Minimum Time Control for a Newtonian Particle
in a Spatiotemporal Flow Field

Efstathios Bakolas

Abstract— We address the problem of steering a Newtonian the expected time of arrival at a given target set was regentl
particle to a prescribed terminal position and velocity in a  addressed in [10]. In the latter references, the flow is neatlel
spatiotemporal flow field under an explicit constraint on the as additive stochastic noise. whose statistics are known a
norm of its acceleration. The cases when either the terminal . T o .
position or the terminal velocity of the particle is free are also priori. The approach presented in [10] ?'Qn!f'es an |_mpartan
considered. By employing standard techniques from optimal departure from other standard deterministic teChnquﬂB th
control theory, we characterize the structure of the candicite are typically employed in the literature to address similar
time-optimal control and subsequently reduce the original problems. It should be mentioned, however, that the Statist

optimal control problem to a system of coupled nonlinear ¢ tha flow field in [10] are assumed to be spatially and
algebraic equations. Although the latter system of equatias . .
temporally invariant.

has to be solved numerically, in general, we show that, in soen
cases, it can pe broughF .into a triangulqr form, whose solu.tin The problem of guiding a Newtonian particle by means
does not require a significant computational effort. Numertal ¢ 5 fime.gptimal controller under a constraint on the norm
simulations that illustrate the theoretical developments are . . . . L
presented. of its acceleration has received considerable attentidghen
literature of applied mechanics. The reader is referred to a
series of papers by Akulenko and his collaborators [11][15
The authors of [16] independently developed results that be
We address the problem of driving a Newtonian particleome similarities with some of the ones presented in [11]-
to a prescribed terminal position with a prescribed velocit[15]. None of the previous references deal, however, wigh th
in the presence of a spatiotemporal drift field. It is assumechse when the Newtonian particle is traveling in the presenc
that the control input of the particle is the rate of changef a flow field.
of its air velocity, whose norm is bounded by an a priori The main contribution of this paper is the formulation
known constant. The problem considered in this work can bg,q sojution of a classical optimal control problem, which,
put _under the umbrel_la of minimum time control prqblem:io the best of our knowledge, has never been addressed
for inhomogeneous linear systems whose control input {5 {he literature. In particular, we consider the problem of
“constrained to a hypersphere” [1]. The latter correspondsaracterizing a time-optimal control law that will steer a
to a special class of minimum time control problems fofyeytonian particle of unit mass to a prescribed position
linear systems with convex control input sets, which Werg;ih 4 prescribed velocity in the presence of a spatiotewpor
originally studied independently by LaSalle and Krasovskiyq,y field, where the latter is induced, for example, by local
and their collaborators [2]-{4]. winds or currents. The cases when the terminal position or
The problem of steering a simplified kinematic model othe velocity of the particle are, respectively, fixed ancefre
a vehicle to a prescribed position with either a prescribednd vice versa, are also considered. In order to simplify the
or a free velocity in the presence of drift (due to, sayresentation and analysis, we will assume that the velogity
winds or currents in its vicinity) has received a significanthe flow is approximated by a time-varying inhomogeneous
amount of attention in the literature. It should be mentihne linear (affine) field. The minimum-time problem is addressed
however, that the majority of the available results deahwitby means of standard techniques from optimal control theory
the so-called Dubins vehicle [5], [6]. The latter corresp®n and in particular, a general formulation of the Minimum
to a kinematic model of a particle that is constrained t#rinciple (also known as the Maximum Principle) [17],
travel with constant forward speed via controlling the maite which leads to the complete characterization of the strectu
change of the angle of its forward velocity, which is boundedf the candidate time-optimal control law. Subsequently,
by an a priori given bound. The minimum-time problemwe reduce the original minimum-time control problem to a
for the Dubins vehicle in a flow field has been studiecdsystem of coupled nonlinear algebraic equations, which are
in [7]-[9]. The results in these references deal exclugivelsolved numerically. We also show that, in some cases, this
with constant and, in some cases, time-varying, yet spatialsystem of equations can be brought into a triangular form,
invariant, flow fields. The problem of guiding the Dubinswhose solution does not require a significant computational
vehicle in the presence of a stochastic flow while minimizingffort.

