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Abstract

We consider the problem of characterizing a generalized Voronoi diagram /partition of a convex polygon in a two-dimensional
Euclidean space that encodes information about the proximity relations between a team of aerial/marine vehicles and arbitrary
points in the partition space. These proximity relations are determined by the time required for each vehicle to reach an
arbitrary point (time-to-go) in the partition space when driven by a locally optimal feedback control law in the presence
of a spatiotemporal drift field. The main contribution of this work is the presentation of a partitioning algorithm, which is
decentralized, in the sense that each vehicle can independently compute its corresponding cell from the generalized Voronoi
partition without computing or receiving information about the cells of the other vehicles. Finally, we present numerical
simulations using data from real drift fields to illustrate the key features of the decentralized solution to the proposed class of
spatial partitioning problems.
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1 Introduction

We consider the problem of characterizing a general-
ized Voronoi partition of a convex polygon in a two-
dimensional Euclidean space (the partition space),
whose elements determine the “regions of influence” of
each member of a team of autonomous aerial or marine
vehicles (the set of generators). The proposed partition
encodes information about the proximity relations be-
tween arbitrary targets in the partition space and the
team of vehicles, which are determined by a generalized
distance function, the prozimity metric. This pseudo-
metric captures the effect of a spatiotemporal drift field,
which is induced by, say, local winds or currents, on the
motion of the vehicles along their ensuing paths to the
targets.

Previous work: Generalized Voronoi diagrams are viewed
as important tools for a wide spectrum of applications
in different science and engineering fields (see, for ex-
ample, the discussion in [25]), especially for applications
involving spatial processes [13]. In particular, they are
often used in applications of multi-vehicle systems, in-
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cluding spatial load balancing [10], vehicle routing [20],
coverage and deployment problems [7,11,15], which can
be viewed, in turn, as dynamic extensions of locational
optimization problems [18]. The idea of using time as the
proximity metric of generalized Voronoi diagrams first
appeared in the literature in [24]. In particular, the prox-
imity metric in [24] is taken to be the minimum time re-
quired for a vehicle with single integrator kinematics to
reach a target in the presence of constant drift (a prob-
lem known as the Zermelo Navigation Problem [27]). We
shall henceforth refer to the generalized Voronoi parti-
tion proposed in [24] as the “Zermelo Voronoi Diagram”
(ZVD, for short), as suggested in [4]. Several exten-
sions/generalizations of [24] can be found in [4,6,17,25].
One distinctive feature of the ZVD is that its proxim-
ity metric is a state-dependent metric [2,6]. This type
of (pseudo-) metrics explicitly account for the dynamics
of the vehicles and their interactions with the environ-
ment; consequently, they can capture a more relevant no-
tion of distance for dynamical systems than other stan-
dard distance functions that stem from geometric con-
siderations solely. Some examples of generalized Voronoi
diagrams whose proximity metric is a state-dependent
metric, other than time, have been recently presented
in [3,23].

The main difficulty associated with the use of the ZVD in
practical applications of multi-vehicle systems has to do
with its computational cost, which can be significantly
high, especially when realistic spatiotemporal drift fields
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are considered. More importantly, the partitioning algo-
rithm proposed in [6] typically requires the computation
of the minimum time-to-go of the ZNP everywhere in
the partition space, for each vehicle. Consequently, the
vehicles have to employ centralized computational tech-
niques, which are not suitable for applications of multi-
vehicle systems; they may be infeasible due to, say, com-
munication and/or sensing constraints.

Main contributions: In this work, we propose a decen-
tralized algorithm for the computation of a generalized
Voronoi partition whose proximity metric accounts for
the presence of drift, similar to the ZVD, but whose com-
putation is, in contradistinction with the latter, simple
and of low cost. In particular, the proximity metric of
the proposed generalized Voronoi partition is the time
required for each vehicle to reach a target in the partition
space (time-to-go), when the vehicle is constrained to
travel along the line-of-sight (LOS for short) direction,
that is, the direction from its current position to the tar-
get. This linear motion is achieved with the application
of a feedback law, the LOS navigation law, which max-
imizes point-wisely the rate at which the (Euclidean)
distance of each vehicle from its target decreases. In ad-
dition, we shall refer to the resulting time-to-go function
as the time-to-go via LOS navigation, and to the corre-
sponding generalized Voronoi diagram as the LOS Nawv-
igation Voronoi Diagram (LNVD for short).

