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Abstract

We consider the problem of partitioning an area in the plane populated by a team of aerial/marine vehicles into a finite
collection of non-overlapping sets. The sets of this partition are in an one-to-one correspondence with the vehicles under the
following rule: Each point in the given set of the partition can be reached by the corresponding vehicle in this set faster than
any other vehicle in the presence of a spatiotemporal drift field. Consequently, a Voronoi-like partition results, which encodes
the proximity relations between the vehicles and arbitrary points in the plane with respect to the minimum time-to-go. The
construction of this Voronoi-like partition is based on its interpretation as the intersection of a forest of the cost (minimum
time-to-go) surfaces emanating from each generator with their common lower envelope. The characterization of each cost
surface is achieved by means of an efficient expansion scheme of the level sets of the minimum time-to-go function, which
utilizes, in turn, the structure of the optimal synthesis of the minimum-time problem without resorting to exhaustive numerical
techniques, e.g., fast marching methods. We examine the topological characteristics of the partition by using control/system

theoretic concepts and tools. The theoretical developments are illustrated with a number of numerical examples.
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computational methods.

1 Introduction

One fundamental problem in the context of spatiotempo-
ral processes is the so-called coverage problem, in which
one is interested in characterizing a set of rules such that
a given set of points, known as generators or primitives,
act as nodes of a network, whose purpose is to provide
service to nearby points [1]. In this work, we assume that
each generator corresponds to the initial position of a
service vehicle from a team of spatially distributed au-
tonomous aerial/marine vehicles. If a request is issued
at some point, then a vehicle is required to provide ser-
vice to this point, provided that it can reach it faster
than any other vehicle from the same team. It should be
highlighted here that the emphasis of this work is the
characterization of the optimal partitioning problem for
coverage for a team of vehicles with prescribed initial po-
sitions, which is mainly an optimization problem. This
optimization problem is different from the coverage con-
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trol problem where the objective is to find the locations
at which the vehicles should be steered at such that cer-
tain coverage-related objectives are achieved. The reader
interested in the literature of coverage control for sensor
an([l ro‘t])otic network applications can refer, for example,
to [2-9].

The previously introduced coverage problem can be
naturally associated with a Voronoi-like (or generalized
Voronoi) partitioning problem, in which the distance
function that determines the proximity relations be-
tween the vehicles and arbitrary points in the plane is
the minimum time-to-go. We assume that the motion of
each vehicle is modeled by a single integrator traveling
in the presence of a spatiotemporal drift field, which
models, in turn, the effect of the local winds/currents
on the vehicle’s motion. Therefore, the minimum time-
to-go is the “value” function of the classical minimum-
time problem, namely the Zermelo Navigation Problem
(ZNP) [10]. Owing to the presence of the spatiotem-
poral drift field, this value function depends explicitly
on both the location of the vehicle along its ensuing
path, as well as time. In our previous work [11], we
have coined the term Zermelo-Voronoi Diagram (ZVD)
to describe the solution of the Voronoi-like partitioning
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problem with respect to the minimum time-to-go/come
of the ZNP in the special case of a time-varying, but
spatially invariant, drift field. Some previous treatments
of the ZVD problem with respect to the minimum
time-to-come of the ZNP can be found in [12-14]. In
particular, [12] deals with the ZVD for a constant drift
field, whereas [13,14] deal with the same problem for a
spatially varying, yet time-invariant, drift field. On the
one hand, the approaches presented in [11,12] are based
on the existence of a homeomorphism that maps the
ZVD to the standard Voronoi diagram generated by the
same point-set. The approaches presented in [11,12] fail,
however, when the drift field is spatially varying. On the
other hand, the purely computational techniques pro-
posed in [13,14], which suffer from some of the standard
pathogenies associated with the numerical solution of
optimal control problems, fail to exploit the intrinsic
connection between the partitioning problem and the
well studied ZNP. In contradistinction with [13,14], our
approach makes use of the particular structure of the
optimal synthesis of the ZNP; something that allows us
to set the theoretical foundations for a computationally
tractable scheme for the characterization of the ZVD
for drift fields that vary both spatially and temporally.

One of the notable features of the ZVD is that its prox-
imity metric belongs to the class of anisotropic, that
is, direction-dependent, generalized distance functions,
for which, except from a few special classes of problems
[15,16], no universally efficient algorithms have been re-
ported in the literature (see, for example, [17,18] and
references therein). In addition, the ZVD does not nat-
urally fit into the framework of “abstract Voronoi dia-
grams” introduced in [19]. In particular, the techniques
presented in [19], which are aimed at covering a large
collection of generalized Voronoi partitioning problems,
require that the proximity metric behaves necessarily as
a “nice” distance function ! ; something that is not the
case in our problem. For example, the minimum time-
to-go function of the ZNP may be discontinuous even for
linear drift fields. Therefore, the ZVD problem requires
an alternative approach, whose applicability is not lim-
ited to well-known, particular instances of generalized
Voronoi partitioning problems.

The approach we adopt in this work is based on the in-
terpretation of a generalized Voronoi partition as the
projection of the intersection of a “forest” of cost sur-
faces emanating from each generator with their common
lower envelope [20]. We focus on the problem of com-
puting the minimum time-to-go surfaces, whereas the
characterization of their common lower envelope follows
from standard techniques from computational geome-
try [21-24]. The proposed scheme for the computation
of the cost surfaces builds upon some key features of the
optimal control synthesis of the ZNP, some of which can
be found in the classical treatment of this problem by
Carathéodory [25] (which is based on techniques from
calculus of variations) and the more modern treatment
by Jurdjevic [26] (which is based on optimal control the-

L For the definition of a “nice” metric the reader is referred
to Definition 1.2.12 of [19].

ory).

