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Abstract— This work deals with an optimal covariance con-
trol problem for stochastic discrete-time linear systems subject
to mean sum constraints involving quadratic functions of the
state and the control input sequences under the assumption
of full state information. We show that the stochastic optimal
control problem is equivalent to a deterministic nonlinear
program, which, under a judicious choice of the decision
variable, can be brought to a form in which its performance
index is a convex, quadratic function subject to both equality
and inequality quadratic constraints. The key challenge here
stems from the fact that the equality constraints that result from
the terminal constraints on the state covariance may not be nec-
essarily convex. We show, however, that by employing a simple
relaxation technique, the nonlinear program is associated with
a convex program, which can be addressed by means of robust
and efficient algorithms. Despite the fact that the solution to
the relaxed convex program will not necessarily give closed-loop
trajectories whose endpoints follow exactly the goal Gaussian
distribution, a representative sample of such trajectories are
expected to have endpoints that will be more concentrated near
the origin than if there were drawn from the goal Gaussian
distribution. Finally, numerical simulations that illustrate some
key ideas of the paper are presented.

I. I NTRODUCTION

We consider a finite-horizon stochastic optimal control
problem that seeks for the sequence of control inputs that will
steer the uncertain state of a discrete-time stochastic linear
system, which is initially drawn from a known Gaussian
distribution, to a terminal state, which is drawn from another
known (goal) Gaussian distribution. Besides the terminal
constraints on the state covariance, in the formulation of
the stochastic optimal control problem, we also consider
mean sum constraints that involve quadratic functions of
the state and the control input sequences. This work is a
natural extension of our previous work on similar finite-
horizon covariance control problems forcontinuous-time
stochastic linear systems subject to integral quadratic state
constraints [1]. In contrast with the previous reference, in
this paper we will primarily focus on the control synthesis
problem rather the analysis problem. In particular, we will
show that the stochastic optimal control problem can be
reduced to a deterministic nonlinear program, which will be
subsequently associated, via a simple relaxation technique,
with a convex program, which can be addressed by means
of efficient and robust algorithms [2], [3].

Literature Review: The covariance control problem was
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first introduced in the controls community by Hotz and
Skelton [4], [5]. This class of problems has been studied
in detail in the literature for both continuous-time and
discrete-time stochastic linear systems (the reader may refer,
for instance, to [6]–[9]). All these references focus on the
infinite-horizon problem in which the objective is to steer
the covariance of the state of a stochastic linear system to
a positive definite matrix that satisfies a relevant Lyapunov
(or Stein) algebraic, matrix equation (steady state covariance
matrix). The finite-horizon covariance control problem for
continuous-time stochastic linear systems has been recently
addressed in [10], [11]. In these two references, it is shown
that when the input and the noise channels of the sys-
tem are identical, the covariance control problem becomes
significantly more amenable to analysis and computation
whereas the other case is a much harder problem, whose
solvability is in general difficult to be concluded a priori.The
finite-horizon covariance control problem for continuous-
time stochastic linear systems in the presence of integral
quadratic state constraints was addressed in our previous
work [1]. A finite-horizon covariance control problem with a
soft constraint on the terminal state covariance is addressed
in [12].

Main Contribution: In this paper, we address the opti-
mal finite-horizon covariance control problem for stochas-
tic discrete-time linear systems using a stochastic optimal
control framework. The problem considered herein can
be viewed as an extension of the classic finite-horizon
LQG (Linear Quadratic Gaussian) problem for discrete-time
stochastic linear systems [13]–[15] under full-state observa-
tion, which explicitly accounts for hard terminal constraints
on the covariance of the (random) state vector along with
mean sum constraints that involve quadratic functions of the
state and the control input sequences. We henceforth refer
to this class of stochastic optimal control problems as the
constrained discrete-time LQG covariance control, or more
compactly, constrained DTLQGCC problem.