The main contribution of this work is the presentation
of a decentralized algorithm for the computation of the
LNVD. In particular, we show that when each cell en-
joys a weaker form of convexity known as star-convexity,
then one can utilize some recent results on the computa-
tion of generalized Voronoi diagrams in normed spaces
by Reem [21,22] in order to develop a decentralized al-
gorithm for the computation of the LNVD. The utiliza-
tion of the results presented in [21,22] is possible de-
spite the fact that the proximity metric of the LNVD
is neither a norm nor a distance function as in [21,22].
This is achieved by employing a bijective mapping that
associates the level sets of the time-to-go and the (Eu-
clidean) distance functions. The proposed algorithm is
decentralized in the sense that each vehicle can indepen-
dently compute its corresponding cell from the general-
ized Voronoi partition without computing or receiving
information about the cells of the other vehicles at the
same time. In this way, a frugal use of the available com-
putational resources is achieved and the amount of infor-
mation that needs to be exchanged among the vehicles
is minimized. We believe that the results presented in
this work will lead to new insights that will potentially
result in the development of decentralized partitioning
algorithms for more general classes of state-dependent
proximity metrics. These partitioning algorithms may
potentially lead, in turn, to new techniques for the solu-
tion of several classes of problems of multi-vehicle sys-
tems, which not only utilize a notion of a spatial parti-
tion of their operating environment [9], but also explic-
itly account for the dynamics of the vehicles and their
interactions with the environment. A typical example
would be a deployment algorithm similar to the exten-
sion of the Lloyd algorithm presented in [12], where, in

the presence of a spatiotemporal drift field, each vehicle
is driven, at every time step, towards the “centroid” of its
cell from the generalized (dynamic) Voronoi partition,
where the computation of the “centroid” of each cell is
with respect to the state-dependent proximity metric of
the partition.

Structure of the paper: The rest of the paper is orga-
nized as follows. The navigation problem for a single ve-
hicle is formulated in Section 2. The formulation of the
generalized Voronoi partitioning problem along with a
decentralized algorithm that computes its solution are
presented, respectively, in Sections 3 and 4. Section 5
presents numerical simulations based on real wind data.
Finally, Section 6 concludes the paper with a summary
of remarks.

2 The Navigation Problem for a Single Vehicle

We first introduce some useful notation used through-
out the paper. In particular, we denote by R? and Rxq
the set of two-dimensional vectors and non-negative real
numbers, respectively. We denote by |a|, the Euclidean
norm of a € R? and by (f8,7) the inner product of
B,y € R% The set {e € R?: |e| =1} is denoted by S!
(unit circle). Furthermore, we denote by B.(q) the set
{x € R? : |x—q| < €}, where q € R? and by B.(q)
its closure. When q = 0, we simply write B, and B,
respectively. In addition, bd(.A) and int(A) denote, re-
spectively, the boundary and the interior of the set A.
Finally, given a, 3 € R? and e € S*, we denote by [« 3]
and I'(a,e) the line segment from « to § and the ray
emanating from « that is parallel to e, respectively.

2.1 Problem Formulation

Let us consider a finite set of distinct points P := {x* €
R2 i€ Z,},Z, :={1,...,n}, wherex* € P corresponds
to the initial position of the i-th vehicle from a team of n
vehicles. It is assumed that the motion of the i-th vehicle
is described by the following equation

x'=u' +w(t,x"), x'(0) =X, (1)
where x°, x* € R? denote the position vectors of the ve-
hicle at time ¢t and t = 0, respectively, and u* is the
control input. It is assumed that u* € Uy, where Uy con-
sists of the control laws u?(t,x*) such that the mapping
t > u’(t,x") is piecewise continuous for all x* € D, where
D C R? is an open set, and the mapping x* — u(t,x*)
is locally Lipschitz continuous uniformly over ¢ in any
compact interval in R>¢. In addition, u* takes values in
the set U = {u € R?: |u| < 1}. Furthermore, w denotes
the drift field, which is induced by, say, winds or currents
in the vicinity of the i-th vehicle.
Assumption 1 The mapping (t,x) — w(t,x) is contin-
uous everywhere in R>q x R? and, in addition, the map-
ping x — w(t, x) s locally Lipschitz continuous uniformly
overt in any compact interval in R>o. In addition, w at-
tains values in the set W := {w € R? : |w| < w}, where
w € [0,1).
Remark 1 Assumption 1 implies that the norm of the



drift never exceeds the forward speed of the vehicle. Be-
sides special cases such as applications of, for example,
gliders/drifters or aerial micro-vehicles operating under
severe weather conditions, which are not the focus of this
work, the previous assumption is valid in most practical
applications of aerial/marine vehicles.

