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Abstract— We address the problem of steering a Newtonian
particle to a prescribed terminal position and velocity in a
spatiotemporal flow field under an explicit constraint on the
norm of its acceleration. The cases when either the terminal
position or the terminal velocity of the particle is free are also
considered. By employing standard techniques from optimal
control theory, we characterize the structure of the candidate
time-optimal control and subsequently reduce the original
optimal control problem to a system of coupled nonlinear
algebraic equations. Although the latter system of equations
has to be solved numerically, in general, we show that, in some
cases, it can be brought into a triangular form, whose solution
does not require a significant computational effort. Numerical
simulations that illustrate the theoretical developments are
presented.

I. I NTRODUCTION

We address the problem of driving a Newtonian particle
to a prescribed terminal position with a prescribed velocity
in the presence of a spatiotemporal drift field. It is assumed
that the control input of the particle is the rate of change
of its air velocity, whose norm is bounded by an a priori
known constant. The problem considered in this work can be
put under the umbrella of minimum time control problems
for inhomogeneous linear systems whose control input is
“constrained to a hypersphere” [1]. The latter corresponds
to a special class of minimum time control problems for
linear systems with convex control input sets, which were
originally studied independently by LaSalle and Krasovskii
and their collaborators [2]–[4].

The problem of steering a simplified kinematic model of
a vehicle to a prescribed position with either a prescribed
or a free velocity in the presence of drift (due to, say
winds or currents in its vicinity) has received a significant
amount of attention in the literature. It should be mentioned,
however, that the majority of the available results deal with
the so-called Dubins vehicle [5], [6]. The latter corresponds
to a kinematic model of a particle that is constrained to
travel with constant forward speed via controlling the rateof
change of the angle of its forward velocity, which is bounded
by an a priori given bound. The minimum-time problem
for the Dubins vehicle in a flow field has been studied
in [7]–[9]. The results in these references deal exclusively
with constant and, in some cases, time-varying, yet spatially
invariant, flow fields. The problem of guiding the Dubins
vehicle in the presence of a stochastic flow while minimizing
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the expected time of arrival at a given target set was recently
addressed in [10]. In the latter references, the flow is modeled
as additive stochastic noise, whose statistics are known a
priori. The approach presented in [10] signifies an important
departure from other standard deterministic techniques that
are typically employed in the literature to address similar
problems. It should be mentioned, however, that the statistics
of the flow field in [10] are assumed to be spatially and
temporally invariant.

The problem of guiding a Newtonian particle by means
of a time-optimal controller under a constraint on the norm
of its acceleration has received considerable attention inthe
literature of applied mechanics. The reader is referred to a
series of papers by Akulenko and his collaborators [11]–[15].
The authors of [16] independently developed results that bear
some similarities with some of the ones presented in [11]–
[15]. None of the previous references deal, however, with the
case when the Newtonian particle is traveling in the presence
of a flow field.

The main contribution of this paper is the formulation
and solution of a classical optimal control problem, which,
to the best of our knowledge, has never been addressed
in the literature. In particular, we consider the problem of
characterizing a time-optimal control law that will steer a
Newtonian particle of unit mass to a prescribed position
with a prescribed velocity in the presence of a spatiotemporal
flow field, where the latter is induced, for example, by local
winds or currents. The cases when the terminal position or
the velocity of the particle are, respectively, fixed and free,
and vice versa, are also considered. In order to simplify the
presentation and analysis, we will assume that the velocityof
the flow is approximated by a time-varying inhomogeneous
linear (affine) field. The minimum-time problem is addressed
by means of standard techniques from optimal control theory,
and in particular, a general formulation of the Minimum
Principle (also known as the Maximum Principle) [17],
which leads to the complete characterization of the structure
of the candidate time-optimal control law. Subsequently,
we reduce the original minimum-time control problem to a
system of coupled nonlinear algebraic equations, which are
solved numerically. We also show that, in some cases, this
system of equations can be brought into a triangular form,
whose solution does not require a significant computational
effort.

