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Abstract

We consider the problem of characterizing a generalized Voronoi diagram that is relevant to a special class of area assignment
problems for multi-vehicle systems. It is assumed that the motion of each vehicle is described by a second order mechanical
system with time-varying linear or affine dynamics. The proposed generalized Voronoi diagram encodes information regarding
the proximity relations between the vehicles and arbitrary target points in the plane. These proximity relations are induced by
an anisotropic (generalized) distance function that incorporates the vehicle dynamics. In particular, the generalized distance
is taken to be the minimum square integral control associated with the transition of a vehicle to an arbitrary target point with
a small terminal velocity at a fixed final time. The space we wish to partition corresponds to the union of all the terminal
positions that can be attained by each vehicle using finite control effort. Consequently, the partition space has lower dimension
than the state space of each vehicle. We show that, in the general case, the solution to the proposed partitioning problem
can be associated with a power Voronoi diagram generated by a set of spheres in a five-dimensional Euclidean space for the
computation of which efficient techniques exist in the relevant literature.
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1 Introduction

We consider a generalized Voronoi partitioning problem
whose solution is purport to encode information rele-
vant to area assignment problems [1] involving multi-
vehicle systems. A typical example would be the follow-
ing: Let us assume that a service request for on site ser-
vice is issued at some point in the vicinity of a team of
vehicles. Which vehicle should respond to this request?
A standard approach for addressing this type of prob-
lems would be the following. First, compute a Voronoi
diagram encoding the necessary information about the
proximity relations between the vehicles and arbitrary
points in the plane based on their relative Euclidean dis-
tances. Subsequently, assign the task to the vehicle that
is closer to the point where the service request was issued
than any other vehicle from the same team. The main
caveat of the previous approach has to do with the fact
that the Euclidean distance is not always the most ap-
propriate figure of merit for characterizing the proximity
relations between the vehicles and arbitrary points in the
plane. This is because the Euclidean distance does not
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encode any information regarding, for example, neither
the initial velocities nor the dynamics of the vehicles.

Standard Voronoi diagrams generated by a finite point-
set (set of generators), whose proximity metric is the Eu-
clidean distance, and multiplicative (additive) weighted
Voronoi diagrams, whose proximity metric is, in turn,
the product (respectively, the sum) of the Euclidean
distance with a different positive weight assigned to
each generator, and their variations [2–4], have been
extensively used in applications of autonomous agents
ranging from vehicle routing [5–7] to coverage prob-
lems [8–11], just to name a few. Another important
class of generalized Voronoi diagrams are the so-called
anisotropic Voronoi diagrams [12], which find applica-
tions in coverage problems involving anisotropic (that is,
direction dependent) sensors [13]. In contradistinction
with the multiplicative weighted Voronoi diagram, the
(possibly different) weights assigned to each generator
of an anisotropic Voronoi diagram are positive definite
matrices rather than positive scalars. The “anisotropic”
qualifier for this class of generalized Voronoi diagrams
stems from the fact that the weighting matrices as-
signed to each generator may not, in general, uniformly
weigh the proximity distance function along different
directions.
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Typically, the choice of the proximity metric of the gen-
eralized Voronoi partitions utilized in problems involv-
ing multiple agents, as the ones previously mentioned,
stems from geometric considerations relevant to the fol-
lowing question: “which agent is the closest to the tar-
get?” In our previous work [14–16], which was initially
motivated by the work presented in [17,18], we have high-
lighted the potential of using a different class of general-
ized Voronoi diagrams with respect to standard system /
control theoretic “metrics” in problems of multi-vehicle
systems. In this framework, one is interested in address-
ing questions like: “which vehicle can reach a target with
minimum transition cost?” Typical examples of this new
class of proximity metrics, to which we refer as state-
dependent metrics [15], are the minimum time of arrival,
control effort and fuel to-go. It is important to note that
these pseudo-metrics are not, in general, only functions
of the initial and terminal points but the whole trajec-
tory that connects them as well. Consequently, state-
dependent metrics are anisotropic functions which can-
not, in general, be directly associated with the classes
of generalized Voronoi diagrams for which efficient com-
putational techniques are available. In contradistinction
with [14,15], which focus on state-dependent metrics for
vehicles with single integrator type kinematics, in this
work, we consider multi-vehicle systems with second or-
der, time-varying linear or affine dynamics. The space
we wish to partition, the partition space, consists of all
the points in the plane that can be reached by any ve-
hicle from the team with a small terminal speed. Con-
sequently, the partition space is a space of positions,
and as such has lower dimension than the state space
of each vehicle, which is a space of both positions and
velocities. In addition, the proximity metric is a stan-
dard quadratic performance criterion from linear opti-
mal control, namely the minimum (weighted) integral
square control, also known as the minimum (weighted)
control effort [19,20].

