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Abstract

We consider a class of Voronoi-like partitioning problems, in which a multi-agent network seeks to subdivide a subset
of an affine space into a finite number of cells in the presence of sensing constraints. The cell of this subdivision that is
assigned to a particular agent consists exclusively of points that can be sensed by this agent and are closer to it than to
any other agent that can also sense them. The proximity between an agent and an arbitrary point is measured in terms
of a non-homogeneous quadratic (generalized) distance function, which does not, in general, enjoy the triangle inequality
and the symmetry property. One of the consequences of this fact is that the structure of the sublevel sets of the utilized
proximity metric does not conform with that of the sensing region of an agent. Due to this mismatch, it is possible that
a point may be assigned to an agent which is different from its “nearest” agent simply because the nearest agent cannot
sense this point, unless special care is taken. We propose a distributed partitioning algorithm that enables each agent to
compute its own cell independently from the other agents when the only information available to it is the positions and
the velocities of the agents that lie inside its sensing region. The algorithm is based on an iterative process that adjusts
the size of the sensing region of each agent until the associated cell of the latter corresponds to the intersection of its
sensing region with the cell that would have been assigned to it in the absence of sensing constraints. The correctness
of the proposed distributed algorithm, which successfully handles the aforementioned issues, is studied in detail.
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1. Introduction

In this work, we consider a spatial partitioning prob-
lem for a multi-agent network in the presence of sens-
ing constraints. The region to be partitioned is a subset
of an affine subspace which is comprised of points that
can be reached by the agents with zero terminal veloc-
ity (terminal manifold of the multi-agent network). It is
assumed that each agent can measure its distance from
an arbitrary point in the terminal manifold by means of
a non-homogeneous quadratic (generalized) distance func-
tion, provided this point lies in its sensing region. In addi-
tion, it is assumed that each agent can only sense the ve-
locities and the positions of its teammates that lie within
its sensing region. The solution to this partitioning prob-
lem corresponds to a collection of non-overlapping cells
that are assigned to different agents. Specifically, the cell
assigned to a particular agent will consist exclusively of
points that are 1) within the agent’s sensing region and
2) closer, in terms of the utilized proximity metric, to this
agent than to any other agent from the same network that
can also sense them.

Literature Review: Partitioning problems are becom-
ing very relevant to several classes of sensing and control
problems involving networks of autonomous agents and
mobile sensors [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Specifically, par-
titioning algorithms can provide such networks, which are

∗Corresponding author
Email address: bakolas@austin.utexas.edu (E. Bakolas)

typically assigned with multiple and spatially distributed
tasks, with the necessary means to “optimize the quality of
service” they provide, according to the authors of [1, 11].

In our previous work, we have proposed a new class of
partitioning problems in which the proximity metric cor-
responds to the optimal value function of a quadratic op-
timal control problem [12, 13]. This class of spatial parti-
tions corresponds to a special class of generalized Voronoi
diagrams (see [14, 15] and references therein), given that
the utilized proximity metric in [12, 13] is different than
those used in standard Voronoi diagram problems. To ad-
dress this class of problems, we have proposed algorithms
which are decentralized in the sense that they enable each
agent to compute its own cell independently from its team-
mates without utilizing, for instance, a common spatial
grid. The main caveat of the approach proposed in [12, 13]
is that its decentralized implementation hinges upon the
assumption that each agent knows the positions and the
velocities of all the other agents. Actually, it suffices to
assume that each agent knows the positions and the ve-
locities of its neighbors in the topology of the Voronoi-like
partition. However, in the latter case, the required infor-
mation about the neighboring relations among the agents
cannot be available to an agent unless the latter knows
the whole solution to the partitioning problem a priori. In
the presence of sensing constraints, such an assumption is
practically impossible to be verified.

Main Contributions and Challenges: The main con-
tribution of this work is the presentation of a distributed
algorithm for a class of partitioning problems involving
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multi-agent networks, which, in contrast with some of our
previous results in this class of problems [12, 13], accounts
explicitly for the presence of sensing constraints. In the
proposed framework, each agent is assumed to know only
the positions and the velocities of the agents that lie in its
sensing region. Following the approach that has been pro-
posed in the literature for the distributed computation of
standard Voronoi diagrams [16, 1] (in which the proximity
metric is the Euclidean distance), we will relax the sens-
ing constraints by allowing each agent to adjust the size
of its sensing region. The objective here is twofold. First,
the sensing region of an agent should be large enough to
allow it to infer the positions and velocities of those of its
teammates in the network that are necessary for the in-
dependent computation of its own cell. Second, the com-
puted cell should be a consistent truncation of the cell
that would be assigned to it in the absence of sensing con-
straints. Here, the term “consistent truncation” describes
the situation in which the intersection of the sensing re-
gion of an agent with its cell in the absence of sensing
constraints coincides with its assigned cell in the presence
of sensing constraints.

In the problem we consider herein, the distributed com-
putation of the Voronoi-like partition poses new challenges,
which cannot be tackled by means of the available tech-
niques used for the distributed computation of standard
Voronoi partitions [16, 1, 17, 7]. This is mainly because the
proximity metric utilized here, which is a non−homogeneous
quadratic function, does not enjoy “nice properties” such
as the triangle inequality and the symmetry property in
contradistinction with the Euclidean distance. A conse-
quence of this fact is that the structure of the sub-level
sets of the proximity metric of an agent, which are ellip-
soids centered at a point that is different, in general, from
the agent’s location, does not match that of its sensing
region, which is a ball centered at the agent’s location.
Because of this mismatch, it is possible that points may
be assigned to an agent that is different from their nearest
one, in terms of the utilized proximity metric, because the
latter agent cannot sense them, unless special care is taken.
The proposed algorithm, whose correctness is analyzed in
detail, addresses successfully all the aforementioned issues.

