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Abstract

We address a generalized Voronoi partitioning problem for a team of mobile agents with nonlinear dynamics with respect to a
state-dependent proximity metric. In particular, the proximity (pseudo-) metric corresponds to the reduction of a generalized
energy metric that occurs during the transfer of an agent to an arbitrary destination with zero terminal velocity, in finite time.
The realization of every finite-time state transition takes place by means of a class of continuous feedback control laws that
render the closed loop dynamics of each mobile agent non-Lipschitzian. The arrival time also turns out to be a state-dependent
quantity, whose functional description is not prescribed a priori. We show that the partitioning problem studied in this work
can admit a decentralized solution, that is, each agent can compute its own cell independently from its teammates provided
that is aware of the positions and velocities of its neighboring agents. Numerical simulations that illustrate the theoretical
developments are also presented.
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1 Introduction exception to this rule is presented in [1], wherein a class

The importance of using state-dependent proximity met-
rics in partitioning problems related to applications of
multi-agent dynamical systems was first identified in [3]
and subsequently extended in a series of papers [1,2,4,
13]. In particular, as is stressed in [3], the use of state-
dependent proximity metrics leads to spatial partitions
that encode proximity information that succinctly cap-
tures the dynamic characteristics of the agents; some-
thing that cannot be achieved with more standard spa-
tial partitions [11], whose proximity metrics stem from
geometric considerations primarily. A typical problem in
which the proposed class of spatial partitions could play
a key role is the following: A team of agents are seek-
ing for an optimal way to subdivide a common subset of
their state space such that they can share among them
the load of carrying out tasks that need to be attended
at different locations in this space, in a fair way.

The state-dependent proximity metrics that are typi-
cally employed in the literature correspond to the value
functions of relevant optimal control problems. Unfortu-
nately, the cost of computing the value function for even
simple optimal control problems can be excessively high
unless one is confined to the classes of problems involv-
ing mobile agents with single integrator kinematics. An
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of partitioning problems for multi-agent systems with
linear second order dynamics and with respect to the
minimum control effort metric is addressed under the
assumption that the arrival time is constant throughout
the configuration space of the agents. On the one hand,
the spatial partitions proposed in [1] can be directly as-
sociated with a class of power or affine diagrams, which
are spatial subdivisions comprised of convex polyhedra
of low combinatorial complexity. On the other hand, the
applicability of the results of [1] is limited by 1) the fact
that the linear/affine dynamic model employed therein
cannot always describe accurately the motion of a mo-
bile agent, and 2) the assumption that the terminal time
is equal to a prescribed constant for any final destina-
tion, for the value of which the agents have to somehow
agree a priori, is neither practical nor in accordance with
the modern requirements for decentralized operation of
multi-agent systems.

The main objective of this work is to remove the two
strong assumptions made in [1] regarding the linearity
of the agent dynamics and the constancy of the termi-
nal time, while keeping at the same time, if possible, the
same solution structure, namely the structure of affine
or power diagrams. This objective should be achieved
under the requirement that the utilized proximity met-
ric gives a meaningful assessment of the “closeness” of
a mobile agent with nonlinear dynamics from an arbi-
trary destination, which should be reached with zero
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terminal velocity (soft landing) in finite time. Note that
the final time is, in general, a state-dependent quan-
tity whose functional description is not known a priori.
Consequently, the partition space corresponds to a two-
dimensional (flat) manifold embedded in the common,
four-dimensional state space of the agents. It turns out
that all the previous requirements for the spatial parti-
tion can be met by taking the proximity metric to be the
reduction of a generalized energy metric associated with
the transfer of an agent to its goal configuration. This
state transition is realized with the application of the
continuous feedback control law proposed in [16], which
enforces finite time convergence by rendering the closed
loop dynamics non-Lipschitzian [5,8-10].

Similar to the class of problems studied in [1], the solu-
tion to the partitioning problems considered in this work
can be associated with a class of affine diagrams that sub-
divide a two-dimensional Euclidean space into a finite
collection of non-overlapping convex polygons. Interest-
ingly, the partitioning problem can be solved in a decen-
tralized way, in the sense that each agent can compute
its own cell independently from its teammates provided
that is aware of the positions and velocities of all the
agents whose cells share a common face with its own cell
in the affine diagram (neighboring agents). In this way,
the combination of the solutions to the local partitioning
problems solved independently by each agent furnishes
a good approximation of the solution to the global parti-
tioning problem. The proposed decentralized partition-
ing algorithm is built upon an algorithm for partitioning
problems involving teams of single integrators proposed
in our previous work [2], which was inspired by [12]. The
new challenge in the class of problems considered in this
work has to do with the fact that, due to the second or-
der nonlinear dynamics of the agents, the generators of
the partition are not necessarily interior points of their
corresponding cells; something that precludes the direct
application of the results presented in [2]. To address
this issue, we associate the original partitioning prob-
lem with an affine diagram problem, whose generators
are taken to be the minimizers of the proximity metric
characterized for each corresponding agent individually.
In this way, the new generators are more likely to be in-
terior points of their associated cells. For the case when
the new generators fail again to belong to the interior of
their associated cells, a modified algorithm is proposed.

