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Abstract— This work deals with an optimal covariance con- first introduced in the controls community by Hotz and
trol problem for stochastic discrete-time linear systems subject Skelton [4], [5]. This class of problems has been studied
to mean sum constraints involving quadratic functions of the in detail in the literature for both continuous-time and
state and the control input sequences under the assumption . . L
of full state information. We show that the stochastic optimal d'sc_rete't'me stochastic linear systems (the reader nfey, re
control problem is equivalent to a deterministic nonlinear for instance, to [6]-[9]). All these references focus on the
program, which, under a judicious choice of the decision infinite-horizon problem in which the objective is to steer
variable, can be brought to a form in which its performance  the covariance of the state of a stochastic linear system to
index is a convex, quadratic function subject to both equality 5 hositive definite matrix that satisfies a relevant Lyapunov
and inequality quadratic constraints. The key challenge here . . . . :
stems from the fact that the equality constraints that result fran (or Stem) alge.br.alc, mgtrlx equat!osteéady State covariance
the terminal constraints on the state covariance may not be nec- matrix). The finite-horizon covariance control problem for
essarily convex. We show, however, that by employing a simple continuous-time stochastic linear systems has been tgcent
relaxation technique, the nonlinear program is associated with addressed in [10], [11]. In these two references, it is shown
a convex program, which can be addressed by means of robust that when the input and the noise channels of the sys-

and efficient algorithms. Despite the fact that the solution to . - .
the relaxed convex program will not necessarily give closed-loop tem are identical, the covariance control problem becomes

trajectories whose endpoints follow exactly the goal Gaussian Significantly more amen§b|e to analysis and computation
distribution, a representative sample of such trajectories are whereas the other case is a much harder problem, whose

expected to have endpoints that will be more concentrated near golvability is in general difficult to be concluded a pridFhe

the origin than if there were drawn from the goal Gaussian  finite_horizon covariance control problem for continuous-

distribution. Finally, numerical simulations that illustrate some time stochastic linear svstems in the presence of intearal

key ideas of the paper are presented. : - Ic 1l _y P : g
guadratic state constraints was addressed in our previous

work [1]. A finite-horizon covariance control problem with a

. INTRODUCTION soft constraint on the terminal state covariance is addcess

We consider a finite-horizon stochastic optimal controf” [12].
problem that seeks for the sequence of control inputs tHat wi Main Contribution: In this paper, we address the opti-
steer the uncertain state of a discrete-time stochas#éatdin mal finite-horizon covariance control problem for stochas-
system, which is initially drawn from a known Gaussiartic discrete-time linear systems using a stochastic optima
distribution, to a terminal state, which is drawn from amuth control framework. The problem considered herein can
known (goal) Gaussian distribution. Besides the termindle viewed as an extension of the classic finite-horizon
constraints on the state covariance, in the formulation &fQG (Linear Quadratic Gaussian) problem for discrete-time
the stochastic optimal control problem, we also considestochastic linear systems [13]-[15] under full-state obse
mean sum constraints that involve quadratic functions afon, which explicitly accounts for hard terminal consirtsi
the state and the control input sequences. This work isam the covariance of the (random) state vector along with
natural extension of our previous work on similar finite-mean sum constraints that involve quadratic functions ef th
horizon covariance control problems fa@ontinuous-time state and the control input sequences. We henceforth refer
stochastic linear systems subject to integral quadratite st to this class of stochastic optimal control problems as the
constraints [1]. In contrast with the previous referenee, iconstrained discrete-time LQG covariance control, or more
this paper we will primarily focus on the control synthesiscompactly, constrained DTLQGCC problem.

problem rather the anal_y5|5 p_roblem. In particular, we will To address the constrained DTLQGCC problem, we re-
show that the stochastic optimal control problem can b

Strict our attention to, possibly suboptimal, feedbacktin
reduced to a deterministic nonlinear program, which will b - P y P '

: . . . . policies comprised of linear feedback laws. This choice is
subsequently associated, via a simple relaxation techniq

: hich ad db otivated by a significant body of work on the synthe-
with a convex program, which can be addressed by ME3PT of feedback control laws for stochastic linear systems
of efficient and robust algorithms [2], [3].

