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Abstract

This work deals with a finite-horizon covariance control problem for discrete-time, stochastic linear systems with complete
state information subject to input constraints. First, we present the main steps for the transcription of the covariance control
problem, which is originally formulated as a stochastic optimal control problem, into a deterministic nonlinear program (NLP)
with a convex performance index and with both convex and non-convex constraints. In particular, the convex constraints in
this nonlinear program are induced by the input constraints of the stochastic optimal control problem, whereas the non-convex
constraints are induced by the requirement that the terminal state covariance be equal to a prescribed positive definite matrix.
Subsequently, we associate this nonlinear program, via a simple convex relaxation technique, with a (convex) semi-definite
program, which can be solved numerically by means of modern computational tools of convex optimization. Although, in
general, the endpoints of a representative sample of closed-loop trajectories generated by the control policy that corresponds
to the solution of the relaxed convex program are not expected to follow exactly the goal terminal Gaussian distribution,
they are more likely to be concentrated near the mean of this distribution than if they were drawn from the latter, which is a

desirable feature in practice. Numerical simulations that illustrate the key ideas of this work are also presented.
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1 Introduction

Given a stochastic discrete-time linear system subject
to a white noise process, we seek to find a feedback con-
trol policy that will steer the uncertain state of this sys-
tem from a given Gaussian distribution to another pre-
scribed Gaussian distribution after a fixed (finite) num-
ber of stages under the assumption of complete state in-
formation. In our problem formulation, we consider ex-
plicit constraints on the (weighted) £o-norm of the (ran-
dom) input sequence / process. (We will see that the lat-
ter constraints will allow us to also enforce, in principle,
point-wise in time constraints on the expected value of
the norm of the input vector). Without loss of general-
ity (or perhaps, with minimal loss), we will assume that
the mean of both the initial and terminal Gaussian dis-
tributions are equal to zero, which means that the latter
distributions are described completely in terms of their
covariance matrices. For this reason, we will broadly re-
fer to the special class of distribution steering problems
we consider herein as the finite-horizon covariance con-
trol problem with perfect state information.

Literature Review: The covariance control problem was
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first introduced to the controls community by Hotz
and Skelton [18,19]. This class of problems for both
continuous-time and discrete-time stochastic linear
systems has been studied extensively in the literature
(the reader may refer, for instance, to [14, 26, 27]). All
these references, however, focus on the infinite-horizon
problem in which the objective is to steer the state co-
variance of a stochastic linear system to a steady state
covariance matrix, which is a positive definite matrix
that satisfies a relevant algebraic Lyapunov matrix
equation. The finite-horizon covariance control prob-
lem for continuous-time stochastic linear systems has
been recently addressed in [10,11]. It turns out that the
continuous-time covariance control problem becomes
amenable to analysis and computation, when the input
and noise channels of the stochastic linear system are
identical [10]. On the other hand, the more general case
in which the input and the noise channels do not nec-
essarily match turns out to be a much harder problem,
whose solvability is in general difficult to be concluded
a priori [11]. The finite-horizon covariance control prob-
lem for continuous-time stochastic linear systems in the
presence of “soft” state constraints was addressed in our
previous work [3]. A finite-horizon covariance control
problem in which a soft constraint on the terminal state
covariance is enforced via an appropriate terminal cost
term is addressed in [15].
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Problems related to the discrete-time version of the
problem considered in [10,11] have appeared in [4,22,25].
In particular, [4,22] deal with the problem of construct-
ing a Markov process with fixed reciprocal dynamics [20]
that connects two prescribed (marginal) probability
densities at the endpoints of a given time-interval.
Ref. [25] deals with the problem of characterizing the
noise process that will steer the state of a (control-free)
discrete-time stochastic linear system, emanating from
a known initial Gaussian distribution to a prescribed
terminal Gaussian distribution at a given terminal stage
and explores connections between dissipativity the-
ory and robust performance analysis for discrete-time
stochastic linear systems. It should be mentioned at this
point that despite the fact that [4,22,25] present some
very important and insightful results, it is not clear
how one can directly use these results for the design of
feedback control policies that will realize the proposed
transitions between the prescribed (marginal) distri-
butions at the endpoints of a given time-interval. The
design of such control policies becomes even more chal-
lenging when practical input constraints come into play.
Problems of control synthesis for discrete-time stochas-
tic linear systems, including stochastic MPC problems
(see [21] and references therein), have received a lot of
attention in the literature [1,9,16,23,24]. Many of these
references rely on convex optimization techniques. It is
in a way surprising that, to the best of our knowledge,
the idea of applying these powerful techniques to co-
variance control problems have never been explored in
depth before.

Main Contribution: This work is purported to fill the
gap in the literature regarding the synthesis of feedback
control policies for covariance control problems in the
presence of input constraints by leveraging some of the
powerful techniques of convex optimization [5,7] for con-
trol synthesis problems [1,9,12, 16,23, 24]. Specifically,
we present a solution approach to the finite-horizon co-
variance control problem for discrete-time stochastic lin-
ear systems, which is based on the transcription of the
stochastic optimal control problem into a deterministic
nonlinear program (NLP) with a convex performance
index and both convex and non-convex constraints. In
particular, the convex constraints of the NLP are in-
duced by the input constraints, whereas the non-convex
constraints are induced by the requirement that the ter-
minal state covariance be equal to a prescribed positive
definite matrix. We show that the latter matrix equal-
ity constraint can be associated with a positive semi-
definite (convex) constraint by means of a convex relax-
ation technique.

