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Abstract

We consider the problem of characterizing a spatial partition of the position space of a team of vehicles with linear
time-varying kinematics. The generalized metric that determines the proximity relations between the vehicles and an
arbitrary target point in the partition space is the minimum control effort required for each vehicle to reach the latter
point with zero miss distance and exactly zero velocity at a prescribed final time. We show that the solution to the
generalized Voronoi partitioning problem can be associated with a special class of spatial partitions known as affine
diagrams. Because the combinatorial complexity of the affine diagrams is comparable to the one of the standard Voronoi
diagrams, their computation does not pose a significant challenge in applications of multi-vehicle systems. Subsequently,
we propose an algorithm for the computation of the spatial partition, which is decentralized in the sense that each
vehicle can compute an approximation of its own cell independently from the other vehicles from the same team without
utilizing a common spatial mesh. Numerical simulations that illustrate the theoretical developments are also presented.
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1. Introduction

This paper deals with a spatial partitioning problem
for a team of vehicles with linear time-varying kinematics.
The motivation for this type of problems stems from ap-
plications involving multi-vehicle systems, where the load
of performing a particular set of tasks needs to be divided
fairly among the different vehicles based on, for example,
their locations and their steering capabilities (spatial load
balancing [1, 2]). In this framework, a vehicle is associated
with a subset of its operating environment, which we re-
fer to as the Region-of-Influence (ROI), which consists of
all the possible locations where a task can be carried out
by this particular vehicle with less incurred cost than any
other vehicle from the same team. The incurred cost will
be measured in terms of the value function of a relevant
optimal control problem [3, 4]. In contrast to our previ-
ous work on similar partitioning problems, which is based
on centralized computational techniques, in this work, we
propose a decentralized partitioning algorithm that allows
each vehicle to independently compute its own ROI.

By using proximity metrics that correspond to the value
functions of relevant optimal control problems, one can ob-
tain spatial partitions that encode proximity information
that succinctly captures the dynamic characteristics of the
vehicles; something that can not be achieved with the use
of other standard metrics found in the literature [5], which
stem solely from geometric considerations. Some special
classes of problems whose proximity metric corresponds to

*Corresponding author
Email address: bakolas@austin.utexas.edu (E. Bakolas)

Preprint submitted to Elsevier

the value function of a relevant optimal control problem
can be found in [6, 3, 7, 4, 8, 9]. With the exception of
[9], in the majority of the available results, the motion of
the vehicles is described by first order kinematic models.
Ref. [9], on the other hand, deals with a class of gener-
alized Voronoi partitioning problems for multi-vehicle sys-
tems with linear second order dynamics, where the proxim-
ity metric is the minimum control effort required for each
vehicle to reach a neighborhood of a target point with a
small terminal speed (soft terminal constraints). In this
reference, it is shown that the solution to the partitioning
problem can be directly associated with a particular class
of power or affine diagrams, for the computation of which
exact, yet centralized, algorithms exist in the literature.
Consequently, by utilizing the techniques presented in [9],
every vehicle will be unable to compute its ROI without,
at the same time, computing by itself the ROIs of the other
vehicles from the same team or receiving this information,
via, say, an “all-to-all” type communication network.

In this work, we present a decentralized partitioning al-
gorithm that computes an approximation of a spatial par-
tition for a team of vehicles with second order linear time-
varying kinematics and non-zero, in general, initial veloc-
ities based on the minimum control effort metric. Here
the qualifier “decentralized” has the following meaning:
with the utilization of the proposed algorithm, every vehi-
cle will be able to compute its corresponding cell, or ROI,
from the partition without computing at the same time
the cells that correspond to other vehicles from the same
team by utilizing a common spatial mesh. In this way, fru-
gal use of the available resources is achieved. Moreover,
in the definition of the proximity metric, we now explic-
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itly require that each vehicle reaches an arbitrary target
point with zero miss distance and with exactly zero termi-
nal velocity at a given finite terminal time (hard terminal
constraints), in contrast with [9)].