The rest of the paper is organized as follows. The optimal
control problem is formulated in Section II. The analysis



of the problem and the characterization of the structure
of its solution via standard optimal control techniques is
presented in Section IV. Numerical simulations are presented
in Section V. Finally, Section VI concludes the paper with
a summary of remarks.

II. PROBLEM FORMULATION

We consider a Newtonian particle traveling in the presence
of a flow whose velocity varies both spatially and temporally.
It is assumed that the velocity fieldw of the flow is approx-
imated by an inhomogeneous time-varying linear field, that
is,

w(t,x) ≈ A(t)x+ f(t),

wherex ∈ R
n and t ∈ R+ denote, respectively, the spatial

and temporal variables. We assume that each element of
the matrixA and the vectorf is a piece-wise continuous
function of time, and, in addition, that there exist positive
constantsA, f such that, for anyT > 0,

|||A(t)||| ≤ A, ‖f(t)‖ ≤ f, for all t ∈ [0, T ], (1)

where|||·||| and‖ · ‖ denote, respectively, the induced matrix
and vector 2-norms.

The motion of the Newtonian particle is then described by
the following set of equations

ẋ = A(t)x+ f(t) + v, x(0) = x0, (2a)

v̇ = u(t), v(0) = v0, (2b)

where x ∈ R
n (x0 ∈ R

n) and v ∈ R
n (v0 ∈ R

n) is,
respectively, the position and the (forward) velocity vector
of the particle at timet (time t = 0), andu(t) is the control
input at timet. It is assumed thatu(·) ∈ U , whereU denotes
the set of piecewise continuous functionsg : R+ 7→ R

n,
where R+ denotes the set of non-negative numbers, that
attain values on the setU := {ν ∈ R

n : |ν| ≤ u},
where u is the maximum norm of the rate of change of
the air velocity of the particle. Finally, we shall henceforth
denote byz (respectively,z0) the composite state vector
at time t (resp., t = 0), where z := [xT, vT]T (resp.,
z0 := [xT

0 , v
T
0 ]

T). The equations of motion of the particle in
terms of the state vectorz are given by

ż = F(t)z +Gu(t) + Γf(t), (3)

where

F(t) :=

[

A(t) I2

02 02

]

, G :=

[

02

I2

]

, Γ :=

[

I2

02

]

.

Next, we consider the following minimum-time problem:

Problem 1: Let z0 := [xT
0 , vT

0 ]
T, zf := [xT

f , vT
f ]

T ∈ R
2n

be given. Then, find the control inputu⋆(·) ∈ U that will
transfer the system described by Eq. (2a)-(2b) from the
prescribed initial statez0 to the prescribed terminal state
zf , in minimum (free) timetf .

Definition 1: Let zf := [xT
f
, vT

f
]T ∈ R

2n be given.
Then, we say that the system described by Eqs. (2a)-(2b)

is completely controllable atzf , if there exist a control input
u(·) ∈ U and a timeτ ∈ R+ such that with the application
of the control inputu(t), for t ∈ [0, τ ], the system will be
transferred from any initial statez0 := [xT

0, vT
0 ]

T ∈ R
2n to

the statezf at time t = τ .

Next, we examine the problem of existence of (optimal)
solutions to Problem 1.

Proposition 1: Let zf := [xT
f , vT

f ]
T ∈ R

2n be given and
let w(t,x) = A(t)x+f(t), whereA(t) andf(t) satisfy (1).
Then, the system described by Eqs. (2a)-(2b) is completely
controllable atzf , if, and only if, Problem 1 admits a solution
for any z0 := [xT

0, vT
0 ]

T ∈ R
2n.