It should be mentioned that the endpoints of a repre-
sentative sample of closed-loop trajectories generated by
the control policy induced by the solution to the relaxed
convex program are not expected to follow exactly the
goal terminal Gaussian distribution. However, they are
actually more likely to concentrate near the mean of the
goal distribution than if they were drawn from the lat-
ter. The previous observation along with the fact that
the original covariance control problem can be associ-
ated with a convex optimization problem, for the solu-

tion of which efficient, scalable and robust algorithms
exist [5, 8], outweigh the fact that the latter problem is
not equivalent to the original problem in the strict math-
ematical sense.

Finally, we wish to mention that a preliminary version
of this paper has appeared in [2]. The latter reference,
however, does not present a complete and detailed de-
scription of a systematic approach for the computation
of the feedback control policy that solves the covariance
control problem subject to input constraints.

Structure of the paper: The rest of the paper is organized
as follows. In Section 2, we formulate the covariance con-
trol problem as a stochastic optimal control problem,
which we transcribe into a finite-dimensional nonlinear
program in Section 3. The latter problem is subsequently
associated with a convex program, via a convex relax-
ation technique. Illustrative numerical simulations are
presented in Section 4, and finally, Section 5 concludes
the paper with a summary of remarks.

2 Problem Formulation
2.1 Notation

We denote by R™ and R™*" the set of real n-dimensional
(column) vectors and real m X m matrices, respec-
tively. We write ZT and ZTT to denote the set of
non-negative integers and strictly positive integers,
respectively. Given z,, 25 € Z1 with z, < 25, we de-
note the discrete interval from z, to zg as [za,28]d;
note that [za,28la = [2a,28] N ZT. Given a complete
probability space (Q,F,P) and N € Z*™", we denote
by £5([0, N4; Q, &, P) the Hilbert space of mean square
summable and R"-valued random sequences or pro-
cesses Xy := {z(t) : t €[0,N]s} on (2,3, P). Given a
process Xy in £5([0, N]4; 2,5, P), we denote its norm

. 1/2
by [|Xnlless with [[Xnlle, = (E[EN,2)Ta(®)])?,

where E[-] denotes the expectation operator. Given a
matrix A € R™*" we will denote by vec(A) the mn-
dimensional column vector formed by stacking the n
columns of A one below the other. If A € R™*™, then
we denote its trace by trace(A) and by A~ its inverse
(provided that the latter is well defined). We write 0
and I to denote the zero matrix and the identity matrix.

We will denote by bdiag(Aj,...,Ay) the block diago-
nal matrix formed by matrices Ay, ..., Ay of compatible
dimensions. We will denote by BLpxq(m,n) the set of
P x @ block lower triangular matrices whose blocks are
m X n (real) matrices; in the special case when @Q = P
and m = n we will write BSLp(m). Recall that a block
matrix A = [A;;]is block lower triangular when A,;; = 0
for all j > 4. Note also that BLpyxg(m,n) and BSLp(m)
are convex subsets of RF™X@" and RF™XP™  respec-
tively. We will write A = [A,;;], if we want A to be
viewed as an element of BLpyg(m,n), in which case
A;; € R™*" whereas the notation A = [A(®7)] im-
plies that A should be viewed as an element of RF* @7
in which case A(»7) e R. The space of real symmet-
ric n X n matrices will be denoted by S,,. Furthermore,
we will denote the convex cone of n x n (symmetric)



positive semi-definite and (symmetric) positive definite
matrices by S and ST, respectively. Given a matrix
A € ST (resp. A € S;), we will also write A > 0 (resp.,
A > 0). In addition, if A > 0, we will denote by A/? its
(unique) square root in S;. Finally, given two functions
f:Y—>Zandg: X — Y, wedenoteby fog: X — Z,
where (fog)(z) = f(g(x)), the composition of f with g.

2.2  Formulation of the Optimal Covariance Control
Problem

For a given N € ZTT let {A(t) € R*™*": t € [0,N —
1]a}, {B(#) € R™*™ . t € [0,N — 1]4}, and {C(t) €
R™*P . ¢t € [0,N — 1]4} be known sequences of real
matrices. We consider a stochastic discrete-time linear
system that is described by the following stochastic dif-
ference equation:

z(t+1) = A)z(t) + B(t)u(t) + CHw(t), (1)

with z(0) = x, for t € [0,N — 1]4. We denote by
Xi = {z(r): 7 €[0,t]q} the R"-valued state process
truncated at time ¢ € [0, N]g and by Uy := {u(r) : 7 €
[0,t]q} the R™-valued control input process truncated
at time ¢ € [0, N — 1]4. Both processes are defined on a
complete probability space (2, §,P). In addition, Wy :=
{w(r) : 7 € [0,t]4} is an RP-valued (white) noise pro-
cess comprised of independent normal random variables
with zero mean and unit covariance that is truncated at
t € [0, N — 1]4. In particular, for all ¢,7 € [0, N — 1]4
with ¢ # 7, it holds true that

Ew(t)]=0, E [w(t)w(T)T] =46(t, 7L, (2

where §(t,7) := 1, when t = 7, and (¢, 7) := 0, other-
wise.