In order to address the partitioning problem, we exploit
the intrinsic connection of its solution, which is a subdi-
vision of a flat two-dimensional manifold whose ambient
space is a four-dimensional Euclidean space, with a special
class of partitions known as affine diagrams', which sub-
divide the two-dimensional Euclidean plane. The desired
spatial partition and the corresponding affine diagram con-
tain the same amount of information about the proximity
relations between the vehicles and arbitrary target points
in the plane. It turns out that, under some mild assump-
tions, the affine diagram that is associated with the desired
spatial partition is comprised of cells that are star-convex
with respect to their corresponding generators2. The pre-
vious fact will allow us to utilize some recent results on
the parallel computation of generalized Voronoi diagrams
in normed spaces by Reem [11, 12] in order to develop a
decentralized partitioning algorithm for the computation
of this affine diagram.

The rest of the paper is organized as follows. Section 2
presents the formulation of the optimal control problem for
a single vehicle. The partitioning problem for the multi-
vehicle scenario is formulated and subsequently solved by
means of a decentralized algorithm in Section 3. Section 4
presents numerical simulations, and finally, Section 5 con-
cludes the paper with a summary of remarks.

2. Formulation of the Optimal Steering Problem

2.1. Notation

We first introduce some useful notation used through-
out the paper. In particular, we denote by R? and R* the
set of two- and four-dimensional vectors, respectively. In
addition, we write Z~( to denote the set of positive inte-
gers. We denote by |a| the Euclidean norm (the length) of
a vector a and by (3, 7) the standard inner product of two
vectors 3 and v, where a, 3,7 € R, ¢ € {2,4}. The unit
circle, that is, the set {e € R?: |e| = 1}, is denoted by S!.
The space of square integrable functions g(-) : [0, 7] — R?,
for a given 7 > 0, is denoted by £2([0,7],R?). Further-
more, £ ([0, 7], R?*2) denotes the space of (almost every-
where) bounded functions M(:) : [0,7] — R?*2. In ad-
dition, bd(A) and int(.A) denote, respectively, the bound-
ary and the interior of the set A. We denote the fact
that a symmetric matrix A is positive definite by writing
A = AT »~ 0. Finally, given two points a and 3 € R?,
we denote by [a, f] the line segment from « to 8 and by
I'(c; ) the ray emanating from o that is parallel to e € St.

1 Affine diagrams are Voronoi-like partitions whose bisectors, that
is, the curves that consist of the equidistant points from any two
generators of the partition, are hyperplanes (or straight lines in the
two-dimensional case) [10].

2A set is star-convex with respect to one of its points, if the line
segment connecting this point with any other point in the set lies
entirely in the same set.

2.2. Problem Formulation

We are given a team of n vehicles which are initially lo-
cated at n distinct points, x; € R2, with prescribed initial
velocities, v; € R?, where i € Z,, := {1,...,n}. We denote
by X :={x;, € R* i€ Z,} and V := {v; € R?, i € 7,,},
respectively, the sets of the initial positions and velocities
of all the vehicles. To simplify the presentation, we will
assume that all the vehicles have the same dynamic char-
acteristics (homogeneous team of vehicles). In particular,
the motion of the i-th vehicle from the team, where i € Z,,,
is described by the following set of equations

Xi = Vi,

v, = —K(t)xi - C(t)vi + H(t)ui(t),

where x; = [7;, |7 € R? and v; = [v;, w;]T € R?
are, respectively, the position and velocity vectors of the
i-th vehicle at time t. In addition, u;(-) € £2([0, 7], R?) is
the control input of the i-th vehicle. Furthermore, K(-),
C(-), H(:) € £>([0,7],R**2). Moreover, we denote by
z; .= [xf, vI]T and z; := [xI, VI]T the state of the i-th
vehicle (concatenation of position and velocity vectors) at
time ¢ and t = 0, respectively; the set of initial states of
all the vehicles is denoted by Z := {z; € R* : i € 7,}.
The kinematics of the i-th vehicle can be written more
compactly as follows:

z; = A(t)Zi + B(t)ui(t), Zl(O) =z, (2)

where

a0= &y col BO= [

Let us now define the terminal position space to be the flat
two-dimensional manifold &y := {[x*, v¥]T € R*: v = 0}.
Note that Xj is globally homeomorphic to R%. Next, we
consider the problem of steering the i-th vehicle to a target
point in Aj.

Problem 1. Given a fized final time T > 0 and a point
x € R?%, determine a control input u$(-) € L*(R?[0,7])
that minimizes the cost criterion

NWO%=%Anw®ﬁﬂ 3)

subject to the dynamic constraint (2) and the following
boundary conditions: z;(0) = z; and z;(T) = z(x), where
z(x) == [xT, 0]7, z(x) € Ap.