Proof:

Next, we show that complete controllability implies ex-
istence of an optimal trajectory of Problem 1 from any
z0 ∈ R

2n to the given zf ∈ R
2n (the proof of the

converse is trivial and is omitted). From Filippov’s Theorem
on the existence of solutions of minimum-time problems [18,
pp.310-317], it suffices to prove that there existsk > 0 such
that 〈ż, z〉 ≤ k(1 + ‖z‖2). We have that

〈ż, z〉 = 〈ẋ,x〉+ 〈v̇,v〉

= 〈A(t)x+ f(t) + v,x〉+ 〈u,v〉

= 〈A(t)x,x〉+ 〈f(t),x〉+ 〈v,x〉+ 〈u,v〉

≤ ‖A(t)x‖‖x‖+ ‖f(t)‖‖x‖+ ‖v‖‖x‖

+ ‖u‖‖v‖

≤ |||A(t)|||‖x‖2 + f‖x‖+ ‖v‖‖x‖+ ‖u‖‖v‖

≤ A‖x‖2 + f‖x‖+ ‖v‖‖x‖+ u‖v‖

≤ A‖x‖2 + f‖x‖+ 1/2(‖v‖2 + ‖x‖2) + u‖v‖

≤ A‖x‖2 + 1/2f(1 + ‖x‖2)

+ 1/2(‖v‖2 + ‖x‖2) + 1/2u(1 + ‖v‖2)

≤ 1/2
(

1 + f + 2A
)

‖x‖2 + 1/2(u+ 1)‖v‖2

+ 1/2(u+ f)

≤ k(1 + ‖x‖2 + ‖v‖2)

≤ k(1 + ‖z‖2), (4)

where k := 1/2max
{

1 + f + 2A, u+ 1, u+ f
}

, and
where we have used the Cauchy Schwarz inequality along
with the following inequalities:2‖x‖‖v‖ ≤ ‖x‖2 + ‖v‖2

and2‖γ‖ ≤ 1 + ‖γ‖2, for γ ∈ {x,v}.

Remark 1 Proposition 1 highlights the fact that complete
controllability implies existence of optimal solutions to
Problem 1 for all initial statesz0 ∈ R

2n. Note that, in
some special cases, one can check whether a system like
the one described by Eqs. (2a)-(2b), whose control input
attains values in a compact and convex setU , is completely
controllable (or not) by using available tests or criteria.See
for example [19], [20], for the case when the matrixA is
constant andf(t) ≡ 0.

Remark 2 Some of the assumptions used in the proof of
Proposition 1 can be relaxed, and in particular the assumption



on the uniform boundedness ofA(t) andf(t). For example,
one can assume instead that the elements ofA(t) and
f(t) are summable on bounded intervals of[0,∞) (see, for
example, [4]).

III. A NALYSIS OF THE OPTIMAL CONTROL PROBLEM

Next, we employ a general formulation of the Minimum
Principle [17] in order to characterize the structure of theop-
timal controlu⋆(·) that solves the minimum-time Problem 1.
In particular, lett 7→ z⋆(t), where

z⋆(t) :=

[

x⋆(t)
v⋆(t)

]

∈ R
2n,

denote the optimal trajectory generated with the application
of the optimal control inputt 7→ u⋆(t), for t ∈ [0, tf ]. Then,
there exists a scalarp⋆0 ∈ {0, 1} and an absolutely continuous
function t 7→ p⋆

z
(t), known as the costate, where

p⋆

z
(t) :=

[

p⋆

x
(t)

p⋆

v
(t)

]

∈ R
2n,

such that

(i) ‖p⋆

x
(t)‖ + ‖p⋆

v
(t)‖ + |p⋆0| 6= 0, for all t ∈ [0, tf ]

1,
(ii) For all t ∈ [0, tf ], p⋆

x
and p⋆

v
satisfy the following

(canonical) differential equations

ṗ⋆

x
= −

∂H(t, z⋆,p
⋆

z
,u⋆, p

⋆

0)

∂x
= −A

T(t)p⋆

x
, (5a)

ṗ⋆

v
= −

∂H(t, z⋆,p
⋆

z
,u⋆, p

⋆

0)

∂v
= −p⋆

x
, (5b)

whereH denotes the Hamiltonian, where

H(t, z,pz,u, p0) := 〈px,A(t)x+ f(t) + v〉

+ 〈pv,u〉+ p0. (6)

(iii) The HamiltonianH satisfies the following transversal-
ity condition at timet = tf

H(tf , z⋆(tf),p
⋆

z
(tf),u⋆(tf), p

⋆

0) = 0. (7)

(iv) Furthermore, the optimal controlu⋆ necessarily min-
imizes the Hamiltonian evaluated along the optimal
state and costate trajectoriest 7→ z⋆(t) andt 7→ p⋆

z
(t),

respectively, that is,

u⋆(t) = argmin
‖ν‖≤u

H(t, z⋆(t),p
⋆

z
(t),ν, p⋆0), (8)

for all t ∈ [0, tf ].