To address the constrained DTLQGCC problem, we re-
strict our attention to, possibly suboptimal, feedback control
policies comprised of linear feedback laws. This choice is
motivated by a significant body of work on the synthe-
sis of feedback control laws for stochastic linear systems
(see [16] and references therein). First, we show that the
stochastic optimal control problem can be associated with
a deterministic nonlinear program (NLP). Following [16],
we show that by judiciously selecting the decision variable
of the optimization problem, both the performance index



and the mean sum constraint function of the latter become
convex quadratic functions of the new decision variable.
The key challenge in addressing the resulting NLP stems
from the fact that the terminal constraints on the state
covariance correspond to a system of quadratic constraints,
which are not necessarily convex. To handle these non-
convex constraints, we employ a simple relaxation technique
that allows us to associate the NLP with a convex program.
Despite the fact that the convex program and the original
stochastic control problem are not equivalent in the strict
sense, that is, the endpoints of the closed-loop trajectories
associated with the latter do not follow exactly the goal
Gaussian distribution, the results that one obtains by solving
the convex program are desirable for practical purposes. This
is because the formulation of the convex program favors the
generation of closed-loop trajectories whose endpoints are
more likely to be concentrated near the origin than a sample
of points drawn from the goal Gaussian distribution.

Structure of the paper: The rest of the paper is organized
as follows. In Section II, we formulate the covariance control
problem as a stochastic optimal control problem and in
Section III, we show how to reduce the latter problem to
a deterministic nonlinear program, which we subsequently
associate with a convex program. Illustrative numerical sim-
ulations are presented in Section IV, and finally, Section V
concludes the paper with a summary of remarks.

II. PROBLEM FORMULATION

A. Notation

We denote byRn the set ofn-dimensional real vectors.
We write N≥0 and N>0 to denote the set of non-negative
integers and strictly positive integers, respectively. Given a
probability space(Ω,F, P ) and N ∈ N>0, we denote by
ℓn2 ({0, . . . , N}; Ω,F, P ) the Hilbert space of mean square
summable random sequences{x(t) : t ∈ {0, . . . , N} ⊂
N≥0} on (Ω,F, P ), where x(t) is a n-dimensional (ran-
dom) vector at eacht ∈ {0, . . . , N}. We write E [·] to
denote the expectation operator. Given a square matrixA,
we denote its trace bytrace(A). Furthermore, we denote
by bdiag(A1, . . . ,Aℓ) the block diagonal matrix whose
diagonal elements are the matricesAi, i ∈ {1, . . . , ℓ}. We
write 0 and I to denote the zero matrix and the identity
matrix, respectively. Finally, we will denote the convex cone
of n×n symmetric positive definite and positive semi-definite
matrices byPn andPn, respectively.

B. Formulation of the Optimal Covariance Control Problem

We consider a discrete-time stochastic linear system that
satisfies the following stochastic difference equation:

x(t+ 1) = A(t)x(t) +B(t)u(t) +C(t)w(t), (1)

with x(0) = x0, for t ∈ {0, . . . , N − 1}, whereN ∈ N>0 is
given,{x(t), t ∈ {0, . . . , N}} and{u(t) : t ∈ {0, . . . , N −
1}}, or simply {x(t)}Nt=0 and {u(t)}N−1

t=0 , denote the state

and the control input (random) sequences, respectively, on
a complete probability space(Ω,F, P ). At each staget ∈
{0, . . . N} and t ∈ {0, . . . N − 1}, x(t) and u(t) are n-
dimensional andm-dimensional vectors, respectively. The
control input sequence{u(t)}N−1

t=0 is assumed to belong to
ℓm2 ({0, . . . , N − 1}; Ω,F, P ) and to have finitek-moments
for all k > 0. We will henceforth refer to a control
input sequence that satisfies these properties asadmissible.
In addition, {w(t) : t ∈ {0, . . . , N − 1}}, or simply
{w(t)}N−1

t=0 , is a sequence of independent normal random
variables with zero mean and unit covariance, that is,

E
[

w(t)w(τ)T
]

= 0, (2)

for all t, τ ∈ {0, . . . , N − 1} with t 6= τ , and

E [w(t)] = 0, E
[

w(t)w(t)T
]

= I, (3)

for all t ∈ {0, . . . , N − 1}. At each timet the (random)
vector w(t) is p-dimensional. It is assumed thatx0 and
{w(t)}N−1

t=0 are mutually independent. Finally,{A(t) : t ∈
{0, . . . , N − 1}}, {B(t) : t ∈ {0, . . . , N − 1}}, and
{C(t) : t ∈ {0, . . . , N − 1}} are bounded sequences of
matrices of appropriate dimensions.

