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Abstract— In this paper, we address a finite-horizon stochas- cases of complete and partial state information in [12]] [13
tic optimal control problem with covariance assignment and and [14], [15], respectively. In particular, in our previou
input energy constraints for discrete-time stochastic linear work in [14], [15], we have leveraged certain tools and
systems with partial state information. In our approach, we id f ,16 ¢ ' d I t ti hes for th
consider separation-based control policies that correspond to iaeas _rom [16] to eye op_ Systématic approac es_ or the
sequences of control laws that are affine functions of either reduction of stochastic optimal control problems with co-
the cpmplete history of the output estimation errors, that is, variance assignment constraints for discrete-time sgitha
the differences between the actual output measurements and |inear systems with partial state information to (determin
E.he" cKorIrespo?Ictimg eSt'”t‘ated ?Utp“tf tﬂrc’duce‘j E.y ta dlS_?_tﬁte- istic) tractable convex programs. The methods proposed in
ime Kalman filter, or a truncation of the same history. This . . ! P
particular feedback parametrization allows us to associate [14], [15] utilize a special family of Comr_0| pOI'C'_es In Wth
the stochastic optimal control problem with a tractable semi- the feedback control law at each stage is an affine function of
definite (convex) program. We argue that the proposed proce- the history of all the output measurements up to the current
dure for the reduction of the stochastic optimal control problem  stage without explicitly using state estimators. Consatiye
to a convex program has significant advantages in {erms ina gimension of the resulting convex programs can be
of improved scalability and tractability over the approaches . . -

; ; significantly large especially for multi-stage problems. |
proposed in the relevant literature. : . s .
should be mentioned at this point that, despite the fact that
I. INTRODUCTION stochastic.optimal cor!trol problem; ;upject tq differgpes
of constraints (especially, in the infinite-horizon casaj c

We consider a finite-horizon stochastic optimal controbe addressed, in principle, by means of stochastic model
problem for discrete-time stochastic linear systems witpredictive control (SMPC) solution techniques [17]-[2,
partial state information subject to a constraint on the tethe best of the author’s knowledge, problems with covaganc
minal state covariance (covariance assignment congfjainassignment constraints have never been studied within the
and another constraint on the expected value offfheorm framework of SMPC in the literature.

Main Contribution: The main contribution of this work is
Mhe presentation of a systematic approach for the reduction

putation Of. it_s solution, we will only consider (admissible of stochastic optimal control problems subject to covaréan
control policies that correspond to sequences Of_ fee_dbag signment constraints for discrete-time linear systeitts w
control laws that can be expressed as affine combinations

ither th lete hist f outout residual trincat ﬁ’ rtial state information to convex programs that are more
e:cttherl t? COhW';’ € el |?hc_>ry 0 ?u tthJh ret5| U%S ?r 3; Erhlgfa tractable than those proposed in the relevant literaturéhis
orthe fatter hustory. In this context, the term “outpu aim, we propose a particular feedback control parametriza-
is used to describe the difference between the measurg

f ; di imated outout ¢ according to which the admissible control policies are
output_ of a sysiem an |ts_ es_t|ma ed output as compu guences of control laws that are affine functions of the his
by a discrete-time Kalman filtering algorithm. The propose

teedback irol trization is based the f ry of the output residuals of the discrete-time systemsgho
eedback control parametrizalion 1S based on n€ 1amolgyie js estimated by a recursive Kalman filter algorithme On
principle of separation between estimation and contral [1]

of the key advantages of this parametrization is that itnalo
Literature Review: Finite-horizon and infinite-horizon one to reduce the size of the convex program that corresponds
stochastic control problems with terminal constraints loa t to the stochastic optimal problem by restricting the feettba
state covariance for stochastic linear systems in both tlwentrol laws at each stage to depend on a truncated history of
discrete-time and continuous-time frameworks have reckeiv the most recent output residuals in lieu of the whole history
a lot of attention in the literature [2]-[8]. Recently, aissr The flexibility in determining the size of the convex program
of recent papers on this topic [9]-[11] addressed similapy truncating accordingly the history of past and preseatest
finite-horizon stochastic control problems for continuousinformation is a feature of the proposed approach that is
time linear, Gaussian (stochastic) systems. Similar probl missing from the approaches proposed in [14], [15]. This
with those in the previous references but in the discretés because in these references, the decision variablesof th
time framework have been studied recently for both theonvex program are determined by the original parameters
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control problem is formulated in Section Il. A systematicfor all (¢,7) € [0, N — 1]4 x [0, N — 1]4. Similarly, z( is
procedure for the reduction of the latter problem to a tiaeta independent of bothi,.;_; and Vy.n_1, that is,