The rest of the paper is organized as follows. Section 2
deals with the steering problem for a single agent. The
partitioning problem for the case of multiple agents is
addressed in Section 3. Section 4 presents numerical sim-
ulations, and finally, Section 5 concludes the paper with
a summary of remarks.

2 Problem Formulation
2.1 Notation

We denote by R”™ the set of n-dimensional real vectors.
The unit circle in R? will be denoted by S'. We denote by
R>g and Zsg, respectively, the sets of non-negative real
numbers and (strictly) positive integers. We write |a],
to denote the vector 2-norm of a vector a € R™. Given

two vectors e, B € R", we denote by [a, 3], the line
segment from « to 3; when a = 3, we have [, 8] = .
Given two (column) vectors a € R™, B8 € R"2, we
denote by col(a, ) the ny + ny dimensional real (col-
umn) vector that corresponds to the concatenation of
a and 3. The scalar-valued signum function is denoted
by sgn(:), where sgn(-) : R — {—1,0,1}. In addition,
we write vsgn”(a) and vnorm? (), where v > 0 and

a = col(ay,...,a,) € R™ to denote the n-dimensional
(column) vectors col(sgn(aq)|as|?,. .. sgn(ay)|a,|Y)
and col(Ja1]?,...,|a,|Y), respectively. Furthermore,

given a = col(ay, ..., ap) € R", we denote by A(a) the
n x n diagonal matrix whose diagonal elements are the
components of e, that is, Ap;(a) = oy, i € {1,...,n}.
We write P = PT > 0 to denote the fact that a square
(symmetric) matrix is positive definite. In addition,
bd(S) and int(S) denote, respectively, the boundary
and the interior of a set S; the measure of S is denoted
by A(S). Finally, we denote by ©(f(n)) the set of func-
tions F' : Z~o — [0,00) for which there exist ¢1, co > 0
and ng € Zsg such that ¢; f(n) < F(n) < caf(n), for
all n > ng.

2.2 FEquations of motion

We consider a team of n mobile agents that are initially
located at n distinct positions &; € R?, where i € T, :=
{1,...,n}. We write &; € X, where X = {z;, i €
7.} € R2. Each agent has a prescribed initial velocity,
which is denoted by ©; € R?. We write v; € N, where
N = {v;, i € T,} < R?% The composite initial state
vector of the i-th agent is denoted by Z;; we write z; :=
col(Z;,v;) and we denote the set of initial states by Z,
where Z := X x N.

The motion of the i-th agent, where ¢ € Z,,, is described
by the following set of equations:

x; = vj, x;(0) = x;, (1a)

where z; := col(z; 1,2;2) € R? and v; := col(v; 1,vi2) €
R? are, respectively, the position and velocity vec-
tors of the i-th agent at time ¢; we will denote the
state vector of the i-th agent at time t by z;, where
z; := col(x;,v;) € R*. The initial velocity of the i-th
agent is not necessarily zero at ¢ = 0 (the i-th agent is
not necessarily at rest initially). In addition, w; is the
control input of the i-th agent. It is assumed that the
functions a;(+) : R* — R? and B;(+) : R* = R2*? are,
at least, Lipschitz continuous. In addition, we assume
that B;(2) is non-singular for all z € Z C R*, where
Z is the subset of the state space where the agents are
expected to be operating; we write Z = X x N where
X C R?, N C R?. We say that the system is fully actu-
ated in Z. For example, the motion of the i-th agent is
described by the following equation:

M, (z:)0; + Ci(zi)v; + gi(x:) = s, (2)
where M;(+), C;(-) and g;(-) are state-dependent ma-
trix and vector valued functions of appropriate dimen-
sions, respectively, which can be written in the form of



Egs. (1a)-(1b) by taking

i(zi) = =M (2i) (Ci(2i)vi + gi(:))

Bi(zi) = M; ! (),
provided that the so-called mass inertia matrix M;(x) =
M7 (z) = 0, forall z € Z. Note that Eq. (2) corresponds
to a special case of the Euler-Lagrange equations that are
commonly used to describe the motion of mobile robots
and/or robotic systems (with two degrees of freedom,
in our case) in the relevant literature [15]. Therefore,
the nonlinear model described in Equations (1a)-(1b) is

more general than the linear models considered in our
previous work [1].

2.8 Finite horizon steering problem

Next, we consider the finite horizon steering problem for
the i-th agent. Specifically, the i-th agent has to reach
a state z = z(x) in the two-dimensional (flat) manifold
Zy = {col(z,0) : = € X C R?}, where Z9 € Z, in
finite time. Equivalently, the objective of the i-th agent is
to arrive at a prescribed, yet arbitrary, terminal position
x € R? with zero terminal velocity (soft landing) at a
finite time T > 0; we write 2z;(t) — z(x) ast — T.