Next, we summarize the main contributions of this work.
First, we propose an area assignment problem [1] with re-
spect to an anisotropic, state-dependent proximity met-
ric, namely the minimum control effort, for a multi-
vehicle system with second order dynamics and frame
the problem as a generalized Voronoi diagram problem.
To the best of the author’s knowledge, this is the first
attempt to address this class of partitioning problems in
the literature. Second, we demonstrate that the solution
to this new class of generalized Voronoi diagram prob-
lems can be reduced to the construction of generalized
Voronoi diagrams for the computation of which efficient
algorithms exist in the literature of computational geom-
etry. In particular, we show that, when the vehicles do
not necessarily have identical transition cost functions,
the solution to the partitioning problem can be obtained
by the projection of a power Voronoi diagram generated
by a set of spheres embedded in a five-dimensional Eu-
clidean space on the two-dimensional partition space.
In the case when all the vehicles have the same transi-

tion cost function, the solution to the proposed parti-
tioning problem reduces to the computation of an affine
Voronoi diagram, which is associated, in turn, with a
power Voronoi diagram generated by a set of circles.
These important results have allowed us to character-
ize modest bounds on the time required to compute the
proposed spatial partitions as well as their combinato-
rial complexity 1 , which confirm the practicality of em-
ploying the proposed class of spatial partitions in appli-
cations of multi-vehicle systems.

The rest of the paper is organized as follows. Section 2
presents the formulation of the optimal control problem
for a single vehicle. The partitioning problem for the
multi-vehicle scenario is formulated and subsequently
addressed in Sections 3 and 4, respectively. Section 5
presents simulation results, and finally, Section 6 con-
cludes the paper with a summary of remarks.

2 Formulation of the Optimal Steering Problem

We are given a team of n vehicles which are located at n
distinct points x̄i ∈ R

2 with prescribed initial velocities
v̄i ∈ R

2, where i ∈ In := {1, . . . , n}. We denote by
X := {x̄i ∈ R

2 : i ∈ In} and V := {v̄i ∈ R
2 : i ∈ In},

respectively, the sets comprised of the initial positions
and velocities of the vehicles. The motion of the i-th
vehicle from the team, where i ∈ In, is described by the
following set of equations

ẋi = vi, xi(0) = x̄i,

v̇i = Gi(t)vi +Hi(t)ui(t) + fi(t), vi(0) = v̄i, (1)

where xi := [xi, yi]
T ∈ R

2 (x̄i := [x̄i, ȳi]
T ∈ R

2) and
vi := [vi, wi]

T ∈ R
2 (v̄i := [v̄i, w̄i]

T ∈ R
2) are, respec-

tively, the position and velocity vectors of the i-th vehi-
cle at time t (at time t = 0). For a given velocity vector
v⋆i = [v⋆i , w⋆

i ]
T ∈ R

2, we define the position space to
be the hyperplane X (v⋆i ) := {[xTi , (v⋆i )

T]T : xi ∈ R
2}.

Furthermore, we will denote the state vector of the i-th
vehicle at time t = 0 and time t by zi and z̄i, respec-
tively, where zi := [xTi , vTi ]

T and z̄i := [x̄Ti , v̄Ti ]
T. In ad-

dition, ui(·) ∈ L2([0, Tf ],R
2) is the control input of the

i-th vehicle, where L2([0, Tf ],R
2) denotes the space of

square integrable functions g : [0, Tf ] 7→ R
2, for a given

Tf > 0. Furthermore, Gi(·),Hi(·) ∈ L∞([0, Tf ],R
2×2),

where L∞([0, Tf ],R
2×2) denotes the space of (almost ev-

erywhere) bounded functions M : [0, Tf ] 7→ R
2×2. In ad-

dition, we assume thatHi(t) is non-singular for all t ≥ 0
(that is, the system is fully actuated at all times). Finally,
fi(·) ∈ L2([0, Tf ],R

2) is an externally applied reference
signal.

1 The combinatorial complexity of a generalized Voronoi di-
agram corresponds to the total number of the connected
components of all the generalized cells that comprise the
generalized Voronoi partition, the total number of “faces” or
“curved edges” (generalizations of Voronoi edges) that en-
close these sets and their corresponding vertices (generaliza-
tions of Voronoi vertices).
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The objectives of the i-th vehicle are: 1) to reach a neigh-
borhood of a desired terminal position xf ∈ R

2 at a
fixed final time Tf with a small terminal speed, that is,
a neighborhood of the point zf := [xT

f
, 0]T ∈ X (0), and

2) to achieve this transition without incurring a signif-
icant cost (for example, the transition does not require
an excessive amount of control effort).

Next, we formulate the steering problem in a coordinate
system where the terminal state is always the origin. In
particular, let yi := zi−zf and ȳi := z̄i−zf . Then, Eq. (1)
becomes

ẏi = Ai(t)yi +Bi(t)ui(t) + ci(t), yi(0) = ȳi, (2)

where

Ai(t) :=

[

0 I

0 Gi(t)

]

, Bi(t) :=

[

0

Hi(t)

]

,

ci(t) := [0, fT

i (t)]
T (note that Ai(t)zf ≡ 0).

Next we consider the following optimal control problem.

Problem 1 Let Qi = QT

i > 0 and ̺i > 0. Given a fixed
final time Tf > 0, find a control input u◦

i ∈ L2([0, Tf ],R
2)

that minimizes the performance index

Ji(ui, ȳi) :=
1

2
yTi (Tf)Qiyi(Tf) +

1

2̺i

∫ Tf

0

|ui(t)|
2dt, (3)

subject to the dynamic constraint (2).