I. INTRODUCTION
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of the problem and the characterization of the structuris completely controllable at;, if there exist a control input
of its solution via standard optimal control techniques is:(-) € &/ and a timer € R such that with the application
presented in Section IV. Numerical simulations are presknt of the control inputu(t), for ¢ € [0, 7], the system will be
in Section V. Finally, Section VI concludes the paper withtransferred from any initial state, := [z], v{]" € R*" to
a summary of remarks. the statez; at timet = .

Next, we examine the problem of existence of (optimal)

Il. PROBLEM FORMULATION solutions to Problem 1.

We consider a Newtonian particle traveling in the presence Proposition 1: Let z¢ := [z], v]]|" € R?>" be given and
of a flow whose velocity varies both spatially and temporallylet w(t, z) = A (t)z+ f(t), whereA (t) and f(t) satisfy (1).
It is assumed that the velocity field of the flow is approx- Then, the system described by Egs. (2a)-(2b) is completely
imated by an inhomogeneous time-varying linear field, thagontrollable atz, if, and only if, Problem 1 admits a solution
is, for any zg := [z}, v[]T € R?".
w(t,z) = A(t)x + f(t), Proof:

wherex € R™ and¢ € R, denote, respectively, the spatial Next, we show that complete controllability implies ex-

and temporal variables. We a..58um.e that-eaCh e.|ement iglfence of an Opt|ma| trajectory of Problem 1 from any
the matrix A and the vectorf is a piece-wise continuous », ¢ R2" to the givenz; € R2" (the proof of the

function of time, and, in addition, that there exist postiv converse is trivial and is omitted). From Filippov’s Thewre
constantsd4, f such that, for any" > 0, on the existence of solutions of minimum-time problems [18,
AW <A, O <F. forall te0,T 1 pp.310-317], it suffices to prove that there exists 0 such
Al = IOl <7 ora 0.77, @) that (2, z) < k(1 + [|2/|?). We have that
where|||-||| and|| - || denote, respectively, the induced matrix +(6,0)
, T

and vector 2-norms. (#2) = (
= (At)z + f(t) + v, 2) + (u,v)
= (A()z, z) + (f(1), ) + (v, ) + (u,v)
< [[A@)zl[[z]l + | F @)l + (o]l
+ [l
A @Mz + Fllll + o[zl + [l
l]|* + Fllll + oll2] +alv]
l2)|* + Fllaell + 1/2(]|v]|* + |2 ]|*) + @l|v]|
Allz|* +1/2f(1 + [J]|*)

=(x

The motion of the Newtonian particle is then described by
the following set of equations

x=A(t)x+ f(t) + v, x(0) =z, (2a)
v = u(t), v(0) =vo, (2b)

<
wherex € R" (zp € R") andv € R" (vp € R") is, <A
respectively, the position and the (forward) velocity wect T
of the particle at time (time ¢ = 0), andu(¢) is the control =4
input at timet. It is assumed that(-) € U, wherel{ denotes <A

thr(]e set of giecewisehcontinuc?cus functiogs: R »—>b R™, A F1/2(|0)2 + |2)|?) + 1/2a(1 + ||Jv]|?)

where R, denotes the set of non-negative numbers, that = = 9 _ 9

attain values on the sé/ := {v € R* : |v] < u}, <1/2 (1+ft2A) Il +1/2( + 1)]]

where 7 is the maximum norm of the rate of change of +1/2(+ f)

the air velocity of the particle. Finally, we shall hencefor < k(1 + ||l + |lv)?)

denote byz (respectively,zy) the composite state vector < k(14 ||2|?) (4)

at time t (resp.,t = 0), wherez := [z", »"|" (resp., - ’