It is easy to show that Eq. (8) implies that the candidate
optimal control satisfies the following equation

u⋆(t) =







−u
p⋆

v
(t)

‖p⋆
v
(t)‖

, if p⋆

v
(t) 6= 0,

ν ∈ U, otherwise.

Lemma 1:Let Φ(t, τ), wheret, τ ∈ R, denote the state
transition matrix of the homogeneous linear systemẋ =

1We shall refrain from using the expressions like “for almostall t ∈

[0, tf ]” or “a.e. on [0, tf ]” throughout the manuscript to avoid any unnec-
essary distraction that they may cause to the reader.

A(t)x. Let alsoΦA(t, τ), wheret, τ ∈ R, denote the state
transition matrix of the adjoint system, which is described,
in turn, by the following equation:̇px = −A

T(t)px. Then,

ΦA(t, τ) = Φ
−T(t, τ) = Φ

T(τ, t), (9)

for all t, τ ∈ R.

Next, we integrate Equations (5a)-(5b), and obtain the
following expressions

p⋆

x
(t) = ΦA(t, 0)p

⋆

x
(0), (10a)

p⋆

v
(t) = p⋆

v
(0) +Ψ(t)p⋆

x
(0), (10b)

where Ψ(t) := −
∫

t

0
ΦA(σ, 0)dσ = −

∫

t

0
Φ

T(0, σ)dσ.
Therefore,

u⋆(t) =







−u
β +Ψ(t)α

‖β +Ψ(t)α‖
, if β +Ψ(t)α 6= 0,

ν ∈ U, otherwise,

whereα := p⋆

x
(0), β := p⋆

v
(0), provided thatp⋆

v
(t) 6= 0.

Proposition 2: Let 0 < t0 < t1 < tf . Thenp⋆

v
(t) 6= 0, for

all t ∈]t0, t1[.

Proof: Let us assume that there exists0 < t0 < t1 <
tf such thatp⋆

v
(t) = 0, for all t ∈]t0, t1[. Then, we also

have thatṗ⋆

v
(t) = 0, for all t ∈]t0, t1[, which implies that

−ΦA(t, 0)p
⋆

x
(0) = 0. Therefore,p⋆

x
(0) = 0, which implies,

in light of Eq. (10a)-(10b) and the fact thatp⋆

v
(t) = 0, for

all t ∈]t0, t1[, that p⋆

v
(0) = 0. Note thatp⋆

x
(0) = p⋆

v
(0) =

0 implies thatp⋆

x
(t) ≡ p⋆

v
(t) ≡ 0, which along with the

transversality condition (7) yieldp⋆0 = 0. Therefore,

‖p⋆

x
(t)‖ + ‖p⋆

v
(t)‖ + |p⋆0| = 0,

for all t ∈]t0, t1[, which contradicts the Minimum Principle
(condition(i)).

Remark 3 Proposition 2 implies that the time-optimal con-
trol law always attains its values on the boundary of the set
U . No singular arcs appear in the solution to our problem.

Proposition 3: Let z0 andzf ∈ R
2n be given and let us

assume that Problem 1 admits a solution for this particular
set of boundary conditions. Then, the time-optimal control
law satisfies necessarily the following equation

u⋆(t;α,β) = −u
p⋆

v
(t)

‖p⋆
v
(t)‖

= −u
β +Ψ(t)α

‖β +Ψ(t)α‖
, (11)

for all t ∈ [0, tf ], except, possibly, from a finite number of
time instantsτ ∈ [0, tf ], whereβ +Ψ(τ)α = 0.

Proof: It follows directly from Proposition 2.