Now, let us assume that the initial statex0 is a random
vector drawn from the multi-variate normal distribution
N (0,Σ0), whereΣ0 ∈ Pn is the initial state covariance, that
is, E

[

x0x
T
0

]

= Σ0. We are interested in steering the state
of the stochastic discrete-time linear system described by
the difference equation (1) from the initial (random) vector
x0 ∼ N (0,Σ0) to a terminal (random) vectorxf = x(N) at
a given staget = N , wherexf ∼ N (0,Σf), and whereΣf ∈
Pn is the terminal state covariance, that is,E

[

xfx
T
f

]

= Σf .
We refer to this problem as the covariance control problem.
In this work, we are interested in addressing the covariance
control problem in the presence of state and input constraints
by using a stochastic optimal control framework.

Problem 1: Constrained DTLQGCC Problem: Let N ∈
N>0, c > 0, and Σ0, Σf ∈ Pn be given. In addition,
assume that for allt ∈ {0, . . . , N−1} the matricesQ(t) and
R(t) belong toPn andPm, respectively. LetΠ denote the
class of feedback control policies,π = {µ(x; t)}N−1

t=0 , where
µ(x; t) := −K(t)x, K(t) ∈ R

m×n, for t ∈ {0, . . . , N − 1},
such that the sequence of control inputs{u(t)}N−1

t=0 with
u(t) = µ(x(t); t) is admissible. Then, find an optimal
feedback control policyπ◦ := {µ◦(x; t)}N−1

t=0 ∈ Π that
minimizes the performance index:

J(π) := E

[

N−1
∑

t=0

x(t)TQ(t)x(t) + u(t)TR(t)u(t)
]

, (4)

subject to the difference equation constraints (1), the mean
sum constraint:

h
(

{x(t)}N−1
t=0 , {u(t)}N−1

t=0

)

≤ c,



where

h
(

{x(t)}N−1
t=0 , {u(t)}N−1

t=0

)

:= E

[

N−1
∑

t=0

x(t)TQc(t)x(t)

+ u(t)TRc(t)u(t)
]

, (5)

whereQc(t) andRc(t) belong toPn andPm, respectively,
for all t ∈ {0, . . . , N −1}. In addition, the covariance of the
(random) state vectorx(t) at staget = 0 and at staget = N
the following boundary conditions:

E
[

x0x
T
0

]

= Σ0, E
[

xfx
T
f

]

= Σf , (6)

wherex0 = x(0) andxf = x(N).

Note that in the formulation of Problem 1, we explicitly
required that the minimizing feedback control policy is
comprised of linear feedback control laws at each stage. It
is likely that this additional assumption on the structure of
the feedback control policy is unnecessary. To see this, let
Π′ denote the class of feedback control policies which cor-
respond to sequences of feedback control laws{µ(·; t), t ∈
{0, . . . , N − 1}}, whereµ(x; t) ∈ R

m for eachx ∈ R
n and

t ∈ {0, . . . , N − 1}, such that the control input sequence
{u(t)}N−1

t=0 with u(t) = µ(x(t); t) is admissible. One can
conjecture at this point that the solution to Problem 1, even
when the solution space is augmented to the classΠ′ ⊇ Π,
will still be a feedback control policy which corresponds to
a sequence of linear feedback control laws.