convex program is presented in Section lll. Section IV T T
concludes the paper with a number of remarks and ideas E [zow(t)'] =0, E[w(t)z] =0, (4a)
for future research. E [zov(t)T] =0, E[v(t)z{] =0, (4b)

for all t € [0, N — 1]q.
We can write equations (1a)-(1b) compactly as follows:

Il. PROBLEM FORMULATION

A. Notation
x = Xgzg + X,u + X,w, (53)
We denote byR™ andR™*" the set of reah-dimensional
. : =Y Y, u+Y, , 5b
(column) vectors and realn x n matrices, respectively. Y 0% + Yot + Yo +v (5b)
We write Z* and Z** to denote the set of non-negativewhere z := vec(Xop.n) € RVTI", 4 := vec(Upy_1) €
mtegerf ar_wd strictly positive integers, respegtlvelyzdam, RN™ = vec(Won_1) € RV, y := vec(Yon_1) €
T € LT with 71 < 75, we define thediscrete intervaffrom  RN» and v := vec(Vo.n_1) € RMP. In addition, X, €
71 t0 7p as follows: [, 7p]q = [r1,72] N ZF. We denote R(N+Dnxn X c RINTORXNm gnd X, e ROV+)nxNn,
by E[-] the expectation operator. In addition, we denote by, particular,
vec(Xo.n) the vector that is formed by concatenating the .
(column) vectors that comprisEy. v, that is,vec(Xo.n) := X, = [I, AT (ANTHT (AN)T} ,
[z(0)T,..., =(N)T]T. If A € R™ ", then we denote its _ _ _
trace bytrace(A) and by A~! its inverse (provided that the whe.reaqu andX,, are block lower triangular matrlcgs; in
latter is well defined). We writ® andI to denote the zero Particular, X, = M(B; A, N) andX,, = M(L; A, N) with
matrix and the identity matrix. The space of real symmetric

. . 0 0 ... 0
n x n matrices will be denoted bs,. Furthermore, we N 0 0
will denote the convex cone of x n (Symmetric) positive AN N 0

semi-definite and (symmetric) positive definite matrices by M(N; A, N) := (6)
S} andS;}*, respectively. Given a matriA € S+ (resp. ; ; ce

A € S}), we will also write A > 0 (resp.,A = 0). Finally, AN-IN AM2N ... N

we write bdiag(A, ..., A,) to denote the block diagonal

matrix formed by the matriced;, i € {1,...,¢}, which Furthermore,Yo := Y, X, Y, := Y, Xy, Yy := Y Xy

have compatible dimensions. whereY, € RVP*x(N+1)n s 5 block lower triangular matrix
with
B. Vectorization of the State Space Model of a Discrete-Time Y, := [bdiag(C,...,C),0]. @

Stochastic Linear System

We consider a discrete-time stochastic linear system that'NOt€ that for the derivation of (Sb), we have used the
is described by the following equations: fact thaty = Y.« + v, which follows from (1b) and itself

implies, in view of (5a), that

z(t+1) = Ax(t) + Bu(t) + w(t), (1a)
= Y’I'X YtXu Yme 3
y(t) = Ca(t) + v(t), (1b) Y= YoRoWo+ Yolut+ Wt
for t € [0, N — 1]a, where Xo.v = {z(t) € R : ¢ ¢ from which (5b) follows readily.
[0, N]s} is the state (random) procedsy.y_1 := {u(t) € The following basic assumption will be useful in the
R™ : t e [0,N —1];} is the input process acting togethersubsequent discussion.
with the noise process8/o.y—1 := {w(t) € R" : t € [0, N— Assumption 1:The pair(A, B) is controllable, that is,
1]4} upon the systemyy.n—1 := {y(t) e RP : t € [0, N —
1]4} is the output process, and finallyp.n_1 = {v(t) € rank([B ... A"'B|)=n. (8)