Now, let 3¢, ¢ € S} be given and let us assume that
the initial state xg is a random vector drawn from the
multivariate normal distribution A(0, 3¢), which im-
plies that E [z¢] = 0 and E [zoxg] = 3. It is assumed
that o and w(t) are mutually independent, that is,

E [zow(t)'] =0, forallte[0,N —1];.  (3)

We will also assume that U, is adapted to the sigma field
generated by zo and Wy, for all ¢ € [0, N — 1]4. Fur-
thermore, Uy_1 € £5°([0, N — 1]4; 2, F, P) and has finite
k-moments for all £ > 0. We will henceforth refer to a
control input process that satisfies the previous assump-
tions as admisstble.

One of our objectives is to steer, via an admissible input
process, the state of the discrete-time stochastic linear
system described by the difference equation (1) to a ter-
minal (random) vector xs at a given stage t = N, that is,
x(N) = xf, where z¢ is drawn from N (0, 3¢), which im-
plies that E [z¢] = 0 and E [xfsz] = Y. To meet this ob-
jective, one will typically seek for feedback control poli-
ciesm = {u(Xo;0),...,u(Xn_1; N—1)}, where for each
t € [0, N—1]4, pu(-;t) denotes a non-anticipative (causal)
feedback control law, which is a measurable function
that maps X; (or more precisely, the o-field generated
by Xt) to a random input vector u in R™. We also re-
quire that each possible realization of a control policy 7
corresponds to an admissible control input process. We

will refer to the set that consists of all such feedback
control policies as the set of admissible control policies
and we will denote it by II. In this work, we will restrict
our attention to a certain subset of II, which is denoted
as I’ and is comprised of all admissible feedback control
policies m = {1(X0;0),...,u(Xn_1; N — 1)}, with

p(Xpit) = K(t, H)a(t) + -+ K(t,0)z(0),  (4)

for all ¢ € [0, N — 1]4, where K(¢,7) € R™*"™ for all
t, 7 € [0,N — 1]4 with 7 < ¢. Under the assumption
that = € II', it is guaranteed that the state () of the
closed-loop system that results from (1) after setting
u(t) = p(Xy;t) will be a Gaussian random vector with
zero mean for all ¢ € [0, N]g. This implies that, for all
practical reasons, the distribution steering problem from
the normal distribution A/(0,3) to the normal distri-
bution N (0, 3¢) from which the initial and the terminal
states of the closed-loop system are drawn, respectively,
(which is a steering problem in the space of n-variate
Gaussian distributions) is equivalent to the problem of
steering the state covariance from Xy to 3¢ (which is a
steering problem in the cone of positive definite matrices
S;F+). For this reason, we will refer to it as the covari-
ance control problem. The objective of the latter prob-
lem is to find a feedback control policy 7° € II’ that will
enforce the boundary conditions in terms of the state co-
variance while minimizing a relevant performance index
in the presence of explicit constraints on the weighted
{o-norm of the input sequence Uy _1. Next, we give the
precise formulation of the covariance control problem as
a stochastic optimal control problem.
Problem 1 Let N,q € ZT" and Xy, E¢ € St be given.
In addition, we are given matrices Q(t) and R(t) that
belong to, respectively, S, and S}, for allt € [0, N —1],.
We are also given matrices RE(t) that belong to S} for
allt € [0, N — 1]q and for all k € [1,qla and positive
scalarsc®, k € [1,qlq. Then, our goal is to find an optimal
control policy 7° := {p°(Xo;0), ..., u°(Xny_1; N—-1)} €
IT' that minimizes over all admissible feedback control
policies m1 = {u(X0;0),...,u(Xn_1; N — 1)} € Il the
performance index
N—1
J(r) =B 3 20T QM(t) + u®) RMu(t)], (5)
t=0
whenu(t) = u(Xe;t) forallt € [0, N—1]q4, where u(Xy; t)
is defined in (4), subject to (1) the difference equation (1),
(ii) the following input constraints:
N—1
CF (1) = E[ 3 u(t)TRff(t)u(t)] <, (6)
t=0

for all k € [1,q]a, and (iii) the following boundary con-
ditions in terms of the covariance of the (random) state
vector x(t) att =0 andt = N:

E [zozg ] =30, E[zeaf] = =y, (7)
where xo = x(0) and xf = x(N).

Remark 1 Note that by including the input constraints
(6) in the formulation of Problem 1, we can enforce not
only constraints on the weighted ¢5-norm of the input
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Fig. 1. The covariance control problem seeks for a feed-
back control policy that will steer the uncertain state of a
discrete-time, stochastic linear system, which is originally
drawn from a known Gaussian distribution N(Mo, ), to a
terminal state, which is drawn from another known Gaus-
sian distribution N (uf, 3¢) at a given final stage t = N.

process Un_1 but also constraints on the expected value
of the weighted 2-norm of the input u(t), for all ¢t €
[0, N — 1]4. For instance, given R. € S+ and ¢ > 0, let
us take (i) ¢ = N, (ii) R¥(t) = R, when t = k — 1, and
REX(t) = 0, otherwise, and (iii) ¢* = ¢ for all k € [1, ¢]q.
Then the ¢ input constraints given in (6) can be written
compactly as a single input constraint, which is enforced
point-wisely in (discrete) time, as follows:

E{u(t)TRcu(t)] <c forall te[0,N—1]s. (8)

Note that the presence of the input constraints and the
possibility that, for all ¢ € [0, N — 1]4, the matrices
R(t) may belong to S}, but not St prevent us from
using classical Riccati-based solution techniques to ad-
dress Problem 1 for the general case.