In the special case, when (5) is removed, Problem 1
reduces to the standard finite-horizon optimal covariance
control problem for discrete-time stochastic linear systems.
This problem was very recently addressed for the continuous-
time case in [10], [11]. In the discrete-time case, when (5)
is removed, the optimal control policy,π◦, will belong toΠ
necessarily and is defined as follows:π◦ = {µ◦(x; t)}N−1

t=0 ,
where, for allt ∈ {0, . . . , N − 1},

µ(x; t) = −K(t)x, (7)

where the gain matrixK(t) satisfies

K(t) =
(

R(t) +B(t)TS(t+ 1)B(t)T
)−1

B(t)TS(t+ 1)A(t), (8)

andS(t) denotes the solution to the following discrete-time
Riccati (matrix) recursive equation:

S(t) = Q(t) +A(t)TS(t+ 1)A(t)−A(t)TS(t+ 1)B(t)

×
(

R(t) +B(t)TS(t+ 1)B(t)
)−1

B(t)TS(t+ 1)A(t),
(9)

with boundary conditionS(N) = Sf , where the matrixSf

belongs toPn. In addition, the matrixSf is such that the
state covarianceΣ(t) of the closed-loop system driven by the
optimal feedback control policyπ◦, which evolves according
to the following matrix difference equation:

Σ(t+ 1) = (A(t)−B(t)K(t))Σ(t)(A(t)−B(t)K(t))T

+C(t)C(t)T, (10)

N (µ0,Σ0)

N (µf ,Σf)

Fig. 1. The problem of steering the initial Gaussian distributionN (µ0,Σ0)
of the state of a stochastic discrete-time linear system to a desired terminal
Gaussian distributionN (µf ,Σf), at a given final staget = N subject to
mean sum constraints involving quadratic functions of the state and the input
sequences.

satisfies at staget = 0 and at staget = N the following
boundary conditions:

Σ(0) = Σ0, Σ(N) = Σf . (11)

Next, we will address Problem 1 in the general case when the
constraint (5) is present based on optimization techniques.

III. PRACTICAL NUMERICAL SOLUTION TECHNIQUES

In this section, we will first reduce Problem 1 to a
deterministic nonlinear program (NLP) which we will sub-
sequently associate with a convex program via simple relax-
ation techniques. We will show in particular, that Problem 1
is equivalent to a deterministic nonlinear program whose
performance index is a convex quadratic function and its con-
straints are also quadratic functions without being, however,
necessarily convex. The existence of non-convex quadratic
constraints is due to the constraints on the terminal state
covariance. Subsequently, we will employ a simple convex
relaxation technique to associate the nonlinear program with
a (suboptimal) convex program.

Next, we summarize the key steps for associating Prob-
lem 1 with a nonlinear program. By making use of standard
results from the theory of discrete-time stochastic linearsys-
tems, we can express the solution to difference equation (1)
as follows:

x = Hu+Gw + x0, (12)

where x := [x(0)T, . . . , x(N)T]T ∈ R
(N+1)n, u :=

[u(0)T, . . . , u(N − 1)T]T ∈ R
Nm, w := [w(0)T, . . . , w(N −

1)T]T ∈ R
Np, and the matricesH ∈ R

(N+1)n×(Nm), G ∈
R

(N+1)n×(Np) are given by

H :=














0 0 . . . 0

B(0) 0 . . . 0

Φ(2, 1)B(0) B(1) . . . 0
...

... . . .
...

Φ(N, 1)B(0) Φ(N, 2)B(1) . . . B(N − 1)















,



G :=














0 0 . . . 0

C(0) 0 . . . 0

Φ(2, 1)C(0) C(1) . . . 0
...

... . . .
...

Φ(N, 1)C(0) Φ(N, 2)C(1) . . . C(N − 1)















,

andx0 := Γx0, where

Γ :=
[

I Φ(1, 0)T . . . Φ(N, 0)T
]T

,

Φ(t, τ) := A(t− 1) . . .A(τ), Φ(t, t) = I,

for t ∈ {1, . . . , N} andτ ∈ {0, . . . , t− 1}. Becauseu(t) =
−K(t)x(t) for all t ∈ {0, . . . , N − 1}, we have that

u = −bdiag(K(0),K(1), . . . ,K(N − 1))

× [x(0)T, . . . , x(N − 1)T]T,

or equivalently,

u = Fx, F :=
[

bdiag(−K(0), . . . ,−K(N − 1)), 0
]