RP: ¢t € [0, N —1]4} is the measurement noise process. In " _ _ i
addition, Wo.x_1 andVo.v_, are sequences of independent addition, the paifC, A) is observable, that is,
and identically distributed normal random variables with rank([CT ... CT<A”_1)T]T) . )

Ew®] =0, E[wtw(r)]=0tnW, (2a) . o .
T Remark 1 The controllability assumption given in (8) will
Efv(®)] =0, E[o()v(r)'] =0(t7)V, (D) gnsure that the expected value of the state can be steered
for all t,7 € [0,N — 1],, whereW € S+, V ¢ s++, 10 any vector inR™ with the application of an appropriate
andd(t,7) := 1, whent = , andd(t,7) := 0, otherwise. C€Ontrol sequence, at least, in the absence of input contrai
In addition, Wo.y_; and Vo.x_; are independent, which N addition, the observability assumption is made to ensure
implies that that the output measurements will always contain the amount
of information needed to extract good state estimates from
E [w(t)v(T)T] =0, E [v(t)w(T)T] =0, (3) them.



where E, ¢ RWHhnxn g = c RIN+LnxNn gnd E, €

_ _ _ RWV+DnxNp |n particular,E is defined as follows:
We assume that a recursive state estimator provides es-

timates of the current state of the control system based on

C. State Estimator Dynamics

its output measurements. The state of the estimator and
corresponding output, which are denoted dfy) and §(-),
respectively, satisfy the following equations:
£(0) = (0] — 1) + A°(0)(y(0) — CZ(0| — 1), (10a)
E(t+1) = Az(t) + Bu(t) + A°(t) (y(t + 1)

— CA#(t) — CBu(t)), (10b)
for ¢t € [0, N — 1]4, and
y(O) = C“%(O)’ 9(t) = Ci‘(t)a (11)

for t € [1,N — 1], wherez(0] — 1) = E(zg) = po and

A°(t) denotes the optimal estimation gain (or “Kalman’

gain) matrix at timet, which is determined by the following
recursive scheme [22], [23]:

P (0] — 1) = E[(z0 — po) (0 — p0)"] = Zo, (12a)
P(tlt —1) = AP(t — 1]t — 1)AT + W, (12b)
A°(t) =P(t|t - 1)CT[CP (¢t — 1)CT + V]7!,  (12c)
P(t[t) = [I- A°(t)C|P(t]t — 1), (12d)

for ¢ € [0, N — 1]4. Now, let us denote by(t¢) the state
estimation error, where(t) := x(t) — z(t), for ¢t € [0, N]a.
In addition, we denote by (¢) the output estimation error,
which is also known as the output residual, wherg) :=
y(t) — g(t), for t € [0, N — 1]4. In light of (1a)-(1b) and
(10a)-(11), we have that

e(t+1) =Ac(t)e(t) + Be(t)w(t) + De(t)v(t),

Y(t) = Ce(t) +v(t),

for ¢ € [0, N — 1]4, with

A.(t) == A — A°(t)CA,
B.(t) :=I— A°(t)C,
D, (t) == —A°(t).

(13a)
(13b)

In addition, e(0) = e, with eq ~ N(0, 3y) where the error
covariance matrix2, satisfies the following equation [23]:

=3 - ZoCT(CCT 4+ V)7ICxy.  (14)

A well-known property of the Kalman filter is that the state

estimation error is orthogonal to the state estimate, whi
implies that

E[z(t)e(t)'] =0, Ele(t)i(t)'] =0, (15)

for all ¢ € [0, N]q4.
Now, let Eg.ny = {e(t) € R* : t € [0,N]q} and
Uo.no1 = {¢(t) € RP : ¢t € [0,N — 1]4} and let

e := vec(Ey. ) andyp := vec(¥p.n_1). Then, we can write
equations (13a)—(13b) compactly as follows:

e = Egpep + E,w + Eyv,
P = Woeo + ¥yw + ¥,0,

(16a)
(16hb)