Remark 1 The weight ̺i > 0 is selected in accordance
with the so-called Bryson and Ho rule [19, pp. 149] for
linear quadratic optimization problems. The selection of
the matrix Qi, which weighs the penalty placed on the
terminal distance error |yi(Tf)|, can be done similarly.
In particular, by increasing ‖Qi‖, where ‖ · ‖ is any sub-
multiplicative matrix norm, the terminal distance error
decreases accordingly.

Before we address Problem 1, we shall briefly discuss
when does a square integrable control law that transfers
the i-th vehicle to any neighborhood of the target, re-
gardless of how small the terminal distance error |yi(Tf)|
is required to be (by appropriately selecting, for exam-
ple, the weighting matrix Qi), exist.

Assumption 1 Let Tf > 0 be given and let Φi(0, t)
denote the state transition matrix of the linear system
ξ̇i = Ai(t)ξi. Then, Wi(Tf) = WT

i (Tf) > 0, for all
i ∈ In, where

Wi(t) :=

∫ t

0

Φi(0, σ)Bi(σ)B
T

i (σ)Φ
T

i (0, σ)dσ.

UnderAssumption 1, the control law ui(·) ∈ L2([0, Tf ],R
2),

where

ui(t) = BT

i (t)Φ
T

i (0, t)W
−1
i (Tf)(Φi(0, Tf)zf − z̄i)

−H−1
i (t)fi(t), (4)

will transfer the system (1) (respectively, the system (2))
from an arbitrary initial state z̄i (respectively, ȳi) to any
terminal state zf (respectively, the origin) with zero ter-
minal distance error at time t = Tf (see, for example,
Corollary 2.3 and 2.5, and Eq. (2.23) in [21]).

Next we present the solution to Problem 1.

Proposition 1 Let Assumption 1 hold and let ̺i >
0, Tf > 0 be given. Then, for every i ∈ In, there exists
a unique triple (Si(t), ki(t),mi(t)), where Si(t) ∈ R

4×4

and Si(t) = ST

i (t) ≥ 0, ki(t) ∈ R
4, andmi(t) ∈ R, for all

t ∈ [0, Tf ], which satisfies the following set of equations

−Ṡi = SiAi(t) +AT

i (t)Si − 1/̺ iSiBi(t)B
T

i (t)Si,

−k̇i = AT

i (t)ki + Sci(t)− 1/̺ iSiBi(t)B
T

i (t)ki,

−ṁi = kTi ci(t)− 1/2̺ikiBi(t)B
T

i (t)ki, (5)

with boundary conditions

Si(Tf) = Qi, ki(Tf) = 0, mi(Tf) = 0, (6)

such that the optimal control law that solves Problem 1
is given by

u◦
i (t, y

◦
i ) = −1/̺ i B

T

i (t)[Si(t)y
◦
i + ki(t)]. (7)

In addition, the corresponding minimum cost J ◦
i (ȳi) :=

Ji(u
◦
i , ȳi) (value function of Problem 1) is given by

J ◦
i (ȳi) = 1/2 ȳTi Si(0)ȳi + kTi (0)ȳi +mi(0). (8)

PROOF. The reader may refer to [22, pp. 228-229].

Remark 2 Note that for a given Tf > 0 and i ∈ In, the
triple (Si(t), ki(t),mi(t)) is independent of the terminal
state zf , for all t ∈ [0, Tf ]. In addition, if the matrices and
the parameters that appear in Eqs. (2) and (3) are not
the same for all i ∈ In, then the triple (Si(t), ki(t),mi(t))
may not be the same for all i ∈ In as well.

An important observation is that the value function
J ◦
i (ȳi) of Problem 1 is not necessarily minimized at

ȳi = 0 (that is, when the initial and terminal positions
are the same).

Proposition 2 Let Assumption 1 hold and let Tf > 0
be given. Then the value function J ◦

i (ȳi) of Problem 1
is nonnegative and finite for all ȳi ∈ R

4. If, in addition,
Si(0) = ST

i (0) > 0, then J ◦
i (ȳi) is minimized at ȳ◦i =

−S−1
i (0)ki(0), where

J ◦
i (ȳ

◦
i ) = −1/2 kTi (0)S

−1
i (0)ki(0) +mi(0). (9)
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PROOF. The cost J ◦
i (ȳi) is a convex function given

that its Hessian matrix, denoted by H(J ◦
i (ȳi)), satisfies

H(J ◦
i (ȳi)) = Si(0) > 0. Therefore, the cost J ◦

i attains
its minimum at ȳi = ȳ◦i , where ȳ

◦
i is the unique solution

of the equation ∇J ◦
i (ȳi) = 0. The rest of the proof is

straightforward and is omitted.