Remark 2 Tt should be noted here that at each stage ¢
the control law p(-;t) of any admissible policy = € II' is
taken to be a linear function of the elements of X; rather
than the current state x(t). This particular parametriza-
tion of the control policy, which is inspired by the ap-
proach proposed in [12,24], is made in order to increase
the degrees of freedom of the control design problem so
that the input constraints can be accounted without sig-
nificant loss of performance. In particular, each control
law p(+;t) is now associated with ¢ + 1 gain matrices
K(t;7) € R™*" where 7 < ¢, for all t,7 € [0, N — 1]4,
giving a total of Ziv:gl(t + 1)mn = N(N +1)mn/2 de-
grees of freedom (number of design parameters) in con-
trast with the Nmn degrees of freedom of the control
design problem when pu(z;t) = K(t)z, where K(t) €
R™*™ for all t € [0, N — 1]4. The increase in the de-
grees of freedom comes, however, with an increase in the
computational cost.

3 Reduction of the Covariance Control Problem
into a Tractable Optimization Problem

In this section, we will first present the main steps re-
quired for the transcription of Problem 1 into a determin-
istic nonlinear program (NLP). Subsequently, we will
show that by employing a convex relaxation technique,
this NLP can be associated with a convex program, and
in particular, a semi-definite program (SDP).

8.1  Preliminaries

Using standard results from the theory of discrete-time
stochastic linear systems, we can write the solution to
difference equation (1) in the following compact form:

z = Hu + Gw + =z, (9)

where
x = [z(0)T,..., z(N)T]T e RW+ (10a)
w:=[u(0)T,... u(N-1)TT e RN™, (10b)
w:=[w(0)7T,...,wN - 1)T|T e RVP, (10c)

Furthermore, we define the matrices H € BL(y41)x n (7, m),
G € BL(n11)xn(n,p) as follows:

H:=
[ 0 0 0 |
B(0) 0 0
®(2,1)B(0) B(1) 0 7
| ®(N,1)B(0) ®(N, é)B( ) ... B(N —1)]
G =
[ 0 0 0 ]
C(0) 0 0
®(2,1)C(0) C(1) 0 ,

|B(N, i)C(o) &(N, 5)0(1) C(N'— 1)

and xqg := 'z, where

Ti= 11,0 ... @(N,O)T}T e RWV+Dnxn
B(t,7) = A(t—1)...A(r), ®(tt) =1,

for t € [1, N]g and 7 € [0, — 1]4. The following equa-
tions, which follow readily from Eqgs. (2)-(3), will be very
useful in the subsequent analysis:

Elww'] =1, E[wz)]=E[wzi]TT =0, (11)
and

E[zozg | = TE[zozg [TT =T, LT (12)

Under the assumption that m € II', we have that u(t) =
S K(t,7)z(r) for all t € [0, N —1]4, where K(t,7) €
R™*™ forall t, T € [0, N —1]q with 7 < ¢t. Consequently,
we have that ©u = Fx, where

K(0,0) 0 0 0
K(1,0) K(1,1) ... 0 0

K(IN-1,0) K(N-1,1) ... K(N-1,N-1)0
Note also that F € BLy» (n41) (1, 7). The matrix F will



play the role of the (original) decision variable for the
covariance control problem (Problem 1). By plugging
u = Fz in (9) and then solving in terms of x, we get

z = Xy (F)w + Xo(F)xo, (13a)

X(F):= (I-HF)'G
=G +HF(I-HF) 'G, (13b)
Xo(F):=(I-HF)'=1+HF(I-HF)"'. (13¢c)

In view of (13a)-(13c), equation v = Fx becomes

u = Uy (F)w + U (F)xy, (14a)
U, (F):=F(1-HF)'G, (14b)
Uy(F) :=F(1-HF) ' (14c)

Note that the inverse of I— HF, which appears in (13b)-
(13¢) and (14b)-(14c), is always well defined. In par-
ticular, one can easily show that I — HF belongs to
BSLy+1(n) and all of its diagonal blocks are equal to I.
In addition, (I — HF)~! € BSLy1(n).

Remark 3 Next, we provide some rough estimates on
the “flop count” of some indicative operations involved
in the proposed reduction of the difference equation (1)
into the algebraic equation (13a) (a similar analysis can
be carried out for the input equation given in (14a)). In
particular, the matrix multiplication operation for the
computation of HF costs O((N + 1)2Nn?m) flops and
subsequently, the computation of the inverse of (I—HF)
requires O((N + 1)3n3) additional flops (here, O de-
notes the “big-O” Landau symbol). Consequently, the
number of flops required for the computation of both
Xw(F) = (I - HF)"'G and Xo(F) = (I - HF)!
is in O((N + 1)3n®) under the assumption that n >
max{m,p}, which holds true in most practical cases.
At this point, it should be highlighted that the previ-
ous bounds are only meant to serve as rough estimates
of the complexity of the respective operations. One can
possibly obtain more tight bounds by accounting for the
special structure of the matrices involved in the respec-
tive operations and by utilizing more sophisticated al-
gorithms for the implementation of the latter; obtaining
such improved bounds is beyond the scope of this work.