Organization of the paper: The rest of the paper is or-
ganized as follows. Section 2 presents the formulation of
the partitioning problem in the presence of sensing con-
straints. A distributed partitioning algorithm along with
a detailed analysis of its correctness are presented in Sec-
tion 3. Section 4 presents numerical simulations, and fi-
nally, Section 5 concludes the paper with a summary of
remarks.

2. Formulation and Analysis of the Partitioning
Problem in the Presence of Sensing Constraints

2.1. Notation

We denote by Rm the set ofm-dimensional real vectors.
We denote by R≥0 and Z≥0, respectively, the sets of non-
negative real numbers and integers. We write |α| to denote
the 2-norm of a vector α ∈ Rm. We write P = PT ≻ 0
to denote the fact that a square (symmetric) matrix is
positive definite. Furthermore, we denote by λmin(P) and

λmax(P) the minimum and the maximum eigenvalues of a
symmetric matrix P, respectively. Similarly, the minimum
and the maximum singular values of a matrix A are de-
noted by σmin(A) and σmax(A), respectively. In addition,
bd(S) and int(S) denote, respectively, the boundary and
the interior of a set S ⊂ Rm. The relative interior of a set
S will be denoted by rint(S). The closed ball of radius ̺
around a point x ∈ Rm will be denoted by B(x; ̺). Fi-
nally, L2([0, τ ],Rm) denotes the space of square integrable
functions g : [0, τ ] 7→ Rm, for a given τ > 0.

2.2. Problem Setup

We are given a network of n agents which are initially
located at n distinct points, x̄i ∈ R2, with prescribed ini-
tial velocities, v̄i ∈ R2, where i ∈ In := {1, . . . , n}. We
denote by X := {x̄i ∈ R2, i ∈ In} and V := {v̄i ∈ R2, i ∈
In}, respectively, the sets of initial positions and initial ve-
locities of all the agents. The motion of the i-th agent from
the network, where i ∈ In, is described by the following
set of equations:

żi = A(t)zi +B(t)ui(t), zi(0) = z̄i, (1)

where zi := [xT
i , vT

i ]
T ∈ R4 and z̄i := [x̄T

i , v̄T
i ]

T ∈ R4

denote, respectively the state of the i-th vehicle (concate-
nation of position and velocity vectors) at time t and t = 0;
the set of initial states of all the agents is denoted by
Z := {z̄i ∈ R4, i ∈ In}. Moreover, ui(·) ∈ L2([0, τ ],R2)
denotes the control input of the i-th agent. In addition,
A(·) and B(·) are continuous matrix-valued functions of
time and can be defined, for instance, as in [13], in which

case, A(t) :=
[

02 I2

−K(t) −C(t)

]

, B(t) :=
[

02

H(t)

]

, where I2 and

02 are the identity and the zero 2×2 matrices, respectively,
and K(·), C(·) and H(·) are continuous matrix-valued
functions of time; in addition, H(t) is a non-singular 2× 2
matrix for all t ≥ 0. Finally, the terminal manifold, which
is denoted by X0, is taken to be a two-dimensional affine
subspace embedded in R4, which consists of all the posi-
tions that can be reached with a zero terminal velocity,
that is, X0 := {z = [xT, vT]T ∈ R4 : v = 0}.

Following [13], we will be measuring the distance be-
tween the i-th agent and an arbitrary point z(x) := [xT, 0]T

in the terminal manifold X0 by means of the minimum
control effort required for the former to reach the latter.
In particular, let τ > 0 and let U(x; τ, z̄i) := {ui(·) ∈
L2([0, τ ],R2) : zi(τ ; z̄i,ui(·)) = [xT, 0]T} where zi(·; z̄i,
ui(·)) denotes the solution to the initial value problem
given in (1) for a given input ui(·). It can be shown that if
U(x; τ, z̄i) 6= ∅, which is always true when the system (1)
is controllable at t = τ , then the minimum control effort re-
quired to steer the system (1) from z̄i to z(x) := [xT, 0]T

at time t = τ , which is denoted by J◦(x; τ, z̄i), where

J◦(x; τ, z̄i) := min
ui(·)∈U(x;τ,z̄i)

∫ τ

0

1
2 |ui(t)|2dt,

satisfies the following equation:

J◦(x; τ, z̄i) = 〈x− q(τ, z̄i),P(τ)(x− q(τ, z̄i))〉
+ δ(τ, z̄i), (2)

where P(τ) is a positive definite 2 × 2 matrix, that is,
P(τ) = PT(τ) ≻ 0, q(τ, z̄i) is a two-dimensional column
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vector and δ(τ, z̄i) is a non-negative number. Note that the
matrix P(τ) does not depend on any parameter besides the
final time τ and is solely determined by the solution to the
optimal control problem. Similarly, q(τ, z̄i) and δ(τ, z̄i)
depend only on the final time τ and the initial state of the
i-th agent. In other words, no parameter selection, which
would potentially put in question the distributed charac-
ter of the algorithmic tools that will be introduced later
on, is required. Moreover, in order to better illustrate the
connection of the results of this work with those presented
in [13], let us mention here that P(τ) and q(τ, z̄i) corre-
spond, respectively, to P(τ) and q(τ, z̄i) from [13], which
satisfy, respectively, Eq. (11) and Eq. (13) from the same
reference.