Remark 2 The simple kinematic model given in Eq. (1)
is suitable for the purposes of this work, where the em-
phasis is not on the design of, for example, guidance laws
for aerial/marine vehicles but on the study of the effect
of the drift on the time of their arrival at an arbitrary
destination. The latter is tacitly assumed to be, on aver-
age, significantly far away from the vehicle. In this case,
the maximum speed of the vehicle, its relative position
from the destination, and the local drift field are the
only information required for one to obtain a first esti-
mate of the time of arrival. Note that a similar first order
kinematic model is typically used for the estimation of
the arrival time of commercial airplanes in the presence
of known (forecasted) wind fields (see, for example, the
discussion in [14]).

Next, we introduce a few geometric concepts that shall
be used throughout this paper. In particular, let x, € R?
be a given destination point in the plane. At each time ¢,
we attach a moving orthonormal basis of vectors (€, €})
to the position vector x(t) of the i-th vehicle, where

ei(xi;xg) = (xg — Xi)/|xg x|, x'e RQ\{XQ}'
Note that ei(x%;x,) is a unit vector parallel to the so-

called line-of-sight (LOS) direction. Furthermore, we de-
note by € (x,) the unit vector ef (x%;x,), k € {1,2}.

2.2 Problem Formulation and LOS Navigation

The general navigation problem for the i-th vehicle is
formulated as follows.

Problem 1 Suppose that Assumption 1 holds and let
xg € R? be given. Then, determine a control input u’ €

Uy such that the trajectory t — x'(t) of the system de-
scribed by Eq. (1) generated with the application of the

control u'(t), fort € [0, T, satisfies the terminal condi-
tion X' (T') — x4| = €, for some T € R>q and ¢ > 0.
Proposition 1 Suppose that Assumption 1 holds and
let x, € R? be given. Then, the feedback control law

2

ZuLosg(t Xt xg) €h(xts %),

uros (, Xt i Xg)

uLos.1(t,x' %) : \/1 — (w(t,xt), eb(xt;x4))2,
UJLOS,Q(th ,Xg) = _< (t,X )762()( 7Xg)>7 (2)

wherex! € D := R*\Bs(x,), 0 < & < ¢, solves Problem 1.
In addition,

(x',&%(x,)), forallt € [0,T].  (3)

d

T X' — x| =
PROOF. The proof of the first part is similar to the
one given in [5] (Proposition 9) for a spatially varying
drift field and is omitted. In addition, because uros,2
compensates the component of w that is perpendicular

to ef, it follows that x'(t) € [x%,x,], and e (x};x,) =
€ (x4), for all t € [0, T]. Therefore,

(', €] (X' xg)) =
where we have used the identity
d
20¢1 516l = S1€? = 76,8 =2(¢,6). m

Remark 3 Note that under Assumption 1, the naviga-
tion law (2) is well defined. Because (2) completely com-
pensates the component of the drift that is perpendic-
ular to the direction of motion of the vehicle, it follows
that e} (x'(t);x4) = €,(xg), £ € {1,2}, for all te [0,T].
Therefore, the ensuing path of the i-th vehicle is parallel
to the LOS direction; we henceforth refer to the control
law given in Eq. (2) as the LOS navigation law.

<>.<i7 ézl(x(])>7

Lixt — x| = (%, e} (x;x)) =

Remark 4 As shown in [5], the LOS navigation law is
a “locally optimal” control law, which maximizes point-
wisely the rate of decrease of the relative distance of the
i-th vehicle from x4. Therefore, one can view urog as
a local approximation of the corresponding minimum-
time control of the ZNP. It is also interesting to note
that if a more realistic kinematic model, say, a Dubins
vehicle, was employed instead, then the following pat-
tern would have been observed: the vehicle would ini-
tially try to align its velocity with the LOS direction as
fast as possible, and subsequently travel along this di-
rection with constant (maximum) speed (see, for exam-
ple, [1]). Therefore, the inclusion of higher order terms
in the kinematic model of the i-th vehicle would mainly
affect the first short phase, whereas the total estimate
of the arrival time of the vehicle would not change sig-
nificantly, provided that its destination was sufficiently
far away.