Remark 1 Note that in the definition of the cost crite-
rion, we could have added a quadratic term penalizing the
state of the i-th vehicle. However, it turns out that the
quadratic optimization problem with the penalty on both
the control and the state under the original dynamic con-
straints (2) can be transformed to a minimum control effort
problem whose dynamic constraints are given by (2) after
replacing the matrix A (¢) with an appropriate matrix A(t)
(for more details, the reader should refer to Theorem 2 [13,
pp. 140-141]).



Assumption 1. Let ® be the state transition matriz of
the homogeneous system z; = A(t)z;, that is, the vec-
tor ®(¢,0)z; solves the initial value problem (2), when
u;(-) = 0. The controllability Grammian W (t) of the sys-
tem described by Eq. (2), where

W(t) = /0 ®(0,0)B(0)B (0)®7(0,0)do,  (4)

is positive definite at t = T, that is, W (1) = WT(1) = 0.

Under Assumption 1, it can be shown that the opti-
mal control u{(-) that solves Problem 1 is a time-varying
feedback law, which is given by (see, for example, Theo-
rem 1 [13, p. 137])

BT (1)®T (0, )W (7)(®(0, 7)z(x) — Z;).

()
Note that (5) can be written more compactly as follows

i (t,%7,2i) = M(t;7)(2(x) — ((7,2:)), (6)

ui (6, % 7,2) =

where
M(t;7) =BT ()@ (0, ) W1 (1)®(0, 7),
¢(1,2;) == ®(7,0)zZ;, (7)

Note that in the derivation of (6), we have used the fact
that ®-1(0,7) = ®(7,0). We observe that the gains of
the optimal control uf(-) depend explicitly on the final
time 7. Next, we define the value function of Problem 1,
that is, the cost incurred during the transition of the i-th
vehicle driven by the optimal control law u$ (¢, x; 7,z;), for
t € [0,7], from z; € Z to a state z(x) € Xy. We denote this
function, which we refer to as the minimum control effort
metric, by J°(-) : x +— J°(x; T,Z;), where

J(x;7,2;) := /|u (t,x; 7,2;) | dt. (8)

In light of Eq. (6), we get

J2067,2i) = ((2(x) = ((7,2:)), P(7)(2(x) = ((7,2:))),

9)
where

_1 /0 M (£ 7)M(t; 7)dt. (10)
It is easy to show that

P(r) =327 (0, W1 (1)®(0,7), (11)

from which we can immediately conclude that P(r) =
PT(r) - 0.

Remark 2 Note that both the expressions for the opti-
mal control and the value function of the optimal steering
problem given, respectively, in Egs. (6) and (9) depend on
the time duration, 7, of the desired state transition but
not on the initial time, although the dynamics of the i-th
vehicle depend, in general, on the time ¢ explicitly. This is
because, in the formulation of Problem 1, we have taken
the initial time to be t = 0.

Proposition 1. Suppose that Assumption 1 holds. Let
7 > 0 be given and let the matriz P(1) € R¥4, which is
defined in (10), be partitioned as follows

0= [eiia) 2]

where P11(7), P1a(7) and Pao(1) € R?*2. Let also the
vector ((7,2;) € R%, which is defined in (7), be partitioned
as follows

T

C(T, 2i) = [ClT(Tv 2i)7 CQT(Tv 21)} )

where (1(7,2;) and (a(7,2;) € R%. Then, the value function
of Problem 1 can be written as follows:

JO(x;7,2;) = (x = q(7,2), P11 (1) (x — a(7, 2:)))

+0(7,2;), (12)
where
q(7,zi) := Qu(7,2:) + P (1) P12 (7)Ca(7,24),
6(7-7 2i) = <<2(7-7 Zi) ( ) (7—7 zz)>a

Q(7) := Paa(r) = P (1P (1)Pua(7).  (13)

PROOF. The fact that P(7) = PT(r) = 0 implies that
Py1(7) = PT(7) = 0. Then, by completing the square,
Eq. (9) yields

JO(x7,Z;) = (x — ¢, Pri(x — ¢1))
—2(x — (1, P12¢2)
+ (2, P2a(o)

= P (x— )P

—2(P 1/2(X—C1) V2P oG
+ PP P G ?
— PP 1sGef?
+ (G2 P22(2)
= PP (x— 1) — P *P1aGaf?
+ (G2, (P22 — P1T2P11 P12)(2)