One of the key advantages of our approach is that it does
not resort to exhaustive numerical schemes as those pre-
sented in [13,14], which do not account for some well-
known results regarding the structure of the optimal syn-
thesis of the ZNP. In particular, the candidate minimum-
time trajectories of the ZNP form an one-parameter fam-
ily of curves [10,25,27], a fact we systematically exploit
in our approach to significantly expedite the computa-
tion of the cost surfaces. In contrast with other tech-
niques proposed in the recent literature for numerically
solving the ZNP problem [28-30], which also exploit the
structure of the solution of the ZNP to some extent,
our technique explicitly accounts for 1) the existence
of trajectories which correspond to the solution of the
maximum-time (rather than the minimum-time) navi-
gation problem, and 2) the existence of time instants at
which an extremal trajectory of the ZNP loses optimal-
ity. Note that both of these two issues are typically ob-
served when the drift field exceeds the control authority
of the vehicle in the vicinity of the latter, a situation
that is encountered quite often in our analysis. In addi-
tion, we examine the topological characteristics of the
ZVD by utilizing system theoretic/control tools. Some
of these topological features can shed light on questions
regarding the complexity of the ZVD viewed as a data
structure, a property that affects the computational and
memory cost impacting the applicability of the ZVD in
practice.

It should be emphasized that, in contrast with some of
our previous work on Voronoi-like partitioning problems,
where time serves as the proximity metric [11,31,32], the
techniques presented in the current work may be appli-
cable to similar partitioning problems with respect to
different state-dependent metrics, such as the minimum
fuel/control effort-to-go, after the necessary modifica-
tions have been applied. Thus the proposed partition
with respect to time can pave the way for a more general
framework for dealing with problems involving teams of
spatially distributed vehicles than some of the currently
available approaches, which are mostly based on stan-
dard Voronoi partitions [3,5-7,32].

The rest of the paper is organized as follows. Section 2
formulates the ZVD partitioning problem, whose solu-
tion is characterized in Section 3. Some fundamental
topological properties of the resulting optimal partition
are presented in Section 4. Numerical simulation results
are presented in Section 5. Finally, Section 6 concludes
the paper with a summary of remarks.

2 Problem Formulation

Consider a set of distinct points P := {p’ € R?, i € Z,,}
in the plane, where Z,, := {1,...,n} and p’ := [z}, yi]".
It is assumed that at each point p’ € P resides, at time
t = 0, an aerial/marine vehicle, which we henceforth
refer to as the i—th vehicle. The motion of the i—th vehicle
is described by the following equation

X =l (t) +w(t,x),  x(0)=p,



where x := [2%, y']T € R? and u' is, respectively, the
position vector and the control input of the i-th ve-
hicle, and w(t,x") is the drift field induced by the lo-
cal winds/currents. It is assumed that the set of ad-
missible control inputs, denoted by U, consists of all
piecewise continuous functions taking values in the set
U :={ueR?: |ul <1} (closed unit ball). Further-
more, for every fixed x* € R?, the mapping t — w(t, x")
is piecewise continuous, and, for every fixed ¢t > 0, the
mapping x* — w(t,x*) is at least C*.

To simplify the analysis and streamline the presentation,
it will be henceforth assumed that the drift field satisfies
the following growth condition

w(t,x)] < v(t) + ()X, (2)

where the functions ¢ — «(t) and t — (t) are piece-
wise continuous and nonnegative. A class of drift fields
that trivially satisfy the condition (2) are time varying
inhomogeneous linear drift fields given by

w(t,x") = v(t) + A(t)x', (3)

where A(t) € R?*2 and v(t) € R?¥!, for all t > 0.

We will assume that the drift field w is known to all the
vehicles a priori based on available weather data. The
previous assumption is standard in the classical litera-
ture of the ZNP [10,25,27,26] and will allow us to for-
mulate the problem of steering the i—th vehicle to a pre-
scribed terminal position in minimum time as a deter-
ministic optimal control problem.

2.1 The Navigation Problem

Given a point x € R?, the objective of the i-th vehicle,
starting from point p* € P at time ¢t = 0, is to reach the
point x in minimum-time. We shall refer to this problem
as the i—th Navigation Problem (i—th NP).

Problem 1 (i—th Navigation Problem) Given x €
R?2, determine the control input u’. € U, such that

(i) The trajectory t — xL(t) of the system described by
Equation (1) generated by the control ul satisfies
the boundary conditions x%(0) = p?, x(Tr) = x.

(ii) The control u® minimizes the cost functional
J(u®) := T¢, where Tt is the final time.

Henceforth, we denote by T¢(x; p?) the cost functional J
evaluated at u = u’,.

Remark 1 Note that Problem 1 is a special case
of the ZNP, whose complete solution is presented
in [10] and [25, pp. 239-247, pp. 370-373].

The first question we wish to address is related to the
feasibility of the ¢—th NP. To this aim, we first introduce
the reachable set [33] of the system (1) from p’, at time
7 > 0 (also known as the set of attainability [34] or the
attainable set [35]), R, (p") = Upicp{x € R* : x =
xi(7; p?, u®)}, where t — x*(t; p, u’) denotes the solution
of Eq. (1) with initial condition x*(0) = p’ and control

law u’. The reachable set R, (p*) consists of all the points
that the i—th vehicle can reach, starting from p’ at t = 0,
after exactly 7 units of time with the application of some
admissible control input from /. We will say that the
pair (x’,u"), where u' € U and t — x'(t) is the corre-
sponding trajectory, defines an admissible pair of the i—
th NP problem [35]. If, for a given x € R?, there exists
u® € U such that x = x*(7; p, u*) for some 7 > 0, we will
say that the i—th NP admits a feasible solution. In ad-
dition, we denote by 23(p®) the set of reachable states of
the system (1) from p’, where R(p*) := Uy<, - oo R+ (p)-
Note that if x € SR(p?), then there exists a finite time
7 > 0 and an admissible control ut € Y that will drive
the system (1), starting from p* at time ¢ = 0, to x in
finite time. An immediate consequence of the definition
of the reachable set is that the i—th NP admits a feasible
solution if and only if x € 9R(p*). The situation is illus-
trated in Fig. 1. In particular, Fig. 1(a) illustrates the
case when x ¢ R(p’), and consequently the i—th NP is
infeasible. Figure 1(b), on the other hand, illustrates the
case when x is an interior point of R(p?), which implies,
in turn, that the i—th NP admits a feasible solution. The
reachable set R(p’) in both Figs. 1(a) and 1(b) is identi-
fied by the isochronous curves (blue curves) of the i—th
NP problem, that is, the curves consisting of points that
can be reached at the same time ¢ = 7, computed for
different values of 7 > 0. The procedure for the compu-
tation of these curves will be explained later on.

(a) Infeasible case: x belongs (b) Solvable case: x € R(ph)
to the complement of RR(p*)

Fig. 1. The i—th NP admits a feasible solution if and only if
the destination point x belongs to the reachable set R(p’).
The solid blue curves correspond to points that can be
reached from p’ at the same time (isochronous curves).