3 Formulation of the Partitioning Problem

In this section, we will formulate a generalized Voronoi
partitioning problem, where the value function of Prob-
lem 1 will serve as the proximity metric that will deter-
mine the proximity relations between the vehicles and
arbitrary target points. The partition space consists of
all the possible terminal states z = [xT, 0]T ∈ X (0).
Note that the partition space is a space of positions (the
terminal velocities are fixed to zero), and consequently,
the proximity metric should be a function of the position
vector of each vehicle only, whereas the initial velocities,
which are non-zero in general, should serve as constant
parameters. In particular, we take the proximity metric
to be the restriction of the value function of Problem 1
given in Eq. (8) to the position space X (0). We denote
this function by x 7→ ci(x; z̄i), where

ci(x; z̄i) := J ◦
i (z̄i−z(x)), z(x) := [xT, 0]T ∈ X (0), (10)

for i ∈ In. Note that the cost ci(x; z̄i) is the minimum
control effort required to drive the system (1) from the
prescribed initial state z̄i to a neighborhood of the point
z := [xT, 0]T ∈ X (0) at a given time Tf (transition cost
function).

Next, we formulate the generalized Voronoi partitioning
problem.

Problem 2 Let Z := {z̄i ∈ R
4 : i ∈ In} be given.

Then, determine a partition V = {Vi : i ∈ In} of X (0)
such that

(1) X (0) =
⋃

i∈In
Vi,

(2) intVi ∩ intVj = ∅, for all i, j ∈ In, i 6= j,
(3) A point z = [xT, 0]T ∈ X (0) belongs to Vi if, and

only if, ci(x; z̄i) ≤ cj(x; z̄j), for all j ∈ In, where
cℓ(x; z̄ℓ), ℓ ∈ {i, j}, is given by Eq. (10).

Remark 3 Note that the partition V that solves Prob-
lem 2 is a generalized Voronoi diagram with respect to
an anisotropic state-dependent (pseudo-) metric.

4 The Solution to the Partitioning Problem

In this Section, we show that the solution to the Prob-
lem 2 can be associated with two classes of generalized
Voronoi diagrams, namely power and affine Voronoi dia-
grams, for the computation of which efficient techniques
exist in the literature.

4.1 Structure of the Proximity Metric Induced by the
Minimum Control Effort

Next, we show that the proximity metric of Problem 2
can be expressed as a particular non-homogeneous
quadratic form.

Proposition 3 Let z̄i = [x̄Ti , v̄Ti ]
T ∈ Z and let us as-

sume that Si(0) = ST

i (0) > 0. Then, there exists a matrix
Γi ∈ R

2×2, where Γi = ΓT

i > 0, a vector x̄⋆i = x̄⋆i (z̄i) ∈
R

2, and a scalar µ⋆
i = µ⋆

i (v̄i) such that Eq. (10) can be
written as follows

ci(x; z̄i) = (x− x̄⋆i (z̄i))
TΓi(x− x̄⋆i (z̄i)) + µ⋆

i (v̄i), (11)

for i ∈ In.

PROOF. The cost given in Eq. (8) can be written as a
non-homogenous quadratic form as follows

Q(δz;Σ) = δzTΣδz+ κTδz+ µ, (12)

where δz := z̄i − z, Σ := 1/2Si(0), κ := ki(0), and µ =
mi(0). Next we consider the following decompositions of
the matrix Σ and the vectors κ, δz,

Σ =

[

Σ11 Σ12

Σ21 Σ22

]

, κ =

[

κ1

κ2

]

, δz =

[

δx

v̄i

]

,

where δx := x̄i − x, κ1, κ2 ∈ R
2 and Σij ∈ R

2×2, where
i, j ∈ {1, 2}. After some algebraic manipulation, it fol-
lows that Eq. (12) can be written as follows

Q(δx; v̄i,Σ) = δxTΣ11δx+ v̄Ti (Σ21 +ΣT

12)δx

+ v̄Ti Σ22v̄i + κT

1 δx+ κ2v̄i + µ

= δxTΣ11δx+ gT(v̄i)δx+D(v̄i,Σ), (13)

where D(v̄i,Σ) := v̄Ti Σ22v̄i + κT

2 v̄i + µ, and g(v̄i) :=
(ΣT

21 +Σ12)v̄i + κ1. Next, we consider the transforma-

tion p = Σ
1/2
11 δx, where Σ

1/2
11 = (Σ

1/2
11 )

T > 0 denotes the
square root of the matrix Σ11

2 . Then Eq. (12) reduces
to

Q(p; v̄i) = pTp+ gT(v̄i)Σ
−1/2
11 p+D(v̄i), (14)

which, after some algebraic manipulation, gives

Q(p; v̄i) = (p+ 1/2Σ
−1/2
11 g(v̄i))

T(p+ 1/2Σ
−1/2
11 g(v̄i))

+D(v̄i)− 1/4 gT(v̄i)Σ
−1
11 g(v̄i),

= (p+ p⋆(v̄i))
T(p+ p⋆(v̄i)) + µ⋆

i (v̄i), (15)

2 It is easy to show that when Σ = Σ
T > 0, then Σ11 =

Σ
T

11 > 0 and consequently, Σ
1/2
11

= (Σ
1/2
11

)T > 0.
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where p⋆(v̄i) := 1/2Σ
−1/2
11 g(v̄i) and µ⋆

i (v̄i) := D(v̄i) −
1/4 gT(v̄i)Σ

−1
11 g(v̄i). Therefore, Eq. (10), can be written

as follows

ci(x; z̄i) = (x− x̄⋆i (z̄i))
TΣ11(x− x̄⋆i (z̄i)) + µ⋆

i (v̄i),

where x̄⋆i (z̄i) = x̄i + Σ
−1/2
11 p⋆(v̄i), and the result follows

readily.