= [P1%(x— (1 — P 'P1ato) 2
+ (G2, (P22 — PP P12) (o),

where we have dropped the arguments of (; and Py to
facilitate the presentation. The result follows readily. W

Remark 3 Note that the function J°(-) : x = J°(x; 7, Z;)
attains its minimum value at x = x°, where x° := q(7,Z;).
In particular,
J°(x%;7,2;) = min J°(x;7,2;) = 9(7,Z;).
xER?
Note that the minimizer x° is, in general, different from the

initial state of the i-th vehicle. This may appear counter-
intuitive at a first glance; one would expect the minimizer



of J°(-) to be instead the initial position of the i-th vehi-
cle, X;. The important nuance here is that, according to
the formulation of Problem 1, the terminal position has to
be reached with zero terminal velocity. Consequently, a
non-zero control effort is required, in general, even for the
transition from z; to z(x;), where z(%;) = [x¥, 0]T. These
observations will play an important role in the subsequent
analysis.

3. The Partitioning Problem

Next, we formulate the generalized Voronoi partition-
ing problem with respect to the minimum control effort
metric.

Problem 2. Let Z := {z; € R* i € 1,} be given. Then,
determine a partition U = {0;, i € I,,} of Xy such that

1. X = UieIn pUR

2. int(W;) Nint(Y;) = @, for alli,j € I, i # j,

3. A point z(x) € Xy, where z(x) = [xT, 0]T, belongs to
G, if, and only if, J°(x;7,Z;) < J°(x;7,2;), for all
Jj € I,\{i}, where J°(x;7,2¢), € € {i,7}, is given by
Eq. (12).

Remark 4 Note that the proximity metric in Problem 2
is not a metric in the strict mathematical sense; for exam-
ple, J°(%;;7,2(%;)) # 0, where z(x;) = [}, 0]T, in general.
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8.1. Analysis of the Partitioning Problem

Let z;, z; € Z and let B;j denote their common bisector
in 90, which is defined as the collection of all points z(x) €
Xp that are equidistant from Z; and Z; in terms of the
minimum control effort metric J°(-), that is, J°(x;7,2;) =
J°(x; 7,Z;). Equivalently, z(x) € B;; if, and only if,

(x—a(7,2;), P1i(7)(x — q(7,2:))) + 6(7,2:) =
(x = q(7,2;), P11 (7)(x — a(7, 25))) + 6(7, ),

which implies that

(a(7,2;), P11(7)a(7,2:)) — 2(x, P11(7)a(7, 2:)) + 0(7,2;) =

<q(7‘, 2j), Pll(T)q(T, Zj)> — 2<X, Pll(T)q(T, 2j)> + 5(7‘, 2j).

It follows that B;; is determined by the following equation
<X7X(2172J7T)> = m(i’taijaT)v (14)
where

X(2i,2j;7) = 2P (7)(a(7, 25) — a(7, ),

_ 1/2 — 1/2 —
m(zi,2;;7) = [PY2(T)a(r,2))]? — P12 (7)a(7, 2:) 2

+6(71,Z;) — 6(7,Z;).

Note that Eq. (14) states that the inner product of an ar-
bitrary two-dimensional vector x with the constant vector

X(Zi,2;; 7) is always equal to the constant scalar m(z;, z;; 7).

Therefore, unless x(z;,z;;7) = 0, that is, q(7, Z;) = q(7,Z;),

Eq. (14) describes a straight line in R? that is perpendicu-
lar to the vector x(Z;, Z;; 7) and its distance from the origin
is equal to |m|/|x|. Note that Eq. (14) can be written al-
ternatively as follows

(z(x),§(x(2i, 255 7)) = m(zi, 255 7), (15)

where z(x) := [xT, 0]T and £(x) := [xT, 0]T. Note that
Eq. (15) implies that z(x) belongs to the hyperplane in R*
that is perpendicular to the constant vector £(x) and its
distance from the origin is equal to |m|/|¢(x)| = |m|/|x]|.