In the subsequent analysis, we shall also consider sets
consisting of points that can be reached from each
p’ € P within a given time interval [0, 7], denoted by

iRtST(pi) = Uogtgr Re(p’).

2.2 Existence of Optimal Solutions to the Navigation
Problem

Next, we briefly examine the problem of existence of
optimal solutions.

Proposition 1 Let (t,x*) — w(t,x) be a drift field that
satisfies (2). Let bothy(t) and y(t) in (2) be bounded and
suppose thatx € R(p?). Then the i—th NP has an optimal



solution.

PROOF. From Filippov’s Theorem on the existence of
solutions of minimum-time problems [36, pp.310-317],
it suffices to prove that there exists k& > 0 such that
(x*,x%) < k(14 |x*?). Since v and 9 are bounded, there
exist I', ¥ > 0 such that |y(¢)] < T and |y (t)] < P, for
all t > 0. By virtue of the triangle and Cauchy-Schwartz
inequalities and the fact that |u'| < 1, it follows that
XD < (| @)X+ |y ()] + |uf]) x|, which furthemore
implies that (x',x") < ¥|x‘|? + (T + 1)|x‘|. The result
follows readily from the inequality 2|x¢| < 1+ |x|2. B

2.8 The Partitioning Problem

Next, we formulate a Voronoi-like partitioning problem,
in which the set of generators is the point-set P and the
proximity metric is the minimum time-to-go function of
the i—th NP. In addition, the set to be partitioned is
taken to be the union of all the points that can be reached
from at least one point from P, denoted by R(P) :=

UiEIn R(p’).

Problem 2 Let a collection of (distinct) points P :=
{p* € R? : i € Z,,} be given, and let T;(x; p*) denote the
manimum time required to drive the system described by
Eq. (1) from p* € P tox € R(p*). Determine a partition
U ={V': icI,} of R(P) such that

(i) 9%(73) = UieIn pU
(i1) B C R(p").
(iii) x € G, when Ti (x; p*) < Ti(x; p?) for alli,j € L,.

The sets P and U, i € T, constitute, respectively, the
set of the generators and the cells of the ZVD. We will
say that two cells of the ZVD are neighboring if and only
if they have a non-trivial intersection (not a singleton).
Note that the condition ii) in the formulation of Prob-
lem 2 guarantees that T¢(x; p') < oo, for all x € .

3 Characterization and Computation of the
Zermelo-Voronoi Diagram

At this point, it is not clear whether the minimum time-
to-go function of the i—th NP enjoys the nice properties,
such as isotropy and convexity, that would allow us to
associate Problem 2 with particular classes of general-
ized Voronoi partitioning problems, for which efficient
computational methods exist in the literature [17,18].
Therefore, we need to adopt an alternative approach,
suitable for more general classes of Voronoi-like parti-
tioning problems.

3.1 Interpretation of the Voronoi-like Partition as the
Tightest Lower Envelope of a Family of Generalized
Parametric Surfaces

Let S; denote the cost surface associated with the mini-
mum time-to-go function of the i—th NP, which is defined
by S; :={(x,2) : x € R(p"), z = T¢(x;p")}. We say that
the generalized parametric surface Sp = {(x,2) : x €
R(P), 2 = minsez, Tr(x; p*)} defines a lower envelope of
the family of the generalized parametric surfaces S;.

Ti(x; p*)

T y T
(a) The ZVD of two gener- (b) Computation of S; by
ators computed by project- lifting the level sets ¢, (p*),
ing the intersection of the for + > 0.
two cost surfaces with their
common lower envelope.

Fig. 2. The interpretation of (a) the cost surface S; as the
union of the lifted level sets A.(p’), for all ¢ > 0, and (b)
the ZVD as the projection of the intersection of all the cost
surfaces with their common lower envelope.

Next, we describe a systematic way to compute the cells
of the ZVD by first characterizing the intersection of
each surface S; with the lower envelope Sp. To this
end, let us consider the following projection operator
P : R(P) x [0,00) — R(P), such that P(x,z) = x.
The solution of Problem 2 can then be characterized by
projecting the intersections of the lower envelope sur-
face Sp with each cost surface S; on R(P). The idea
is to attach, by means of the projection operator P,
to each point x € R(P) the integer ¢ € Z, for which
Tr(x; p') < Ti(x;p?), for all j € Z,\{i}. In particular,
let J(x) := argmin;ez, Tf(x; p’), then Y = J=1(i) =
{P(x,2) : (x,2) € SpNS;},and V= {TV*: icT,}
The situation is illustrated in Fig. 2(a) for the case when
n = 2. In this figure, we observe that the common bound-
ary of the cells 0! and U2 is the projection of the in-
tersection of the cost surfaces S; and S; on the x — y
plane. Note that the points in 9%(P) at which J attains
multiple values belong to the intersection of the com-
mon boundaries of neighboring cells of the partition U
generated by P.

It follows readily from the previous discussion that for
the characterization of the partition U = {¥", i € Z,,},
we need to carry out two basic tasks. First, we need to
construct the surfaces S;, for each ¢ € Z,,, and second,
determine their tightest (common) lower envelope Sp.
The second task is a well-studied problem in computa-
tional geometry. We briefly mention two approaches one
can adopt to compute the tightest lower envelope of a
family of surfaces. The first approach is to apply tech-
niques from algorithmic geometry [22] aimed at char-
acterizing the tightest lower envelope of a finite set of
functions [21] by forming the union of different curved
facets. A detailed description of this approach for the
one-dimensional case can be found in [22, pp. 355-358].
An alternative approach, is to use the so-called graph-
ics hardware techniques [23,24]. Tt should be mentioned
that when some of the parametric surfaces S; are in-
duced by discontinuous minimum time-to-go functions,
it is important to have a priori knowledge of the struc-
ture and the key properties of the optimal synthesis of



the i—th NP, and in particular, the locations where the
minimum time-to-go function undergoes discontinuous
jumps.

Next, we focus on the characterization of each surface S;.
Before we discuss the details of the computation of these
cost surfaces, we introduce the 7-level set of the mini-
mum time-to-go function ¢, (p*) emanating from p* € P,
where £, (p%) := {x € R(p%) : Ti(x;p’) = 7}. Note that,
in general, £,(p’) is a proper subset of R, (p%), that is,
there exist points in R, (p?) that can also be reached at
time less than 7. The following, less obvious, result high-
lights the relation between the level sets and the reach-
able sets of the i—th NP.