.
(13)

It follows readily that

x = Pxw + χ, u = Puw + ν, (14)

where

Px := (I−HF)−1G = G+HF(I−HF)−1G, (15)

Pu := F(I−HF)−1G, (16)

and

χ := (I−HF)−1
x0 = x0 +HF(I−HF)−1

x0, (17)

ν := F(I−HF)−1
x0. (18)

Note that the inverse ofI−HF is always well defined given
that T := HF is a block lower triangular matrix and in
addition, its block diagonal elements are zero matrices (this
follows readily from the structure of the block matrixH).
The performance index can be written as follows:

J(π) = E

[

N−1
∑

t=0

x(t)TQ(t)x(t) + u(t)TR(t)u(t)
]

= E

[

N−1
∑

t=0

x(t)TQ(t)x(t) + x(t)TK(t)TR(t)K(t)x(t)
]

= E

[

x
TQx+ u

TRu

]

, (19)

where Q := diag(Q(0), . . . ,Q(N − 1),0) and R :=
diag(R(0), . . . ,R(N − 1)). In view of Eqs. (14)–(18), we
can write the cost function as follows:

J(π) = E

[

x
TQx+ u

TRu

]

= E

[

(Pxw + χ)TQ(Pxw + χ)

+ (Puw + ν)TR(Puw + ν)
]

, (20)

which, in view of Eqs. (2)-(3) and the fact thatx0 andw(k)
are mutually independent for allk ∈ {0, . . . , N −1}, can be
written:

J(π) = trace(PxQPT
x
+PuRPT

u
)

+ trace(QE
[

χχ
T
]

+RE
[

νν
T
]

). (21)

As is highlighted in [16], it is not clear at this point
whetherJ(π) is convex inF. To overcome this problem,
we will make use of an intuitive and straightforward bilinear
transformation suggested in [16], which will allow us to
express the performance index as a convex function of a
new decision variable, which is denoted asΨ and is defined
as follows:

Ψ := F(I−HF)−1. (22)

Using similar arguments as those in the discussion following
Eq. (18), we conclude thatΨ is always well-defined and
it is actually a block lower triangular matrix. It follows
immediately from (22) that

F = (I+ΨH)−1Ψ, (23)

where the right hand side of Eq. (23) is well defined
based again on similar arguments as those in the discussion
following Eq. (18). In view of (23), (15)–(16) and (17)–(18)
become, respectively,

Px := (I+HΨ)G, Pu := ΨG, (24)

and

χ := (I+HΨ)x0, ν := Ψx0. (25)

Thus, we have that

E
[

χχ
T
]

= (I+HΨ)ΓΣ0Γ
T(I+HΨ)T, (26)

E
[

νν
T
]

= ΨΓΣ0Γ
TΨT, (27)

where in the previous derivations, we have used the following
identity

E
[

x0x
T
0

]

= ΓT
E
[

x0x
T
0

]

Γ = ΓTΣ0Γ.

Therefore, in view of Eqs. (21), (24) and (26)-(27), and the
fact that the quantitiesPx and Pu are affine functions of
the new decision variableΨ, it follows that the performance
index J(π) is a convex quadratic function ofΨ.

Similarly, the functionh(·) can be written as follows:

h (x,u) := E

[

N−1
∑

t=0

x(t)TQc(t)x(t) + u(t)TRc(t)u(t)
]

= E

[

N−1
∑

t=0

x(t)TQc(t)x(t) + x(t)TK(t)TRc(t)K(t)x(t)
]

= E

[

x
TQcx+ u

TRcu

]

, (28)



whereQc := diag(Qc(0), . . . ,Qc(N − 1),0) and Rc :=
diag(Rc(0), . . . ,Rc(N − 1)), or equivalently,

h (x,u) = E

[

x
TQcx+ u

TRcu

]

= E

[

(Pxw + χ)TQc(Pxw + χ)

+ (Puw + ν)TRc(Puw + ν)
]

= trace(PxQcP
T
x
+PuRcP

T
u
)

+ trace(QcE
[

χχ
T
]

+RcE
[

νν
T
]

), (29)

where in the last derivation, we have used Eqs. (2)-(3).
Using similar arguments with those in the discussion on
the convexity of the performance indexJ(π) as function
of the new decision variableΨ, we conclude thath (x,u)
corresponds to a convex quadratic function ofΨ.