Proposition 2. Let 7 > 0 be given and let 0 := {Q;, i €
Z,} denote the generalized Voronoi diagram that solves
Problem 2 for a given set of generators Z := {z;, i € I, }.
Let us also consider a partition Q = {Q;, i € Z,,} of R?
that is generated by the point-set Q := {q;, i € L, } with
respect to the proximity metric J°() : x — J°(x; T, Gs, i),
where

JO(x; 7,04, 0;) := (x — i, P11(7)(x — @Q4)) + s, (16)

qi :=q(7,2;), 0; := 0(7,2;) and where q(-), d(-) are defined
in Eq. (13) and P11(7) € R?**? is a positive definite matriz,
Pyi(7) = PL(7) = 0, which is defined in Proposition 1.
Suppose that Q consists of n distinct points in R?. Then, a
point z(x) € Xy, where z(x) = [xT, 0]T, belongs to the cell
U, if, and only if, x € Q;. In addition, Q := {Q;, i € T,}
is an affine diagram with combinatorial complexity ©(n)3.

Proor. Equations (12) and (16) imply that J°(x; 7,z;) =
J°(x;7,Gi,0;), provided that q; = q(7,z;) and d§; = §(7,Z;).
Therefore, a point z(x) € Ap, where z(x) = [x*, 0]T,
belongs to the cell U;, where U; € U, if, and only if,
Jo(x;7,2;) < J°(x;7,Z;), for all i # j, or equivalently,
JO(x;7,Gi,0;) < J°(x;7,45,05). Thus, z(x) € U; if, and
only if, x € Q;, where 9, € Q.

Finally, let q;, q; € Q, where i # j. Then, the bisector
Bi; of §; and §; is determined by Eq. (14), which is the
equation of a straight line in R? given that, by hypothesis,
di # q;. Consequently, Q is an affine diagram in RZ.
The result on the combinatorial complexity of Q follows
immediately from Theorem 18.2.3 in [10, p. 439]. W

Remark 5 Proposition 2 states that the partitions U and
£ are equivalent in terms of characterizing the proximity
relations between the vehicles and arbitrary points in Ajp.
For example, if a point z(x) € Xp, where z(x) = [xT, 0],
belongs to U;, then the point x € R? will belong to £,
and vice versa. In addition, Proposition 2 essentially re-
fines Proposition 4 from [9], where it is not explicitly re-
quired that neither the miss target distance nor the ter-
minal speed be exactly zero. Using similar arguments to
the ones in [9], one concludes that  can be computed
in O(nlogn + n) time. The derivation of the previous
bound is based, however, on the analysis of general classes
of affine diagrams computed by means of centralized algo-
rithms (the reader is referred to [10] for more details).

3We denote by ©(f(n)) the set of functions F : Zso ~ [0,00)
for which there exist ¢1, c2 > 0 and ng € Zxo such that ¢1f(n) <
F(n) < caf(n), for all n > ng.



8.2. A Decentralized Spatial Partitioning Algorithm

Next, we present a decentralized algorithm, which in-
stead of directly computing the partition U = {U;, i €
7.} generated by Z C R*, computes its “equivalent” par-
tition 9 generated by @ C R2. We will henceforth assume,
based on practical considerations, that our partition space
is a compact and convex set S C R2. Before we proceed,
we make the following assumption:

Assumption 2. Let S be a compact and convez set in R2
and let 7 > 0 and Z = {z; € R, i € T,,} be given. Let
also q; == q(7,z;) and 6; :== §(7,2;), fori € I, where q(-)
and 6(-) are defined in Eq. (13). Then q; is an interior
point of S, that is, q; € int(S), and

(@i —a;, Pui(7)(q; — a;)) +6; > i, (17)
for all i € T, and j € I,\{i}, where P11(1) € R**? is
a positive definite matriz, P11(1) = P} (1) = 0, which is
defined in Proposition 1.

Remark 6 Note that Assumption 2 requires that the ve-
hicles are placed such that numerical singularities (when,
for example, the cell of one or more generators in Q has an
empty interior) are avoided during the computation of the
partition; in the computational geometry parlance, we as-
sume that the generators are placed in (a form of) general
position. It is easy to see that condition (17) is satisfied,
for example, when the initial speeds of the vehicles are
small compared to their initial relative distances.

Proposition 3. Suppose that Assumption 2 holds and let
0 be the affine diagram generated by Q = {q;, i € L} with
respect to the proximity metric J°(-) : x = J°(x; T, Gs, 0;),
which is defined in Eq. (16). Then, the point q; € Q
belongs to the interior of its corresponding cell Q; € 9,
G; € int(Q;). In addition, the set Q; is star-conver with
respect to the point q;, that is, for every point x € Q;, the
line segment [q;, x| lies entirely in Q;, for all i € T,.