2o := [x], v§]"). The equations of motion of the particle inwhere & := 1/2max{1+ f+24,u+ 1,7+ f}, and

terms of the state vector are given by where we have used the Cauchy Schwarz inequality along
, with the following inequalities2||z||||v|| < ||z||® + ||v||?
#=F(t)z+ Gu(t) + TFQ), @) and2ly] < 1+ 4|12 for vy € {z,v}. n

where

Remark 1 Proposition 1 highlights the fact that complete
F(t) := [A(t) 12} ., G:= {OZ] , D= {12]. controllability implies existence of optimal solutions to
0> 02 0> Problem 1 for all initial statesz; € R?". Note that, in
Next, we consider the following minimum-time problem: some special cases, one can check whether a system like
the one described by Egs. (2a)-(2b), whose control input
. R T mT . T 2n
Problem 1:Let zo := [, vl', 21 := [z], of]' € R attains values in a compact and convexeis completely

be given. Then, find the control input.() € U that will controllable (or not) by using available tests or criteGae
transfer the system described by Eq. (2a)-(2b) from th Sr example [19], [20], for the case when the matrixis

pre_scnb_e(_j initial state.fo to the prescribed terminal state constant andf(t) = 0.
z¢, In minimum (free) timet;.

Definition 1: Let z¢ := [z], »[]T € R>" be given. Remark 2 Some of the assumptions used in the proof of

Then, we say that the system described by Egs. (2a)-(2Bjoposition 1 can be relaxed, and in particular the ass@mpti



on the uniform boundedness Af(¢) and f(¢). For example, A(t)x. Let also® 4(¢,7), wheret, 7 € R, denote the state
one can assume instead that the elementsA¢f) and transition matrix of the adjoint system, which is descripbed
f(t) are summable on bounded intervals[@foo) (see, for in turn, by the following equationp, = —AT(¢)p,. Then,

example, [4]). B4t,7) =B (t,7) = B (,1), ©)
[1l. ANALYSIS OF THE OPTIMAL CONTROL PROBLEM for all ¢,7 € R.

Next, we integrate Equations (5a)-(5b), and obtain the

Next, we employ a general formulation of the Minimum X i
following expressions

Principle [17] in order to characterize the structure ofdbe

timal controlu, () that solves the minimum-time Problem 1. P (t) = ®.a(t,0)p;(0), (10a)
In particular, lett — z, (t), where Py (t) = pp(0) + ¥ (t)p,(0), (10b)
2z, (1) = {w*(ﬂ € R, where ¥(t) = — [ ®4(0,0)doc = — [ ®7(0,0)do.
vs(t) Therefore,
denote the optimal trajectory generated with the appbcati _ B+ ¥t ]
of the optimal control input — w,(t), for ¢ € [0, %]. Then, w ()= "IBEEDal if B+ ¥(t)a#0,
there_ exists a scalaf; € {0,1} and an absolutely continuous veuU, otherwise,
functiont — p%(¢), known as the costate, where _
) wherea := p(0), 8 := pk(0), provided thatp} () # 0.
x =l n o
pi(t) == [p*( )} € R*, Proposition 2: Let 0 < to < t; < t;. Thenp}(t) # 0, for
py(t)
all ¢ E]tmtl[.
such that .
Proof: Let us assume that there exi$ts< to < t1 <
(i) llpx @) + llps )| + [p5] # 0, for all t € [0, ", t¢ such thatp?(t) = 0, for all ¢t €]to,t;[. Then, we also
(ii) For allt € [0,t], p; and p; satisfy the following have thatp}(t) = 0, for all t €]to,t;[, which implies that
(canonical) differential equations —® 4(t,0)pL(0) = 0. ThereforepZ (0) = 0, which implies,
. OH(t, 2, DL, U, D) . in light of Eg. (10a)-(10b) and the fact that; (¢) = 0, for
Pz = — o 0 =—AT()p;, (58) all t €]ty ty], thatp’(0) = 0. Note thatp? (0) = p%(0) =
. OM(t, ze, PEy U, D) . 0 implies thatp(t) = p;(t) = 0, which along with the
Py =— e = —Pj, (5b)  transversality condition (7) yielg = 0. Therefore,
where?# denotes the Hamiltonian, where Pz + lpy I + |p5| = 0,
H(t, 2, Pz, w, po) = (Pa, At)x + f(t) + ) for all ¢ €]to, t1], which contradicts the Minimum Principle
+ (Po, u) + po. ©6) (condition (1)). [ |
(iii) The Hamiltoniar# satisfies the following transversal- Remark 3 Proposition 2 implies that the time-optimal con-
ity condition at timet = t; trol law always attains its values on the boundary of the set
N . U. No singular arcs appear in the solution to our problem.
H(tf,Z*(tf),pz(tf),u*(tf),po) =0. (7)