Proposition 2 Let 0 < 7 < oo and p* € P be given.
Under the assumptions of Proposition 1, Ri<-(p") =

Uogth 4(p').

PROOF. Let x € Ri<,(p’). Then in light of Proposi-
tion 1, x € ETf(X;pi)(pi)7 where T;(x; p*) < 7, which im-
plies, in turn, that x € [Jy<;<, ¢:(p*). Conversely, let
x € Upeser £e(p"). The fact that £;(p’) C Ry (p), for all
0 <t < 7, implies that x € Up<ier Re(p?) = Rir (pY).
The result follows readily. H

Corollary 1 Given p' € P, it holds that R(p') =
U0§t<oo Et(pl)

Proposition 2 and Corollary 1 imply a straightforward
scheme to compute the cost surfaces S; by propagating
the minimum-time 7-level sets £, (p*), for 0 < 7 < .
Before we describe this scheme, let us first define the
lifted 7-level set A, (p*), which consists of the points
(x,2) € R(p') x [0,00), where x € £.(p') and 2z =
Tt (x; p). Note that an immediate consequence of Propo-
sition 2 is that S; = Jy<, < oo Ar ().

Therefore, the computation of the cost surfaces S; can
be done as follows. First, compute the minimum-time
level sets £ (p*), for 0 < 7 < oo. Subsequently, lift ¢;(p*)
to the corresponding A;(p?), for all 0 < ¢ < co. Then the
union of all the point-sets A, (p?), for 0 < 7 < oo, con-
stitutes the cost surface S;. The situation is illustrated
in Fig. 2(b).

Two techniques that address the problem of propagating
the t-level sets for the special case of time-invariant drift
fields and which are based, respectively, on a particle
method and a fast marching method [37] are presented in
[13,14]. Next, we present a more straightforward method
to solve Problem 2 which, in contrast to the numerical
techniques presented in [13,14], exploits the structure of
the solution of the i—th NP.

3.2 Structure of Optimal Solutions for the i—th Naviga-
tion Problem

In order to pave the way for the characterization of the
level sets of the minimum time-to-go function and sub-
sequently the cost surface emanating from each genera-
tor, we first need to present some key results from the

solution of the i—th NP, which, as already mentioned,
is a special case of the ZNP. The reader interested in a
detailed treatment of the ZNP based on standard tools
from calculus of variations may refer to [25, pp. 239-247,
pp. 370-373].

We adopt an approach based on optimal control theory,
similar in spirit to the treatment of the ZNP presented
in [26]. In particular, we define the Hamiltonian # :
[0,00) x R2 x R? x U + R, by H(t,x}, \{,ut) := 7 +
(AL w(t, x") +ut), where A? : [0, 00] — R? and 7% < 0. In
light of the Pontryagin Maximum Principle (PMP) [38],
if t — xi(t) is a minimum-time trajectory of the i—th
NP generated by the minimum-time control u! € U,
then there exists a scalar 72 € {—1,0} and an absolutely
continuous function ¢ — A (t) (the costate) such that

(i) AL(t) and 7% cannot vanish simultaneously, that is,
X)) + ] £ 0, for all £ € [0, Tr( ph).
(ii) AL(t) satisfies the canonical equation

A= —OH (L, X, N ul) Ox= — A, T (DAL, (4)

where A, (t) 1= dw(t,x}(t))/Ox.

(iii) AL(7) satisfies the transversality —condition
H(Tr, %, (Tr), AL (TF), ui(TF)) = 0.

(iv) The optimal control u! maximizes the Hamilto-
nian along the optimal state and costate trajecto-
ries, that is, H(¢,x%, AL, ul) > H(t,xL, A%, v), for all
vel.

Lemma 1 The function t Ai(t) does mot vanish for

allt € [0, T¢(x; pY)].

PROOF. Assume, on the contrary, that there exists
To € [0, T¢(x; p")] such that AL(79) = 0. Because \. sat-
isfies the linear homogeneous differential equation (4),
the condition AL () = 0 implies that A\¢(¢) = 0 for all
t € [0, Tt(x; p*)]. Consequently, in light of PMP (condi-
tion (iii)), 72 = 0 and thus |\(¢)| + |7 = 0 for all
t € [0, Tz (x; p*)], which contradicts condition (i) of PMP.
This completes the proof. B

An immediate consequence of PMP (condition (iv)) is
that the optimal control is given by

uy(t) = No()/ I\ ()

where |\¢(¢)| # 0 in light of Lemma 1. In addition, it can
be shown that the candidate minimum-time control law
ul, of the i—th NP problem has necessarily the following
structure: u’(t) = [cos 0 (t), sin@:(t)]T, where 07 sat-
isfies, for all t € [0, T¢(x; p*)], the following differential
equation [25]

01 = c(t)s(t) (Qwr(t,x)/0x — dwa(t, %) /dy)
s

= c(t)s(t)
+5%(8)Qwa(t,x,) /0 — ¢ ()dws (t,x.)/dy,  (6)



where c(t) := sin0(t), s(t) := cosfi(t), 0:(0) = @' €
[0, 27), and w1, wo denote, respectively, the z and y com-
ponents of the drift field w. From (6) it follows that the
(candidate) optimal control ! is determined up to a
single parameter, namely 6°. We henceforth denote this
fact by writing u’, (-; 6*). Note that, as highlighted in [26],
Eq. (6) can be viewed as a generalized Euler-Lagrange
equation for the i—th NP, which is not equivalent to the
stronger condition (iv) of PMP. In particular, the (can-
didate) optimal control u’(t) = [cos@i(t), sin6(t)]T,
where 0 satisfies (6), may correspond to the dual prob-
lem of the i—th NP, where one is interested in maxi-
mizing, rather than minimizing, the final time. In other
words, Eq. (6) holds not only when «’ is the global max-
imum of the Hamiltonian along the optimal state and
costate trajectories, by virtue of condition (iv) of PMP,
but also when it is simply one of its extrema. For this rea-
son, we henceforth refer to the candidate optimal control
u’ (-5 0") as the extremal control of the i—th NP and the
mapping t + xi(t;p’,0%) as the extremal trajectory of
the i—th NP generated by the extremal control u’(-; 6°).
Finally, we refer to the admissible pair (x%,ul) as the
extremal pair of the i—th NP.