PROOF. Inlight of Eq. (17), it follows that J°(q;; 7, q:, ;) <

J°(G;7,45,95), for all j € Z,,\{i}, which implies that q; is
an interior point of ;, q; € int(Q;). Each cell of the affine
diagram £ corresponds to the finite intersection of closed
half-planes in R?. Consequently, the cell £; is a convex
set, which along with the fact that g; € int(£;) imply that
£, is actually a star-convex set with respect to the point
q;, forallieZ,. R

Remark 7 Proposition 3 states that, under Assumption 2,
the point g; belongs to the interior of the cell ;. This
result is quite intuitive given that the point g; is the min-
imizer of J°(-;7,q;,0;), as we have already highlighted in
Remark 3. Consequently, one would expect g; to be an
interior point of the cell 9Q; given that, by definition, the
interior of this set consists of points that are “closer,” in
terms of the minimum control effort metric, to g; than any
other generator from the set Q. Later on, we will exploit
this fact to develop a decentralized algorithm that solves
Problem 2.

In light of Proposition 3, for each point x € 9, the line
segment [g;, x] will lie within the cell ;. Conversely, let us
assume that there exists a point y that belongs to the ray
I'(gs;e) such that J°(y;7,q;,6;) < J°(y;7,q,0;), where
Jj € Z,\{i}. Then, no point of the ray I'(y; e) that lies after
the point y will belong the cell ;, that is, T'(y;e)NQ; = 2.
Next, we propose an algorithm that, for a given e € S*,
seeks for the furthest point from q; along the ray I'(q;; e),
call it xpa(e,q;), such that

J°(xpale, ;); 7,05, 03) < J°(xpale, Gi); 7,45, 05),

for all j € Z,\{i}. Note that xpa(e,d;) corresponds to
the intersection of the ray I'(g;;e) with the boundary of
the cell ;, bd(Q;). Actually, it turns out that bd(Q;) =
{xpa(e,qi), e € S*}. To characterize a discrete approxi-
mation of bd(9;), we will borrow some ideas from [11, 12]
for the computation of generalized Voronoi partitions in
normed spaces. The approach presented in [11, 12] is based
on a bisection algorithm that is applied along families of
rays emanating from each generator. Because the proxim-
ity metric in these references is assumed to be a norm, it
turns out that the cells of the partition are sets that are
star convex with respect to their corresponding generators
as a direct consequence of the triangle inequality. This
is also true for the affine diagram £ in our case, in light
of Proposition 3, although the proximity metric J°(-) in
Problem 2 is not necessarily a metric in the strict mathe-
matical sense, as is highlighted in Remark 4.

Next, we present the key steps of the proposed decen-
tralized partitioning algorithm. In particular, we consider
an 1 x N mesh, which furnishes a finite approximation of
the unit circle S!, call it £. Then, we characterize the
point xpq(e,g;) € bd(9;), for each unit vector e € £. To
this aim, we employ a bisection algorithm along the ray
I'(g;;e), for each e € &, as suggested in [11, 12]. Next, we
summarize the main steps of the utilized algorithm:

Step 1: Initially, we take xpq(e, ;) to be the point x[%(e)
that corresponds to the intersection of I'(q;;e) with the
boundary bd(S) of the partition space S. We set 719 (e) :=
J°(x(e); 7,45, ;) and pl%)(e) := |g; — xU(e)|.

Step 2: If 70 (e) < J°(x%(e); 7,5, d;), for all j € Z,\{i},
then xpq(e,q;) = x%(e). Otherwise, we set pltl(e) :=
1p%(e) to obtain a new point xU/(e) := q; + pll(e)e.
Then, we set J!(e) := Jo(x!)(e); 7,q:,6:) and Ap(e) :=
[P0 (e) — pll(e)]-

Step 3: If Jl(e) < J°(x%(e); 7,45, ;), for all j € Z,\{i},
then we set pl?l(e) := plll(e) + 1Ap(e), and pl(e) :=
pll(e) — 1Ap(e) otherwise. In this way, we obtain a new
point x?(e) := g; 4+ pl?!(e)e, which is closer to the de-
sired point, Xpq(e,q;). Subsequently, we set J[(e) :=
J°(2 (e):7.8:,0,). and Ap(e) = |pl(e) — p(e)]-