3.2 The Performance Index Expressed in Terms of the
Decision Variable F

Next, we will express the performance index J(7), when
m € IT', in terms of the decision variable F. In particu-
lar, the expression of J(m) given in (5) can be written
equivalently, in view of (10a)-(10b), as follows:
J(r) =E[z" Qz + v Ru]
= E[trace(zz’ Q + uu'R)], (15)

where = bdiag(Q(0),...,Q(N —1),0) € STNH

and R := bdiag(R(0),...,R(N — 1)) € S§,,. In view

of (13a) and (14a), Eq ( 5) can be written as follows:
J(m) = E[trace((Xuw (F)w + Xo(F)xo)
(Xw(F)w+X0( ) 0)'Q
+ (U (F)w + Ug(F)x)
X (Uy(F)w + Ug(F)zo)"R)]| = J(F). (16)
In view of (11)-(12), (16) implies that
J(F) =
trace (X (F)Xow(F)T + Xo(F)IS I TX0(F)T)Q
+ (Un(F)Uy(F)" + Up(F)TZ, I Ug(F))R).
(17)
Note that J(F) = J(n), when m € II'. It should be

highlighted that, at this point, it is not clear whether
J(F) is convex (in F) or not [24].

3.8 The Performance Index FExpressed as a Convex
Function of a New Decision Variable ¥

Next, we will use an intuitive bilinear transformation,
which was suggested in [24], in order to express the per-
formance index J(m) as a convex function of a new de-
cision variable, which is denoted as ¥ and is defined as
follows:

¥ .= F(I-HF) ! = ¢(F), (18)
where d) : ]B%LNX(N+1)(m,n) — IB%LNX(N_,_l)(m,n).
Eq. (18) implies that

F=(I+%H) '¥ = ¢(¥), (19)
where ¢ : BLy « (n41)(m,n) = BLyy (n4+1)(m, n). Note
that (I + $H)~! is well defined based on similar ar-
guments with those used for the well-posedness of (I —
HF) ! in Section 3.1. Finally, one can readily conclude
that ¢ () = ¢71()-

By virtue of (13a)-(13c) and (19), « can be expressed as
a function of the new decision variable, ¥, as follows:

z =Xp(P)w + Xo(P)x, (20a)

Xyp(P) = (Xypod)(P)=1I+HD)G, (20b)
Xo(T):=(Xg0¢)(P)=(1+HUT). (20c)
Similarly, by virtue of Eq. (14a)-(14¢c) and (19), we get
u = U, (P)w + Up(F) o, (21a)

Uy () := (Uy 0 9)(P) = TG, (21Db)

Uo(¥) = (Ug o 6)(¥) = W, (210)

Next, we will express the performance index J(7) in
terms of the new decision variable, ¥. To this aim, let
J(¥) := (J 0 ¢)(¥). Then, in view of Eq. (17), we have

() =
trace((Xw (U)X o (¥)T + Xo(T)TZ,ITXo(¥)T)Q
+ (U (U (2)" +Uo(‘I’)FEOFTUO('I’)T)R)a(QZ)

where, by definition, J(¥) = J(F) = J(r), when 7 € I
and F = ¢(®).

Proposition 1 The function ¥ + J(¥) : BLy(n41)



(m,n) = R, where J(¥) is defined in (22), is convez.

PROOF. By virtue of (22), we have that J(¥) can be
written as the sum of four terms, which can in turn be
expressed as the compositions of the function h(A) =

trace(AA") with the following four functions: a; (¥) :=
Q72X (W), ax(¥) 1= QX (W)TTY?, a3(W) =

RY2U,, (W), and ay(¥) = RY*U,(T)TSH?. Note
that the function h(A) is convex (in the elements of
A) !, whereas the function a;(®) is either linear or
affine, for all ¢ = [1,4]4, in view of (13a)-(14c). We im-
mediately conclude that each composite function (h o
a;)(®), ¢ € [1,4]q, is convex (in ¥) as the composition
of a convex function with an affine / linear function of
W. Thus, J(¥) is a convex function as the sum of the
four convex functions (h o a;)(¥), i € [1,4]4. B

3.4 Input Constraints Expressed in Terms of the New
Decision Variable

In view of (10b), the k-th constraint function C* (),
k € [1,4¢l4, can be written as follows:

CF(n) = E[uT’RIZu] = ]E[trace(uuT’ng)], (23)
where RY := bdiag(R(0),...,R¥(N — 1)). By virtue
of (21a), Eq. (23) can be written as follows:

C*(r) = E [trace (U (¥)w + Uo () )
X (Uw(T)w +Uo(T)xo)TRE)] = € (F), (24)

for k € [1,¢]q. In light of (11)-(12), the expression of
¢F (W) can be simplified as follows:

¢F(®) = trace((Uaw (¥) UL, (T)"
+Uo(T)TE L U(B))RE), ke[l qla (25)
Proposition 2 For every k € [1, q|q, the function ¥ —
(W) : BLyx(n41) (m,n) — [0,00), where €*(¥) is
defined in (25), is conves.

