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Abstract— In this paper, we address a finite-horizon stochas-
tic optimal control problem with covariance assignment and
input energy constraints for discrete-time stochastic linear
systems with partial state information. In our approach, we
consider separation-based control policies that correspond to
sequences of control laws that are affine functions of either
the complete history of the output estimation errors, that is,
the differences between the actual output measurements and
their corresponding estimated outputs produced by a discrete-
time Kalman filter, or a truncation of the same history. This
particular feedback parametrization allows us to associate
the stochastic optimal control problem with a tractable semi-
definite (convex) program. We argue that the proposed proce-
dure for the reduction of the stochastic optimal control problem
to a convex program has significant advantages in terms
of improved scalability and tractability over the approaches
proposed in the relevant literature.

I. I NTRODUCTION

We consider a finite-horizon stochastic optimal control
problem for discrete-time stochastic linear systems with
partial state information subject to a constraint on the ter-
minal state covariance (covariance assignment constraints)
and another constraint on the expected value of theℓ2-norm
of the utilized control sequence (input energy constraint). To
streamline the analysis of the problem and simplify the com-
putation of its solution, we will only consider (admissible)
control policies that correspond to sequences of feedback
control laws that can be expressed as affine combinations of
either the complete history of output residuals or a truncation
of the latter history. In this context, the term “output residual”
is used to describe the difference between the measured
output of a system and its estimated output as computed
by a discrete-time Kalman filtering algorithm. The proposed
feedback control parametrization is based on the famous
principle of separation between estimation and control [1].

Literature Review: Finite-horizon and infinite-horizon
stochastic control problems with terminal constraints on the
state covariance for stochastic linear systems in both the
discrete-time and continuous-time frameworks have received
a lot of attention in the literature [2]–[8]. Recently, a series
of recent papers on this topic [9]–[11] addressed similar
finite-horizon stochastic control problems for continuous-
time linear, Gaussian (stochastic) systems. Similar problems
with those in the previous references but in the discrete-
time framework have been studied recently for both the
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cases of complete and partial state information in [12], [13]
and [14], [15], respectively. In particular, in our previous
work in [14], [15], we have leveraged certain tools and
ideas from [16] to develop systematic approaches for the
reduction of stochastic optimal control problems with co-
variance assignment constraints for discrete-time stochastic
linear systems with partial state information to (determin-
istic) tractable convex programs. The methods proposed in
[14], [15] utilize a special family of control policies in which
the feedback control law at each stage is an affine function of
the history of all the output measurements up to the current
stage without explicitly using state estimators. Consequently,
the dimension of the resulting convex programs can be
significantly large especially for multi-stage problems. It
should be mentioned at this point that, despite the fact that
stochastic optimal control problems subject to different types
of constraints (especially, in the infinite-horizon case) can
be addressed, in principle, by means of stochastic model
predictive control (SMPC) solution techniques [17]–[21],to
the best of the author’s knowledge, problems with covariance
assignment constraints have never been studied within the
framework of SMPC in the literature.

Main Contribution:The main contribution of this work is
the presentation of a systematic approach for the reduction
of stochastic optimal control problems subject to covariance
assignment constraints for discrete-time linear systems with
partial state information to convex programs that are more
tractable than those proposed in the relevant literature. To this
aim, we propose a particular feedback control parametriza-
tion according to which the admissible control policies are
sequences of control laws that are affine functions of the his-
tory of the output residuals of the discrete-time system whose
state is estimated by a recursive Kalman filter algorithm. One
of the key advantages of this parametrization is that it allows
one to reduce the size of the convex program that corresponds
to the stochastic optimal problem by restricting the feedback
control laws at each stage to depend on a truncated history of
the most recent output residuals in lieu of the whole history.
The flexibility in determining the size of the convex program
by truncating accordingly the history of past and present state
information is a feature of the proposed approach that is
missing from the approaches proposed in [14], [15]. This
is because in these references, the decision variables of the
convex program are determined by the original parameters
of the control policy after the application of a certain bilinear
transformation [16] to them, which is agnostic to the length
of the truncated sequence.

Structure of the paper:The constrained stochastic optimal



control problem is formulated in Section II. A systematic
procedure for the reduction of the latter problem to a tractable
convex program is presented in Section III. Section IV
concludes the paper with a number of remarks and ideas
for future research.