Step 4: We repeat the previous steps until

Ixba(e, i) —x¥(e)| <& or k >k, (18)
for some given threshold € > 0 and a positive integer k, to
obtain a finite sequence of points, {x*/(e) : k € Z;}, where
Tr = {1,...,k}. Tt is easy to show that when k = k, we



have _ -
xba (e, i) —xM(e)] < X (e) —qal/2".
Therefore, the first condition in (18) is satisfied, if we take

k> (In|x(e) — ;] —Ine)/In2. (19)

Step 5: We repeat Steps 1-4, for all e € £, in order to ob-
tain a point-set bdg (Q;) := {xpa(e, i), e € £} that consti-
tutes a discrete approximation of the boundary bd(£;) of
the cell ;. The pseudo-code of the previously described
computational scheme is given in Algorithm 1.

As shown in [11, 12], the proposed decentralized parti-
tioning algorithm has, in general, time complexity O(n?),
where n is the number of vehicles, although in practice it
can actually run in time O(n). It should be highlighted
at this point that the accuracy of the obtained approxi-
mation of the partition £ via the proposed decentralized
algorithm, and thus the corresponding running time, de-
pends on a number of other parameters besides the number
of vehicles, including the fineness of the mesh £ and the
convergence threshold €.

It should also be mentioned that in this work, we do
not necessarily assume the existence of a communication
network that would allow the vehicles to exchange infor-
mation about their positions and velocities in the presence
of certain communication constraints. We assume instead
that the vehicles can sense the positions and measure the
velocities of the other vehicles. Consequently, our algo-
rithm, which is decentralized as we have already explained,
is not distributed.

4. Numerical Simulations

In this section, we present simulation results that illus-
trate the previously presented theoretical developments.
We consider a team of n = 10 vehicles with double inte-
grator kinematics. In particular,

Il
x\

).(’L' = Vi,
\'li' = ui(t),

19

Vi, (20)

where ¢ € Z19. In this case, one can compute analytically
the optimal control (see, for example, [14, pp. 558-561]),
which is given by

ug (t,%:7,2;) = a(x; 7,2;) + tb(x; T, Z;),
a(x;7,2i) = F5(x =% — 7V;) + 293,
b(x;7,2i) 7= =3 (X = % = TV;) = 5V (21)

Moreover, it follows, after substituting (21) in (8), that

']O(X; T, 21') = 7-%|X - q(Ta 2i)|2 + 5(7-) \71')7
q(7,2;) i= % + 3V, O(T,V;) 1= 5= [Vy[* (22)
Figure 1 illustrates the solution to Problem 2 for 7 = 2.

The red crosses and the black arrows in Figure 1 denote,

respectively, the initial positions x; € X and velocities

V; € V of the vehicles. Furthermore, the magenta crosses

Algorithm 1 A decentralized algorithm that computes
an approximation of the boundary of the cell Q; € Q

Input: A point-set Q C int(S)
Output: A discrete approximation of bd(9;)
%% Initialization:
1: for alle € £ do
2: X[O] (e) — Fﬂq“ e) N bd(S)
o9 (e) « [xVl(e) —
T0(e) o (x0(e); 7,1, 6,)
if 710(e) < J°(x%(e); 7,G;,0;), Vi € Z,\{i} then
&+ E\{e}
xpa(e,d;) < x%(e)
else
pll(e) + 3p1%@e), Ap(e) + |pl(e)
10:  end if
11: end for
12: k<0
%% Begin Iterative Process:
13: for alle € £ do
14:  while k <k do

— pltl(e)|

15: k< k+1

16: x¥l(e) « q; + plFl(e)e

17: Tl (e) + J°(X[’“ (e) 7,03, 0i)

18: if Jlkle) < Jo(xM(e);7,q;,0;), Vi € Z,\{i}
then

19, Pl (e) + oM (e) + 1Ap(e)

20: else

o plI(e) - plil(e) — LAp(e)