2.8 Computation of the Time-to-Go Function via LOS
Navigation

Next, we characterize the time-to-go function of the sys-
tem described by Eq. (1), when the latter is driven by

the navigation law (2). To this aim, let x, € R? be given
and let ¢(t;X',@]), where ¢(0;%' ell) = X, denote the
solution of Eq. (1), when w'(t,x ) = uLog(t x";Xg). In
particular,

t
p(t; %', 8h) =% —|—/0 F(r,0(1; %, 8 );ix,)dr,  (4)

where & = & (x,), and F(t,x";x,) := uros(t,x";xg) +
w(t,x"). Under Assumption 1 and in light of Eq. (2), it
follows readily that
(F(7, ¢(T;%',84)5x,),84) > 0,
<F(Tv¢(7-;)_(zvéll);xg)vél2> =0, (5)
for all 7 € [0, ¢]. In view of (5), we define the arc length s

of the path traversed by the i-th vehicle driven by uy,0s
in the time interval [0, ¢] as follows

s(tixe) = / (F(r,(ri %08 );x.), €07, (6)

Proposition 2 Suppose that Assumption 1 holds. Then,



the arc length function t — s(t; X! el), where s(t; %%, &)
is given by Eq. (6), is strictly increasing for all t > 0.

PROOF. By virtue of (5), the integrand in the right
hand side of Eq. (6) is strictly positive for all 7 € [0, ¢].
The result follows readily from standard calculus. B

Proposition 2 states that the i-th vehicle neither stops
nor goes backwards as traversing I'(X’, & (x,)); actu-
ally, o(t;x',e]) = X' + s(t;x',e})ej and s(t;X',¢f) =
|p(t; x4, €l) — xi|. In addition, the inverse function of
the arc length, o — s7'(0), is well defined. We write
tlo;xi,el) = s71(o;x', ). It follows that the time
required to drive the system (1) from X' to x, along
I'(x, & (x4)) with the application of ur,os is given by
Tros(xg;X") = t(|xg —X'[; X", 81 (xg))

=57 (xg = X'[XLE(xg))- ()
Note that in order to obtain the expression of 11,05 given
in Eq. (7), we have tacitly taken ¢ = 0, with a slight
abuse of notation. We henceforth refer to the function
Tt.0s as the time-to-go via LOS navigation. Note that
T1,0s depends explicitly on the direction of motion €}; in
other words, T1,0g is an anisotropic distance function !
Note that the computation of 71,05 by means of Eq. (7)
requires, in general, the inversion of the arc length func-
tion. This inversion is not always a trivial computational
task, yet it is still much simpler than the computation
of the minimum time-to-go of the ZNP via the solution
of the corresponding Hamilton-Jacobi-Bellman partial
differential equation.

3 The Generalized Voronoi Partitioning Prob-
lem

Next, we formulate the problem of characterizing a gen-
eralized Voronoi diagram generated by a finite point-set
whose proximity metric is the function T1,0s. We shall
refer to this generalized Voronoi diagram as the LOS
Navigation Voronoi Diagram (LNVD for short).

Problem 2 (LNVD Problem) Given a convex poly-

gon S C R? and a set of distinct points P := {x' €

R?: i€ Z,} C int(S) (set of generators), determine a

partition B = {V' : i € I,} of S such that

(1) Uiez, T = S and int(V*) N int(V’) = &, when
i #J, fori,j, € Ly. _ o

(2) For each i € I,, the set U" = V'(X") (generalized
Voronoi cell) consists of all x € S that satisfy

TLOS(X§ Ri) < TLOS(X§ Rj), for aﬂ] S In\{l}

Before we proceed to the solution of Problem 2, we
will highlight some important properties of its proximity
metric and the cells that comprise it, which will facili-
tate the subsequent analysis and discussion.

! Anisotropic (generalized) distance functions constitute a
subclass of the so-called non-symmetric (generalized) dis-
tance functions, which in turn are nonnegative functionals
that do not enjoy the symmetry property [26].

3.1 The Direct Correspondence Between the Level Sets
of the Distance and the Time-to-Go Functions

Next, we show that one can characterize the level sets
of T1,0s without explicitly computing its value through
Eq. (7). In particular, we demonstrate the existence of a
direct correspondence between the level sets of 11,05 and
the (Euclidean) distance functions emanating from the
same generator x* € P, which are denoted, respectively,
by £,(x )—{mgGR |:cg—x1|_p}and7'p( X') =
{xg € R? : Tros(xg;X") = p}.