Remark 4 Note that the matrix Γi is independent of
the terminal state z given that the triple (Si, ki,mi) is
also independent of z (or equivalently, the initial state
ȳi). It does depends, however, on the index of the vehicle,
and in particular, the matrices that appear in Eqs. (2)
and (3).

Corollary 1 Let z̄i ∈ Z and let us assume that Si(0) =
ST

i (0) > 0. Then the cost function x 7→ ci(x; z̄i) defined
in Eq. (10) attains its minimum value at x◦i = x̄⋆i (z̄i) and,
in addition, ci(x

◦
i ; z̄i) = µ⋆

i (v̄i) = minx∈R2 ci(x; z̄i).

4.2 Characterization of the Solution to the Partitioning
Problem

Next, we address Problem 2 by exploiting the particular
structure of its proximity metric. To this aim, we shall
examine both the cases when 1) the quantities Γi, x̄

⋆
i (·)

and µ⋆
i (·) are not necessarily the same for all i ∈ In (in

this case, the vehicles may not have identical transition
cost functions ci), and 2) Γi = Γj , x̄

⋆
i (·) = x̄⋆j (·) and

µ⋆
i (·) = µ⋆

j (·), for all i, j ∈ In (the vehicles now have
identical transition cost functions ci).

4.2.1 The General Case When the Transition Cost
Function is not Necessarily the Same for All
Vehicles

We consider the case when the quantities Γi, x̄
⋆
i (·) and

µ⋆
i (·) are not necessarily the same for all i ∈ In. In this

case, the bisector Bij that corresponds to the generators

z̄i and z̄j ∈ Z, that is, the loci of all points z = [xT, 0]T ∈
X (0) for which ci(x; z̄i) = cj(x; z̄j), is determined by the
following equation

xT(Γi − Γj)x+ 2(Γj x̄
⋆
j − Γix̄

⋆
i )

Tx+ π2
i − π2

j = 0, (16)

where x̄⋆ℓ := x̄⋆ℓ (z̄ℓ) and π2
ℓ := µ⋆

ℓ (v̄ℓ) + (x̄⋆ℓ )
TΓℓ x̄

⋆
ℓ , ℓ ∈

{i, j}. We immediately conclude that Bij is a conic sec-
tion. Next we state the main result of this section.

Theorem 1 LetV := {Vi, i ∈ In} denote the partition
that solves Problem 2 and letV⋆ := {V⋆

i , i ∈ In} denote
the power Voronoi diagram generated by the set of spheres
S := {Si, i ∈ In} in R

5, where the sphere Si is centered
at the point σi with coordinates

σi :=
[

(Γix̄
⋆
i )

T,−
1

2
Γ
[1,1]
i ,−Γ

[1,2]
i ,−

1

2
Γ
[2,2]
i

]

T

, (17)

where Γ
[k,ℓ]
i denotes the (k, ℓ) element of the matrix Γi,

and the power distance of the origin 3 with respect to Si

is equal to π2
i := µ⋆

i (v̄i) + (x̄⋆i )
TΓi x̄

⋆
i . Then a point z =

[xT, 0]T, where x = [x, y]T, belongs to Vi if, and only if,
the point r = r(z) ∈ R

5, where r(z) := [x, y, x2, xy, y2]T,
belongs to the cellV⋆

i . Finally,V
⋆ has combinatorial com-

plexity Θ(n3) and can be computed in time O(n log n +
n3).

PROOF. A point z = [xT, 0]T ∈ X (0) belongs to Vi

if, and only if, ci(x; z̄i) ≤ cj(x; z̄i), for all j ∈ In, or
equivalently,

xTΓix− 2xTΓix̄
⋆
i + π2

i ≤ xTΓjx− 2xTΓj x̄
⋆
j + π2

j , (18)

where x̄⋆ℓ := x̄⋆ℓ (z̄ℓ) and π2
ℓ := µ⋆

ℓ + (x̄⋆ℓ )
TΓℓ x̄

⋆
ℓ , for ℓ ∈

{i, j}. Now let r(z) := [x, y, x2, xy, y2]T ∈ R
5. Then,

it is easy to verify (see [23]) that Eq. (18) can be written
as follows

|r − σi|
2 − (|σi|

2 − π2
i ) ≤ |r − σj |

2 − (|σj |
2 − π2

j ), (19)

where σi ∈ R
5 is given by (17). Therefore, the point z

belongs to the cell Vi associated with the point z̄i ∈ Z
if, and only if, the power distance of the point r(z) with
respect to the sphere Si is no greater than its power dis-
tance with respect to any other sphere from S. Equiva-
lently, z ∈ Vi if, and only if, r ∈ V

⋆
i .