PROOF. The proof is similar to that of Prop. 1. B

3.5 Terminal Constraints on the State Covariance Fx-
pressed in Terms of the New Decision Variable

Next, for a given 3¢ € ST+, we will express the terminal
constraint ]E[.TffﬂfT] = 3 in terms of the new decision
variable ¥. In view of (20a) and (11)—(12), we have

E[wa:T}

= E[(Xw(T)w + Xo(¥)zo) (X o (¥)w + Xo(T)zo) "]
= X (P) X (O) + Xo(O)TE T X ()T

= (I+H¥)(GG" +I'E,I'")(I+HPY)T, (26)

! Using the fact that trace(AAT) = vec(A)Tvec(A) (see

for instance [17, pg. 252]), it follows readily that trace(A.A7T)
is equal to the sum of the squares of all the entries of \A.

where in the last derivation we have used (20b)-
(20c). Now, because z¢ = xz(N) = Ppyx, where
Py :=[0...1I € RP*NV+D7 we can write that

Elzfaf] = PyE[zz"| PN = Z(2)Z(®)",

where Z(®), which belongs to R**(N+1D7 is defined, in
view of (26), as follows:

Z(W) = Pyx(I+HP)(GGT +Tx,rTY2. (27)

Therefore, the boundary condition E[zfzf| = ¢ can
be written as a matrix equality constraint in terms of
the new decision variable, ¥, as follows:

f(U;3) =0, f(U;%):=3%—Z(P)Z(P)T. (28)

The matrix equality constraint £(¥; X¢) = 0 is equiva-
lent to the following n(n + 1)/2 scalar constraints:

FOD (@ 5%) =0, fO(W; %) = e £(¥; Tp)e;, (29)

for 4,7 € [1,n]q with ¢ > j (recall that 3¢ belongs to
S;i*), where e; and e; denote the n-dimensional unit
vectors whose elements are equal to zero except from, re-
spectively, the i-th and the j-th elements which are equal
to one. The set of matrices in BLy(n41)(m,n) that

satisfy the equality constraint given in (29) for a given
pair (4,7) is non-convex except from the special case in

which the term in the expression of f(9)(®¥; %) that
is quadratic in W vanishes, in which case f(*9)(¥; %)
reduces to an affine function of ¥ [8, p. 314].

3.6  Formulation of Problem 1 as an Equivalent NLP

On the grounds of the previous discussion, we are now
ready to reduce the stochastic optimal control problem,
whose precise formulation was given in Problem 1, to
the following deterministic, finite-dimensional nonlinear
program (NLP):
Problem 2 Given ¢ € Z*+ and positive scalars c*,
k € [1,qla, find a matriz ¥° € BLyy(n41)(m,n) that
minimizes the performance index J(¥), which is defined
in (22), subject to the inequality constraints € (¥) < &,
k € [1,qla, where €*(W) is defined in (25), and the
n(n +1)/2 (scalar) equality constraints given in (29).
It should be emphasized that Problem 1 and Problem 2
are equivalent in the following sense: if the control pol-
icy 7° € I, with 7° = {u°(Xo,0),...,u°(Xn_1,N —
1)} and po(Xp,t) = S.P_ KO(t,7)x(t), for t €
[0, N — 1]4, solves Problem 1, then the matrix ¥° €
BLyxx (n41)(m,n), where ¥° = 1 (F°) with
Fe =

K°(0,0) 0 e 0 0

K°(1,0) K°(1,1) ... 0 0

K°(N—1,00 K°(N—1,1) ... K(N—1,N—1) 0

will solve Problem 2, and vice versa. It is well known,
however, that the solution of an NLP can be a very chal-
lenging task, in practice. For both computational and



analytical reasons, it is much more preferable to asso-
ciate the covariance control problem with a convex pro-
gram rather than an NLP. This motivation sets the stage
for the discussion and analysis that will be presented in
the next section.

3.7 A Convex Relazation for the NLP Formulation of
the Covariance Control Problem

A simple convex relaxation technique for our prob-
lem is to substitute the (matrix) equality constraint
f(P;3) = 0, where £(¥;3y) is defined in (28), with
the positive semi-definite (PSD) matrix constraint
f(¥;3¢) > 0, which is convex as we show next.

Proposition 3 For a given ¥f € S+, the PSD ma-
triz constraint £(W; 3¢) = 0, where £(V; X¢) is defined
in (28), is convezr in W in the sense that the set {¥ :
f(W;3¢) = 0} is a convex subset of By (n4+1)(m,n).

PROOF. Let X(¥) := [Z(E\I::)T Z<I‘I'>}_ Then, the PSD
matrix constraint £f(¥; 3¢) = 0, where f(¥; 3¢) := X —
Z(P)Z(P)T, can be written equivalently as X(¥) =
0, given that £(W;3) is the Schur complement of I in
X (W). Because X(¥) is an affine function (in ¥), we
conclude that the PSD matrix constraint X(¥) > 0 is
convex in ¥ [7,8]. &

Next, we formulate a semi-definite program (SDP) which
corresponds to a relaxed version of the NLP (Problem
2) that results after the replacement of the non-convex
matrix constraint f(W¥;3¢) = 0, which appears in the
formulation of the NLP, with the convex (PSD) matrix
constraint f(¥; 3¢) > 0.

Problem 3 Given ¢ € Ztt and positive scalars &,
k € [1,qlq, find the matric ¥° € BLyy(n41)(m,n)
that minimizes the performance index J(¥), which is
defined in (22), subject to (i) the inequality constraints
CF(W) <&, k € [1,q]a, where € (W) is defined in (25),

and (ii) the PSD matrixz constraint:
S Z(D)
Zzw)T 1

] . (30)

The following proposition is an immediate consequence
of Propositions 1-3.

Proposition 4 Problem 3 corresponds to a convex pro-
gram and in particular, a semi-definite program (SDP).