Proposition 3 Letp > 0 andx’ € P be given. Consider
the mapping x4 — H(xg;X"), where

Hagx') =%+ s(lag —X'[;%, 8 (2g))8 (2).  (8)
The restriction of the mapping H on { »(X') defines a
bijection from £,(x") onto 7,(x"). Equivalently, for each
point x4 € £,(X ) there exists a umque point xg € Ty(X %)
such that x, = H(zg;x") and xg = H ™1 (xg;%").
PROOF. First, we show that the restriction of H on
0,(x") is surjectlve that is, the equation x, = H(x4;x"),
where x, € 7,(X"), has a solution z, € £,(x’). Note that
xg € T,(x") implies that Xg =X+ s(p,x e (xg))e1 (Xg)-
In addition, the ray I'(x’, € (x,)) intersects £,(x*), which
is a circle of radius p centered at X, at a unique point,
call it &4. Therefore, € (x4) = €, (x4) and |z, —X'| = p.
The result follows readily from (8).

Next, we show that the restriction of the mapping H on
ly(x ) is injective. To this aim, let £, /) € £,(x"), and let

xk = H(zk;x") € 7,(x"), where k € {a,ﬁ}. We will show

g g’
that xg = xg implies xj = mg . In particular, because

x§ and wg belong to the same ray from X’, we have that

ei(xy) = & (zy) and el (xg)‘: el (:B'g) Consquently,
if x2 = x, then &} (x5) = &} (x?) = el (x)) = & (xf).
Therefore,

= (i, (@) (@5 — af). (9)

In view of Proposition 2, s > 0 when p > 0, and thus
Eq. (9) implies that xf = mﬁ The 1nJect1V1ty of H is
established, and the proof is complete |

Note that Proposition 3 identifies a direct correspon-
dence between the level sets £,(X") and 7,(x*), which is
established via the bijective mapping H. We henceforth
write T, = H((,(X")). Figure 1 illustrates the level
sets £ (E) and 7,(0), where 7,(0) = H(¢,(0)), for differ-
ent Values of p. We observe that the level sets of 11,05
(Fig. 1(b)) propagate in a nonuniform way in different
directions through space, in contrast with the level sets
of the Euclidean distance (Fig. 1(a)).

3.2 Basic Geometric Properties of the LNVD

Next, we present some fundamental geometric properties
enjoyed by the generators and the cells of the LNVD.
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(a) Level sets £,(0), for p > (b) Level sets 7,(0), for p >
0 (no drift). 0, in the presence of a spa-
tiotemporal drift field.

Fig. 1. Each point x4 € 7,(0) is uniquely associated with a
point x4 € £,(0), for p > 0, where x4 is the image of x, via
the bijective mapping H.

To this aim, we introduce an important controllability
property that will be used in the subsequent analysis.

Definition 1 Let 7 > 0 be given, and let
R [0,7)) = |J {x=0(t:x,e), for e S'}.

telo,7]

If X € int (R(x*;[0,7])) for all T > 0, then the system
described by Eq. (1) is small-time locally controllable at
%t via LOS navigation.

Proposition 4 Suppose that Assumption 1 holds. Then,
the system (1) driven by the control law (2) is small-time
locally controllable at X* via LOS navigation.

PROOF. We wish to show that, for every 7 > 0, there
exists € = e(1) > 0 such that B.(x*) € R(x*;[0,7]).
To this aim, we consider the motion of the i-th vehicle
driven by the control ur,og along the ray I'(x*, €} ), where

et €St for t € [0,7]. In view of Eq. (3), we have
L) — x| = (@) > 1—w, telo,r], (10)

where x'(t) = ¢(t;%x%,8). It follows readily from (10)
that |x‘(t) — x| > ( — w)t, for all t € [0,7]. There-
fore, R(x*;[0,7]) 2 Bs(r)(X'), where 6(7) = (1 — w)7.
By taking 5( ) = 6&(7)/2, it follows readily that
B (X)) € R(x;[0,7]), for all 7 > 0. Therefore,

% € int (ER( ;[0 ,T])), for all 7 > 0, and the proof is
complete. B

It is known that every generator of a standard Voronoi
diagram belongs to the interior of its corresponding cell.
Next, we show that each generator of the LNVD enjoys
the same property, provided that Assumption 1 holds.

Proposition 5 LetU = {', i € Z,,} be the LNVD gen-
erated by P. If Assumption 1 holds, then X* € int (Q]i),
foralli e Z,.