22: end 1f

23 Ap(e) + [plET(e) — plFl(e)]

24:  end whlle
25 xpale, ;) « x¥(e)
26: end for

correspond to the point-set Q. For the computation of the
partition illustrated in Figure 1, we have employed a naive
centralized approximation algorithm. The latter algorithm
amounts to the following steps: First, we discretize the
partition space into a uniform fine mesh G, which con-
sists of 400 x 400 nodes. Subsequently, we assign to each
node, ng, of the mesh G the index ¢ of the vehicle for
which J°(x(ng); 7,2;) < J°(x(ng); 7,2;), for all j € Z,\{i},
where x(ng) denotes the location of the node ng in the
plane. This naive partitioning scheme has time complex-
ity O(n|G|), where |G| denotes the number of nodes of the
spatial mesh [15]. Typically, the size of the mesh depends
on the number of vehicles; the higher the number of ve-
hicles, the finer the mesh should be. The green dashed
lines in Fig. 1 correspond to the standard Voronoi dia-
gram generated by the point-set X'. Alternatively, one can
utilize the so-called direct diffusion algorithm to compute
an approximation of the desired spatial partition on the
same mesh. The main idea behind the direct diffusion al-
gorithm is to sweep the two-dimensional spatial mesh in
four alternating orderings. During each sweep, the neigh-
boring nodes of each node ng are assigned to the “closest”
generator. The process terminates when no changes on the
assignment of any node ng can occur (the algorithm has



converged). If an eight-connectivity scheme is employed
for the characterization of the neighboring relations be-
tween the different nodes, then it can be easily shown that
the diffusion algorithm has time complexity O(32|G]), in
contrast with the naive partitioning algorithm whose com-
putation time is O(n|G|) as we have already mentioned.
Note that the advantages of the diffusion algorithm will
become apparent only when the number of vehicles, n, is
sufficiently large.

Next, we present the results of numerical simulations
based on the decentralized partitioning algorithm presented
in Section 3.2. In particular, Figure 2 illustrates a cell of
the partition £, which was computed independently by its
corresponding vehicle. For the computation of this cell, we
have used a discrete approximation of S!, £, which is in-
duced by a uniform discrete mesh on the interval [0, 27],
T. For our simulations, we have considered a coarse mesh
of 50 nodes (Fig. 2(a)) and a less coarse mesh of 100 nodes
(Fig. 2(b)) and we have taken ¢ = 0.01. The approxima-
tion of the cell obtained with the use of the less coarse
mesh is actually very close to the one obtained via the
naive centralized partitioning algorithm, which utilizes a
fine spatial mesh (Fig. 1).

Figure 3 illustrates the results of a performance com-
parison between the decentralized, the naive and the direct
diffusion partitioning algorithms. Note that the purpose
of this comparison analysis is to highlight some important
trends rather than being exhaustive. In particular, Fig-
ures 3(a)-3(c) illustrate the running time, denoted by texec,
of the three algorithms versus the number of nodes, N, of
the utilized spatial mesh G for three scenarios with n = 10,
n = 32 and n = 60, respectively. In particular, N equals
the number of nodes of the one-dimensional mesh, 7, that
is utilized by the decentralized algorithm, whereas the
naive and the direct diffusion partitioning algorithms uti-
lize a two-dimensional spatial mesh with |G| = N? nodes.
Note that the decentralized algorithm computes only the
cell illustrated in Fig. 2(b), whereas the naive and the
direct diffusion algorithms compute the whole partition
given that they cannot compute cells independently. The
previous observation along with the fact that the size of
T (one dimensional mesh) is much smaller than the size
of G (two-dimensional spatial mesh) explain the signifi-
cantly lower running time of the proposed decentralized
algorithm.

5. Conclusion

In this paper, we have addressed a spatial partitioning
problem that is relevant to applications of multi-vehicle
systems. The proximity metric of the proposed spatial
partition is the minimum control effort required to steer
a vehicle with linear time-varying kinematics to a target
point with exactly zero miss distance and zero terminal
velocity (soft landing) at a given (finite) final time. We
have shown that the solution to this partitioning prob-
lem can be associated with a class of affine diagrams of
modest combinatorial complexity. For the computation of

4 -2 0 2 4
x

Figure 1: A spatial partition for a team of ten vehicles with
respect to the minimum control effort metric computed via a
naive centralized algorithm. The green dashed lines correspond
to the standard Voronoi diagram generated by the point-set X

this affine diagram, we have utilized a decentralized parti-
tioning algorithm that allows each vehicle to compute an
approximation of its own cell independently from the other
vehicles from the same team without utilizing a common
spatial mesh. Future work includes the development of
decentralized partitioning algorithms for problems involv-
ing multi-vehicle systems with nonlinear dynamics as well
as distributed partitioning algorithms, where information
about the positions and velocities of the vehicles is relayed
among them by means of a communication network in the
presence of certain communication constraints.
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