C

Eo:=[I ®.(1,0)7 &.(N,0)7]",
it

Where @, (t,7) == Au(t — 1)...A.(7), for all (,7)
[1,N]g x [0,N — 1]4 with ¢ > 7 (note that®.(¢,7) :
A.(t—1), whent = 7+ 1) and ®.(¢t,t) =1, for all ¢ €
[1, N]q. In addition,E,, andE,, are block lower triangular
matrices, and in particulaig,, := M(B.(); ®.(-,-),N)
andE, := M(D.(-); ®.(-,-), N), where

S

0 0 0

P(0) 0 0

®.(2,1)P(0) P(1) 0
&.(N,)P(0) &.(N,2)P(1) PN 1)

Furthermore, we have that
v, :=Y,Ey, ¥, :=Y,E,, ¥, :=Y,E, +L
For the derivation of (16b), we have used the fact that
Y=Ye+v,

which follows from (13b) and itself implies, in view of (16a)
that

P =Y, Epep + Y. E,w+ (Y.E, + D)o,

from which the result follows readily.

D. Formulation of the Stochastic Optimal Control Problem
with Covariance Assignment Constraints

Our objective is to find a control policy that minimizes
the expected value of a finite sum of convex quadratic
functions (costs per stage) of the statg) of the stochastic
linear system (1a)-(1b), subject to an inequality constrai
on the squared’s-norm of the input (random) sequence
Uo.n—1. We will assume that the set of admissible control
policies, which is denoted byP, consists of all control
policies 7 := {u(;t); t € [0,N — 1]4}, where at each
staget, the control lawu(+;¢) is a causal (non-anticipative),
measurable function of the elements of the output process
Yo.: and in particular, amaffine combination of the elements
of the latter process (or more precisely, the complete fiittna
%f the sigma field generated by the elementsYpf). In
particular, for eacht € [0, N — 1]4, the control lawu(-;t)
will map a given (random) finite-length sequentg; to
a (random)m-dimensional input vectoru(t). We write
m = {u(Yos;t) : t € [0,N — 1]q}. Next, we give the
precise formulation of the stochastic optimal control peof
with incompleteand imperfect state information subject to
covariance assignment constraints.

Problem 1:Let N, ¢ € Z*" and Xy, ¢ € ST be
given. In addition, let{Q(t) € S} : ¢ € [0,N — 1]4}
and{R(t) € S}, : ¢t € [0,N — 1]} be given sequences
of positive semi-definite matrices and let aléde a given
positive number. Then, find an optimal control polic§ :=



{p°(Yo.0;0),..., u°(Yo.n—1; N — 1)} € P that minimizes
the performance index
N-1
J(r)=E| Y 2" Qt)a() (a7
t=0
over all admissible feedback control policies =

{1(Y0.0;0),...,u(Yo.n—1; N — 1)} € P subject to (i)
the difference equation (1a)-(1biii), the following input
constraint:

for t € [0, N — 1], whereF(¢,7) € R™*? for all (¢,7) €

[0, N—1]4x [0, N —1]q with t > 7, andUp.nx 1 := {u(t) €

R™: t € [0, N —1]4} is a finite-length sequence of (open-
loop) reference input signals. We will denote this subset of
P asP. Note that the fact thaP is a subset of is a direct
consequence of the fact that the state estinigte is an
affine function of the present and past output measurements,
that is,z(t) is an affine function of the elements B.; [23].