PROOF. The proof is similar to the proof of Proposi-
tion 8 in [6] and is omitted. B

An important property enjoyed by each cell of the LNVD
is a weaker form of convexity, namely star-convexity.
Note that a set A is star-convex with respect to a point
Xx € A, if [x,x] C A, for all x € A. Note that A is
convex, if, and only if, is star-convex with respect to

every point x* € A.

Proposition 6 Suppose that Assumption 1 holds and
let w(t,x) = w(r,x), for all t,7 € R>q and x € R?. In
addition, let S be a convex polygon, and let 0 = {T*, i €
Z,} be the LNVD generated by the point-set P. If Tros
satisfies the triangle inequality, that is,

Tros(z;x) < Tros(y;x) + Tros(z;y), (11)

forallx,y,z € S, then the cell DIg
with respect to X*, for alli € Z,,.

PROOF. Let us assume to the contrary that the cell
0% is not star-convex with respect to X, for some i € Z,,.

Then, there exist j € Z,,\{i}, a unit vector e € S and
points q, y, and z € I'(x?, ¢), where max{|q—vy|, |y —z|} <
l|g — z|, such that q, z € int(V?) and y € int(W?). Then,
Tros(q;%") < Tros(q; %), TLos(z; %) < Tros(z; %) and
Tros(y;X') > Tros(y; 7). In light of (11), it follows that

Tros(z:%7) < Tros(y;X') + Tros(z y)

< Tros(y;X') + Tros(zy)
=Tros(zX'), (12)
where we have used the fact that TLos(z;ii)' =
Tros(y;X") + Tros(z;y), for all y € [q,z] € T'(X"e).

Thus, we conclude that Tios(z;x') > TrLos(z;%7). We
have reached a contradiction. ll

Remark 5 The fact that each cell ¢ of the LNDV
is star-convex with respect to its corresponding
generator X' implies that [x(t),x,] € Ui for all

t € [0, TLos(xg;x")], provided that x, € U’ thus, the
i-th vehicle will remain inside the cell % at all times
during the transition to its destination.

3.8 The LNVD for a Constant Drift Field

Next, we examine the LNVD problem when the drift
field is constant. It turns out [5,8] that in this special
case, the LOS navigation law (2) and the Tp,0g coincide,
respectively, with the time-optimal control law and the
minimum time-to-go function of the ZNP. Consequently,
the LNVD and the ZVD generated by the same point-
set will be identical and can be obtained directly from
the standard Voronoi diagram generated by the same
point-set by means of a homeomorphism, as is shown
in [4,24]. An important observation is that when the
cells of the standard Voronoi diagram, which are convex,
are mapped by means of this homeomorphism to their
corresponding cells of the LNVD, they may lose their
convexity (convexity is not necessarily preserved under
continuous mappings). Next, we will show that the cells
of the LNVD, although not necessarily convex, are star-
convex with respect to their corresponding generators.
Before we proceed further, let us introduce the concept
of Minkowski functional or Minkowski weak norm.

Definition 2 Given a conver setS C R?, the Minkowski
functional or weak norm with respect to a point x € S is
the function ps(-;x) : R? = [0,00) U {0}, where

ps(y;x) :=1/sup{c >0: x+ oy € S}.
Proposition 7 Let S C R? be a convez set. For all x €

= Y¥(x*) is star-convex



S,y,z € R?, and o > 0, the Minkowski functional ps(+;x)
satisfies the following properties

(1) ps(y +z;x) < ps(y;x) + ps(z;x) (triangle inequal-
ity);

(2) ps(oy;x) = ops(y;x) (positive homogeneity);

(3) ps(y;x) > 0 (nonnegativity).

Proposition 8 Let w(t,x) = wo, where wy € R? and
|wo| < 1. Then, the function Tros satisfies the triangle
inequality, that is,

Tros(zx) < Tros(y;x) + Tros(zy),  (13)
for allx, y and z € R2.
PROOF. If w(t,x) = wp, where |wg| < 1, then the
function T1,0s is given by (see, for example, [5])
V(9,0)? + (A= [oP)P + (¥, 0)

1—1of?

where ¢y = y — x and ¢ = —wg. The right hand side
of Eq. (14) is equal to pg (¥;0) for any ¢ € R?, when

o € By (see, for example, [19]), which is true by hypoth-
esis. Therefore, T,0s(y; x) = pg, (y —x; —wo). In light of

property (1) of Proposition 7, it follows that
Ti.os(z;:x) = pg, (z —
=pg, ((y —x) + (z —y); —wo)
< pg, (y — % —wo) + pg, (z — y; —wo)
= Tros(y;x) + Tros(z; y).
This completes the proof. B

Tros(y;x) = , (14)

X; —Wp )

The following proposition follows immediately from
Propositions 6 and 8.