(see [16] and references therein). First, we show that the

Literature Review: The covariance control problem wasstochastic optimal control problem can be associated with
a deterministic nonlinear program (NLP). Following [16],
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and the mean sum constraint function of the latter beconmand the control input (random) sequences, respectively, on
convex quadratic functions of the new decision variablea complete probability spacg?,F, P). At each stage €
The key challenge in addressing the resulting NLP stem{®,... N} andt € {0,...N — 1}, z(¢) and u(t) are n-
from the fact that the terminal constraints on the statdimensional andn-dimensional vectors, respectively. The
covariance correspond to a system of quadratic constraint®ntrol input sequencéu(t) f’:f)l is assumed to belong to
which are not necessarily convex. To handle these no#3 ({0,...,N — 1};Q,§, P) and to have finitec-moments
convex constraints, we employ a simple relaxation techmigdor all £ > 0. We will henceforth refer to a control
that allows us to associate the NLP with a convex progranmput sequence that satisfies these propertieadasssible.
Despite the fact that the convex program and the origindh addition, {w(¢t) : ¢t € {0,...,N — 1}}, or simply
stochastic control problem are not equivalent in the strictw(t)}Y!, is a sequence of independent normal random
sense, that is, the endpoints of the closed-loop trajedorivariables with zero mean and unit covariance, that is,
associated with the latter do not follow exactly the goal

Gaussian distribution, the results that one obtains byirsglv E [w(t)w(T)T] =0, 2)

the convex program are desirable for practical purposes. Th

is because the formulation of the convex program favors thgy g ¢ + ¢ {0,...,N — 1} with t # 7, and

generation of closed-loop trajectories whose endpoings ar

more likely to be concentrated near the origin than a sample E[w(t)] =0, E [w(t)w(t)T] —1 3)

of points drawn from the goal Gaussian distribution. ’ ’

Structure of the paper: The rest of the paper is organizedfor all + € {0,..., N — 1}. At each timet the (random)
as follows. In Section Il, we formulate the covariance cohtr yvector w(t) is p-dimensional. It is assumed that, and

problem as a stochastic optimal control problem and iy (¢)}¥:! are mutually independent. FinallyA(¢) : ¢ €
Section Ill, we show how to reduce the latter problem tqo,...,N — 1}}, {B(t) : t € {0,...,N — 1}}, and

a deterministic nonlinear program, which we subsequentlyc(t) : t e{0,...,N —1}} are bounded sequences of
associate with a convex program. lllustrative numerica-si matrices of appropriate dimensions.

ulations are presented in Section IV, and finally, Section V

concludes the paper with a summary of remarks. Now, let us assume that the initial statg is a random

vector drawn from the multi-variate normal distribution
N(0,%y), whereX, € P, is the initial state covariance, that
is, E [zoz]] = . We are interested in steering the state
A. Notation of the stochastic discrete-time linear system described by
the difference equation (1) from the initial (random) vecto
We denote byR" the set ofn-dimensional real vectors. zy ~ N (0, %) to a terminal (random) vectats = z(NV) at
We write N>, and N5, to denote the set of non-negativea given stage = N, wherez¢ ~ N (0, X¢), and whereX €
integers and strictly positive integers, respectivelwe@ia P, is the terminal state covariance, that]Es[xfxﬂ = 3.
probability space(Q?,5, P) and N € Ny,, we denote by We refer to this problem as the covariance control problem.
5({0,...,N};Q,F, P) the Hilbert space of mean squareln this work, we are interested in addressing the covariance
summable random sequencés(t) : ¢ € {0,...,N} C control problem in the presence of state and input conssrain
N>o} on (Q,F,P), where z(t) is a n-dimensional (ran- by using a stochastic optimal control framework.

dom) vector at eaclt € {0,...,N}. We write E[] 00 proyiem 1: Congtrained DTLQGCC Problem: Let N e
denote the expectation operator. Given a square maitix \y_ “.~ o and %, % € P, be given. In addition,

we denote its trace byrace(A). Furthermore, we denote oo ime that for all € {0,...,N—1} the matrice€Q(¢) and

by bdiag(A1,...,A¢) the block diagonal matrix whose R(t) belong toP, andP,,, respectively. Lefll denote the

diagonal elements are the matricas, i < {1,...,6}._We _class of feedback control policies,= {(x; 1)} 5!, where
write 0 and I to denote the zero matrix and the |dent|tyu(x;t) = —K(t)z, K(t) € R™*" fort € {0,...,N — 1},

matrix, respectively. Finally, we will denote the convexeo such that the sequence of control inpl{'rls(t)}N_gl with
of nxn symmetric positive definite and positive semi—definiteu(t) — u(z(t);t) is admissible. Then, find tan optimal

matrices byP,, andP,,, respectively. feedback control policyr® := {u°(x;t) ﬁigl e II that
minimizes the performance index:

Il. PROBLEM FORMULATION

B. Formulation of the Optimal Covariance Control Problem

We consider a discrete-time stochastic linear system that J(m) = ]E[N_ 2(OTQ)(t) + u(t)TR(t)u(t)}, 4)

satisfies the following stochastic difference equation:

2t +1) = Alt)e(t) + Bt)u(t) + COw(), (1) subject to the difference equation constraints (1), thermea
with 2(0) = x, for t € {0,..., N — 1}, whereN € Ny is sum constraint:
given, {z(t), t € {0,...,N}} and{u(t): t€{0,...,N —
1}}, or simply {z(t)}N., and {u(t)}*,', denote the state h({z(®)}h {u®)}y') <«

=

t=



N(/l/(), 20)

where
N—-1
h({z(t)}5h {u®)}5) ::E[ 2 () Qe(t)x(t)

t

=0
+u(®)Re(u(t)], )

whereQ.(t) andR.(t) belong toP,, andP,,, respectively,
forall ¢t € {0,..., N —1}. In addition, the covariance of the
(random) state vectat(t) at staget = 0 and at stageé = N
the following boundary conditions:

E [zoz)] = B0,  E [zez{] = ¢, (6)

Fig. 1. The problem of steering the initial Gaussian disititn N\ (10, Xo)
wherezy = z(0) andz¢ = z(N). of the state of a stochastic discrete-time linear system tesiretl terminal

. . . ... Gaussian distributiooV'(us, X¢), at a given final stagé = N subject to
Note that in the formulation of Problem 1, we explicitly mean sum constraints involving quadratic functions of theesand the input

required that the minimizing feedback control policy issequences.

comprised of linear feedback control laws at each stage. It

is likely that this additional assumption on the structufe o

the feedback control policy is unnecessary. To see this, lgatisfies at stage = 0 and at stage = N the following
I’ denote the class of feedback control policies which cooundary conditions:

respond to sequences of feedback control 1gws;¢), ¢ € _ _

{0,...,N —1}}, wherepu(z;t) € R™ for eachx € R™ and 2(0) = Zo, 2(N) = . (11)
t € {0,...,N — 1}, such that the control input sequenceNext, we will address Problem 1 in the general case when the
{u(t)}N5F with w(t) = p(x(t);t) is admissible. One can constraint (5) is present based on optimization techniques
conjecture at this point that the solution to Problem 1, even

when the solution space is augmented to the d#s® II, I11. PRACTICAL NUMERICAL SOLUTION TECHNIQUES

will still be a feedback control policy which corresponds to

X In this section, we will first reduce Problem 1 to a
a sequence of linear feedback control laws.

deterministic nonlinear program (NLP) which we will sub-
In the special case, when (5) is removed, Problem dequently associate with a convex program via simple relax-

reduces to the standard finite-horizon optimal covariancation techniques. We will show in particular, that Problem 1

control problem for discrete-time stochastic linear syste is equivalent to a deterministic nonlinear program whose

This problem was very recently addressed for the continuougerformance index is a convex quadratic function and its con

time case in [10], [11]. In the discrete-time case, when (5traints are also quadratic functions without being, h@rev

is removed, the optimal control policy°, will belong toII  necessarily convex. The existence of non-convex quadratic

necessarily and is defined as follows> = {u°(2;t)},;', constraints is due to the constraints on the terminal state
where, for allt € {0,...,N — 1}, covariance. Subsequently, we will employ a simple convex
relaxation technique to associate the nonlinear program wi
p(r;t) = —K(t)r, ) \ prog

a (suboptimal) convex program.

where the gain matriK (¢) satisfies Next, we summarize the key steps for associating Prob-

K(t) = (R(t) + B(t)"S(t + 1)B(t)T)*1 lem 1 with a nonlinear program. By making use of standard
B()TS(t + 1)A(t g results from the theory of discrete-time stochastic lirsyes-