Remark 4 The fact that the stochastic optimal control
problem (Problem 1) can be associated with a convex
program (Problem 3) outweighs the fact that the two
problems are not equivalent in the strict mathematical
sense (in contradistinction with Problem 1 and Prob-
lem 2, which are equivalent, in principle). In particular,
Problem 3 can be addressed by means of modern com-
putational tools of convex optimization [5, 7], many of
which are freely available online for academic use, such
as CVX [13]. These tools will allow us to unambiguously
determine whether Problem 3 is feasible or not and if

Problem 3 does admit a solution, they will always (in
principle) characterize it.

Remark 5 It should be highlighted at this point that
the solution of the (relaxed) convex program formulated
in Problem 3, in which it is required that £f(¥;3) > 0
instead of the non-convex equality constraint £(¥; 3¢) =
0, can actually lead to more desirable results, from a
practical point of view, than the solution to the origi-
nal non-convex (NLP) formulation given in Problem 1.
In particular, despite the fact that the endpoints of a
representative sample of closed-loop trajectories associ-
ated with the solution to the convex program will not
follow exactly the goal Gaussian distribution A (0, X¢),
they are more likely to be at least as much condensed
near the origin (mean of the goal distribution) as the
endpoints of trajectories associated with the solution to
the, much more complex, NLP. This statement is based
on the interpretation of the terminal state covariance as
a measure of the dispersion of the endpoints of a repre-
sentative sample of trajectories of the close-loop system
from their mean. In applications in which the equality
constraint f(¥;¥¢) = 0 should be enforced as closely
as possible, the PSD constraint f(¥; 3¢) > 0 has to be
“tightened” accordingly; in particular, E[zsz{] should
belong to S+ and be “close,” in terms of an appropriate
distance function on St [6], to 3. The key challenge
here is to meet the latter requirements without “destroy-
ing” the convexity of the optimization problem. Find-
ing this particular formulation seems to require more in-
depth analysis.

3.8 Formulation of Problem 8 as a Tractable Convex
Program in Standard Form

Note that despite the fact that Problem 3 corresponds
to a convex program, we cannot address it directly us-
ing some of the powerful computational tools for con-
vex programs such as CVX [13], which are freely avail-
able for academic use, without bringing it first to a stan-
dard form. To this aim, we will have to associate Prob-
lem 3 whose domain is BL . (n41)(m,p), which is a
convex subset of RV"*(N+1P with an equivalent con-

vex program whose domain is a convex subset of an /-
dimensional real vector space, for some ¢ € Z*+.

Let us now introduce the ¢-dimensional (column) vector
1, where £ := N (N + 1)mn/2, which consists of all the
elements of the N (N +1)/2 non-zero blocks ¥;; € R™*™
of the lower triangular matrix ¥ = [¥,;]. We denote
by W — ©(¥) : BLyy(nt1)(m,n) — R one particu-
lar linear function that maps the ¢ elements, in total, of
the N(N + 1)/2 block matrices ¥;; of ¥, with ¢ > j,
to the ¢ elements of 1. (Note that one can define the
function ¢() in many different ways; the particular lin-
ear correspondence between the elements of the non-zero
block matrices of ¥ and those of the /-dimensional vec-
tor 1) is, however, irrelevant to the subsequent discus-
sion). We will write 1 = ¢(¥) and ¥ = ¢~ 1(1)). Now,
let J(1) == (Jow )(¥), CF(y) == (€ 07 !)(4h),
for k € [1, ¢]4. In view of Propositions 1 and 2, we know
that both J(¥) and ¢*(¥) can be expressed as con-
vex quadratic functions of the elements of the decision



variable ¥, or equivalently, J(v») and C*(1)) can be ex-
pressed as convex quadratic functions of ¢ = (). In
particular, we have that

J)=olr@), C"@)= (&) rH), (31

for k € [1, q]q, where (1)) corresponds to a (¢ 4+ 1)(¢ +
2)/2-dimensional column vector defined as follows:

() = [ () (), e ()T ()T, 1]

with 7, (1) € R“27% k€ [1,£]4, be vectors of monomi-
als of the elements of 1) defined as follows:

T (%) = (W05 P Pmr1)s -+ s D)o ¢(m)}T

for m € [1,£ — 1]g and r(¢p) = [¢(2£)7 ¢(2)}T7 where
Yy, & € {1,...,£}, denotes the k-th element of the
vector ©. Finally, oj and a”é denote, respectively, the (¢+
1)(¢42)/2-dimensional column vectors which are defined
such that (31) holds true (one can compute these vectors
by using standard computational symbolic toolboxes).
Given that both J(1p) and C*(3) are convex quadratic
functions of 1, as we have already mentioned, we can
alternatively express them as follows:

J(¥) = v "Hop + g + do, (32)
Cr(p) = THEp + (ch)Ty + di, k€ [l,qla, (33)

where Hy and H* belong to SZ‘ and their entries are in
direct correspondence with, respectively, the entries of
the vectors oj and O'Ié that correspond to the coefficients
of the second degree monomials of (1)), whereas ¢ and

k

c¥ are formed by the entries of o) and of that corre-

spond to the coefficients of the first degree monomials
of r(1)). Furthermore, both of the real constants dy and
d* correspond to the last element of 7(¢/) (monomial of
zero degree).