Remark 4 We will henceforth writeu⋆(t;α,β) to empha-
size the direct dependence ofu⋆ on the parametersα and
β (initial values of the costatespx andpv). Note that the
optimal controlu⋆(·) is always a continuous function of
time; something, which is in contrast with the minimum-
time control laws in problems where the control input attains
values on a “hypercube.” In the latter case, the minimum-
time control laws are typically discontinuous functions of
time (for example, bang-bang controllers) [1].



A. Reduction of the Optimal Control Problem to a System
of Nonlinear Equations

Note that for the complete characterization of the solution
to Problem 1, we need to determine(2n + 1) unknowns,
namely the components of the vectorsα andβ ∈ R

n, and the
free final timetf . To this aim, we first integrate the equations
of motion of the particle, which are given in (2a)-(2b), from
t = 0 to t = tf , for u(t) = u⋆(t;α,β). In this way, we
obtain the corresponding candidate optimal trajectoriest 7→
x⋆(t;α,β) and t 7→ v⋆(t;α,β), where

x⋆(t;α,β) = Φ(t, 0)x0

+

∫

t

0

Φ(t, τ)(f(τ) + v0)dτ

+

∫

t

0

Φ(t, τ)

(
∫

τ

0

u⋆(σ;α,β)dσ

)

dτ,

(12a)

v⋆(t;α,β) = v0 +

∫

t

0

u⋆(σ;α,β)dσ. (12b)

Then, the boundary conditions

x⋆(t;α,β) = xf , v⋆(t;α,β) = vf

yield the following two vector equations

xf = Φ(tf , 0)x0

+

∫

tf

0

Φ(tf , τ)(f(τ) + v0)dτ

+

∫

tf

0

Φ(tf , τ)

(
∫

τ

0

u⋆(σ;α,β)dσ

)

dτ, (13a)

vf = v0 +

∫

tf

0

u⋆(σ;α,β)dσ. (13b)

In addition, the transversality condition (7) yields the fol-
lowing (scalar) equation

0 = p⋆0 + 〈p⋆

x
(tf),A(tf)xf + f(tf) + vf〉

+ 〈p⋆

v
(tf),u⋆(tf ;α,β)〉,

where p⋆

x
(tf) = ΦA(tf , 0)α, p⋆

v
(tf) = β + Ψ(tf)α. It

follows that

0 = p⋆0 + 〈ΦA(tf , 0)α,A(tf)xf + f(tf) + vf〉

− u‖β +Ψ(tf)α‖. (14)

Therefore, Eqs. (13a)-(13b) and (14) form a system of(2n+
1) equations for(2n+1) unknowns, namely, the components
of the vectorsα andβ (2n unknowns), and the free final
time tf . This system of nonlinear equations has to be solved,
in general, numerically.

B. Fixed terminal position and free terminal velocity

Next, we consider the case when the terminal position and
velocity vectors are, respectively, fixed and free. In this case,
we havep⋆

v
(tf) = 0, which implies, in light of Eqs. (10a)-

(10b), thatp⋆

v
(0) = −Ψ(tf)p

⋆

x
(0). Therefore,

p⋆

v
(t) = (Ψ(t) −Ψ(tf))α,

and the optimal control is now given by

u⋆(t;α) = −u
p⋆

v
(t)

‖p⋆
v
(t)‖

= −u
(Ψ(t) −Ψ(tf))α

‖(Ψ(t)−Ψ(tf))α‖
. (15)

In this case, we have(n + 1) unknowns, namely then
components ofα ∈ R

n andtf , which will be determined by
the systems of(n+1) equations formed by (13a) and (14) af-
ter replacing there the candidate optimal controlu⋆(t;α,β)
with the right hand side of Eq. (15). It is interesting to note
that by writingα = ‖α‖α̂, whereα̂ is a unit vector, the
number of unknowns reduces ton; in this case, Eq. (14) can
be ignored.

C. Free terminal position and fixed terminal velocity

Next, we consider the case when the terminal position and
velocity vectors are, respectively, free and fixed. In this case,
we have thatp⋆

x
(tf) = 0, which implies, in turn, that

p⋆

x
(t) = 0, p⋆

v
(t) = p⋆

v
(0) = β, for all t ∈ [0, tf ].