('S +DAL), ®) tems, we can express the solution to difference equation (1)

andS(t) denotes the solution to the following discrete-timeas follows:

Riccati (matrix) recursive equation: 2 — Hu + Gw + 20, 12)

S(0)= Qo)+ AWTS(-+ DAG) - AWTSE+UBO)  whre & 1= [s(0)... o0 & RNV, o
x (R(t) +B(t)"S(t + 1)B(t))_1B(t)TS(t +1)A(t), [w(0)T, ..., u(N —DTT € RN™ w = [w(0)T,...,w(N —
(9) 17" € RN?, and the matricef ¢ RWHDnx(Nm) G ¢

(N+1)nx(Np) i
with boundary conditiorS(N) = S, where the matrixSs R are given by
belongs toP,,. In addition, the matrixSs is such that the H:=

state covariancZ(t) of the closed-loop system driven by the 0 0 o 0
optimal feedback control policy°, which evolves according B(0) 0 o 0
to the following matrix difference equation: ®(2,1)B(0) B(1) 0

E(t+1) = (A(t) - Bt)K(®))S(t)(A(t) - B()K(#))" : : . :
+Ct)Cc@t)T, (10) ®(N,1)B(0) @®(N,2)B(1) ... B(N —1)



=)
=)
=)

C(0) 0 0
®(2,1)C(0) c(1) 0 ’
B(N,1)C(0) ®(N,2)C(1) C(N 1)

andx, := I'zg, where
=1 &1,0)7 ®(N,0)7]",
B(t, 1) =Alt—1)...Alr), ®(tt) =1,

forte{l,...,N} and7r € {0,...,¢t — 1}. Becauseu(t)
—K(t)z(t) for all t € {0,..., N — 1}, we have that

u = —bdiag(K(0),K(1),..., K(N — 1))
x [z(0)7,...,z(N - 1),
or equivalently,
u="Fz, F:= [bdiag(—-K(0),...,—K(N —1)), 0].
(13)
It follows readily that
z=P,w+x, u=P,w+v, (14)
where
P,:=(I1-HF) !G=G+HF(I-HF)'G, (15
P, :=F(I-HF)'G, (16)
and
x = (I-HF) 'zy = o + HF(I - HF) 'zy, (17)
v:=F(I - HF) 'z. (18)

Note that the inverse di— HF is always well defined given
that T := HF is a block lower triangular matrix and in
addition, its block diagonal elements are zero matriceis (th

follows readily from the structure of the block matrE).

The performance index can be written as follows:

N-1

> 2" Q(!) + ul®) R()u(t)|
- t=0
N-1

J(r)=E

E

- t=0

=E _:L’TQCC + uT’Ru] ,

where @ := diag(Q(0),...
diag(R(0),...,R(N — 1)). In view of Egs. (14)—(18),
can write the cost function as follows:
J(m)=E [mT Qx + uTRu}
=E {(P:cw + X)TQ(me + X)

+ (Pyw + V)TR(Pu’UJ + 1/)} ,

,Q(N —1),0) and R :

> a®)TQ)x(t) + x(t)TK(t)TR(t)K(t)x(t)}

(19)

we

(20)

which, in view of Egs. (2)-(3) and the fact tha andw(k)
are mutually independent for alle {0,..., N — 1}, can be
written:

J(m) = trace(P, QP + P, RP))

+ trace(QE [xx'| + RE[vvT]). (21)

As is highlighted in [16], it is not clear at this point
whether J(7) is convex inF. To overcome this problem,
we will make use of an intuitive and straightforward bilinea
transformation suggested in [16], which will allow us to
express the performance index as a convex function of a
new decision variable, which is denoted®sand is defined

as follows:

¥ .= F(I-HF) (22)
Using similar arguments as those in the discussion follgwin
Eq. (18), we conclude tha® is always well-defined and
it is actually a block lower triangular matrix. It follows
immediately from (22) that

F=(I+%H) ¥, (23)
where the right hand side of Eq. (23) is well defined
based again on similar arguments as those in the discussion
following Eq. (18). In view of (23), (15)-(16) and (17)—(18)
become, respectively,

P, := (I+H¥)G, P,:=9%G, (24)
and
x:=I+HP)zy, v:=Px. (25)
Thus, we have that
E[xx'] = I+ HE)I'S, I (I+HP),  (26)
E[vv'] = ¥TS, I, (27)

where in the previous derivations, we have used the follgwin
identity

E[zoz]] = T"E[zoz)|T = TT%,T.