To enforce the PSD matrix constraint given in (30),
we will only have to express Z(¥), which is de-
fined in (27), as a function of the ¢-dimensional vec-
tor ¥ = @(¥). In particular, we can write Z(¢) =
[coly (Z(9)), ..., colnt1)n(Z(¥))] where Z(3p) =
(Z o = 1)(1p). In addition, because Z(¥) is an affine
function of ¥ and ¢~ !(v) is a linear function of b,
it follows that Z(w) is also an affine function of .
Consequently, we can write col;(Z(v)) = E;¢ + §;,

j € [L,(N + 1)n]q, where E; € R"™* and &; € R™.
Now, let E(¢) := [Elw,...,E(NJrl)n'(p] and E =
[€1, ... &N41)n] such that Z(sp) = E(¢) +E. Note that
the mapping @ — E(ap) : Rf — R?*(N+Dn g Jinear.
Therefore, (30) can be written as follows:

3¢ E(y)+E2
E)" +E" I
Note that X(¢)) is an affine function (in %)). In the light

of the previous discussion, Problem 3 reduces to the fol-
lowing (convex) semi-definite program (SDP).

Problem 4 Find the vector° € R* that minimizes the
performance index J(), which is defined in (32), subject

X(®) =0, X(¢):= - (34)

to the conver quadratic inequality constraints C*(zp) <
c, k € [1,qla, where CF(v)) is defined in (33), and the
PSD matriz constraint given in (34).

One can find a vector ¥° that solves Problem 4 by us-
ing, for instance, CVX [13], then characterize the corre-
sponding matrix ¥° = ¢ ~1(1)°) and subsequently com-
pute the associated matrix F° = ¢(¥°), where ¢(-) is
defined in (19). Note that F° will give us the optimal
gains K°(¢t, 1), for t,7 € [0, N —1]4, with ¢ > 7, that will
determine a corresponding control policy 7° € IT'.

4 Numerical Simulations

To illustrate the ideas we have discussed so far, we will
present numerical simulations for the following discrete-
time stochastic linear system:

z(t+1) = (1+ Ata)z(t) + Atu(t) + VAtw(t), (35)
for t € [0, N — 1]4, where o € R and At > 0 are known
parameters. Note that (35) is the result of the applica-
tion of a naive, first-order FEuler discretization scheme
to the following stochastic (It6) differential equation:
dz(t) = (ax(t) + u(t))dt + dw(t), where w(t) is a stan-
dard Brownian (white) noise process with unit inten-
sity. Let the initial state, 2(0) = zo, and the terminal
state, (N) = z¢, be drawn from the normal distribu-
tions NV(0,02) and N(0, o), respectively, where o > 0
is given and of < ¢ for a given ¢ > 0. The perfor-
mance index J(7) = E[ PONIS (t)?] and the input pro-
cess has to satisfy the following inequality constraint:
Cl(n) = E[Zi\gl u(t)?] < ¢, where &' > 0 is given.
Note that the running cost that appears in J(7) is a “sin-
gular” quadratic cost (there is no penalty on the con-
trol effort). For our simulations, we have used the fol-
lowing data: N = 15, At = 27°, a = —04, 0¢p = V2,
of = V1.4, and &' € {3.375,4.5,5.625}. By following
the procedure discussed in Section 3.8, J(7) is expressed
as a convex quadratic function of ¥ whereas the input
constraint C1(7) < & and the terminal variance con-
straint 0? < o7 yield two respective convex quadratic
inequality constraints. The obtained problem is a convex
quadratically constrained quadratic program which is
subsequently solved by using CVX [13]. In particular, it
turns out that the optimal decision variable F° ¢ R15x16
is given by F° = [Fj’, O], where

F{ = —diag([0.549, 0.524, 0.497, 0.469, 0.439,
0.407 ,0.374 ,0.339 ,0.302 , 0.264,
0.224, 0.182, 0.139, 0.094, 0.048]),

F{ = —diag([0.636, 0.607, 0.577, 0.545, 0.511,
0.475, 0.437, 0.397, 0.354, 0.310,
0.263, 0.214, 0.163, 0.111, 0.056]),

F{ = —diag([0.712, 0.682, 0.649, 0.614, 0.576,
0.536, 0.494, 0.449, 0.401, 0.351,
0.298, 0.243, 0.186, 0.126, 0.064]),

for ¢' = 3.375, &' = 4.5, and &' = 5.625, respectively.
Note that the only elements of F° that turned out to be
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Fig. 2. Evolution of the state variance X(t) := E[z(t)?] for
different upper bounds on the £2-norm of the input process.

non-zero are the diagonal elements of F{. In particular,
the elements (F$)(7) with i > j are numbers of order
10~ or smaller.

Figure 2 illustrates the time evolution of the state vari-
ance X(t) := E[x(t)?] of the closed-loop system, which is
driven by the optimal feedback control policy that solves
Problem 3, for ¢t € [0, 15];. We observe that as we de-
crease the upper bound on the ¢5-norm of the input pro-
cess, the terminal state variance %(15) = E[z(15)?] ap-
proaches its upper bound 7 = 1.4. Therefore, the more
stringent the control input constraints, the more dis-
persed the endpoints of a representative sample of state
trajectories of the closed loop system are expected to be.

5 Conclusion

In this work, we have proposed an optimization-based
solution technique for finite-horizon covariance control
problems with perfect state information for discrete-time
stochastic linear systems subject to input constraints. In
our future work, we plan to extend the proposed tech-
niques to problems with imperfect and incomplete state
information and stochastic systems with nonlinear dy-
namics.
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