The result on the combinatorial complexity of V⋆ and
the computational time follow immediately from Corol-
lary 18.1.2 [4, p. 435]. �

Remark 5 The notation Θ(·) has the following mean-
ing: Given a function f : N 7→ [0,∞), then Θ(f(n)) de-
notes the set of functions g : N 7→ [0,∞) that satisfy
c1f(n) ≤ g(n) ≤ c2f(n), for all n ≥ n0, where c1, c2 > 0
and n0 ∈ N.

Remark 6 Proposition 1 implies that the solution to
Problem 2 for the general case, when the quantities Γi,
x̄⋆i (·), and µ

⋆
i (·) are not necessarily identical for all i ∈ In,

reduces to the construction of a power Voronoi diagram
generated by a set of spheres in R

5; the restriction of
this power Voronoi diagram to the two-dimensional par-
tition space X (0) will furnish the solution to the par-
titioning problem. Practically, this means that one can
address the partitioning problem proposed in this work
by employing well known algorithms from the literature
of computational geometry (see, for example, [3]).

4.2.2 The Case When the Value Function is the Same
for All Vehicles

Next, we consider the case when Γi = Γj , x̄
⋆
i (·) = x̄⋆j (·)

and µ⋆
i (·) = µ⋆

j (·), for all i, j ∈ In, in which case we sim-

3 The power distance of a point x with respect to a sphere
S is the square of the length of the line segment emanating
from x that is tangent to S and terminating at the point of
tangency.
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ply write, respectively, Γ, x̄⋆(·) and µ⋆(·). The proximity
metric of Problem 2 becomes

c(x, z̄i) := (x− x̄⋆(z̄i))
TΓ(x− x̄⋆(z̄i)) + µ⋆(v̄i). (20)

Next we associate the solution to Problem 2 with an
affine Voronoi diagram 4 in R

2.

Proposition 4 Let V := {Vi, i ∈ In} denote the gen-
eralized Voronoi diagram that solves Problem 2 for a
given set of generators Z, when the proximity metric is
given by Eq. (20). Then, a point z = [xT, 0]T, where
x = [x, y]T, belongs to Vi if, and only if, x ∈ V

⋆
i , where

V
⋆ := {V⋆

i , i ∈ In} denote the generalized Voronoi dia-

gram generated by the point-set X
⋆
:= {x̄⋆i = x̄⋆(z̄i), i ∈

In}with respect to the proximitymetric c⋆ : R2 7→ [0,∞),
where

c⋆(x; z̄⋆i ) := (x−x̄⋆i )
TΓ(x−x̄⋆i )+µ⋆(v̄i), z̄⋆i := [(x̄⋆i )

T, v̄Ti ]
T,

which is an affine Voronoi diagram in R
2.

PROOF. Note that a point z = [xT, 0]T belongs to the
cell Vi ∈ V associated with the generator z̄i ∈ Z if, and
only if, c(x; z̄i) ≤ c(x; z̄j), for all i 6= j, or equivalently,
c⋆(x; z̄⋆i ) ≤ c⋆(x; z̄⋆j ). Consequently, z ∈ Vi if, and only
if, x belongs to the cell V⋆

i ∈ V
⋆ associated with the

generator x̄⋆i ∈ X
⋆
.

To prove that V⋆ is an affine Voronoi diagram in R
2, it

suffices to show that the bisector B⋆
ij that corresponds

to x̄⋆i and x̄⋆j ∈ X
⋆
, where i 6= j, is a straight line. In

particular, a point x ∈ B⋆
ij if, and only if, c⋆(x; z̄⋆i ) =

c⋆(x; z̄⋆j ), which implies that

2(x̄⋆j − x̄⋆i )
TΓx+ π2

i − π2
j = 0, (21)

where π2
ℓ := µ⋆(v̄ℓ) + (x̄⋆ℓ )

TΓx̄⋆ℓ , ℓ ∈ {i, j}. Note that
Eq. (21) describes a straight line in R

2. This completes
the proof. �

Next we establish a direct correspondence between the
solution to Problem 2 and a power Voronoi diagram gen-
erated by a set of circles.

Theorem 2 Let V := {Vi, i ∈ In} be the generalized
Voronoi diagram that solves Problem 2 and let V

⋆ :=
{V⋆

i , i ∈ In} denote the corresponding affine diagram

generated by X
⋆
, which was introduced in Proposition 4.

Then, V
⋆ is the power Voronoi diagram generated by

the set of circles C := {Ci, i ∈ In}, where the circle Ci
is centered at the point Γx̄⋆i and the power distance of
the origin with respect to Ci is equal to π2

i := µ⋆(v̄i) +

4 Affine Voronoi diagrams generated by a finite point set
constitute a class of generalized Voronoi diagrams whose
bisectors correspond to hyperplanes.

(x̄⋆i )
TΓx̄⋆i . In addition, V⋆ has combinatorial complexity

Θ(n) and can be computed in time Θ(n log n+ n).

PROOF. The proof that V
⋆ := {V⋆

i , i ∈ In} is a
power Voronoi diagram in R

2 is a direct application of
Theorem 18.2.2 from [4, p. 438], whereas the result on the
combinatorial complexity of V⋆ and the computational
time follow immediately from Theorem 18.2.3 from [4,
p. 439].