Therefore, in view of Egs. (21), (24) and (26)-(27), and the
fact that the quantitie®, and P, are affine functions of
the new decision variabl&, it follows that the performance
index J(m) is a convex quadratic function o .

Similarly, the functioni(-) can be written as follows:

N—

[u

h(w,u) = B[ 3 (07 Qe(t)e(t) + u(t) Re(t)u(t)|
t=0
N-1
—E| > e Qu(t)a(t) + o(t) KO RAOK (o (t)]

t=

=K [wT Q.x + uTRcu} , (28)



where Q. := diag(Q.(0),...,Q.(N —1),0) and R. := way to see why this is the case is to consider an example

diag(R.(0),...,R.(N — 1)), or equivalently, with Z = [Z} 2] € R?, in which case
h (:13, u) =E {:BTQC:E + uT’RCu} f(Z) — [ 25423 Z1Zg+z§Z4] . Ef,
2123+2224 z3+z]
:E{(me +x) " Qe(Prw + X) which gives two convex quadratic equalities, namely the
T ones corresponding to the diagonal elementsf@), and
+ (Puw +v) Re(Puw + V)] one which is non-convex, namely the one corresponding to
= trace(P, Q.PT + P, R P]) the off-diagonal elements of (Z). Therefore, in general,

Problem 1 cannot be associated with a convex program.
T T
+ trace(QE x| + RE[wr]),  (29) Instead of addressing the NLP, which is known to pose

where in the last derivation, we have used Egs. (2)-(3gignificant challenges in general, one can associate the NLP
Using similar arguments with those in the discussion oith @ nonlinear program by employing convex relaxation
the convexity of the performance indek(r) as function techniques [2]. Perhaps, the most direct, convex relaxatio
of the new decision variabl@, we conclude that (z,w) technique is to substitute the equality constrafitZ) =

corresponds to a convex quadratic functiondof 0 with the following convex constraintf(Z) =< 0. In

Next . tigate whether th i i ¢ _r%articular, the inequalityf(Z) < 0, which is equivalent to
ext, we investigate whether the matrix equality constrai ¢ —ZZ" = 0, can be written as a (convex) positive semi-

on thg terminal state covanan@{frfxl] — 3¢ =0 can al§o definite constraint:

be written as a convex quadratic equality constraintin

To this aim, we will expres&[zzT] as a function of®. X - [Ef Z} -0
Specifically, in view of Egs. (2)-(3) and (14)—(18), and the AN |
fact thatx(0) is independent ofv(k) for all k € {0,..., N—

o : iven thatX; — ZZ" is the Schur complement dfin X.
1}, it is straightforward to show that g f P

Because, the terminal state covaria€ecan be viewed

IE[a:wT] =E[(Pew + x)(Pw +x)T} as a measure of the dispersion of the endpoints of a rep-
= P,E[ww'|P] +E[xx] resentative sample of state trajectories of the close-loop
_P.P 4 E[XXT] (30) system, the relaxation of the non-convex equality constrai
=P,P! )

f(Z) = 0 to the convex constrainf(Z) < 0 leads to
In view of (24) and (26), Eq. (30) can be written as followsdesirable results in practice. This is because, whéh) =< 0,
or equivalently,0 < E[zz{] < %, the endpointszy, of
Elzz'] = (I+HY)(GG" +T'xI")"/? a representative sample of trajectories associated with th
x (GGT + X, IMY2(1+ HY) . (31) convex program may not follow exactly the goal terminal
Gaussian distribution/ (0, X¢) (this would be possible, if the
Now, becausers = x(N) = Pz, where equality, but non-convex, constraififZ) = 0 was enforced
- Il e Rrx(N+Dn instead). However, the same endpoints are more likely to
Py:=0...1 € ’ be concentrated near the origin than those drawn from the

we can write goal Gaussian distribution (her[z¢z{| can be viewed as
a measure of the dispersion of the terminal statebom a
E[z¢z]] = PyE[za"| P} = ZZ7, representative sample of trajectories).