Problem 1 (Steering Problem) Consider the i-th
agent whose motion is described by Eqgs. (1a)-(1b), and let

x € X C R? be given. Determine a feedback control law
u; (@) Ri+—> R2? that will steer the i-th agent from the
state Z; € Z, at timet = 0, to the state z(x) = col(zx, 0),
z(x) € 2Z¢, ast = T, for some 0 < T < oo.

Proposition 1 Let us consider the i-th agent, whose
motion is described by Egs. (1a)-(1b), and let = € R2.
In addition, let A = AT = 0, K; = K;T > 0 and
Ky = Ky' = 0 be 2 x 2 diagonal matrices. Then, the
feedback control law w;(-;x) : R* — R2, where

1
ui(z @) == —Bi_l(zi)<ai(zi) + ;A‘lvsgnZ_'y('ui)

+Kis;(zi; ) + Kovsgn(s;(2;; :c))), (3)

where s;(z;; ) == x; —x + Avsgn™(v;), 1 < v < 2 and
0 < p < 1, will steer the i-th agent to the state z(x) =
col(x,0), z(x) € Z¢, ast = T, for some 0 <T < 00.

PROOF. Let us consider, for a given & € R?, the can-
didate quasi-Lyapunov function V() : R* — Rso,
where

V(zix) := (si(zi;x), Psi(zi;x)), (4)
where P = PT = 0 is a 2 x 2 diagonal matrix. By using
the facts that

vsgn? (v;) = col(sgn(vi,1)|vi1|”,sgn(vi2)|vi2|”)
= col(vi 1 |vi1 |7 vialvi a7
= A(vnorm™ ™} (v;))vs,
and
dlvie|  dlvie® d”iz,e . duig

2lv; :
lviel =g dt

v b
dt T

for ¢ € {1,2}, it is easy to show that

$i(zi;x) = & + YAA(vnorm? ! (v;))v;
= v; + yAA(vnorm™ ! (v;)) (i (2;)
+ Bi(zi)ui(zi; x))
= —Ki (v;)s(z;; ) — Ka(v;)vsgn’ (si(zi52)),

where IAil(vi) = vyAA (vnorm? ! (v;))K; and Kg(vi) =
YAA(vnorm™~!(v;))Ky are diagonal matrices with
Ki(v;) = KF(v;) = 0 and Ky(v;) = KT (v;) > 0, for
all v; € R? with v;10; 2 7 0. The time derivative of V
along the trajectories of the i-th agent driven by the
feedback control law (3) is given by

d .
EV(zi; x) = 2(s;(z;;x), P$;(2z:;x))

= —2(s;(2:; m),PI/EQ(vi)ngnp(si(zi; x)))
—2(s;(zs; @), PK1(v;)si(zi; ). (5)

It is easy to show, after some algebraic manipulation
and by utilizing Lemma 2 from [16], that there exist
constants c¢1, ca > 0 such that

%V(ziﬂ?) < —aV(ziz) — VP (zi;z),  (6)
provided that v; 1v; 2 # 0, which in turn implies that
the trajectories of the i-th agent will converge to the
following two-dimensional manifold:

si(zi;x) = ¢, — x 4+ Avsgn” (v;) = 0,
as t — T,,, where 0 < T, < o0o. As explained in the
proof of Theorem 1 from [16], the manifold s;(z;;x) =
0 will be reached in finite time even in the case when
v;10;2 = 0. Note that the manifold s; = 0 is invariant,
given that $; = 0 when s; = 0. In addition, let p;(t) :=
x;(t) — x, for t > T,,. Then, p; converges along the
manifold s; = 0 to the origin. This convergence will take
place in finite time, that is, p;(t) — 0 as t — T, where
0<T,, <T < oo, given that along the manifold s; = 0,
we have that

D; + AVSgH’Y(pZ‘) = 07

where we have used the fact that v;(t) = p;(¢). The
last (vector) equation corresponds to a system of decou-
pled scalar differential equations with non-Lipschitzian
vector fields, whose solutions converge to zero in finite
time regardless of the initial conditions. The fact that
p; converges to the origin in finite time in turn implies
that v;(t) = p;(t) — 0 ast — T (along the invari-
ant manifold s; = 0); this is because, by definition,
Avsgn? (v;) = 8;(2z;; @) — p;. Therefore, we have shown
that p;(t) — 0, or equivalently, x;(t) — = and v;(t) — 0
as t — T'. The proof is now complete. B

Remark 1 Note that the function V used in the proof of
Proposition 1 is not, strictly speaking, a Lyapunov func-
tion. This is because s; = 0, or equivalently, V(z;; &) =
0, does not necessarily imply that z; = z(x) = col(z, 0),
which explains why we refer to V' as a quasi-Lyapunov
function, following the suggestion given in [14].