Proposition 3: Let zo and z; € R?” be given and let us
assume that Problem 1 admits a solution for this particular
aket of boundary conditions. Then, the time-optimal control
law satisfies necessarily the following equation

_ py(t) _ B+ It

(iv) Furthermore, the optimal contral* necessarily min-
imizes the Hamiltonian evaluated along the optim
state and costate trajectories> z,(t) andt — p%(t),
respectively, that is,

u,(t) = argmin H(t, 2. (1), p3(t), v, pp),  (8) wilbienB) == T e e e MY
Ivi=e for all ¢ € [0, ¢¢], except, possibly, from a finite number of
for all ¢ € [0, ¢]. time instantsr € [0, t¢], where3 + ¥(7)a = 0.
It is easy to show that Eq. (8) implies that the candidate  Proof: It follows directly from Proposition 2. n
optimal control satisfies the following equation

a0 . Remark 4.We will henceforth writeu, (¢; o, 3) to empha-

() = __HP* Olk if py(t) #0, size the direct dependence af on the parameter& and

* v . 3 (initial values of the costatep, and p,). Note that the

velU, otherwise.

optimal controlu,(-) is always a continuous function of
Lemma 1:Let ®(¢,7), wheret, 7 € R, denote the state time; something, which is in contrast with the minimum-

transition matrix of the homogeneous linear systém= time control laws in problems where the control input atain

values on a “hypercube.” In the latter case, the minimum-

We shall refrain from using the expressions like *for almedtt €  time control laws are typically discontinuous functions of
[0, t¢]" or “a.e. on |0, t¢]” throughout the manuscript to avoid any unnec-

essary distraction that they may cause to the reader. time (for example, bang-bang controllers) [1].



A. Reduction of the Optimal Control Problem to a Systerand the optimal control is now given by

of Nonlinear Equations

Note that for the complete characterization of the solution

to Problem 1, we need to determitign + 1) unknowns,
namely the components of the vectarsind3 € R", and the

(B - ¥(t))a
5@ (R (t) — W)l
In this case, we havén + 1) unknowns, namely the:
components otx € R™ andt¢, which will be determined by

et — —a 2o

(15)

free final timet;. To this aim, we first integrate the equationsthe systems ofn+1) equations formed by (13a) and (14) af-
of motion of the particle, which are given in (2a)-(2b), fromter replacing there the candidate optimal contl(t; a, 3)

t =0tot =t for u(t) = u.(t; a, B). In this way, we
obtain the corresponding candidate optimal trajectaries
. (t;a, B) andt — v, (t; a, 3), where

. (t; o, B) = @(t,0)zo

-|—/0 ®(t,7)(f(1) + vo)dr

+ /Ot ®(t,7) (/OT u*(a;a,,@)dU) dr,

(12a)

vt )=+ [ oo (12b)
0

Then, the boundary conditions
T, (t e, B) =xs, vt B) = vy
yield the following two vector equations
xr = ®(t,0)xo

+f " B (1.7 (F(7) + vo)dr
+ [(otn ( [(wioiamio) i asa

te
vF = vy +/ u,(o; o, B)do.
0

In addition, the transversality condition (7) yields thd-fo
lowing (scalar) equation

0 = pg + (5 (te), Alte)zs + f(te) + vr)
+ (P} (te), us(ts; 0, B)),

where p%(tr) = ®4(t:,0)e, Pi(ts) = B+ P(tr)a. It
follows that

0= py + (Palt, 0)a, A(tr)xs + f(tr) + vr)
—ul|B+ ¥ (te)exl|. (14)
Therefore, Egs. (13a)-(13b) and (14) form a systerRaf+

(13b)

1) equations fof2n+1) unknowns, namely, the components
of the vectorsae and 3 (2n unknowns), and the free final
time ¢¢. This system of nonlinear equations has to be solved,

in general, numerically.