Remark 1 Henceforth, we will be writing J◦
i (x), P, q̄i,

and δi in lieu of, respectively, J◦(x; τ, z̄i), P(τ), q(τ, z̄i)
and δ(τ, z̄i) to simplify the presentation. In addition, we
will also assume that q̄i can be written as follows

q̄i = E1x̄i +E2v̄i, (3)

where E1 and E2 are known 2 × 2 matrices (independent
of the index i). Again, the expressions for E1 and E2 can
be easily found by using Equations (11)–(13) from [13].

2.3. Formulation of the partitioning problem

Next, we formulate the partitioning problem in the
presence of sensing constraints.

Problem 1. Let Σc be a convex and compact subset of

R2 and let Sc := {[xT, 0]T : x ∈ Σc} ( X0. In addi-

tion, let ηi > 0 be the sensing radius of the i-th agent

from a network of agents that are emanating from the

point-set Z := {z̄i = [x̄T

i , v̄T

i ]
T, i ∈ In} ( R4, and

let H := {ηi, i ∈ In} ( R≥0. Then, determine a parti-

tion V(Z;H) := {Vi(z̄i; ηi), i ∈ In} of the set S, where
S :=

{

[xT, 0]T ∈ Sc : x ∈ ∪i∈In
B(x̄i; ηi)

}

, such that

(i) S =
⋃

i∈In
Vi(z̄i; ηi),

(ii) rint(Vi(z̄i; ηi)) ∩ rint(Vj(z̄j ; ηj)) = ∅, for all i, j ∈
In, i 6= j,

(iii) A point z(x) ∈ S ( X0, where z(x) = [xT, 0]T,
belongs to Vi(z̄i; ηi) if, and only if, J◦

i (x) ≤ J◦
j (x),

for all j ∈ {ℓ ∈ In\{i} : x̄ℓ ∈ B(x̄i; ηi)}, where

J◦
ℓ (x), ℓ ∈ In, is given by Eq. (2).

Note that Problem 1 was addressed in [13], for the
special case when ηi → ∞ for all i ∈ In (absence of
sensing constraints), in which case S = Sc. We will de-
note the spatial partition that solves Problem 1 in the ab-
sence of sensing constraints by V

∞(Z), where V
∞(Z) =

{V∞
i (z̄i), i ∈ In}. As is shown in [13], the partition

V
∞(Z) corresponds to an affine diagram, that is, a par-

tition comprised of cells that are convex polygons. It is
obvious that the domain of the partitioning problem in
[13] is, in general, larger than that in Problem 1 given
that the presence of sensing constraints in the latter limits
the set of points that the agents will have to subdivide
(note that herein, a point cannot be assigned to an agent,
if it does not belong to its sensing region). The main dif-
ference between the two partitioning problems, however,

lies in condition (iii). This condition alone tells us that in
order for, say, the i-th agent to determine whether or not
it is the nearest agent to a point z(x) ∈ S ( X0, it has
to compare its distance from this point, J◦

i (x), with that
of the agents that belong to its sensing region only. By
contrast, the set of competitors of the i-th agent in [13]
consists of every other agent. It should be mentioned here
that for the application of the algorithm proposed in [13],
in principle, it suffices to confine the set of competitors of
the i-th agent to its neighbors in the topology of V∞(Z),
that is, the agents whose cells share a common face with
its own cell. In both cases, however, the required informa-
tion about the neighboring relations of the i-th agent with
the other agents cannot be available to it a priori without
having knowledge of the partition V

∞(Z) itself, which is
an unrealistic assumption.

The question that naturally arises is whether or not
the cell Vi(z̄i; ηi), when 0 < ηi < ∞, which is computed
by restricting the set of competitors of the latter to the
agents lying in its sensing region, in accordance with con-
dition (iii) of Problem 1, will also satisfy conditions (i) and
(ii) of the same problem. For instance, if two agents can
sense the same point but not each other, then both of them
will claim that this point should be assigned to them si-
multaneously (unless the point is equidistant from the two
agents, this double assignment would violate condition (ii)
of Problem 1). All three conditions of Problem 1 would be
satisfied if, for instance, the cell assigned to the i-th agent
coincided with the intersection of the cell that would be
assigned to it in the absence of sensing constraints and its
sensing region, that is,

Vi(z̄i; ηi) = V
∞
i (z̄i) ∩ BX0

(x̄i; ηi), (4)

where BX0
(x̄i; ηi) := {[xT, 0]T ∈ X0 : x ∈ B(x̄i; ηi)}.

If (4) is satisfied, we say that Vi(z̄i; ηi) is a consistent
truncation of V∞

i (z̄i). We will show later that (4) is al-
ways true, if the sensing ball of the i-th agent, B(x̄i; ηi),
contains all the neighbors of the i-th agent in the topology
of V∞(Z). Because V

∞(Z) is an affine diagram in X0, it
follows that the neighbors of the i-th agent in V

∞(Z) are
the agents whose assigned cells share a common face with
its cell, V∞

i (z̄i). Specifically, if we denote by Ni[V
∞(Z)]

and Ni[V( Z;H)] the index sets of the neighbors of the
i-th agent in, respectively, the affine diagram V

∞(Z) and
the truncated affine diagramV(Z;H), then for (4) to hold,
it is sufficient that

Ni[V(Z;H)] = Ni[V
∞(Z)]. (5)

Next, we prove the last claim and we also present an ad-
ditional assumption under which (5) is also a necessary
condition for (4) to hold true.

Lemma 1. If (5) is satisfied, then (4) also holds true. In

addition, if V∞
i (z̄i) ⊆ BX0

(x̄i; ηi), then (5) is also neces-

sary for (4) to be satisfied.