Note that there is nothing that prevents us from setting

N-1 F(t,7) =0forall 7 € [0,t—0—1]4, for someo € [0, t—1]4.
C(r) <0, C(n):= E[ Z u(t)TR(t)u(t)} — ¢, (18) Inthis caseu(-;t) will be an affine function of the elements
=0 of the truncated output proceds_, ., that is,

and (iii) the following terminal constraints in terms of the

mean and the covariance of the (random) state veotor (21)

(U gast) =a(t) + Y F(t,7)9(t).

att = N: T=t—o
_ For instance, ifo = 1, then u(-;¢t) will depend only on
N)) = H(x(N)) = ;
h(z(N)) =0, (@(N)) = 0, the current and the most recent output residualg) and
where ¥(t — 1), respectively, whereas i = 0, then p(-;¢) will

depend only on the current output residugilt). In the

subsequent discussion, we will present the most general
cases in which the control law depends on the whole history
, . _ ... .. of output estimation errors and satisfies equation (20). The
Remark 2 Note that instead of the positive semi-definite;a\ysis for the case when the control law depends only
constraint H(z(N)) = 0, where H(z(N)) is given in g 5 tryncated version of the history of output estimation
(19b), one should in principle enforce the following Ma-g 45 can be done in a similar (and obvious) way after the

trix equality constraintH(z(NV)) = 0, or equivalently, nocessary modifications have been carried out.
E [z(N)z(N)T] = . Note that the latter matrix equal-

ity constraint together with the vector equality constrain [N order to find the closed-loop dynamics of the discrete-
h(z(N)) = E[z(N)] = 0 imply that the terminal state time linear system given in (1a)-(1b), we will have to set
covariance should be equal to a prescribed positive definitét) = 1(Vo:t;t), wherep(Wo.;t) is defined in (20). Then,
matrix (strict covariance assignment constraint). As weesha wi=u+ K, (22)
shown in our previous work in [12], the matrix equality ~ _ Nonx No
constraint(z(N)) = 0 is non-convex, whereas the positivenerew := vec(Up.y—1) andK € R PisanN x N
semi-definite constrairl(z(N)) = 0 corresponds to a con- PIOCk lower triangular matrix with block¥; ; € R™*7. In
vex relaxation of the latter. These remarks will become mor@@rticular, K ; := F(i —1,j —1), if i > j, andK;; := 0,
clear later on, when we discuss the process of convertig? < 7. In view of (16b), equation (22) gives

Problem 1 into a tractable finite-dimensional optimization u=1u+UyK)eo + Uy (K)w + Uy, (K)o, (23)

problem. .

with Uy(K) := K¥y, U,(K) := K¥,, andU,(K) :=
KW¥,. Equation (23) induces an one-to-one mapping that
associates a control poliey € P with the decision variables
(u, K). In particular, giver(u, K), the corresponding control
policy m = {u(E¢r1%;t) : t € [0, N — 1]4}, with
. ] ) /L(Et+1’¢'; t) = Et+1(ﬁ+U0(K)eo—|—Uw(K)w+Uv (I()’U)7
Finding the solution to Problem 1 can be a very comple hereE,,1 € R*N™ for ¢ € [0, N — 1],, is a block row

task. In our previous work [14], [15], we have propose : " .
. . . . ctor with N blocks (E;11)1, € R™, for i € [1,N]4. In
solution techniques in which the proposed feedback Contr%grticular, (Bsi)1i =1, fori = ¢ + 1, and (Evs1 )14 = O,

h(z(N)) == E[z(N)],
H(z(N)) == % — E [z(N)z(N)T] .

(19a)
(19hb)

IIl. REDUCTION OF THESTOCHASTIC OPTIMAL
CONTROL PROBLEM TO A TRACTABLE CONVEX
PROGRAM

A. Set of Admissible Control Policies

policy was taken_ to be a sequence of control laws th ttherwise. We denote the latter mappingragnd we write
were affine functions of the present and all past outpu

: = w(u, K). The inverse mappingz—!, can fin

measurements. It turns out that the computation of therlattér- -w@’ ) 1€ nve SE ?Ep gr~, can be defined
. . A imilarly; we write (@, K) = w™ (7).

feedback policy can incur a significant cost when the number

of stagesV, is large given that the control law at each staggy Closed-loop dynamics

depends on the present and all past measurements. Herein,

we restrict our search to a subsetthat consists of policies  In view of (5a) and (23), the closed loop dynamics of the

m={u(;t): t€[0,N —1]s}, where control system can be written compactly as follows:

xTr = X()JCO + Xu(Uo(K)eo —+ Uw(K)’LU —+ U,U(K)'U)

(20) + X, + X,w, (24)

p(Woust) = a(t) + Y F(t, 7)e(t),
=0



or equivalently,
T=GzTo+Gatu+ G, (K)eo

+ gw (K)w + gv (K)’U, (25)
where G,, = Xo, Ga = Xu, Goo(K) = X, K¥,
Gu(K):=X, +X,K¥,, andG,(K) := X,K¥,,.