II. PROBLEM FORMULATION

A. Notation

We denote byRn andRm×n the set of realn-dimensional
(column) vectors and realm × n matrices, respectively.
We write Z

+ and Z
++ to denote the set of non-negative

integers and strictly positive integers, respectively. Given τ1,
τ2 ∈ Z

+ with τ1 ≤ τ2, we define thediscrete intervalfrom
τ1 to τ2 as follows: [τ1, τ2]d = [τ1, τ2] ∩ Z

+. We denote
by E [·] the expectation operator. In addition, we denote by
vec(X0:N ) the vector that is formed by concatenating the
(column) vectors that compriseX0:N , that is,vec(X0:N ) :=
[x(0)T, . . . , x(N)T]T. If A ∈ R

n×n, then we denote its
trace bytrace(A) and byA−1 its inverse (provided that the
latter is well defined). We write0 and I to denote the zero
matrix and the identity matrix. The space of real symmetric
n × n matrices will be denoted bySn. Furthermore, we
will denote the convex cone ofn × n (symmetric) positive
semi-definite and (symmetric) positive definite matrices by
S
+
n andS

++
n , respectively. Given a matrixA ∈ S

++
n (resp.

A ∈ S
+
n ), we will also writeA ≻ 0 (resp.,A � 0). Finally,

we write bdiag(A1, . . . ,Aℓ) to denote the block diagonal
matrix formed by the matricesAi, i ∈ {1, . . . , ℓ}, which
have compatible dimensions.

B. Vectorization of the State Space Model of a Discrete-Time
Stochastic Linear System

We consider a discrete-time stochastic linear system that
is described by the following equations:

x(t+ 1) = Ax(t) +Bu(t) + w(t), (1a)

y(t) = Cx(t) + v(t), (1b)

for t ∈ [0, N − 1]d, whereX0:N := {x(t) ∈ R
n : t ∈

[0, N ]d} is the state (random) process,U0:N−1 := {u(t) ∈
R

m : t ∈ [0, N − 1]d} is the input process acting together
with the noise processW0:N−1 := {w(t) ∈ R

n : t ∈ [0, N−
1]d} upon the system,Y0:N−1 := {y(t) ∈ R

p : t ∈ [0, N −
1]d} is the output process, and finally,V0:N−1 := {v(t) ∈
R

p : t ∈ [0, N − 1]d} is the measurement noise process. In
addition,W0:N−1 andV0:N−1 are sequences of independent
and identically distributed normal random variables with

E [w(t)] = 0, E
[
w(t)w(τ)T

]
= δ(t, τ)W, (2a)

E [v(t)] = 0, E
[
v(t)v(τ)T

]
= δ(t, τ)V, (2b)

for all t, τ ∈ [0, N − 1]d, whereW ∈ S
++
n , V ∈ S

++
p ,

and δ(t, τ) := 1, when t = τ , and δ(t, τ) := 0, otherwise.
In addition, W0:N−1 and V0:N−1 are independent, which
implies that

E
[
w(t)v(τ)T

]
= 0, E

[
v(t)w(τ)T

]
= 0, (3)

for all (t, τ) ∈ [0, N − 1]d × [0, N − 1]d. Similarly, x0 is
independent of bothW0:N−1 andV0:N−1, that is,

E
[
x0w(t)

T
]
= 0, E

[
w(t)xT

0

]
= 0, (4a)

E
[
x0v(t)

T
]
= 0, E

[
v(t)xT

0

]
= 0, (4b)

for all t ∈ [0, N − 1]d.

We can write equations (1a)-(1b) compactly as follows:

x = X0x0 +Xuu+Xww, (5a)

y = Y0x0 +Yuu+Yww + v, (5b)

wherex := vec(X0:N ) ∈ R
(N+1)n, u := vec(U0:N−1) ∈

R
Nm, w := vec(W0:N−1) ∈ R

Nn, y := vec(Y0:N−1) ∈
R

Np and v := vec(V0:N−1) ∈ R
Np. In addition, X0 ∈

R
(N+1)n×n, Xu ∈ R

(N+1)n×Nm, andXw ∈ R
(N+1)n×Nn.