2.4 The prorimity metric in the state space

Next, we utilize the quasi-Lyapunov function used in the
proof of Proposition 1 to define a generalized proximity
metric that will measure the closeness of the i-th agent
from a desired state z(x) € Z¢. In particular, we mea-
sure the distance of the i-th agent from a state z(x) € Z¢
in terms of the reduction of the generalized energy metric
that occurs during the state transition of this agent from
its initial state 2z; to z(x), in some finite time. Specifi-
cally, for a given z; € Z, we define the generalized metric
7(+; Z;) : R® — R, where 7(x; Z;) := V(Z;; ), that is,
7T(£IJ; 27;) = <Zﬁl — X, P(CEZ — (E)>

+ 2(x; — x, PAvsgn’ (v;))

+ (Avsgn™(v;), PAvsgn” (v;)).  (7)
The expression for 7(x;Z;) can be written more com-
pactly as follows:

7T(113; ii) = |]_:’1/2(:iz — :13)|2 + 2<CEZ — ZC,Ti(ﬁi)> + O'z'(ﬁi)7

7i(v;) := PAvsgn” (v;),

04(;) = [PY/? Avsgn™ (v;) . (8)
It is interesting to note that m(x; 2;) measures the “dis-
tance” between an arbitrary state z(x) = col(x,0) and
the initial state z; at time ¢ = 0, which is fixed (cost-
to-come), whereas V (z;; €) measures the “distance” be-

tween the state z; = z;(t) at time ¢ and the fixed termi-
nal state z(x) = col(x,0), when x is fixed (cost-to-go).

3 The Partitioning Problem

Next, we formulate a generalized Voronoi partitioning
problem that will furnish a subdivision of the two-
dimensional (flat) manifold Z,, which is embedded

in Z C R* The set of generators of this generalized
Voronoi partition corresponds to the group of agents,

which in turn are identified by their initial states in Z.

Problem 2 (Partitioning Problem) Let Z := {z; €
R* i € T,} be given. Then, determine a partition % =
{0, i € I,,} of Z¢ such that

(1) Zo = U;ez, Ui (that is, B is exhaustive),

(2) int(20;) Nint(W,;) = @, foralli,j € I,,, i # j (that
is, W consists of mutually disjoint sets),

(8) A state z(z) = col(z,0), z(x) € 2y, belongs to W,
if, and only if, m(x; Z;) < w(=; Z;), for all j € I,
where (x; Z¢), £ € {i,7}, is given by Eq. (8) (that
is, U is optimal).

Next, we show that the solution to Problem 2 can be
associated with an affine diagram in R2.

3.1 Analysis of the partitioning problem

Let us consider a pair of generators (2;,2;) € Z x Z,
1 # j. We define their corresponding bisector in 23, which
is denoted by Bas (Z;, Z;), to be the set of all states z(x) €
Z, that are equidistant from 2; and z; with respect to
the proximity metric 7, that is, 7(x; 2;) = 7(x; 2;5).

Proposition 2 Let 0 = {0, i € Z,} be the general-
ized Voronoi partition of Zg generated by the point-set Z

that solves Problem 2. Then, the bisector Ba(Z;, Z;) of
the partition S0 that corresponds to the pair of generators

(2i,25) € Z x Z is determined by the following equation
where
’7(21', Zj) = Q(Tj(ﬁj) — ’l"i(’l_ii)) + 2P(jj — (i?i), (103,)
((2i, 25) := 0(v;) — 04(V;) + (2, 2r;(v;) + Px;)
— (&4, 27 (V) + Pxy). (10b)

PROOF. By definition, the bisector Be(Z;, Z;) con-
sists of all the points « such that n(x; 2;) = n(x; 2;),
which implies
0=|PY2z,)? + |P?z|? — 2(x, PZ;)
+ 2(@2 — X, ’I"z(’l_)l» + O'Z(’l_h)
— |PY2%;2 — |PY2x|? + 2(x, PZ;)
—2(x; — =, 7;(v;)) — 0;(v;). (11)
It follows that
0= —2<ZE,P(CI_JZ' - jj) + ri(f)i) — Tj(’l_)j»
+2(Zi, mi(0:)) = 2(&5,75(0;)) + 0i(vi) — 05(9;)
+ (@i, Pa;) — (z;,Px;), (12)
and the result follows readily. W

Eq. (9) describes a hyperplane in R*, whose intersection
with the flat manifold Z( determines a straight line that
lies in Zj.
Proposition 3 Let Z := {z; = col(z;,v;), i € L,}.
In addition, let B = {2;, i € I,} be the generalized
Voronoi partition of Z¢ that solves Problem 2. Moreover,
let

& =z, + P lr(v;), (13a)

pi = —(ri(0;), P~ ry(;)) + 04(), (13b)
where 7;(0;) and 0;(v;) are given by (8), and let R :=
{Mi, i € I} be the partition of X C R2, which is gen-
erated by the point-set E = {§ € R% i € 7,} with
prozimity metric p(; &, ;) : X C R? — Rsq, where

p(x; & i) = (x — &, Pz — &)) + - (14)

Then, for any € € X C R?, the state z(x) = col(x,0),
z(x) € 2, belongs to the cellW; € W if, and only if, the
point x belongs to M; € R. In addition, R is an affine
diagram with combinatorial complezxity O(n).