C. Expressions of the cost and constraint functions in terms

of the decision variables and K

The cost function can be written as follows:
J(m) = E[z" Qx| = E[trace(zz’ Q)],

where Q := bdiag(Q(0),..., Q(N —1),0) € Sy ),

view of (25), Eqg. (26) can be written as follows:
J(m) = Eftrace((Gz, 20 + Gatt
+Ge, (K)eo + Guw(K)w + G, (K
X (gxofo +Guu
+Ge,(K)eo + Gu(K)w + G,(K)v)T Q)]
= J(K). (27)
In view of (2a)— (4b) and (15), Eq. (27) implies that
J (K) = trace((Guo (Zo + 10415) 91,
+2G., o Gy, + Gauu' G,

(26)

In

)v)

+ 2gwo 20960 (K)T
+ Gy (K)Z0G., (K)T + Gu (K)YWG, (K)T
+G,(K)VG,(K)Q), (28)

whereW = bdiag(W W) andV = bdiag(V,..., V).

In the previous derlvatlon we have used the fact that in the

light of (15), we have that

E[zoef] = E[(Z0 + eo)ey] = So. (29)

The input constraint functiol(7) can be written com-
pactly as follows:

C(r) = E[u"Ru] — ¢ = Eftrace(uu'R)] — ¢,
where R := bdiag(R(0),...,R(N — 1)) € S§,,
of (23), Eq. (30) can be written as follows:
C(m) = Eftrace((u + Ug(K)eg + Uy (K)w + U, (K)v)

x (w4 Uo(K)eg + Uy (K)w + U, (K)v) 'R)| — ¢
=:C(F). (31)
In light of (2a)—(4b) and (15), Eq. (31) implies that
C(K) = trace(au' + Up(K)ZUg(K)T
+ U, (K)WU,,(K)T
+U,(K)VU,(K)")R) — ¢.
Next, we express the terminal constraitz(N)) = 0

in terms of the decision variablgg:, K). To this aim, we
observe that in view of (25), equation (19a) becomes

h(z(N)) = E[En41(Gaom0 + Gati + Ge, (K)eg
+Gu(K)w + G, (K)v)] =: h(a),

(30)

. In view

(32)

(33)

whereEy4q := [0, O,...,
the fact thatf[z¢] = o andE[eg] = 0, it follows that
h(w) = Ex+1(Gaoto + Gatt). (34)

From (6) and (34), it follows that the terminal constraint
h(w) = 0 can be written equivalently as follows:

[AN_lB X = —EN+1ng/L0. (35)
Proposition 1: Suppose thatN > n. If Assumption 1

holds true, then the linear constrainta) = 0, whereh(a)
is defined in (34), will always be feasible.

0, I]. In view of (2a)—(2b) and

Bl u = x,

Proof: If (8) holds true, then the system of (algebraic)
linear equations that is given in (35) will always admit a
solution. This is because the vecppr= —ExN_1G ., o Will
always belong to the range 6B A""'B] given that
N > n, by hypothesis. ]

Next, we will express the positive semi-definite constraint
H(z(N)) = 0, in terms of the elements of the decision
variables(u, K). To this aim, we note that in view of (2a)—
(3), (15), (29), equation (19b) gives

H(z(N)) = £ — Ent1 (G (S0 + popg) G,
+ G o' G, + Gatipy G,
+Gauu'G,

+ G, (K)20G 1, + Gy Z0Ge, (K)T

1 Gy (K)0G, (K)T + G (K)WG,, (K)T
+ G, (K)VG,(K)")EL,, = H(ua,K). (36)
In particular,
H (@, K) = 3¢ — Ha (@) Ha (1) — Hao(K)Ho (K)'
- Hs3(K)
=3 — A(a, K)A(a, K)T — H3(K), (37)
where
=% - En+1G4,20G,, .
Hi() := Ent1(Gaoto + Gatt),
Ho(K) := Ens1(Geo (K)Z0Ge, (K)T
1/2