Definition 1 Let (xL,u’) be an extremal pair of the i—
th NP. If 7@ = 0, the mapping t — xi(t;p’,ul) is an
abnormal extremal trajectory of the i—th NP. In addition,
if mt = —1 (resp., 7t = 1), the mapping t — x.(¢; p", ul)
is a regular extremal trajectory of the minimum time i—th
NP (resp., the mazimum-time i—th NP).

Next, we provide necessary and sufficient conditions for
an extremal trajectory of the i—th minimum or maximum
time NP to be either abnormal or regular.

Proposition 3 Let (x,ul) be an extremal pair of
the i-th NP for a given terminal point x and let
E(t;0%) := (w(t,x.(t)),u(t;0")) + 1. Then the mapping
t = xi(t;pt,ul) is an abnormal extremal trajectory of
the i—th NP if and only if E(0;60%) = 0.

PROOF. For an abnormal extremal trajectory, & = 0.
In addition, the transversality condition (condition (iii)
of PMP) along with Eq. (5) and the fact that |u (¢; 6%)] =
1 for all t € [0, T¢], where Tt = T¢(x; p*), imply that
0= (ALT¥), w(Tr, X)) + ul(Tr; 6°))
= NI (i (T5;.6), w(Tr, X (T5)) + 1)
= [AL(THIE(T3:6°). (7)

From Lemma 1, it follows that A%L(Tt(x;p')) # 0, and
thus (7) implies that E(T¢(x; p’); #%) = 0. We claim that
E(Tt(x; p*); 0%) = 0implies, in turn, that £(0; 6%) = 0. To
see this, let us assume, on the contrary, that £(0; 6%) # 0.
Without loss of generality, assume that E(0;6%) > 0.
Next, we make use of the result from the solution of the
ZNP [25, pp 370-373] that, for all ¢ € [0, T¢(x; p*)], the
sign of E(t;0") is the same as the sign of the function
w : [0,00) — R, which solves the linear homogeneous

differential equation w(t) = &(t)w(t), where

£(t) = —c2(t) 0w (t, %" (t))/&v - SQ(t)awg(t,xﬁ} (t)/0y
—s(t)e(t) (Owr (t,xL(t)) /0y + Ows(t,X.(t))/0z) .

Since w(t) = w(0) exp( [, £(o)do), it follows that w(t)
preserves the sign of w(0), for all t € [0,T¢(x; p%)]. By
hypothesis £(0;0%) > 0, and thus w(0) > 0. There-
fore, w(Tt(x;p’)) > 0, which implies, in turn, that
E(T¢(x; p%); 6) > 0, leading to a contradiction.

The converse can be proven similarly. Bl

Corollary 2 Let (xi,ul) be an extremal pair of the i—
th NP. Then the mapping t — xL(t;p%,ul) is a reqular
extremal trajectory of the minimum (resp, maximum)
tz')me i~th NP if and only if E(0;0%) > 0 (resp., E(0;0") <
0),

An important observation from Proposition 3 and Corol-
lary 2 is that the sign of E needs to be checked only at
time ¢ = 0. As shown next, an alternative way to distin-
guish between a regular extremal trajectory of the min-
imum or the maximum time i~th NP and an abnormal
extremal trajectory of the —th NP is by determining
whether the angle between the forward and the inertial
velocities of the i—th vehicle at time t = 0 is, respec-
tively, an acute, obtuse or right angle.

Corollary 3 Let (xi,ul) be an extremal pair of the i—
th NP. Then the mapping t — xL(t;p%,ut) is a reqular
extremal trajectory of the minimum (resp., maximum)
time i—th NP if and only if (x.(0),ul(0;0%)) > 0 (resp.,
(x2(0),u%(0;0%)) < 0). Furthermore, the mapping t +
Xt (- p%,ul) is an abnormal extremal trajectory of either

the minimum or the mazimum time i—th NP if and only
if (x.(0),u3(0;6°)) = 0.

PROOF. For t > 0, we have that (x.(t),u(t;0%)) =
(w(t,xt(t)), ul(t;6")) + 1. Therefore, (x%(t),ul(t; %)) =
E(t;6%), for all t € [0, T}]. The result follows readily from
Proposition 3 and Corollary 2. B

Remark 2 The reader should not hastily jump to the
erroneous conclusion that a regular extremal trajectory
t — xL(t;p",0") for which E(0;6") < 0 is a minimum
time trajectory of the i—th NP, for all £ > 0. This is not
true, in general, as we will see in the subsequent analysis.

The next proposition provides conditions for the exis-
tence as well as the number of abnormal extremal tra-
jectories of the i—th NP, which can emanate from some
p' € P.

Proposition 4 Let (t,x*) ~ w(t,x) be a (time-
varying) drift field that satisfy the condition (2). If
lw(0,p%)] > 1, then the i-th NP admits exactly two
abnormal extremal trajectories emanating from p'. If
|w(0, p*)| < 1, then the i—th NP admits only reqular ex-
tremal trajectories emanating from pt. If |w(0, p?)| = 1,



then the i—th NP admits a unique abnormal extremal
trajectory emanating from p'.

PROOF. It follows from Corollary 3 that the values
of §° corresponding to abnormal extremal trajectories
of the i—th NP are necessarily solutions of the following
equation (w(0, p*),eq) cos0* + (w(0, p*),e0) sinf* = —1,

where e; = [I, 0] and e; = [0, 1]7, or equiv-
alently, |w(0,p*)[cos(§’ — ¢u(0,p")) = —1, where
¢w(0,p") = atany((w(0,p’),e2), (w(0,p*),€1)). 1If

|w(0,p")| > 1 (resp. |w(0,p*)| < 1), then the last equa-
tion has exactly two solutions in [0,27) (resp. has no
solution at all), whereas it admits a unique solution in

[0,27), when |w(0, p| = 1. B

Figure 3 illustrates the extremal trajectories of the sys-
tem (1), also known as the field of extremals [27,25,39],
emanating from some p’ € P, driven by the candidate
optimal control u’(-;6) after all maximizing trajecto-
ries have been removed. The following qualitative dis-
cussion, which extends the discussion presented in [25]
and [26,40], will shed light on some important features
of the optimal synthesis of the ZNP. In particular, we de-
scribe the qualitative behavior of the minimum time-to-
go function, in the case of a spatially and time-varying
drift field that satisfies (2), in relation with the pres-
ence or absence of abnormal extremal trajectories of the
i~th NP. In particular, there are three cases of interest
based on the relative position of p* with respect to the
set Q= {x e R?: |w(0,x)| < 1}.