Proof. First, we show that (5) implies (4). From the
definition of Vi(z̄i; ηi), and in particular, condition (iii)
in Problem 1, it follows that in order to determine whether
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a point z = [xT, 0]T ∈ BX0
(x̄i; ηi) ∩ Sc belongs to the cell

of the i-th agent or not, one has to compare J◦
i (x) with

J◦
ℓ (x), where ℓ ∈ Ni[V(Z;H)] in the presence of sensing

constraints, and ℓ ∈ Ni[V
∞(Z)] in the absence of sensing

constraints. Therefore, if (5) holds, the set of competitors
of the i-th agent in both the presence and the absence
of sensing constraints is the same and it is contained in
BX0

(x̄i; ηi) necessarily. Consequently, (4) holds true.
Conversely, if V∞

i (z̄i) ⊆ BX0
(x̄i; ηi), then (4) reduces

to the following: Vi(z̄i; ηi) = V
∞
i (z̄i), from which (5)

follows trivially. �

Because the terminal manifold X0 is homeomorphic to
R2, one can address Problem 1 directly over the set Σ
rather than S, where Σ := ∪i∈In

B(x̄i; ηi) ∩ Σc. In partic-
ular, as suggested in [13], one can take the set of generators
to be the point-set Q := {q̄i ∈ R2, i ∈ In} in lieu of Z
given that the proximity metric, J◦

i (·), of the i-th agent is
minimized at x = q̄i rather than x = x̄i, for all i ∈ In. In
the absence of sensing constraints, we will denote the par-
tition of Σ generated by Q by Q

∞(Q). Note that Q∞(Q)
is equivalent to the partition V

∞(Z) of S generated by
Z in the sense that a point z(x) = [xT, 0]T belongs to,
say, the cell V∞

i (z̄i) if, and only if, x ∈ Q
∞
i (q̄i) [13]. In

addition, we have that Ni[Q
∞(Z)] = Ni[V

∞(Z)], which
means that, in the absence of sensing constraints, the in-
dices of the neighbors of the generator z̄i in the topology
of V∞(Z) coincide with those of the generator q̄i in the
topology of Q∞(Q), and vice versa.

In the presence of sensing constraints, we will denote
the partition of Σ which is equivalent to V(Z;H) by Q(Q;
X ,H). The previous notation reflects the fact that the
sensing ball of the i-th agent is centered at its actual po-
sition, x̄i, rather than the new generator q̄i. This obser-
vation elucidates a key challenge in the computation of
V(Z;H) or equivalently Q(Q;X ,H), namely that in the
presence of sensing constraints, it is possible to have, for
instance, a point x that is closer to, say, the i-th agent,
but it does not belong to its sensing ball. Consequently,
this point may end up being assigned to an agent which
can sense it but, at the same time, is farther from it than
from the i-th agent. The situation is illustrated in Fig. 1.

x
x̄jx̄i

ηjηi

q̄jq̄i

c1
c1

c2

Figure 1: The point x can be reached by the i-th agent located
at x̄i with less control effort than the j-th agent located at x̄j

given that x belongs to the c1-sublevel set of J◦

i but not the
c1-sublevel of J◦

j (it belongs instead to the c2-sublevel set of
J◦

j , with c2 > c1). However, the point x does not belong to the
sensing ball of the i-th agent and thus it cannot be assigned to
it; instead, it will be assigned to the j-th agent.

To deal with the previously described issue, we will
consider a network of n fictitious (or dummy) agents, the
i-th member of which is located at q̄i and its sensing region
corresponds to an ellipsoid centered also at q̄i in contrast

with the actual i-th agent, which is located at x̄i and its
sensing region is the closed ball of radius ηi centered at q̄i,
where, in general, q̄i 6= x̄i. Specifically, the sensing region
of the i-th fictitious agent, which is denoted by P(q̄i; γi),
where γi > 0, corresponds to the γi-sublevel set of the
function J◦

i (·), that is,

P(q̄i; γi) := {x ∈ R2 : J◦
i (x) ≤ γi}.

We will assume that the i-th fictitious agent can only sense
the locations and the velocities of the (fictitious) agents
that lie in the ellipsoid P(q̄i; γi). It should be noted here
that the structure of the sensing region of the fictitious
agent now conforms with those of the sublevel sets of its
proximity metric. Henceforth, we will write Qi(q̄i; γi) to
denote the cell assigned to the i-th fictitious agent whose
sensing region is the ellipsoid P(q̄i; γi), in contradistinction
with the cell Qi(q̄i; x̄i, ηi), which is assigned to the actual
i-th agent whose sensing region is the closed ball B(x̄i; ηi).
We will also write Q(Q; Γ), where Γ := {γi, i ∈ In}. Note
that, in general, Q(Q; Γ) is different from Q(Q;X ,H).
Finally, we will denote by Ni[Q(Q; Γ)] the index-set of the
neighbors of the i-th agent in the topology of Q(Q; Γ).

Our first objective here is to characterize a positive
number γi such that for all γi ≥ γi, the i-th fictitious
agent can compute its own cell, Qi(q̄i; γi), in a distributed
way. Note that the latter set will consist of all points
x ∈ P(q̄i; γi) with J◦

i (x) ≤ J◦
j (x), for all j ∈ Ni[Q(Q; Γ)].

Similarly to the discussion on the distributed computation
of V(Z;H), our objective is to compute a cell Qi(q̄i; γi)
that is a consistent truncation of Q∞

i (q̄i), that is,

Qi(q̄i; γi) = Q
∞
i (q̄i) ∩ P(q̄i; γi). (6)

Subsequently, based on the obtained lower bound γi on
γi, we will derive a lower bound ηi on the radius ηi of the
sensing ball of the actual i-th agent such that Vi(z̄i; ηi)
will also be a consistent truncation of V∞

i (z̄i), for all ηi ≥
ηi, which was our original assumption.