Therefore, the optimal control is now given by

u⋆(t;β) = −u
p⋆

v
(t)

‖p⋆
v
(t)‖

= −u
β

‖β‖
= ζ,

for t ∈ [0, tf ], whereζ := −ūβ/‖β‖. Note that, in this
case, the optimal control is a constant vectorζ ∈ R

n, whose
length is equal tou. Therefore, we have essentially onlyn
unknowns which satisfy Eq. (13b) (vector equation). In this
case, one can ignore, for example, Eq. (14) (scalar equation).

IV. T HE CASE OF A TIME-VARYING WIND FIELD

A special case of interest is when the drift field is only
a function of time. In this case,A(t) ≡ 0; consequently,
Φ(t, 0) = I2 and Ψ(t) = −tI2, for all t ≥ 0. It follows
readily that

p⋆

x
(t) = α, p⋆

v
(t) = β − tα.

In addition, Eq. (11) now yields the following equation for
the time-optimal control:

u⋆(t;α,β) = −u
p⋆

v
(t)

‖p⋆
v
(t)‖

= −u
β − tα

‖β − tα‖
,

for all t ∈ [0, tf ], except, possibly, from the time instant
τ ∈ [0, tf ], whereβ = τα (if such τ exists). Furthermore,
Eqs. (13a)-(13b) become

xf = x0 +

∫

tf

0

(f(τ) + v0)dτ

+

∫

tf

0

∫

τ

0

u⋆(σ;α,β)dσdτ, (16a)

vf = v0 +

∫

tf

0

u⋆(σ;α,β)dσ. (16b)

Finally, the transversality condition (14) becomes

p⋆0 + 〈p⋆

x
(tf),f(tf) + v(tf)〉 − u‖β − tfα‖ = 0. (17)

Therefore, Eqs. (16a)-(16b) and (17) form a system of(2n+
1) equations for the(2n+ 1) unknowns, namelytf and the
components of the vectorsα andβ ∈ R

n.



A. Fixed terminal position and free terminal velocity

Next, we consider the case when the terminal position is
prescribed and the terminal velocity is free. In this case, we
have thatp⋆

v
(tf) = 0, which implies, in turn, thatβ = −tfα.

Therefore,

p⋆

v
(t) = (tf − t)α,

and the optimal control is given by

u⋆(t; ζ) = −u
p⋆

v
(t)

‖p⋆
v
(t)‖

= −u
(tf − t)α

‖(tf − t)α‖
= ζ,

for t ∈ [0, tf [, where ζ := −uα/‖α‖. Therefore, the
optimal control, in this case, is a constant vector inR

n; in
particular,u⋆(t; ζ) ≡ ζ, where‖ζ‖ = u (note that we can
setu⋆(tf ; ζ) = ζ regardless of the fact that‖(tf − t)α‖ = 0
at t = tf ). Therefore, instead of characterizing the vector
α (n unknowns), we can now find a vectorζ of length u
(that is, (n− 1) unknowns); consequently, we have a total of
n unknowns instead of(n + 1), in contradistinction with
the corresponding case when the velocity of the flow is
both spatially and temporally varying. In the case considered
herein, we can, for example, ignore Eq. (14). It can be shown,
that the components ofζ and the free final timetf form a
system of equations in triangular form. In particular, after
integrating Eq. (16a) usingu⋆(t; ζ) = ζ for t ∈ [0, tf ], it
follows that

xf = x0 + v0tf + t2f /2ζ +

∫

tf

0

f(t)dt. (18)

Eq. (18) can be written as follows

xf − x0 − v0tf −

∫

tf

0

f(t)dt = t2f /2ζ, (19)

which implies, after taking the square of the norm at both
sides, thattf is the smallest positive root of the following
nonlinear equation

0 = −1/4u2t4f + ‖v0‖
2t2f

+ 2〈v0,x0 − xf +

∫

tf

0

f(t)dt〉tf + ‖x0 − xf‖
2

+ 2〈x0 − xf ,

∫

tf

0

f(t)dt〉+ ‖

∫

tf

0

f(t)dt‖2, (20)

whereas the optimal controlu⋆(t; ζ) ≡ ζ is determined by
the following equation

ζ = −
2

t2
f

(

x0 − xf + v0tf +

∫

tf

0

f(t)dt

)

. (21)

Therefore, after we have characterized the smallest positive
solution to Eq. (20), we can characterize the optimal control
u⋆(t; ζ) ≡ ζ from Eq. (21) with back substitution. So
essentially, we need to solve only one equation (the one for
tf ). Note that a detailed treatment of the latter special case
has recently appeared in [21].