Proposition 9 Suppose that w(t,x) = wg, where wy €
R? and |wo| < 1, and let 0 = {2V, i € T,,} be the LNDV
generated by the point-set P. Then, the cell B¢ = Vi (x")
is star-conver with respect to X', for all i € T,,.

4 A Decentralized Partitioning Algorithm

Next, we present a decentralized algorithm, which com-
putes the LNVD under the additional assumption that
each cell of the partition is star-convex with respect to
its corresponding generator. In this case, we know that
the line segment [X",x] C U, for each x € Y. Con-
versely, if there exists a point y € I'(x‘,e), which can
be reached faster via LOS navigation by the j-th ve-
hicle emanating from %7, where j € Z,\{i}, that is,
y € I'(x*,e) N int(Y’), then I'(y,e) N Y" = F by star-
convexity. Based on the previous observations, we pro-
pose an algorithm that, for every e € S!, seeks for the
furthest point from x* in T'(X*, e), call it xpq(e, x*), for
which 11,05 (de (e, >_<i); )_(i) < Tros (xbd (e, >_<i); >_<j), for all
j € T,\{i}. Note that xpq(e,%") corresponds to the in-
tersection of the ray I'(x?,e) with the boundary of the
cell U*; actually, (J,cg1 Xba(e, X*) = bd ().

For the implementation of the proposed algorithm, we
first discretize the interval [0,27) into an 1 x L mesh,
call it ©, that induces, in turn, a discretization of S! into

a mesh, £. Then, we characterize the point xpq(e,%') €
bd(0?), for each e € &, by employing a bisection al-
gorithm similar to the one presented in [21,22] for the
computation of generalized Voronoi partitions in normed
spaces. The algorithm works as follows:

(0] Hl0] =

1) Initially, pick an e € £ and set xpq (e, x*) = x%, pl0 =

Tros(x%; %), where xI% = (%%, €) N bd(S).

2) If pl9 < Tpos(x¥;x9), for all j € Z,\{i}, then
xpa(e,x!) = x%; go to step 5). Otherwise, set x!} =
O — 1Ix[0 — x| e and plt) = Ty,05(x; x1).

3) If pl) < Tros(x!M;%9), for all j € Z,\{i}, then set
x2 = X[ 4 %|x[1] — xl%| e; otherwise, set x? = x[1 —
2|x — x e. Finally, set pil = Tp,05(x%; x%).

X[

4) Repeat the previous steps until [p!*] — plF=11| < ¢ or
IxIFl — k=1l < ¢ for a given threshold & > 0 and some
positive integer k. Then, set xpq(e, X)) = x¥1,

5) Remove e from &£ and then repeat the previous steps
for all the remaining ¢’ € £.

As we have already mentioned, the computation of the
proximity metric in our problem may be expensive, es-
pecially for a realistic drift field w. In order to reduce
the number of times we have to compute T1,0g for each
generator during the execution of the partitioning al-
gorithm, we will utilize the bijection H introduced in

Proposition 3. In particular, let ng] = ’H,(wgk] ;x7), where

:cg-k} .= %7 + plMel (x[M). Then, it is easy to see that if
M [ XV}, for all j € ZT,\{i}, then pl*l <
TLos(X[k] ;x7), for all j € Z,\{i}.

Remark 6 It should be mentioned that the proposed
decentralized algorithm has time complexity O(n?) (or
even O(n) in many practical cases), where n is the num-
ber of vehicles, as claimed in [21,22]. Note, however,
that a thorough complexity analysis of the proposed al-
gorithm would require the study of the role of, for ex-
ample, the size of the grid © as well as the threshold e.
The reader may refer to [21,22] for more details.

Remark 7 Note that if not every cell of the partition U
is star-convex with respect to its corresponding genera-
tor for a given drift field (this may, perhaps, be observed
for drift fields with significant temporal variability), then
the algorithm will furnish a collection of either overlap-
ping cells or cells whose union does not cover the whole
partition space (“coverage holes” will appear). However,
as will be illustrated in the numerical simulations pre-
sented in Section 5, in most practical cases, it should be
expected that the cells of the partition U will enjoy the
desired star-convexity property.

