 10%) were performed, and the
two policies were applied to the same initial conditions in
each case. The pie graph in Fig. [5(a)] shows a comparison
between the two policies, in terms of number of successful
evasions (where the evader reached the goal edge without
being captured). It is clear that evasion based on the updated
GVD is significantly more effective than the naive policy.

However, in the cases where evasion fails, our policy is
comparable to the naive policy, in terms of two metrics of
interest: (1) time of capture (2) distance from goal edge. It
is notable at this point that the results obtained from the
updated GVD evasion policy are significantly affected by
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(d) Full path

Fig. 4. Evader movement using updated GVD at different times. The black dot represents the position of the evader, the red markers are the pursuers and
the Voronoi boundaries and free regions within S are represented by blue dots. The path determined at each step is also shown in green. The complete

path is shown in (d).

(b) Two performance ria for cases of un-
successful evasion.

(a) Successful evasion by
number of cases.

Fig. 5. Comparison of updated GVD strategy with the naive strategy. In
(a), Deep blue: Updated GVD evasion, Light blue: Naive evasion, Yellow:
Both, Red: Neither. In (b), Blue: Updated GVD evasion, Red: Naive evasion,
the choice of parameters in the cost function, in particular,
&. For unsuccessful cases, the updated GVD policy performs
poorly on the time of capture and distance travelled. This is
illustrated in Fig. 5(b)]

V. CONCLUSION

We have presented an effective evasion strategy in a multi-
player PEG involving an evader and a group of pursuers
inside a convex polygon. The evader aims to reach a goal
edge of the polygon while delaying or avoiding capture. Our
evasion policy is based on a particular type of generalized
Voronoi partition of the convex polygon, which is computed
quickly and accurately by the method of isochrones presented
herein. Also, the proposed solution method, which uses graph
search and updated GVDs, offers an attractive alternative to
directly solving the multi-player PEG, which is a complex
process, if tractable at all. We will advance this work further
by utilizing improved replanning algorithms like the Lifelong
planning A*, or D*, instead of replanning from scratch at
every step. We will also consider games in higher dimensions
and in non-convex domains (to account for instance, for
the presence of obstacles) or with higher fidelity kinematic
models for the players.
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