In the first case, we assume that p’ belongs to the com-
plement of the closure of €. In this case |w(0,x*)] > 1,
which implies that the local drift exceeds the magnitude
of the forward velocity of the i—th vehicle. Consequently,
the i-th vehicle cannot move to every possible direction.
In particular, if |w(t,x")| > 1, then, at time ¢, the vehi-
cle’s inertial velocity x* := w(t,x") + u’, is constrained
to lie, for all u’ € U, within a cone K(t,x') of allow-
able directions. As shown in [41], K(¢,x") is a right (non-
oblique) cone of angle Jx(t,x") := 2arcsin(1/|w(t,x)]),
whose apex is x* (current position of the i—th vehicle)
and its axis is parallel to w(t,x"). Consequently, p* may
either remain on the boundary of its reachable set for
all £ > 0 or there may exist a time ¢ = 7 > 0 such that
p’ lies on the boundary of R,<,(p*), for all 0 < 7 < 7y,
and on the interior of R;<,(p’), for 7 > 7. The situa-
tion is illustrated in Fig. 3(b), where we observe the ex-
istence of extremal trajectories ¢ +— x‘ (¢; p’, 0%) that are
(globally) minimum-time trajectories of the i—th NP un-
til some finite time at which they visit points that have
already been visited by different extremal trajectories
emanating from p® (trajectories that correspond to dif-
ferent values of 6°).

As we have already shown in Proposition 4, when
|w(0,x")] > 1, there exist two abnormal trajectories
emanating from p?, which are denoted by X} and %} in
Fig. 3(b). As shown in Fig. 3(b), regular extremals lose
their optimality when they intersect with the mani-
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(a) Velocity field induced by (b) Regular and abnormal
the drift w(t,xi) extremal trajectories of the
min-time i—th NP emanating
from p’, when p* € (Q)°
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(c) Regular extremal trajec- (d) Regular and abnormal
tories of the min-time ¢-th extremal trajectories of the
NP emanating from p*, when min-time i—th NP emanating
pl e from p?, when p’ € bdQ

Fig. 3. Integral trajectories forming the flow of the sys-
tem (1), also known as the “field of extremals”, generated by
the candidate optimal control u.(t;#*), for t > 0. Note that
in (b) regular extremal trajectories lose their optimality as
they intersect the abnormal extremal trajectories Xi and X5.

folds determined by the abnormal extremal trajectories
X% and (part of) x4 for the first time. The suboptimal
parts of the extremal trajectories after the latter have
crossed the manifolds determined by the abnormal ex-
tremal trajectories X! and (part of) X4 correspond to
the magenta curve segments in Fig. 3(b). Note that, for
the particular example illustrated in Fig. 3(b), the i-th
vehicle can reach every point in the plane although ini-
tially it was unable to move to every possible direction
as a consequence of the fact that |w(0,x")| > 1. Another
important observation is that the minimum time-to-go
function undergoes discontinuous jumps, which occur
at points that belong to the manifolds determined by
the two abnormal extremal trajectories of the i—th NP.

The second case we consider is when p! € Q, that is,
|w(0, p*)| < 1. In this case the i—th vehicle can move, at
time ¢ = 0, to every direction (for more details, see [41]).
Consequently, p* € int R;<,(p*), for all 7 > 0. The third
case we consider is when p’ € bd(2, equivalently, when
|w(0,p*)] = 1. In this case, there is a unique abnormal
extremal trajectory, as shown in Proposition 4. An im-
portant observation is that the function x — Tf(x; p*)
undergoes discontinuous jumps at points that belong to
the manifold determined by this abnormal extremal tra-



jectory.

3.8 Characterization of the Level Sets of the Minimum
Time-to-Go Function of the i—th NP

Next, we proceed with the characterization of the level
sets of the i—th NP by making use of the properties en-
joyed by the solution of the ZNP.

Proposition 5 Given 0 < 7 < oo and p' € P, then
£-(p") € bdR-(p").

PROOF. The proof follows readily, by making use of
Corollary 1 in [34, pp.75-76]. B

In light of Proposition 5, the set bd9, (p*), whose com-
putation may not be a simple task, provides a conserva-
tive estimate of the level set £, (p*). This conservatism is
owing to the fact that bdR, (p?) may consist of endpoints
of trajectories that do not satisfy the necessary condi-
tions for optimality given in Section 3.2. Next, we in-
troduce an alternative estimate of £, (p*), which exploits
Propositions 3 and Corollary 2. In particular, we con-
sider, for a given 7 > 0, the set &(p") := Ugig (g 2m {x =
xi(r;p%,0%) : E(0;60%) > 0}. Note that &% (p®) consists
of the endpoints of all extremal trajectories of the i—th
NP, except from the endpoints of regular extremal tra-
jectories of the maximum time i—th NP.

Proposition 6 Given 0 < 7 < oo and p' € P, then
- (p") € R7(p')-

Proposition 6 implies that the set &% (p®) provides a con-
servative estimate of the level set /. (p’), for a given
7 > 0. This conservatism is owing to the fact that regu-
lar extremal trajectories of the minimum-time i—th NP
may lose optimality after some finite time. In partic-
ular, regular extremal trajectories may visit at some
time ¢ = 7 < 7 points that belong to the reachable
set M., (p’), where 79 < 71 < 7, as we have already
mentioned in Section 3.2. More precisely, for a given
0 < 7 < oo, there may exist 0 < 79 < 7 such that
Ri<ry (P) NRI(PY) # 2. If x € Ry<ry (p') N KI(PY), for
To < T, then x ¢ £,(p"), since T;(x; p*) < 79 < 7. There-
fore, in order to further refine this estimate of the level
set £, (p"), we need to remove from 8% (p”) all these points
that can be reached faster than 7 units of time.

Proposition 7 Let 7 > 0 and p' € P be given. Then
x € L-(p") if and only if x € RE(p") and x ¢ R, (p*), for
all0 <719 < T.