+Gu(K)WG,(K)T + G, (K)VG,(K)T) ',
H3(K) :=Eny1(Ge,(K) 2091, + GapX0Ge, (K) ) EL 44,
andA(ﬁ,K) = [7‘{1(’&) HQ(K)}

An important observation at this point is tha; (u) and
H,(K) are affine functions ofi and K, respectively, and
consequentlyA (u, K) is an affine (joint) function ofu, K).

Proposition 2: Let ¥y, ¥ € S/*. The constraints
H(u,K) > 0 and M(u,K) > 0 are equivalent in
the sense that the sefy; = {(u,K) € RN™ x
RN™XNp . g (w,K) = 0} and the setSyq := {(u,K) €
RN™ x RNm>XNp - M(u,K) = 0}, where

o I [Hi(a) Ha(K)]
M(u, K) := [[’Hl(u) Ho(K)[T S5 — Ha(K) }
I A(u, K)
- [A(u,K)T 5% 'Hs(K)} )



are equal. In addition, the positive semi-definite constrai National Science Foundation (award no. CMMI-1753687).

M(u,K) = 0 can be written as an LMI (convex) constraint
in terms of the elements dfu, K).

Proof: Because the matrixH(u,K) is the Schur [1]
complement ol in the matrixAM(u, K), which is defined in 5
(38), it follows that the constrair¥ (u, K) > 0 is equivalent [2]
to the following constraintM (u, K) > 0. Note that the [3]
latter positive semi-definite constraint can be expressed a[ 4
an LMI constraint in terms of the elements @i, K) [24].

[ |
Problem 2: Given ¢ > 0 and X, ¢ € S}, find the &l
matrix K* € RY™*NP that minimizes7(K) subject to
C(K) <0, h(u) = 0, and H(u,K) = 0 where 7(K),
C(K), h(u), and M(u,K) are defined in (28), (32), (34) [7]

and (38), respectively.

Proposition 3: Under the assumption that the set of con- (8]
trol policies is restricted to the subs@tof 7, Problem 1 and
Problem 2 are equivalent in the sense thatqfe P solves
Problem 1, ther(a®, K°) = w(n°) solves Problem 2, and [9]
vice versa.

Proof: The proof follows readily after noting that (1]
J(r) = J(K), C(x) = C(K), h(@) = h(z(N)), and
H(z(N)) = #(u, K) provided thatr = w(u, K) together
with Proposition 2. [ ]

[11]

12
Remark 3 An important observation at this point is that[ ]

with the proposed reduction of the stochastic optimal adntr
problem (Problem 1) to a convex program (Problem 2), wé
can decrease the dimension of the latter convex program by
truncating the history of output residuals that the contrdiL4]
laws at each stage will depend to. Note, on the other hand
that the longer the history of the output residuals, theebett[15]
performance can be achieved, especially in the presence of
stringent constraints. Therefore, one should choose tigghe [16]
of this history in such a way that strikes a balance between
performance and computational tractability. 171
IV. CONCLUSION
[18]

In this work, we have proposed a systematic approach for
the reduction of a stochastic optimal control problem with;q
partial state information subject to covariance assignmen
and input energy constraints into a tractable convex progra
In contrast with our previous work on similar problems, in
this work we have proposed separation-based control pslici
which are sequences of feedback control laws that are affifidl
mappings of either the complete history of output estirmatio[zz]
errors, which are computed with the aid of a discrete-time
Kalman filter algorithm, or a truncation of the latter histor [23]
In our approach, the size of the resulting convex problem,
depends on the length of the truncated history of the output
estimation errors; something that allows us to design obntr
policies that strike a balance between good performance
and computational scalability. In our future work, we will
consider the nonlinear stochastic optimal control problem
with state covariance assignment constraints.

[20]
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