B. Free terminal position and fixed terminal velocity

Next, we consider the case when the terminal position
is free and the terminal velocity is prescribed. In this case,
α = p⋆

x
(0) = p⋆

x
(tf) = 0, which implies that

p⋆

v
(t) = p⋆

v
(0) = β, for all t ∈ [0, tf ].

Therefore, the optimal control is now given by

u⋆(t;β) = −u
p⋆

v
(t)

‖p⋆
v
(t)‖

= −u
β

‖β‖
= ξ,

for t ∈ [0, tf ]. Note that the optimal control is again a
constant vector, call itξ ∈ R

n, where‖ξ‖ = u. We can
then obtain a system ofn equations and proceed as in the
previous case.

V. NUMERICAL SIMULATIONS

In this section, we present numerical simulations to illus-
trate the previous theoretical developments. In particular, we
consider the motion of the Newtonian particle in the two-
dimensional Euclidean plane (n = 2) in the presence of a
flow with a time-varying and spatially invariant velocityw,
wherew(t) = w0(t)[1, 0]T, wherew0(t) := A0 cos(ωt) +
B0 sin(1.5ωt) + C0. For our simulations, we have used the
following data: ū = 2, A0 = 0.25, B0 = 0.65, C0 = 1.2,
andω ∈ {1, 10, 100}. Figure 1 illustrates the level setsℓc of
the minimum time functionx 7→ tf(x;v0) in thex−y plane,
whereℓc := {x ∈ R

2 : tf(x;v0) = c}, and wheretf(x;v0)
denotes the minimum time required to steer the particle to the
origin (xf = 0) with free terminal velocity, when the latter
commences, at timet = 0, at a pointx0 = x, wherex ∈ R

2,
with the same initial velocityv0 ∈ R

2. For our simulations,
we considerv0 = 1.2[cosπ/4, sinπ/4]T. One important
observation is that the minimum time function undergoes
discontinuous jumps along the manifolds, which are denoted
by the thick black lines in Fig. 1. We also observe that the
origin in thex−y plane is not necessarily an interior point of
the set of points from which it can be reached by the particle
at some timet ∈ [0, τ ] (accesibility region of the origin), for
all τ > 0; that is, the kinematic model of the particle does not
enjoy the so-called small-time local accessibility property.

VI. CONCLUSION

In this paper, we have addressed a classical minimum time
problem. In particular, we have addressed the problem of
characterizing the time-optimal control law that will steer a
Newtonian particle to a prescribed terminal position with
an either free or prescribed terminal velocity, and vice
versa, in the presence of a spatiotemporal flow field. We
have characterized the structure of the time-optimal control
law, which is, in general, a continuous function of time,
by reducing the minimum time problem to a system of
coupled nonlinear equations. Interestingly, the latter system
of nonlinear equations can be brought, in some special cases,
in triangular form, which can be easily solved numerically.
In our future work, we intend to examine the problem when
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(a) Level sets of the minimum time function forω =
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(c) Level sets of the minimum time function forω =
100.

Fig. 1. Level sets of the minimum timetf as a function of
the particle initial position for a prescribed initial velocity in the
presence of a time-varying flow field. We observe that the minimum
time function undergoes discontinuous jumps along the manifolds
that correspond to the thick black curve segments.

the flow field is not perfectly known a priori; for example,
besides the known component of the drift, there is also an
uncertain component, which can be modeled by means of
either a continuous stochastic process or a deterministic noise
signal (worst-case approach) leading, respectively, to the
formulation of a stochastic optimal control and a differential
game problem.
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