whereZ := Py (I + HP)(GGT + I'S,I'")/2. Note that

Z is itself an affine function of the new decision variable,
. Now, in view of Definition 6.6.44 in [17], the symmetric  |n this section, we present numerical simulations for
matrix-valued functionf(-) : R"*" — S,, where f(Z) :=  a simple example in order to illustrate the key ideas of
ZZ" — 3, will be convex inZ if and only if: the previous sections. In particular, we consider the finite

horizon covariance control problem subject to the follayvin
F@Zy + (1 - a)Zo) < af(Ze) + (1 - a) f(Z2), (32) P : w

difference equations:
for any a € [0,1] and for anyZ; and Z, € R"*". Estab- _ _9
lishing the validity of (32) is rather straightforward, Tu ~ “1(¢ 1) = @10+ 2_9“(”’ s
we conclude immediately that, by definition, the function Z2(t +1) = z2(t) + 27" (=1 (t) + u(t)) + 27 w(?),
f(-) is convex, and in particular, it is a convex quadratinith N
function of Z. BecauséZ is in turn an affine function ofP,

V. NUMERICAL SIMULATIONS

= 219, We assume that the initial statey, at stage
t = 0 is drawn from the Gaussian distributidvi(0, ) and

we C_onclude that the functiofi(-) is a convex quadratic e objective is to drive the uncertain state of the system to
function of ¥. However, the fact thatf(-) is a convex a goal terminal stateys, at staget — 2, which is drawn

guadratic function of® does not necessarily imply that thefrom the Gaussian distributia®V'(0, =), where
n(n + 1)/2 quadratic, scalar equalities that result from the T

matrix equationf(Z) = 0 are necessarily convex. An easy So=[Y2], Z¢=[_05 "]



Tmax(2(t))

05

(a) Time-evolution oOfomax (X(t)).

1
t/29

V. CONCLUSION

In this work, we have addressed a covariance control prob-
lem for discrete-time stochastic linear systems, which we
formulated as a stochastic optimal control problem subject
to mean sum constraints involving quadratic functions of
the state and the control input sequences. We have shown
that the stochastic optimal control problem is equivalent t
a deterministic nonlinear program, which, via a judicious
choice of the decision variable, has a convex quadratic
performance index and is subject to inequality and equality
guadratic constraints, which, however, are not necegsaril
convex. We have shown that by employing a simple relax-
ation technique, this nonlinear program can be associated
with a deterministic, convex program. Although the latter
problem cannot yield feedback control policies that wilide
the endpoints of the closed-loop trajectories of the system
to follow the goal terminal Gaussian distribution exactly,
it will still lead to the generation of desirable trajec&si
that will be concentrated near the origin. In the future, we
plan to extend the numerical techniques presented herein to
covariance control problems with partial and imperfectesta
information.

- (1]

5 x()l 5 [2]
(b) Time-evolution of 1-level sets of(z;t) := [3]
2T B(t) 1z,
(4]
Fig. 2. The values ofrmax(3(t)) at different stages € {0,...,210}
allows us to observe the rate at which the state covaridh@g converges  [5]
to the X3¢ att = N = 210 (Fig. 2(a)). On the other hand, the evolution of
the ellipsoids that correspond to theevel sets of the quadratic function [6]
q(z;t) = zTX(t)~ 'z at different stages € {0,...,219} illustrates
the trajectory that the state covariance follows until inwerges toX¢
(Fig. 2(b)). In the latter figure, the blue and the red elligsacorrespond  [7]
to the 1-level sets ofg(x;0) and q(x; 210), respectively.

8l
while . minimizing the performance index [9]
E[S7 , 'u)Tu(t)]. Figure 2 illustrates the time- (10]

evolution of the state covariance matriX(¢) of the
closed-loop system, when the latter is driven by the
feedback control policy that solves Problem 1. In partigula22!
the rate of convergence of the state covariaB{e) to its
terminal value 3, is illustrated in Fig. 2(a) via the evolution [12]
of its maximum singular valueg,,.(3(¢)), at different
stagest € {0,...,21°}. Furthermore, to better illustrate [13]
the “trajectory” of the covariance fronk, to its goal
destination, X, in Fig. 2(b), we show the time-evolution [14]
of the ellipsoids that correspond to thelevel sets of the |15
quadratic formg(z;t) = x'3(¢)" 'z at different stages

t € {0,...,2'}. (Note that this quadratic form appears in[16]
the expression of the density function of the multi-variate
Gaussian distributiooV' (0, 3(¢)) from which the uncertain [17]
state of the system is drawn at each stége
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