Next, we investigate whether the matrix equality constraint
on the terminal state covarianceE

[

xfx
T
f

]

−Σf = 0 can also
be written as a convex quadratic equality constraint inΨ.
To this aim, we will expressE

[

xx
T
]

as a function ofΨ.
Specifically, in view of Eqs. (2)-(3) and (14)–(18), and the
fact thatx(0) is independent ofw(k) for all k ∈ {0, . . . , N−
1}, it is straightforward to show that

E
[

xx
T
]

= E
[

(Pxw + χ)(Pxw + χ)T
]

= PxE
[

ww
T
]

PT
x
+ E

[

χχ
T
]

= PxP
T
x
+ E

[

χχ
T
]

. (30)

In view of (24) and (26), Eq. (30) can be written as follows:

E
[

xx
T
]

= (I+HΨ)(GGT + ΓΣ0Γ
T)1/2

× (GGT + ΓΣ0Γ
T)1/2(I+HΨ)T. (31)

Now, becausexf = x(N) = PNx, where

PN := [0 . . . I] ∈ R
n×(N+1)n,

we can write

E
[

xfx
T
f

]

= PNE
[

xx
T
]

P
T
N = ZZT,

whereZ := PN (I + HΨ)(GGT + ΓΣ0Γ
T)1/2. Note that

Z is itself an affine function of the new decision variable,
Ψ. Now, in view of Definition 6.6.44 in [17], the symmetric
matrix-valued functionf(·) : Rn×n → Sn, wheref(Z) :=
ZZT −Σf , will be convex inZ if and only if:

f(αZ1 + (1− α)Z2) � αf(Z1) + (1− α)f(Z2), (32)

for any α ∈ [0, 1] and for anyZ1 andZ2 ∈ R
n×n. Estab-

lishing the validity of (32) is rather straightforward. Thus,
we conclude immediately that, by definition, the function
f(·) is convex, and in particular, it is a convex quadratic
function ofZ. BecauseZ is in turn an affine function ofΨ,
we conclude that the functionf(·) is a convex quadratic
function of Ψ. However, the fact thatf(·) is a convex
quadratic function ofΨ does not necessarily imply that the
n(n + 1)/2 quadratic, scalar equalities that result from the
matrix equationf(Z) = 0 are necessarily convex. An easy

way to see why this is the case is to consider an example
with Z =

[

z1 z2
z3 z4

]

∈ R
2, in which case

f(Z) :=
[

z2

1
+z2

2
z1z3+z2z4

z1z3+z2z4 z2

3
+z2

4

]

−Σf ,

which gives two convex quadratic equalities, namely the
ones corresponding to the diagonal elements off(Z), and
one which is non-convex, namely the one corresponding to
the off-diagonal elements off(Z). Therefore, in general,
Problem 1 cannot be associated with a convex program.
Instead of addressing the NLP, which is known to pose
significant challenges in general, one can associate the NLP
with a nonlinear program by employing convex relaxation
techniques [2]. Perhaps, the most direct, convex relaxation
technique is to substitute the equality constraintf(Z) =
0 with the following convex constraint:f(Z) � 0. In
particular, the inequalityf(Z) � 0, which is equivalent to
Σf − ZZT � 0, can be written as a (convex) positive semi-
definite constraint:

X :=

[

Σf Z

ZT I

]

� 0,

given thatΣf − ZZT is the Schur complement ofI in X .