B. Fixed terminal position and free terminal velocity

with the right hand side of Eq. (15). It is interesting to note
that by writing @ = ||a||&, where& is a unit vector, the
number of unknowns reduces#g in this case, Eq. (14) can
be ignored.

C. Free terminal position and fixed terminal velocity

Next, we consider the case when the terminal position and
velocity vectors are, respectively, free and fixed. In tliseg
we have thatpy (t¢) = 0, which implies, in turn, that

px(t) =0, pi(t)=py(0)=08, forall ¢el0,t].
Therefore, the optimal control is now given by
_ py(t) _B
u,(t; 8) = —u = —Ur— = (,
G0 = ipy @ = "8l
for t € [0,t¢], where¢ := —u3/||B||. Note that, in this

case, the optimal control is a constant ve@ar R™, whose
length is equal tai. Therefore, we have essentially only
unknowns which satisfy Eq. (13b) (vector equation). In this
case, one can ignore, for example, Eq. (14) (scalar eqyation

IV. THE CASE OF A TIMEVARYING WIND FIELD

A special case of interest is when the drift field is only
a function of time. In this caseA(t) = 0; consequently,
®(t,0) = I, and ¥(t) = —tI,, for all ¢ > 0. It follows
readily that

prt)=a, pit)=p0—ta.
In addition, Eq. (11) now yields the following equation for
the time-optimal control:
_ py(t) _ B-la
u*(t,a,,ﬁ) = U~ — _uiv
I3 @)l 18 — tal
for all t € [0,t¢], except, possibly, from the time instant

7 € [0,t¢], where3 = ra (if such = exists). Furthermore,
Egs. (13a)-(13b) become

2t = 30 + / (F(r) + vo)dr

Next, we consider the case when the terminal position arfdnally, the transversality condition (14) becomes

velocity vectors are, respectively, fixed and free. In tlsise;
we havepy(t¢) = 0, which implies, in light of Egs. (10a)-
(10b), thatp} (0) = —W(¢¢)p%(0). Therefore,

py(t) = (¥(t) — ¥(tr))e,

tr T
+ / u,(o; a, B)dodr, (16a)
o Jo
te
vf = vg + / u,(o; o, B)do. (16b)
0
po + (P2 (te), f(te) + v(tr)) — 0|8 — tra| = 0. (17)

Therefore, Egs. (16a)-(16b) and (17) form a systerRaf+
1) equations for thé2n + 1) unknowns, namely; and the
components of the vectoks and3 € R".



A. Fixed terminal position and free terminal velocity B. Free terminal position and fixed terminal velocity

Next, we consider the case when the terminal position is Next, we consider the case when the terminal position
prescribed and the terminal velocity is free. In this case, wis free and the terminal velocity is prescribed. In this case
have thatp;; (t) = 0, which implies, in turn, thaB = —t;a. @ = p3(0) = p;(t¢) = 0, which implies that

Therefore, py(t) =p,(0) =08, forall te][0,t].
py(t) = (te — Do, Therefore, the optimal control is now given by
and the optimal control is given by we(t:B) = -7 ) _ B _ ¢
. ’ 5 @) (7S]
P (-t . . :
u(t:€) = RO ¢ for t € [0,%]. Note that the optimal control is again a
v constant vector, call i€ € R”, where ||£]] = u. We can
for t € [0,t], where{ := —ua/||a|. Therefore, the then obtain a system of equations and proceed as in the