PROOF. Let x € £,(p). In light of Proposition 6, it
follows that x € &% (p®). Let us assume, on the contrary,
that there exists 0 < 79 < 7 such that x € R, (p?). Be-
cause x € £,(p'), it follows that 7 = T;(x; p*). However,
the point x can be reached from p’ at time t =79 < 7 =
Ti(x; p*), leading to a contradiction.

Conversely, let x € &%(p’) and x ¢ R, (p’), for all 0 <
To < 7. In light of Proposition 1, there exists 7, > 0
such that x € ¢, (p") # @. Since x ¢ R, (p"), for all

0 < 19 < 7, it follows that 7. > 7. Now let us assume,
on the contrary, that 7, > 7. Consequently, x cannot be
reached at ¢ = 7, which contradicts the fact that x €
RE(p") € R, (p"). Therefore, 7, = 7, and thus x € £-(p’).
This completes the proof. B

Figure 4 illustrates the sets &% (p®) and ¢, (p?) for differ-
ent values of 7 € [0, 00) and two different drift fields (see
also Fig. 1). For the first drift field, the computation of
the set &7 (p?) suffices to characterize the level set £, (p),
as is illustrated in Fig. 4(a). The situation is different
for the second drift field, where the sets &% (p), for dif-
ferent 7 > 0, may be supersets of their corresponding
level sets £, (p*). The situation is illustrated in Fig. 4(b),
where the red dashed parts of the &%(p’) correspond to
the set £%(p’)\/,(p?), that is, the set that consists of the
points that can be reached faster than 7 units of time
(these points belong to the suboptimal parts of regu-
lar extremal trajectories that lose their optimality after
some finite time, as we have discussed previously).
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(a) £-(p") = R (p).

Fig. 4. The level set £-(p%) is, in general, a subset of the
set R (p’). While the two sets are identical in Fig. 4(a),
this is not the case in Fig. 4(b), where the red dashed lines

correspond to the “excessive” part of &% (p’), that is, the set

R (p)\E-(p").

4 Topological Properties of the ZVD

In this section, we establish some topological properties
enjoyed by the generators and the cells of the ZVD. First,
we examine under what conditions a generator of the
ZVD is an interior or a boundary point of its associated
cell.

Proposition 8 Let U = {U', i € I,} be the ZVD
generated by the set P. If p' € int Ry<,(p*) for all T > 0,
then p* € int U°.

PROOF. Let 7 > 0. By hypothesis, there exists ¢; =
e1(r) > 0, such that B., (p") := {x: [x — p"| < &1} C
Ri<-(p'). Let j # i. Because P consists of n distinct
points, there exists a sufficiently small 2 > 0 such that
p’ ¢ Be,(p"). Take ¢ = min{eq,e2}. Next, we show that
there always exists 77 > 0 such that p’ ¢ R, <4 (p?).

We consider two cases. The first case is when Bg_(pi) N
Ri<-(p?) = @. In this case we can simply take 77 = 7.



The second case is when B.(p’) NR;<,(p’) # @. Denote
by 7 the infimum over the set of times ¢t < 7 required for
the system (1), starting from p? at time ¢ = 0, to reach
the ball B.(p?) for the first time. Take 77 = min{r, 7/2}.
Then B.(p’) N Ry (p!) = @.

Thus in both cases, B.(p') N Ry<si(p!) = & and
B.(p") C Ry<si(p"). By taking 7 = min;; {77}, it fol-
lows that there is no point in P\{p’} from which the
system (1) can reach B.(p%) at time t = 7 or faster.
Thus, by definition, B.(p?) C ¢, which implies, in turn,
that Be(p’) C intU’ since B.(p’) is open. Therefore,
p’ € intY?, and this completes the proof. W

Proposition 9 Let U = {V’, i € Z,} be the ZVD
generated by the set P. If R(p*) C R? and p* € bdR(p?),
then p* € bd2?.

PROOF. Assume, on the contrary, that p* € int’.
Since by definition U* C R(p*), it follows readily that
intY’ C intR(p?). Thus, p' € int R(p'), leading to a
contradiction.

Remark 3 It is possible that, for some drift fields, there
may exist 7o and 7 > 79 such that p’ € bdR;<,(p") but
p' € intRi<,(p’). In other words, there is a possibility
that p* € int R(p’) but p’ ¢ int Ry<,(p’) for all 7 > 0.
Consequently, neither Proposition 8 nor Proposition 9
applies. This scenario is illustrated in Figs. 3(b) and 4(b).
In this case, a generator p’ € P of the ZVD can either
be an interior or a boundary point of its associated cell.
Another important question we wish to examine is under
what conditions a cell of the ZVD is a connected set.
In the case of a time invariant drift field, the authors of
[13] present a brief discussion about the connectedness
of each cell of the ZVD based on qualitative arguments.
Next, we prove the connectedness of each cell of the ZVD
in the case of a time-invariant drift field that satisfies (2).

Proposition 10 Let U := {¥, i € Z,} be the ZVD
generated by the set P. If the drift field (t,x%) — w(t,x")
is time-invariant, that is, for every x* € R?, w(r,x?) =
w(71,xt), forallto,m1 > 0, and satisfies the condition (2),
then the cell B* is connected, for alli € T,.

PROOF. Let x € U' and let t — xi(t;p’,0') be
the corresponding minimum-time trajectory of the i-
th NP such that x = x{(T¢(x;p); p’,0"). We wish to
show that the point-set Dy(p’) := {x.(t;p",0") : t €
[0, T¢(x; p")]} € U°.

Let y € Dyx(p?) and let us assume, on the contrary, that
there exists j # i such that y € 27\, which implies,
in turn, that T¢(y; p?) < Ti(y; p%). Now let T¢(x;y, 7o)
denote the minimum time required to drive the sys-
tem (1), starting from y at time ¢ = 79, to x. Because
by assumption the drift field is time-invariant it holds
that T¢(x;y,70) = Tr(x;y, 1), for all 79, 71 > 0. By tak-
ing 79 = Tr(y;p') and 7y = Ti(y;p), it follows that

Tr(x;p') = Ti(y;p') + Tr(xy, Te(y;p') = Ti(y;p') +
Te(x;y, Tx(y; p?)). Now, if T¢(y; p?) < T¢(y; p’), then

Te(x;p") > Te(y; p7) + Tr(x;y, T (y; p7)) = Tr(x; p7).