Because, the terminal state covarianceΣf can be viewed
as a measure of the dispersion of the endpoints of a rep-
resentative sample of state trajectories of the close-loop
system, the relaxation of the non-convex equality constraint
f(Z) = 0 to the convex constraintf(Z) � 0 leads to
desirable results in practice. This is because, whenf(Z) � 0,
or equivalently,0 � E

[

xfx
T
f

]

� Σf , the endpoints,xf , of
a representative sample of trajectories associated with the
convex program may not follow exactly the goal terminal
Gaussian distributionN (0,Σf) (this would be possible, if the
equality, but non-convex, constraintf(Z) = 0 was enforced
instead). However, the same endpoints are more likely to
be concentrated near the origin than those drawn from the
goal Gaussian distribution (here,E

[

xfx
T
f

]

can be viewed as
a measure of the dispersion of the terminal statesxf from a
representative sample of trajectories).

IV. N UMERICAL SIMULATIONS

In this section, we present numerical simulations for
a simple example in order to illustrate the key ideas of
the previous sections. In particular, we consider the finite-
horizon covariance control problem subject to the following
difference equations:

x1(t+ 1) = x1(t) + 2−9x2(t),

x2(t+ 1) = x2(t) + 2−9(−x1(t) + u(t)) + 2−4.5w(t),

with N = 210. We assume that the initial state,x0, at stage
t = 0 is drawn from the Gaussian distributionN (0,Σ0) and
the objective is to drive the uncertain state of the system to
a goal terminal state,xf , at staget = 210, which is drawn
from the Gaussian distributionN (0,Σf), where

Σ0 =
[

14 2
2 6

]

, Σf =
[

4 −0.5
−0.5 1

]

,
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(b) Time-evolution of 1-level sets ofq(x; t) :=
xT

Σ(t)−1x.

Fig. 2. The values ofσmax(Σ(t)) at different stagest ∈ {0, . . . , 210}
allows us to observe the rate at which the state covarianceΣ(t) converges
to theΣf at t = N = 210 (Fig. 2(a)). On the other hand, the evolution of
the ellipsoids that correspond to the1-level sets of the quadratic function
q(x; t) = xT

Σ(t)−1x at different stagest ∈ {0, . . . , 210} illustrates
the trajectory that the state covariance follows until it converges toΣf

(Fig. 2(b)). In the latter figure, the blue and the red ellipsoids correspond
to the1-level sets ofq(x; 0) andq(x; 210), respectively.

while minimizing the performance index
E
[
∑210−1

t=0 u(t)Tu(t)
]

. Figure 2 illustrates the time-
evolution of the state covariance matrixΣ(t) of the
closed-loop system, when the latter is driven by the
feedback control policy that solves Problem 1. In particular,
the rate of convergence of the state covarianceΣ(t) to its
terminal value,Σf , is illustrated in Fig. 2(a) via the evolution
of its maximum singular value,σmax(Σ(t)), at different
stagest ∈ {0, . . . , 210}. Furthermore, to better illustrate
the “trajectory” of the covariance fromΣ0 to its goal
destination,Σf , in Fig. 2(b), we show the time-evolution
of the ellipsoids that correspond to the1-level sets of the
quadratic formq(x; t) := xTΣ(t)−1x at different stages
t ∈ {0, . . . , 210}. (Note that this quadratic form appears in
the expression of the density function of the multi-variate
Gaussian distributionN (0,Σ(t)) from which the uncertain
state of the system is drawn at each staget).

V. CONCLUSION

In this work, we have addressed a covariance control prob-
lem for discrete-time stochastic linear systems, which we
formulated as a stochastic optimal control problem subject
to mean sum constraints involving quadratic functions of
the state and the control input sequences. We have shown
that the stochastic optimal control problem is equivalent to
a deterministic nonlinear program, which, via a judicious
choice of the decision variable, has a convex quadratic
performance index and is subject to inequality and equality
quadratic constraints, which, however, are not necessarily
convex. We have shown that by employing a simple relax-
ation technique, this nonlinear program can be associated
with a deterministic, convex program. Although the latter
problem cannot yield feedback control policies that will force
the endpoints of the closed-loop trajectories of the system
to follow the goal terminal Gaussian distribution exactly,
it will still lead to the generation of desirable trajectories
that will be concentrated near the origin. In the future, we
plan to extend the numerical techniques presented herein to
covariance control problems with partial and imperfect state
information.
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