3. A Distributed Partitioning Algorithm in the Pres-
ence of Sensing Constraints

In this section, we first describe a distributed algorithm
for the computation of the lower bound γi on γi that will
enable the i-th fictitious agent to compute a cellQi(q̄i; γi),
which satisfies (6) for all γi ≥ γi. Following the approach
proposed in [16, 1] for the distributed computation of the
standard Voronoi diagram, we will relax the sensing con-
straints by allowing each agent to adjust the size of its
sensing region until condition (6) is satisfied. The main
challenge in extending the range-adjustment scheme pro-
posed in [16, 1] to our problem has to do with the fact
that the non−homogeneous quadratic function used as the
proximity metric herein does not enjoy some of the “nice”
properties enjoyed by the Euclidean distance. Specifically,
the proximity metric, J◦

i (·), does not enjoy neither the tri-
angle inequality nor the symmetry property, the latter be
understood in the following sense: J◦

i (q̄j) 6= J◦
j (q̄i).

The range adjustment scheme proposed in [18] utilizes
the following property of the standard Voronoi diagrams:
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A circle that is centered at a particular generator of a
standard Voronoi diagram and has a radius that is twice
the distance between this generator and the farthest vertex
of its associated cell contains all of its neighbors (that is,
generators whose cells share a common face with its own
cell). An interesting observation here is that the farthest
vertex of a Voronoi cell from its associated generator is
actually the farthest boundary point of this cell from its
generator. Our first objective is to find whether a similar
property is enjoyed by the solution to our problem. The
following lemma will prove very helpful in the subsequent
analysis.

Lemma 2. Let P ∈ Rm×m be a positive definite matrix,

that is, P = PT ≻ 0, and let x, y, and z ∈ Rm. Then

|P1/2(x− y)|2 ≤ λmax(P)

λmin(P)

(

2|P1/2(x− z)|2

+ 2|P1/2(z − y)|2
)

. (7)

Proof. In light of the Rayleigh quotient inequality, which
states that λmin(P)|z|2 ≤ |P1/2z|2 ≤ λmax(P)|z|2 for any
z ∈ Rm, we have that

|P1/2(x− y)|2 ≤ λmax(P)|x− y|2

≤ λmax(P)|(x− z) + (z − y)|2

≤ λmax(P)
(

|x− z|2 + |z − y|2

+ 2|x− z||z − y|
)

≤ λmax(P)

λmin(P)

(

|P1/2(x− z)|2

+ |P1/2(z − y)|2

+ 2
√

|P1/2(x− z)|2|P1/2(z − y)|2
)

,

from which (7) follows readily in light of the fact that
the arithmetic mean of |P1/2(x− z)| and |P1/2(z − y)| is
greater than or equal to their geometric mean. �

Remark 2 The previous result implies that the square
of the weighted Euclidean distance does not satisfy the
triangle inequality. It is important to highlight that even
in the special case when P = λIm, where λ > 0 and Im
is the identity matrix, the triangle inequality wouldn’t be
satisfied.

Next, we seek for an upper bound on J◦
i (q̄j), when

q̄j ∈ P(q̄i; γi), for γi > 0. To this aim, we first observe
that, in view of Lemma 2,

J◦
i (q̄j) = |P1/2(q̄j − q̄i)|2 + µi

≤ λmax(P)

λmin(P)

(

2|P1/2(q̄i − x◦
ij)|2

+ 2|P1/2(x◦
ij − q̄j)|2

)

+ µi, (8)

where x◦
ij is the minimizer of the function J◦

i over the
common face of the i-th and j-th (fictitious) agents. Note
that x◦

ij always exists and is unique. We also denote by
dij the corresponding minimum “distance” between x◦

ij

and q̄i, that is, dij := J◦
i (x

◦
ij). Because x◦

ij belongs to the
common face of the i-th and j-th (fictitious) agents, we
have that J◦

j (x
◦
ij) = J◦

i (x
◦
ij) = dij , which implies that

|P1/2(q̄i − x◦
ij)|2 + µi = |P1/2(q̄j − x◦

ij)|2 + µj . (9)

Then, in view of (9), (8) yields

J◦
i (q̄j) ≤

λmax(P)

λmin(P)

(

4dij − 2µi − 2µj

)

+ µi

≤ 2
λmax(P)

λmin(P)
(2dij − µi) + µi =: γij . (10)

Then, in light of (10), we have that the j-th (fictitious)
agent is contained in the sensing region of the i-th (ficti-
tious) agent, that is, q̄j ∈ P(q̄i; γi), for all γi ≥ γij . Now

let

γi := max
j∈Ni[Q∞(Q)]

γij

= 2
λmax(P)

λmin(P)

(

max
j∈Ni[Q∞(Q)]

2dij − µi

)

+ µi, (11)

then it follows readily from the previous analysis that q̄j ∈
P(q̄i; γi), for all j ∈ Ni[Q

∞(Q)] and for all γi ≥ γi.
The problem in the previous analysis is that the com-

putation of γi via Eq. (11) requires knowledge of the index

set Ni[Q
∞(Q)], and thus the global partition Q

∞(Q) in
the absence of sensing constraints. This information of
course cannot be available in the presence of sensing con-
straints. Therefore, we need to find a different, and per-
haps more conservative, γi, whose characterization does

not hinge upon knowledge of Ni[Q
∞(Q)]. To this aim, we

propose an iterative process, in which the size of the sens-
ing region of the i-th fictitious agent will be increased until
the cell Qi(q̄i; γi) computed by the i-th fictitious agent is
a consistent truncation of Q∞

i (q̄i) (stopping criterion of
the algorithm). The important nuance here is that check-
ing whether the stopping criterion has been met or not
should be a task carried out by the i-th fictitious agent
completely independently (this is not the case with condi-
tion (11)). This is of key importance for the distributed
implementation of the proposed scheme.