Therefore, we have shown that Ti(x;p/) < Ti(x;p?),
which contradicts the initial assumption that x € 9’
Hence, for every x € 4", the set Dy(p’) C U*. It follows
that U7 is path connected and hence connected. W

In the case of a time-varying drift field, the connected-
ness of each cell of the ZVD is, in general, not guaran-
teed. The following proposition gives a sufficient condi-
tion for the connectedness of each cell of the ZVD for
the case of a time-varying drift field that satisfies (2).

Proposition 11 Let (t,x') +— w(t,x!) be a (time-
varying) drift field that satisfies the condition (2), and
let 0 = {2V, i € I,} be the ZVD generated by the set
P. Let us assume that, for alli € I,,, R, (p*) C R+, (p?),
where 0 < 79 < 71 < 00, and p* € int R, (p?), for all
7> 0. Then U is connected, for all i € I,,.

PROOF. It suffices to show that int 2’ is connected.
To this end, first notice that the conditions of Proposi-
tion 8 are satisfied and thus p’ € intY’, for all i € Z,,.
We claim that if x € int0*, then Dy(p’) C intY’. Let
y € D,(p") and let us assume, on the contrary, that
there exists j # i such that y € 207\, which implies,
in turn, that Tr(y;p’) < Ti(y;p®). By hypothesis, and
since y € %Tf(y;pj)(pj), it follows that y € mTf(y;pi)(pj).
Thus the system (1), starting from p’ at time t = 0,
can reach y at time t = T¢(y; p*) and subsequently reach
x at time t = Ty(y;p’) + Tr(x;y, Ti(y; ') = Ti(x;p’).
Let Tx(p?) := {r > 0 : x € R, (p/)}. Note that the
set T(p?) consists of all the times 7 such that the sys-
tem (1), starting from p’ at time ¢ = 0, can reach x at
time ¢ = 7 with the application of an admissible control
input. We have shown that T¢(x; p*) € Tx(p’). Because,
by definition, T¢(x;p’) = inf T,(p’), it follows readily
that Ti(x; p’) < Ti(x;p%), which contradicts the initial
assumption that x € intU?. Therefore int2* is path

connected, and hence connected, which implies, in turn,
that U’ is also connected (Theorem 26.8 in [42]). B

Note that if each cell of the ZVD is connected, then, as is
shown in [14], the complexity of the data structure asso-
ciated with the ZVD is linear to the number n of its gen-
erators. For example, the partition is completely char-
acterized by n non-overlapping connected sets which are
thus neighboring to at most O(n) cells from the same
partition. The previous remark reflects the fact that, un-
der the assumptions of Propositions 10-11, the compu-
tation and storage requirements of the ZVD are guaran-
teed to scale well with the problem data.



5 Simulation Results

In this section, we present numerical simulation re-
sults to illustrate the previous analysis. We consider a

drift field of the form (3) with A(t) = [ {0} 7)) and

v(t) = 0. In this case, the candidate optimal control
can be computed analytically. In particular, ul(t) =
[cos0i(t), sinfi(t)]T, where 01 = 6" — fot B(o)do.
In addition, since A(t) = a(t)le + B(t)J2, where
lo == [§9] and J = [ %], it can be shown
that the state transition matrix of A(t) is given by

B t cos f:,@(o)do’ sin fot B(o)do
(I)(t’ 0) = OXp (IO Oé(O')dO’) |:— sin fot B(o)do cos fot ,B(o')dU:| '
From the state transition matrix ®(¢,0), we can directly
compute first the reachable sets R, (p?) and the sign of
the quantity E(0;6"), and subsequently, the sets &% (p),
for all 7 > 0.

Figure 5 illustrates the ZVD generated by a point-set
of nine generators for « = 0, § = 0.4¢ (time-varying
field scenario) and o = 0.2, 5 = 0.2 (time-invariant field
scenario). In addition, Fig. 6 illustrates the level sets of
the minimum time-to-go emanating from each generator
restricted to their corresponding cell.

In Fig. 5, we observe that the cells and the generators of
the ZVD do not enjoy the same topological properties
with those of the standard Voronoi diagram generated
by the same set of generators. In particular, the gener-
ators of the ZVD are not always interior points of their
associated cells and the latter are non-convex sets. In
addition, the neighboring relations between the genera-
tors of the ZVD are different than those of the genera-
tors of the standard Voronoi diagram; something that is
in contradistinction with what is the case for the ZVD
when the drift is varying uniformly with time [11]. In
addition, as illustrated in Fig. 6, we observe that the
boundaries of some cells contain the points at which the
time-to-go function undergoes discontinuous jumps. Fi-
nally, we should also point out that the ZVDs illustrated
in Fig. 5 have significantly more complex structure from
those presented in earlier attempts to solve similar par-
titioning problems for constant, temporally and/or spa-
tially varying drift fields [11-14].

6 Conclusion

In this paper, we have characterized the solution of a
Voronoi-like partitioning problem which encodes the
proximity relations between the members of a team of
spatially distributed vehicles and arbitrary points in
the plane based on the minimum time-to-go function of
the classical Zermelo navigation problem from optimal
control theory. Each set of this Voronoi-like partition is
uniquely associated with a vehicle such that all points
in the set can be reached by the corresponding vehicle
faster than any other vehicle from the same team. The
partition is constructed by using its interpretation as a
forest of cost surfaces emanating from each generator,
where the computation of the latter is based on a nu-
merically efficient scheme for the expansion of the level
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Fig. 5. The Zermelo-Voronoi diagram generated by a set of
nine generators.
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Fig. 6. Level sets of the minimum time-to-go function ema-
nating from each generator restricted to their corresponding
cells.

sets of the minimum time-to-go function. The key ad-
vantage of our approach has to do with the fact that the
level set expansion scheme exploits the structure of the
optimal synthesis of the Zermelo navigation problem.
The proposed approach is based on tools and techniques
that can be employed to address similar partitioning
problems with respect to other state-dependent distance
functions. One possible direction for future work would
be the design of algorithms for the characterization
of the Voronoi-like partition tailored to the topologi-
cal properties of the partition, when the latter can be
established a priori for different classes of drift fields.
Another option is to consider variations of the presented
partitioning problem that deal with scenarios where the
agents do not have a priori global knowledge of the drift
field.
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