Remark 8 For the case when the i-th vehicle has a
sensing radius ¢ such that B,(x*) € S (the locations of
some vehicles may be unknown to it), the partitioning
algorithm needs to be modified appropriately. In par-
ticular, at the first step of the algorithm, we will set
xpd(e,X*) to be equal to I'(X*, e) N bd(B,(xX")) instead of
I'(x%,e) N bd(S). All the subsequent steps of the algo-



rithm will remain the same.

5 Numerical Simulations

In this section, we present numerical simulations that
illustrate the results of the analysis presented so far
based on real data from a spatially varying wind field
taken from the file wind.mat, which can be found
in MATLAB [16]. These data are properly scaled for the
purposes of our simulations. The velocity field induced
by the (normalized) wind data along with the contours
of the wind speed are illustrated in Fig. 2.

-4
-4 -2 0 2 4
X

4

3

2

-3

Fig. 2. Velocity field induced by a spatially varying drift field
based on real wind data. The brighter zones correspond to
areas of high wind speed.

For verification purposes, we first compute an approxi-
mation of the partition ¥ using a naive centralized par-
titioning algorithm and a discretization of the partition
space § = [—4,4] x [—4, 4] into a 200 x 200 mesh, where
each node of the latter is attached to the “nearest,” in
terms of the 71,05 proximity metric, generator. Figure 3
illustrates the LNVD generated by a randomly selected
set of n = 8 points (generators), which is computed via
the centralized algorithm, in contrast with the standard
Voronoi diagram (dashed lines) generated by the same
point-set. The level sets of 11,05 in each cell are also il-
lustrated in the same figure. We observe that each gen-
erator X* of LNVD is an interior point of its correspond-
ing cell U*, where the latter is a star-convex set with
respect to X*. We also observe that the neighboring rela-
tions between the generators of the LNVD and the stan-
dard Voronoi diagram both generated by P are differ-
ent 2. Notice, for example, the differences in the neigh-
boring relations of the pairs (x°,x%) and (x*,%°) in the
two diagrams.

Figure 4 illustrates the cells U and U° computed inde-
pendently by the 1-st and the 5-th vehicles, respectively,
via the decentralized algorithm. For the simulations, we
have used € = 0.01 (threshold of the bisection algorithm)
and a mesh O of 60 and 360 nodes (in Fig. 4(a) and

2 Two generators X' and X! € P are neighbors, if the inter-
section of their corresponding cells is neither the empty set
nor a single point.

Fig. 4(b), respectively). Note that the value of ¢ affects
mainly the convergence speed of the bisection algorithm,
whereas the size of the mesh © determines the accuracy
of the approximation of each cell of the actual partition.
The black crosses in Fig. 4(a) correspond to the point-
sets bdg (') and bdg () that approximate the bound-
aries of the cells ' and 2°, respectively. Note that each
point in bdg (') (respectively, bdg (20°)) belongs to ei-
ther the common boundary of the cell U (respectively,
20°) with its neighboring cells or the intersection of some
ray [(x},e) (respectively, I'(x°,¢)), where e € &, with
bd(S). As expected, the use of a grid © with 360 nodes
leads to an accurate approximation of the cells of the
actual partition.

Fig. 3. The LNVD for a spatially varying drift field.

6 Conclusion

In this paper, we have addressed a generalized Voronoi
partitioning problem that is relevant to applications of
multi-vehicle systems in the presence of a spatiotempo-
ral drift field. It is assumed that the generators of the
proposed generalized Voronoi diagram correspond to
the initial positions of a team of vehicles whose proxim-
ity relations with arbitrary points in the partition space
are determined by an anisotropic generalized state-
dependent metric. We have shown that the computation
of this spatial partition can be achieved by means of an
algorithm that is decentralized, in the sense that each
vehicle can independently compute its own cell from
the partition. In this way, the available computational
resources are used frugally. The implementation of the
proposed algorithm does not require a large number of
explicit computations of the proximity metric. This is
achieved by exploiting the direct correspondence be-
tween the level sets of the utilized proximity metric
and the (Euclidean) distance function by means of a bi-
jective mapping. We believe that the results presented
in this paper constitute an important step towards
the utilization of generalized Voronoi partitions with
state-dependent proximity metrics in applications of
multi-vehicle systems, where it is important to explic-



0 2 4

(a) The cells V' and U° computed by using a
grid © of 60 nodes.

0 2 4

(b) The cells ' and B° computed by using a
grid © of 360 nodes.

Fig. 4. The cells 0! and U° computed independently by the
1-st and the 5-th vehicles, respectively, via the decentralized
partitioning algorithm.

itly account for the dynamics of each vehicle and their
interactions with the environment.
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