PROOF. Equations (8) and (14) imply that 7 (x; 2;) =
p(x; &, 11;), provided that (13a)-(13b) hold. By defini-
tion, a state z(x) = col(x,0), z(x) € Zj, belongs to
the cell U, € 2, if, and only if, 7(x;2;) < 7(x;Z))
or equivalently, p(z;&;, ;) < p(x;€&;, p;), for all i #
j. Let Bx(&:,&;) denote the bisector of 9 that corre-
sponds to two distinct generators &;, & € E, i # j.
Then, a point * € X C R? belongs to Bx(;,&;) if,
and only if, p(z; &, i) = p(z;€;, i), which is equiv-
alent to (9). Eq. (9) in turn implies that By (€;,&;) is



a straight line inﬁRz, for all the pairs of distinct gener-
ators (§;,&;) € E x &, i # j, of M. Consequently, R
is an affine Voronoi diagram in X C R2. The result on

the combinatorial complexity of 9’ follows immediately
from Theorem 18.2.3 in [6, p. 439]. W

3.2 A decentralized spatial partitioning algorithm

In many applications, it is important that every agent
can compute its own cell independently from its team-
mates; in this way, every agent can use its limited com-
putational resources frugally. This is desirable because
the computation of the whole partition may be irrele-
vant to the objectives of an agent both at the individ-
ual and the team levels. In this section, we present a
decentralized algorithm, which computes the partition
R = {N’, i € Z,}, which is equivalent, in the sense de-
scribed in Proposition 3, to the generalized Voronoi dia-
gram 0 = {G*, i € Z,,} that solves Problem 2. We will
assume that the partition space is a convex polygon S,
where S C R?, which is homeomorphic to the subset Sy
of the terminal manifold Zy, where Sy :=={z € Z: z =
col(z,0), = € S}.

Next, we introduce an assumption that will allow us to
compute approximations of the cells that comprise the
partition R by building upon the algorithm proposed in
our previous work [2] for partitioning problems involving
agents with single integrator kinematics. This assump-
tion is not necessary for the decentralized computation
of the spatial partition and will be removed later; how-
ever, when it is satisfied, the computation of R is signif-
icantly simpler.

Assumption 1 For all i,j € T, with i # j, it holds
that p(&:; &, 1) < p(Eii & 115), or equivalently,

pi < (& — &, P& — &) + 1y, (15)
where &, g, £ € {i,j}, are defined as in (13a)-(13b).

Note that (15) along with the fact that the proximity
metric p is a continuous function imply that the gener-
ator &; € E of the affine diagram R is an interior point
of its associated cell 9R;, for all i € Z,,; thus, every cell of
R has a non-empty interior. One should actually expect
that it is likely, yet not necessary, that the point &; be-
longs to the interior of 9R; given that it corresponds, in
view of (14), to the minimizer of the function p(-; &;, ;).
Note that (15) also implies that & # &;, for all 7 # j,
for otherwise, pu; < p; and p; < p; (by interchanging ¢
and j in (15)), which is absurd.

Proposition 4 Suppose that Assumption 1 holds and let
N = {N,, i € Z,} be the affine diagram generated by the
point-set 2 C R2, which is defined as in Proposition 3.
Then, the set R;, R; € R, s star-convex with respect to
its generator &;. In other words, the line segment [€;, x]
is a subset of Ry, that is, [&;,x] C M;, for alli € T,, and
for allx € R;.

PROOF. By definition, each cell ?R; € R is deter-
mined by a finite intersection of closed half-spaces in R?
given that MR is an affine diagram in R2. Therefore, the

cell R, is a convex set, for all ¢ € Z,,. In addition, (15)
implies that &; € int(9R;); consequently, the interior of
MR, is non-empty, that is, int(M;) # &. Thus, by convex-
ity, every line segment emanating from &; to any point
x € $R; is a subset of R;, and the result follows. B

Note that the fact that each cell R; € R is convex, which
was shown in the previous proof, holds true regardless of
whether Assumption 1 is satisfied or not. Now let T'(&;, e)
denote the ray that emanates from &; and is parallel to
a unit vector e € S'. The following proposition follows
readily from the star-convexity of R;.