optimal control, in this case, is a constant vectoiRifi; in  previous case.
particular,u.(t; ¢) = ¢, where||¢|| = @ (note that we can
setu, (tr; ¢) = ¢ regardless of the fact thfi{(¢; —t)af| =0 V. NUMERICAL SIMULATIONS
att = t¢). Therefore, instead of characterizing the vector _ . . . . :
o (n unknowns), we can now find a vectdrof length In this section, we present numerical simulations to illus-
(that is, {2 — 1) unknowns); consequently, we have a total ofrate _the previous theoretical develo_pments._ln p_artrcWa
n unknowns instead ofn + 1), in contradistinction with consider the motion of the Newtonian particle in the two-
the corresponding case when the velocity of the flow i%lmen§|rc])nal_EucI|de§1n plar:jez = 2)|||n_the .presenlce_of a
both spatially and temporally varying. In the case consider ow with a time-varying and spatially Invariant velociy,
: - herew(t) = wo(t)[1, 0]T, wherewy(t) := Ap cos(wt) +
herein, we can, for example, ignore Eq. (14). It can be showi}/"®' 0 M W 0\Y) == 40
that the components af and the free final time; form a By sm_(1.5wt) +_C’0. For our simulations, we have used the
system of equations in triangular form. In particular, aftefollowing data:u = 2, Ay = 0.25, By = 0.65, Co = 1.2,
integrating Eq. (16a) using., (t;¢) = ¢ for ¢ € [0, 4], it andw_e.{l,lo,_loo}. F|g_ure 1 |IIustrates.the level sets of
e minimum time functior: — t¢(x; vo) in thez—y plane,
follows that th time funct (z;vo) inthez—y pl
wherel, := {x € R? : t¢(x;v9) = ¢}, and wheret(x; vo)
tr e . . .
denotes the minimum time required to steer the particledo th
= 2
e = o + ot +4/2C + 0 Fyr. (18) origin (z; = 0) with free terminal velocity, when the latter
commences, at time= 0, at a pointz, = x, wherex € R?,
with the same initial velocity, € R2. For our simulations,
tr we considervy = 1.2[cos7/4, sin7/4]T. One important
Tr — T — Votr —/ F()dt =t /2¢, (19) observation is that the minimum time function undergoes
0 discontinuous jumps along the manifolds, which are denoted
which implies, after taking the square of the norm at botly the thick black lines in Fig. 1. We also observe that the
sides, thatt; is the smallest positive root of the following origin in thex —y plane is not necessarily an interior point of

Eq. (18) can be written as follows

nonlinear equation the set of points from which it can be reached by the particle
- - at some time € [0, 7] (accesibility region of the origin), for
0= —1/4u"t; + [lvol|*t; all 7 > 0; that is, the kinematic model of the particle does not

b ) enjoy the so-called small-time local accessibility praper
+ 2(vg, g — ¢ + F)dt)ts + ||zo — ||
0 te VI. CONCLUSION

te
2
+ 2o -, 0 FO)dn + 0 FOde, - (20) In this paper, we have addressed a classical minimum time
problem. In particular, we have addressed the problem of
characterizing the time-optimal control law that will stee
Newtonian particle to a prescribed terminal position with
te an either free or prescribed terminal velocity, and vice
f(t)dt> . (21)  versa, in the presence of a spatiotemporal flow field. We
have characterized the structure of the time-optimal cbntr
Therefore, after we have characterized the smallest pesitilaw, which is, in general, a continuous function of time,
solution to Eq. (20), we can characterize the optimal contrdy reducing the minimum time problem to a system of
u,(t;¢) = ¢ from Eq. (21) with back substitution. So coupled nonlinear equations. Interestingly, the lattestesp
essentially, we need to solve only one equation (the one fof nonlinear equations can be brought, in some special cases
t¢). Note that a detailed treatment of the latter special case triangular form, which can be easily solved numerically.
has recently appeared in [21]. In our future work, we intend to examine the problem when

whereas the optimal contrel, (¢;¢) = ¢ is determined by
the following equation

2
¢=—=|To—m +votr +
ty 0
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(c) Level sets of the minimum time function far =
100.

Level sets of the minimum time; as a function of
the particle initial position for a prescribed initial velty in the
presence of a time-varying flow field. We observe that the mimn
time function undergoes discontinuous jumps along the folalsi

that correspond to the thick black curve segments.

the flow field is not perfectly known a priori; for example,
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besides the known component of the drift, there is also an
uncertain component, which can be modeled by means of

either a continuous stochastic process or a determinisisen

signal (worst-case approach) leading, respectively, #® th

formulation of a stochastic optimal control and a differeht

game problem.
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