3.1. An iterative process for the adjustment of the sensing
region of each agent

Next, we describe the main steps of an iterative nu-
merical procedure for the distributed computation of γi.
First, we set γi to be equal to some positive number, and
subsequently compute the cell Qi(q̄i; γi) associated with
the i-th fictitious agent. For the computation of this cell,
we will be utilizing a slightly modified version of the par-
titioning algorithm proposed in our previous work [13].

In a nutshell, the algorithm proposed in [13] generates
an approximation of the boundary of the cellQ∞

i (q̄i) when
the region to be partitioned is the compact set Σc. This
algorithm utilizes a finite family of rays emanating from
the generator q̄i that can (approximately) cover Σc. In
particular, the algorithm seeks for the farthest point from
q̄i along the restriction of each ray on Σc that is at the

5



same time “closer” to q̄i than to any other generator from
Q, in terms of the quadratic function used as the proximity
metric. The unknown point along each ray is determined
by means of a simple bisection search algorithm. At each
step of this algorithm, the distance between the generators
in Q and several query points, which are generated along
each ray from the utilized family of rays, is compared. In
this work, the set of competitors of the generator q̄i will
only consist of the generators in Q that belong to its sens-
ing region, P(q̄i; γi), in order to account for the presence
of sensing constraints. This is essentially the main differ-
ence between the original algorithm proposed in [13] and
the one utilized here, which we shall henceforth refer to as
the modified partitioning algorithm. The main challenge
in our approach remains the determination of the size of
the sensing region that will allow the computation of a cell
that is a consistent truncation of the one in the absence of
sensing constraints.

After computing an approximation of Qi(q̄i; γi), we
proceed with the characterization of the maximizer of J◦

i (·)
over Qi(q̄i; γi). This point, which is denoted by x⋆

i (γi), al-
ways exists, given that Qi(q̄i; γi) is a compact set, and be-
longs necessarily to the boundary of Qi(q̄i; γi), in light of
Theorem 3.1 [19, pg. 137]). Let also d⋆i (γi) := J◦

i (x
⋆
i (γi)).

Then, it follows readily from (10) that

J◦
i (q̄j) ≤ 2

λmax(P)

λmin(P)
(2d⋆i (γi)− µi) + µi, (12)

for all q̄j ∈ P(q̄i; γi). Based on the previous discussion,
we claim that if the following inequality holds true

2
λmax(P)

λmin(P)
(2d⋆i (γi)− µi) + µi ≤ γi, (13)

for γi = γi, then (6) is satisfied. Next, we prove this claim.

Proposition 1. If there exists γi > 0 such that condi-

tion (13) holds for γi = γi, then

Qi(q̄i; γi) = Q
∞
i (q̄i) ∩ P(q̄i; γi) = Q

∞
i (q̄i),

for all γi ≥ γi.

Proof. First, we show that if (13) is satisfied, thenQi(q̄i;
γi) ⊆ P(q̄i; γi) is a consistent truncation of the cellQ∞

i (q̄i),
that is, (6) is satisfied. Note that, in general, it holds that
Qi(q̄i; γi) ⊇ (Q∞

i (q̄i) ∩ P(q̄i; γi)). This follows from con-
dition (iii) of Problem 1 together with the fact that the
set of competitors of q̄i that lie in P(q̄i; γi) is “smaller”

than Q\{q̄i}, which is the set of competitors of the same
generator in the absence of sensing constraints. Let us
now assume on the contrary that (6) is not satisfied, or
equivalently, based on the previous discussion, that

Qi(q̄i; γi)\
(

Q
∞
i (q̄i) ∩ P(q̄i; γi)

)

6= ∅. (14)

Therefore, there exists a point y ∈ Qi(q̄i; γi) ⊆ P(q̄i; γi)
such that y /∈ Q

∞
i (q̄i). If y /∈ Q

∞
i (q̄i), then there exists

a generator q̄ℓ, where ℓ 6= i, such that J◦
ℓ (y) < J◦

i (y).

Because the point y is “closer” to q̄ℓ than to q̄i, it follows
that q̄ℓ /∈ P(q̄i; γi), for otherwise, y wouldn’t belong to
Qi(q̄i; γi).

J◦
i (q̄ℓ) = |P1/2(q̄ℓ − q̄i)|2 + µi

≤ λmax(P)

λmin(P)

(

2|P1/2(q̄i − y)|2

+ 2|P1/2(q̄ℓ − y)|2
)

+ µi

≤ λmax(P)

λmin(P)

(

2J◦
i (y) + 2J◦

ℓ (y)− 2µi − 2µℓ

)

+ µi

≤ λmax(P)

λmin(P)

(

2J◦
i (y) + 2J◦

ℓ (y)− 2µi

)

+ µi, (15)

where we have used the fact that µℓ ≥ 0. Now since,
q̄ℓ /∈ P(q̄i; γi), we have that J◦

i (q̄ℓ) > γi, which in view of
(15) implies

γi <
λmax(P)

λmin(P)

(

2J◦
i (y) + 2J◦

ℓ (y)− 2µi

)

+ µi. (16)

Furthermore, because d⋆i (γi) := maxx∈Qi(q̄i;γi) J
◦
i (x) ≥

J◦
i (y) for all y ∈ Qi(q̄i; γi), (13) gives

2
λmax(P)

λmin(P)
(2J◦

i (y)− µi) + µi ≤ γi, (17)

for all y ∈ Qi(q̄i; γi). By combining (16) and (17), it
follows, after some simple algebraic manipulations, that

4J◦
i (y)− 2µi ≤ 2J◦

i (y) + 2J◦
ℓ (y)− 2µi. (18)

The last inequality implies that J◦
i (y) ≤ J◦

ℓ (y), which
contradicts our initial assumption that J◦

ℓ (y) < J◦
i (y).