Proposition 5 Suppose that Assumption 1 holds and let
R ={NR,; : i €Z,} be the affine diagram generated by
the point-set & C R2, which is defined in Proposition 3.
If there exists a pointy € T'(&;, e) for which p(y; &, p;) <
p(y; &, 1), for all j € T,\{i}, then all the points that
lie in the line segment from &; to y will belong to the cell
MR, that is, &, y] S Ri. In addition, if p(y; &, 1i) =
o(y; &, o) for some £ € T,\{i}, then the point y will
belong to the boundary of R;, that is, y € bd(R;) and
there is no point 1 € T'(&;,e) with | — &| > |y — &

such that p(¢a 57,7#12 < p(d’;&jnu’j); fO?” all] € In\{’é},
we write y = x*(e, &;).

The most important implications of Proposition 5 are
the following: 1) If a point @ € [§;,x* (e, &;)], then x €
M;, and 2) a point y belongs to bd(R;) if, and only
if, y = x*(e, &), for some e € S'; thus, bd(R;) =
{z*(e,&;) : e € S'}. Hence, in order to compute a dis-
crete (finite) approximation of bd(9R;), we simply have
to find a finite point-set {x*(e,&;) : e € £}, where £°
is a finite discretization of the unit circle S'. Next, we
present the main steps of a decentralized partitioning

algorithm that computes this discrete approximation of
bd(R;).

Step 0: Take e € £° and set € « £°.

Step 1: Set zl%(e) <+ T'(&;,e) Nbd(S) and pl¥(e) «
p(xl(e); &, 1u;). At this step, we compute the intersec-
tion of I'(€;, €) with the boundary bd(S) of the partition
space S.

Step 2: If pl%l(e) < p(xl%)(e); &}, ), for all j € T,\{i},
set x*(e, &) « xl¥(e) and £ + £\{e}. End if. In this
case, the query point belongs to the boundary bd(S).

Step 3: Set £% < £°\{e}. If £° # @, take e € £° and
go to Step 1. End if.

We then proceed with the line search process along the
rays ['(&;, e) for the unit vectors e for which x*(e, &;) ¢
bd(S), that is, for all e € .

Step 4: Pick an error tolerance € > 0 and then start the
following iterative process:

%% Begin Iterative Process 1

forec &
k<1

alM(e) < xl1(e) —1/2/zl" M (e) — &ile,



pH(e) « p(x*l(e); &, i),
AxlFl(e) « x¥l(e) — xlF—1(e)
while |Azll(e)| > ¢
k< k+1
it pl*=H(e) < p(xk~(e); &5, y), Vi € T\{i}
zlFl(e) « xlF-1(e) + 1/2|AzlF(e)le
else
zl*l(e) «— xlF-1(e) — 1/2|AzlF—1(e)|e
end
pFl(e) «— p(z!*(e); &, i)
AzF(e) + zlFl(e) — xl*1(e)
end
w*(e,ﬁ_i) — :c[k](e)
end
%% End Iterative Process 1

The output of the previous iterative process is an ap-
proximation of the point x*(e, &;) for each unit vector
e € &. Furthermore, the output of the previous algo-
rithm is an approximation of the actual cell R; (or more
precisely, of its boundary); we will denote this approx-
imation by PR}, when it is important to distinguish it
from the exact cell $R;.

Note that the implementation of the previous algorithm
requires that the i-th agent has knowledge of the loca-
tion &; and the velocity ¥; of the j-th agent, and con-
sequently, the point §;, for every j € Z,\{i}. However,
in principle, it suffices for the i-th agent to know the
point &; for every j € N (i,9R), where N (i;9R) denotes
the set comprised of the indices of the neighbors of the
i-th agent in the affine diagram R, that is, all the agents
whose cells in R share a face with the cell 9R;. Note that,
by the definition of 2R, we have that N (i; R) = N (i;°0).
In the presence of sensing constraints, the i-th agent can
only be assigned points of S that lie inside the closed ball
B, (x;) == {x € R? : |x—z;| < n}, where 7 is a positive
constant that corresponds to the sensing radius of the
i-th agent. In addition, the i-th agent can only infer the
locations and the velocities of the agents that lie inside
B, (Z;). In this case, the partitioning algorithm we pre-
viously described should be modified accordingly such
that its output is the intersection of the cell R; with
B, (Z;). To this aim, it may be tempting for one to sim-
ply modify the first step of the partitioning algorithm
by setting % (e) « I'(&;,e) N bd(B,(z;)), instead of
zl%(e) «+ T'(&;,e)Nbd(S), and proceed similarly hence-
forth. This approach will not, in general, give a correct
approximation of ;NB,,(&;) given that B,,(Z;) does not
necessarily contain all the neighbors of the i-th agent in
R. In practice, the implementation of the previous al-
gorithm in a distributed fashion requires that the sens-
ing radius 7 of the i-th agent be sufficiently large such
that €; € B, (x;) for all j € N(i,9) [7]. Only then the
previous modification of the partitioning algorithm will
produce a “correct” approximation of R; N B,,(Z;).