Remark 7 Theorem 2 implies that Problem 2 can be
reduced to the problem of computing an affine diagram,
which is, in turn, associated with a power Voronoi dia-
gram generated by a set of circles for the computation
of which efficient algorithms exist in the literature [3]. In
addition, the bounds on the combinatorial complexity
and the computational time reveal that the affine dia-
gram that solves Problem 2 is neither significantly more
complex nor more expensive to compute than a standard
Voronoi diagram generated by a point-set of n genera-
tors.

5 Simulation Results

In this section, we present simulation results that illus-
trate the previously presented theoretical developments.
In particular, we consider a scenario with n = 10 vehi-
cles, where the motion of the i-th vehicle is described by
the following set of equations

ẋi = vi, v̇i = ui(t), xi(0) = x̄i, vi(0) = v̄i, (22)

for which Assumption 1 is easily verified.

For the simulation purposes, we have used the follow-
ing data: Q =

[

Qd I
I Qd

]

, Qd =
[

2 1
1 2

]

, Tf = 2. Fig-
ure 1 illustrates the generalized Voronoi diagram V,
which solves Problem 2. For the computation of the
diagrams, we have employed a partitioning algorithm,
which is suitable for a large class of generalized Voronoi
partitions and is based on the characterization of the
lower envelope cost function c : R

2 7→ [0,∞), which
is defined by c(x) := min

z̄i∈Z
c(x; z̄i) when the transi-

ton cost function is the same for all the vehicles, and
c(x) := mini∈In

ci(x; z̄i) otherwise (for more details on
the implementation of this algorithm, the reader may
refer to [16] and references therein). One may alterna-
tively employ a more specialized algorithm for the com-
putation of power diagrams, such as the (MAXIMAL)
POWER DIAGRAM algorithm, which can be found in
[24].

We consider both the case when ̺i is the same for all
i ∈ In, which implies, in turn, thatΓi = Γj , x̄

⋆
i (·) = x̄⋆j (·)

and µ⋆
i (·) = µ⋆

j (·), for all i, j ∈ In (Fig. 1(a)), or ̺i is
not the same for all the vehicles, in which case Γi, x̄

⋆
i (·)

and µ⋆
i (·) are not the same for all i ∈ In (Fig. 1(b)). In

particular, we take ̺i = 2 and ̺i = i/5 for the first and
the second case, respectively. Each arrow in Fig. 1 cor-
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responds to the initial velocity vector v̄i ∈ V of the i-th
vehicle, which is initially located at x̄i ∈ X (the locations
of the generators are denoted by black crosses), whereas
the dashed lines correspond to the standard Voronoi di-
agram generated by the point-set X . When ̺i = 2, for
all i ∈ In, then all the bisectors are straight lines, as il-
lustrated in Fig. 1(a). By contrast, when ̺i = i/5, then
some of the bisectors correspond to segments of conic
sections, as illustrated in Fig. 1(b). The previous ob-
servations are in total agreement with the discussion in
Section 4. In addition, we observe that all the cells that
comprise the partition V are convex in the first case but
not all of them are convex in the second case (for exam-
ple, the cell V6 in Fig. 1(b) is non-convex).

Furthermore, we observe that both the generalized
Voronoi diagrams illustrated in Fig. 1 are significantly
different from the corresponding standard Voronoi di-
agram generated by the point-set X . We observe, for
example, that the neighboring relations among the gen-
erators induced by the two different types of partitions
differ significantly. Another important observation is
that the generators of V are not necessarily interior
points of their corresponding cells in contrast with the
standard Voronoi diagram.

Finally, Fig. 2 illustrates the level sets of the lower enve-
lope cost function for the affine and the power Voronoi
diagram, respectively. As we have highlighted in Propo-
sition 2, the cost function restricted in the cell Vi actu-
ally attains its minimum at the point x̄⋆i , where, in gen-
eral, x̄⋆i 6= x̄i (the points x̄⋆i are denoted by red crosses
in Fig. 2). The previous observation explains why in our
simulations there exist generators x̄i ∈ X that are not
interior points of their associated cells Vi ∈ V in con-

tradistinction with their corresponding points x̄⋆i ∈ X
⋆
,

which turn out to be interior points of the same cells.
We also observe that the initial velocity vector v̄i ∈ V of
the i-th vehicle emanating from x̄i ∈ X aims toward the

point x̄⋆i ∈ X
⋆
, and thus aims toward the cell Vi ∈ V

associated with the i-th vehicle.

6 Conclusion

We have proposed an area assignment problem for multi-
vehicle systems, which we have framed as a general-
ized Voronoi diagram problem with respect to a state-
dependent proximity metric. In particular, the proxim-
ity metric was taken to be the minimum square integral
control (control effort) required for each vehicle to reach
an arbitrary target point in the plane with a small termi-
nal speed at a given terminal time. We have shown that
the solution to this problem can be directly associated
with a power Voronoi diagram in a higher dimensional
Euclidean space. A notable feature of the problem here
introduced has to do with the fact that the distribution
of the weights attached to every possible direction of
motion of each vehicle by means of the value function of
the optimal control problem is not necessarily uniform.
Consequently, each vehicle “prefers” to move along par-
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(a) The case when the weight ̺i = 2 for all
i ∈ In (affine Voronoi diagram in R

2).
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to X (0)).