Therefore, we conclude that when (13) is satisfied, then
(14) does not hold true. This together with the fact that
Qi(q̄i; γi) ⊇ (Q∞

i (q̄i) ∩ P(q̄i; γi)), which we have already
explained, imply Equation (6).

Finally, we show that Q
∞
i (q̄i) = Qi(q̄i; γi). We have

already shown that Q∞
i (q̄i)∩P(q̄i; γi) = Qi(q̄i; γi). How-

ever, for any x ∈ Qi(q̄i; γi), we have that

J◦
i (x) ≤ max

z∈Qi(q̄i;γi)
J◦
i (z) =: d⋆i (γi). (19)

Now, in view of the facts that d⋆i (γi) − µi > 0 (note that
µi = J◦

i (q̄i) corresponds to the minimum value of J◦
i (·)

over R2), λmax(P)/λmin(P) ≥ 1, and µi ≥ 0, we have that

2
λmax(P)

λmin(P)
(2d⋆i (γi)− µi) + µi > 2d⋆i (γi) + µi > d⋆i (γi).

(20)

In light of (13) together with (19)-(20), it follows that
J◦
i (x) ≤ d⋆i (γi) < γi. Therefore, if a point x ∈ Qi(q̄i; γi) ⊆

P(q̄i; γi), then x ∈ P(q̄i; d
⋆
i (γi)), given that d⋆i (γi) < γ.

Thus, Qi(q̄i; γi) ⊆ P(q̄i; d
⋆
i (γi)), and we conclude that

Qi(q̄i; γi) ∩
(

P(q̄i; γi) \P(q̄i; d
⋆
i (γi))

)

= ∅,
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which in turn implies that

Q
∞
i (q̄i) ∩

(

P(q̄i; γi) \P(q̄i; d
⋆
i (γi))

)

= ∅. (21)

In the last step, we have used the fact that Qi(q̄i; γi) is a
consistent truncation ofQ∞

i (q̄i), as we have already shown
in the first part of the proof. However, the cell Q∞

i (q̄i) is
a convex set, given that Q∞(Q) is an affine diagram [13].
The convexity (and thus connectedness) of Q

∞
i (q̄i) to-

gether with (21) imply that there are no points in Q
∞
i (q̄i)

lying in the complement of the set P(q̄i; d
⋆
i (γi)), which in

turn implies thatQ∞
i (q̄i)∩(R2 \P(q̄i; γi)) = ∅, given that

P(q̄i; d
⋆
i (γi)) ( P(q̄i; γi). We conclude immediately that

Qi(q̄i; γi) = Q
∞
i (q̄i) ∩ P(q̄i; γi) = Q

∞
i (q̄i).

The proof is now complete. �

Remark 3 The previous proposition implies that if there
is γi > 0 that satisfies (13), then not only condition (6)
will be satisfied for all γi ≥ γi, but in addition, the cell
Qi(q̄i; γi) will actually coincide withQ

∞
i (q̄i), that is,Qi(q̄i;

γi) = Q
∞
i (q̄i), for all γi ≥ γi.

Our initial objective was to find a lower bound on the
actual sensing radius of the i-th agent in order to com-
pute a cell Qi(q̄i; x̄i, ηi) which is a consistent truncation
of Q∞

i (q̄i). Therefore, we need to find a way to pass from
the lower bound on the size γi of the sensing region of the
i-th fictitious agent to that for the sensing radius ηi of the
actual i-th agent.

Proposition 2. Let v̄ be a positive number such that |v̄i| ≤
v̄, for all i ∈ In, and suppose that the matrix E1 is non-

singular. In addition, let γi > 0 be such that condition (13)
holds. Then, there exists a positive number ηi such that

Ni[V
∞(Z)] = Ni[V(Z;H)], for all ηi ≥ ηi. Consequently,

(4) holds true for all ηi ≥ ηi.

Proof. In view of (3), we have that

x̄ℓ = E−1
1 (q̄ℓ −E2v̄ℓ) , (22)

for all ℓ ∈ In, from which it follows that

|x̄j − x̄i| = |E−1
1 (q̄j − q̄i −E2(v̄j − v̄i)) |

≤ σmax(E
−1
1 )

(

|q̄j − q̄i|+ σmax(E2)|v̄j − v̄i|
)

.