3.8 A modified partitioning algorithm

As we have already mentioned, Assumption 1 is not nec-
essary for the decentralized computation of the affine di-

agram SR. In particular, if the point &; is not an interior
point of PR;, then of course M; cannot be star convex
with respect to &;. However, R, is a cell of an affine di-
agram and thus a convex set regardless of whether it is
true or not that &; € int(R;).

Proposition 6 Let E(R;) := {EY, { € L(M;)}, where
L(R;) is some finite index set, be the collection of edges
E! that comprise the boundary bd(MR;) of the cell R;
of the affine diagram R. In addition, let the interior of
the cell R; be non-empty, that is, int(N;) # I, and
assume that & ¢ int(M;). Then, if for some e € S!
the ray T'(§;, ) intersects bd(R;), there are at most two
edges from E(R;) whose intersection withT'(§;, e) is non-
empty.

PROOF. Ifintersection of I'(§;, e) with bd(9R;) is non-
empty, then there are three possibilities: 1) T'(&;, e) in-
tersects bd(R;) at a single point, which is a vertex of
MR, 2) T'(&;, e) intersects bd(NR;) at two points that be-
long to two different edges of E(9R;), and 3) there ex-
ists an edge Ef € E(R;) such that Ef C T'(€;,e). Note
that T'(&;, e) cannot intersect bd(9R;) at more than two
points that belong to different edges; this would violate
the convexity of the cell 9R; (as we have already men-
tioned, the cell 2R; is convex regardless of whether (15)
holds true or not). ®

Proposition 6 implies the following: If the intersection
of T'(€;,e) with PR; is non-empty for some e € S!,
then it necessarily corresponds to a line segment
[z«(e, &), x*(e, &;)], where the point x, (e, &;) does not
always coincide with the point §&;, and, in addition,
x*(e, &;) € bd(R;). Specifically, if &; is an interior point
of M; (Assumption 1 holds true), then x, (e, ;) = &;
otherwise, , (e, &;) € bd(R;).

Proposition 7 Suppose that R; has a nonempty in-
terior, the intersection of a ray T'(&;,e) with R, is
nonempty for some e € S, and & ¢ int(M;). Let y,
y' be two points (not necessarily distinct) in T'(€;,e),
such that there are no other points ¥, ¥’ € T'(§;,e)
with [ — &[ < |y — & and [¢" — &| > [y — &,
respectively, such that p(w; &, 1) < plw; €, p5) and
P’ &is i) < p(P'5 &5, 1), for all j € T,\{i}. Then the
line segment [y, y'] will be a subset of M; and the points
y, y' will belong to bd(M;); we write y = . (e, &;) and
Yy = w*(evgi)'

Note that when y and 4’ are not distinct then the point
z.(e &) = x*(e, &) corresponds to a vertex of M;. If
y and y’ are distinct points, there are two possibili-
ties. In particular, if &; € int(9R;), then x,(e, &;) = &;
and we proceed as in Section 3.2. If, however, §; ¢
int(M;), then, in view of Proposition 7, it is possible
that both x, (e, ;) and x*(e, §;) belong to bd(R;), for
some e € S'. Specifically, in order to compute x* (e, §;),
one can apply the Iterative Process 1 described in Sec-
tion 3.2; the same process can be used for the computa-
tion of x, (e, &;), after the necessary modifications have



been carried out. In particular, the new objective is to
find the closest point to &; that belongs to I'(&;, e), for
which p(x.(€,&); &, i) < p(xa(e,&); &, ), for all
j € Z,\{i}. The main steps of this iterative process are
given next.

Step 0: Set £, + &°.

Step 1: For all e € £°, compute x* (e, §;) using the al-
gorithm presented in Section 3.2. Then, if Assumption 1
is verified, set £y + Ep\{e} and x,(e, &;) « &;; oth-
erwise, set x(e) < z*(e, ;). Note that because &; is
not necessarily an interior point of 9R;, it is possible that
the ray I'(€;, €) does not intersect at all with the cell ;

for some e € £°, in which case we say that z*(e, §;) is

a null vector. In this case, (e, &;) is also a null vector
and we set £y + Ep\{e}.

Step 2: Pick an error tolerance € > 0 and apply, for all
e € &y, a similar process with the Iterative Process 1
after making the following substitutions and modifica-
tions: 1) Set z(e) + z*l(e), Az (e) + AzlFl(e),
oy (e) < pl¥l(e), z.(e, &) < x*(e,&;) and 2) flip the
signs before Az (e) in the two expressions for z,(e)
in the if-else-end statement. At the end of this process,
the finite sequence of points x;)(e) will converge to (an

approximation) of x, (e, &;).