Fig. 1. Generalized Voronoi diagrams generated by a set of
ten points with respect to the minimum control effort.

ticular “less expensive” directions. A possible direction
for future research is the extension of the techniques here
introduced to more general classes of area assignment
problems involving mechanical systems with nonlinear
dynamics.

Acknowledgements

The author would like to thank the anonymous reviewers
for their constructive comments and suggestions.

References

[1] A. Getis and B. Boots, Models of Spatial Processes: An

Approach to the Study of Point, Line and Area Patterns.
Cambridge, UK: Cambridge University Press, 1978.

[2] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu,
Spatial Tessellations: Concepts and Applications of Voronoi

Diagrams. West Sussex, England: John Wiley and Sons Ltd,
second ed., 2000.

7



−4 −2 0 2 4

−4

−3

−2

−1

0

1

2

3

4

x

y

(a) The case when the weight ̺i = 2, for all
i ∈ In.

−4 −2 0 2 4

−4

−3

−2

−1

0

1

2

3

4

x

y

(b) The case when the weight ̺i = i/5, for
i ∈ In.

Fig. 2. Level sets of the lower envelope cost function c(x).

[3] F. Aurenhammer, “Voronoi diagrams: A survey of a
fundamental geometric data structure,” ACM Computing

Surveys, vol. 23, no. 3, pp. 345–405, 1991.

[4] J.-D. Boissonnat and M. Yvinec, Algorithmic Geometry.
Cambridge, United Kingdom: Cambridge University Press,
1998.

[5] J. Beasley and N. Christofides, “Vehicle routing with a sparse
feasibility graph,” European Journal of Operational Research,
vol. 98, no. 3, pp. 499–511, 1997.

[6] F. Bullo, E. Frazzoli, M. Pavone, K. Savla, and S. Smith,
“Dynamic vehicle routing for robotic systems,” Proceedings

of the IEEE, vol. 99, no. 9, pp. 1482–1504, 2010.

[7] M. Pavone, A. Arsie, E. Frazzoli, and F. Bullo, “Distributed
algorithms for environment partitioning in mobile robotic
networks,” IEEE Transactions on Automatic Control, vol. 56,
no. 8, pp. 1834–1848, 2011.

[8] J. Cortés, S. Martinez, T. Karatas, and F. Bullo, “Coverage
control for mobile sensing networks,” IEEE Transactions on

Robotics and Automation, vol. 20, no. 2, pp. 243–255, 2004.

[9] A. Ghosh, “Estimating coverage holes and enhancing

coverage in mixed sensor networks,” in 29th IEEE Conference

on Local Computer Networks, pp. 68–76, Nov. 2004.

[10] S. Megerian, F. Koushanfar, M. Potkonjak,
and M. Srivastava, “Worst and best-case coverage in sensor
networks,” IEEE Transactions on Mobile Computing, vol. 4,
no. 1, pp. 84–92, 2005.

[11] J. Cortés, S. Martinez, and F. Bullo, “Spatially-distributed
coverage optimization and control with limited-range
interactions,” ESAIM: COCV, vol. 11, no. 4, pp. 691–719,
2005.

[12] F. Labelle and J. R. Shewchuk, “Anisotropic Voronoi
diagrams and guaranteed quality anisotropic mesh
generation,” in SCG’ 03, pp. 191–200, 2003.

[13] A. Gusrialdi, S. Hirche, T. Hatanaka, and M. Fujita, “Voronoi
based coverage control with anisotropic sensors,” inAmerican

Control Conference, pp. 736–741, June 2008.

[14] E. Bakolas and P. Tsiotras, “The Zermelo-Voronoi diagram:
a dynamic partition problem,” Automatica, vol. 46, no. 12,
pp. 2059–2067, 2010.

[15] E. Bakolas, Optimal steering for kinematic vehicles

with applications to spatially distributed agents.
Ph.D. dissertation, School of Aerospace Engineering, Georgia
Institute of Technology, Atlanta, GA, 2011.

[16] E. Bakolas and P. Tsiotras, “Optimal partitioning for
spatiotemporal coverage in a drift field,” Automatica, vol. 49,
no. 7, pp. 2064–2073, 2013.

[17] K. Sugihara, “Voronoi diagrams in a river,” International

Journal of Computational Geometry and Applications, vol. 2,
no. 1, pp. 29–48, 1992.

[18] T. Nishida, K. Sugihara, and M. Kimura, “Stable marker-
particle method for the Voronoi diagram in a flow field,”
Journal of Computational and Applied Mathematics, vol. 202,
no. 2, pp. 377–391, 2007.

[19] A. E. Bryson and Y. C. Ho, Applied Optimal Control.
Waltham, MA: Blaisdell Publication, 1969.

[20] M. Athans and P. L. Falb, Optimal Control, An Introduction

to the Theory and Its Applications. New York: Dover
Publications, 2007.

[21] P. Antsaklis and A. N. Michel, Linear Systems. Boston, MA:
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