Therefore, we have that |x̄j − x̄i| ≤ ηi, where

ηi :=
(√

(γi − µi)/λmin(P) + 2σmax(E2)v̄
)

/σmin(E1),

where we have used the following facts: 1) σmax(D) =
1/σmin(D), for any invertible matrix D, 2) |β − α| ≤
2max{|α|, |β|}, for any pair of vectors α, β ∈ R2, and
finally 3) the following inequality:

γi ≥ J◦
i (q̄j) = |P1/2(q̄j − q̄i)|2 + µi

≥ λmin(P)|q̄j − q̄i|2 + µi,

which holds for all q̄j ∈ P(q̄i; γi). It follows that |x̄j −
x̄i| ≤ ηi, for all ηi ≥ ηi and for all j ∈ Ni[Q

∞(Q)], where

Ni[Q
∞(Q)] = Ni[V

∞(Z)]. Consequently, Ni[V
∞(Z)] =

Ni[V(Z;H)], for all ηi ≥ ηi. In light of Lemma 1, we have
that (4) holds for all ηi ≥ ηi and the proof is complete. �

It follows from the proof of the previous proposition
that ηi := a+b

√

γi − µi, where a := 2σmax(E2)v̄/σmin(E1)

and b := 1/(σmin(E1)
√

λmin(P)). Then, it is easy to define
an one-to-one mapping (note that b > 0) from the sens-
ing radius of the actual i-th agent to the corresponding
fictitious one, and vice versa. Specifically,

ηi := a+ b
√
γi − µi, and γi := µi + (ηi − a)2/b2. (23)

Next, we describe a simple algorithm that seeks for
the sensing radius ηi whose corresponding value of γi, via
Equation (23), satisfies γi ≥ γi, where γi in turn satisfies
condition (13). To this aim, we consider a non-decreasing

sequence of positive numbers,
(

η
[k]
i

)

k∈Z≥0

, where

η
[k+1]
i :=

{

η
[k]
i , if γi(η

[k]
i ) satisfies (13)

αη
[k]
i , otherwise,

(24)

with α > 1 (typically, we take α = 2). Note that the

sequence
(

γ
[k]
i

)

k∈Z≥0

, where γ
[k]
i is related to η

[k]
i via (23),

is also a non-decreasing sequence.

Of course, the sequence
(

η
[k]
i

)

k∈Z≥0

does not have to be

non-decreasing. For instance, if (13) is satisfied by taking

γi = γ
[k⋆]
i for some positive integer k⋆, then one may wish

to check if there exists a smaller lower bound on γi for
which (13) will still be satisfied. Finding this new lower
bound would require a different update law for ηi. For
instance, we can set

η
[k+1]
i :=

{

(η
[k]
i + η

[k−1]
i )/2, if γi(η

[k]
i ) satisfies (13)

η
[k]
i + (η

[k]
i − η

[k−1]
i )/2, otherwise,

(25)
for k ≥ k⋆. The update law given in (25) corresponds to a
simple bisection search algorithm that will converge with
a linear rate to an approximation of the smallest possible
sensing radius ηi such that its corresponding via (23) value
of γi satisfies (13). Note that in some cases, finding the
smallest possible sensing radius may not have the practical
value that will justify the computational cost for its char-
acterization. In these cases, one should use the update law
given in (24).

3.2. Main steps of the distributed partitioning algorithm

We can now give the main steps of the overall dis-
tributed partitioning algorithm in the presence of sensing
constraints.
Step 0: Set k = 0 and η

[k]
i = η0, where η0 is a positive

number which is chosen arbitrarily.

Step 1: Compute γ
[k]
i using (23), and then compute the

cell Q
[k]
i (q̄i; γ

[k]
i ) via the modified partitioning algorithm.
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Step 2: Check whether the stopping criterion (13) is sat-

isfied by γ
[k]
i and compute η

[k+1]
i using (25), accordingly.

Step 3: Check if |η[k+1]
i − η

[k]
i | ≤ ε, where ε > 0 is a

known constant (convergence error). If this is the case, set
k⋆ := k, report success and stop. Otherwise, set k := k+1
and go to Step 1.

The output of this process will be a cell Q
[k⋆]
i (q̄i; γ

[k⋆]
i ),

which is, in light of Proposition 1, an approximation of the
cell Q∞

i (q̄i).

4. Numerical Simulations

In this section, we present numerical simulations that
illustrate the previously presented theoretical developments.
To streamline the presentation, we will directly character-
ize the cell Qi(q̄i; γi) of the i-th fictitious agent which is
a member of a network of eleven agents distributed in the
domain Σc = [−4, 4]× [−4, 4]. The locations of the agents
and their associated (non-negative) weights µi are chosen
randomly. Finally, we take P = [ 1 0

0 2.5 ]. The cell of the
i-th agent for different values of γi is illustrated in Fig. 2.
We observe that when γi is small (Figs. 2(a)-2(b)), the set
of competitors of the i-th agent is too small to allow it to
compute a cell Qi(q̄i; γi) that is a consistent truncation
of Q∞

i (q̄i) (in other words, the algorithm proposed in [13]
fails in the first two cases). On the other hand, it turns out
that the stopping criterion, which is satisfied when γi = 42
(Fig. 2(d)), is conservative for this example since the set
of competitors of the i-th agent contains one additional
agent than what is required for the computation of the
consistent truncation of the cell Q∞

i (q̄i) (Fig. 2(c)).
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Figure 2: In the first two cases, the partitioning algorithm pro-
posed in [13] fails to find a cell Qi(q̄i; γi) (this is the cell as-
signed to the i-th fictitious agent) that corresponds to a con-
sistent truncation of Q∞

i (q̄i). This is achieved when γi = 20,
although the stopping criterion is satisfied when γi = 42 (con-
servative criterion).

5. Conclusion

In this work, we have addressed a partitioning problem
involving multi-agent networks with sensing limitations.
In this class of problems, each agent measures its close-
ness from an arbitrary point in its sensing region in terms
of a non−homogeneous quadratic function. We have ad-
dressed the partitioning problem by means of a distributed
algorithm that enables each agent to compute its own cell
based on information about the positions and the veloc-
ities of its teammates that lie in its sensing region only.
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