Remark 2 The performance of the previous baseline
algorithm can be improved by a number of modifications
that are aimed at reducing the number of line searches in
the case when &; is not an interior point of 9R;. For exam-
ple, when there are two consecutive unit vectors e; and
erx+1 € &p such that both x* (e, &;) and x*(ex41,&:)
are null vectors, then one can find a unit vector e’ that
is parallel to a convex combination of ey and e and
determines a line passing through &; separating R? into
two half-spaces such that the cell 9R; is completely con-
tained in one of them exclusively. In this case, each vec-
tor e € &g for which the ray I'(;, e) lies in the half-
space that does not contain the cell R; should not be
considered at all for the iterative process given that both
x*(e, &;) and x, (e, &;) will be null vectors. Alternatively,
one can utilize techniques aiming at identifying a point
x; different than &; that belongs to the interior of 9R;,
and then utilize a similar algorithm to that described in
Section 3.2. Due to space limitations, we will not present
in detail all these possible modifications.

4 Numerical Simulations

In this section, we present numerical simulations that il-
lustrate the theoretical developments presented so far.
For our simulations, we consider a team of twenty mo-
bile agents with double integrator (open-loop) kinemat-
ics. This choice of kinematics would allow us to compare
the results of this work and our previous work on par-
titioning problems with teams of agents with linear dy-
namics [1]. For our simulations we have taken v = 1.4,
p=0.6, K; =2I,, Ky =3I, A =P =1, whereas the
locations of the agents are selected randomly.

Figure 1 illustrates the affine Voronoi diagram that

Fig. 1. The partition that solves Problem 2 for n = 20 gen-
erators.

solves Problem 2 in vector geometry representation,
which was computed, for verifications purposes, via a
standard centralized, “exact,” algorithm. The “cross”
markers in Fig. 1 denote the points & € E, whereas
the initial positions &; € X are denoted by the “plus
sign” markers. The initial velocities of the agents are
denoted by black arrows. We observe that all the points
&, € E belong to the interior of their associated cells;
something that is not true for all the points Z; € X.
Note that the partition illustrated in Fig. 1, which is
an affine diagram, enjoys similar structural properties
with the one that would have been obtained if T were
taken to be uniformly constant throughout & and the
proximity metric were taken to be the minimum control
effort, as in [1]. Note that the terminal time herein is
not prescribed a priori and it actually turns out to be
state-dependent.

Next, we compute the affine diagram R associated with
the solution to the Problem 2, by utilizing the decentral-
ized partitioning algorithm presented in Section 3.2. In
particular, Fig. 2 illustrates the approximations of two of
the cells that comprise the affine diagram 98 computed
independently via the proposed decentralized algorithm.
For the computation of these cells, we have discretized
S! into a uniform grid graph, £°, consisting of 80 nodes
and we have taken ¢ = 0.01. We observe that the approx-
imations of the two cells obtained with the decentralized
algorithm are very close to the cells obtained with the
exact (centralized) partitioning algorithm, despite the

fact that the grid £ is rather coarse. An important ob-
servation here is that the points &g and &;3 belong to
the interior of the cells Mg and PRig, respectively; some-
thing that allows one to directly apply the proposed de-
centralized partitioning algorithm; by contrast, &g is not
an interior point of Ry, and thus application of the al-
gorithm proposed in [2] to directly compute the cells of
the partition 8 of Z, would not be possible.

Figure 3 illustrates the performance of the proposed de-
centralized partitioning algorithm, in terms of the execu-



Fig. 2. Discrete approximations of YRg and fR15 computed in-
dependently by their corresponding agents via the proposed
decentralized partitioning algorithm using a grid £° with
|E°] = 80.
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Fig. 3. Performance of the decentralized algorithm measured
in terms of the approximation error and the actual compu-
tation time for different sizes of the grid £°.

tion time T, and the convergence error «; := |A(R}) —

A(R;)|/A(DR;). We observe that the execution time of
the decentralized algorithm T, depends linearly on the
size of the grid. The dashed line in the same figure corre-
sponds to the running time of the centralized algorithm
that computes the cells of the partition represented in
vector geometry, which is illustrated in Fig. 1. We ob-
serve that even with a relative coarse grid £°, we can
satisfactorily approximate the cell 9R; of PR with a dis-
crete set PR, which can be computed via the proposed
decentralized algorithm with an execution time that is
comparable to that of the exact centralized algorithm.

5 Conclusion

In this paper, we have addressed a spatial partitioning
problem involving a team of mobile agents with nonlin-
ear second order dynamics. The proximity metric of the
proposed spatial partition was taken to be the reduction

of a generalized energy metric that takes place during
the transfer of each agent to an arbitrary destination
with zero terminal velocity (soft landing) in finite time.
In particular, the arrival time is a state-dependent quan-
tity whose functional description is not known a priori
in contrast with our previous work on partitioning prob-
lems for multi-agent systems with linear dynamics, in
which it was a prescribed constant throughout the parti-
tion space. We have shown that the solution to the par-
titioning problem considered herein is associated with
a class of affine diagrams, which can be computed by
means of simple partitioning algorithms that allow the
agents to compute their own cells independently from
their teammates (decentralized partitioning algorithms)
provided that their sensing radii are sufficiently large.
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