In particular,

X0 :=
[
I, AT, . . . , (AN−1)T, (AN )T

]T
,

whereasXu andXw are block lower triangular matrices; in
particular,Xu = M(B;A, N) andXw = M(I;A, N) with

M(N;A, N) :=




0 0 . . . 0

N 0 . . . 0

AN N . . . 0
...

... . . .
...

AN−1N AN−2N . . . N



. (6)

Furthermore,Y0 := YxX0, Yu := YxXu, Yw := YxXw

whereYx ∈ R
Np×(N+1)n is a block lower triangular matrix

with

Yx := [bdiag(C, . . . ,C),0]. (7)

Note that for the derivation of (5b), we have used the
fact thaty = Yxx + v, which follows from (1b) and itself
implies, in view of (5a), that

y = YxX0x0 +YxXuu+YxXww + v,

from which (5b) follows readily.

The following basic assumption will be useful in the
subsequent discussion.

Assumption 1:The pair(A, B) is controllable, that is,

rank(
[
B . . . An−1B

]
) = n. (8)

In addition, the pair(C, A) is observable, that is,

rank(
[
CT . . . CT(An−1)T

]T
) = n. (9)

Remark 1 The controllability assumption given in (8) will
ensure that the expected value of the state can be steered
to any vector inRn with the application of an appropriate
control sequence, at least, in the absence of input constraints.
In addition, the observability assumption is made to ensure
that the output measurements will always contain the amount
of information needed to extract good state estimates from
them.



C. State Estimator Dynamics

We assume that a recursive state estimator provides es-
timates of the current state of the control system based on
its output measurements. The state of the estimator and its
corresponding output, which are denoted byx̂(·) and ŷ(·),
respectively, satisfy the following equations:

x̂(0) = x̂(0| − 1) +Λ◦(0)
(
y(0)−Cx̂(0| − 1), (10a)

x̂(t+ 1) = Ax̂(t) +Bu(t) +Λ◦(t)
(
y(t+ 1)

−CAx̂(t)−CBu(t)
)
, (10b)

for t ∈ [0, N − 1]d, and

ŷ(0) = Cx̂(0), ŷ(t) = Cx̂(t), (11)

for t ∈ [1, N − 1]d, where x̂(0| − 1) = E(x0) = µ0 and
Λ◦(t) denotes the optimal estimation gain (or “Kalman”
gain) matrix at timet, which is determined by the following
recursive scheme [22], [23]:

P(0| − 1) = E[(x0 − µ0)(x0 − µ0)
T] = Σ0, (12a)

P(t|t− 1) = AP(t− 1|t− 1)AT +W, (12b)

Λ◦(t) = P(t|t− 1)CT
[
CP(t|t− 1)CT +V]−1, (12c)

P(t|t) =
[
I−Λ◦(t)C

]
P(t|t− 1), (12d)

for t ∈ [0, N − 1]d. Now, let us denote bye(t) the state
estimation error, wheree(t) := x(t)− x̂(t), for t ∈ [0, N ]d.
In addition, we denote byψ(t) the output estimation error,
which is also known as the output residual, whereψ(t) :=
y(t) − ŷ(t), for t ∈ [0, N − 1]d. In light of (1a)-(1b) and
(10a)-(11), we have that

e(t+ 1) = Ae(t)e(t) +Be(t)w(t) +De(t)v(t), (13a)

ψ(t) = Ce(t) + v(t), (13b)

for t ∈ [0, N − 1]d, with

Ae(t) := A−Λ◦(t)CA,

Be(t) := I−Λ◦(t)C,

De(t) := −Λ◦(t).

In addition,e(0) = e0, with e0 ∼ N (0, Σ̃0) where the error
covariance matrix̃Σ0 satisfies the following equation [23]:

Σ̃0 := Σ0 −Σ0C
T(CΣ0C

T +V)−1CΣ0. (14)

A well-known property of the Kalman filter is that the state
estimation error is orthogonal to the state estimate, which
implies that

E
[
x̂(t)e(t)T

]
= 0, E

[
e(t)x̂(t)T

]
= 0, (15)

for all t ∈ [0, N ]d.

Now, let E0:N := {e(t) ∈ R
n : t ∈ [0, N ]d} and

Ψ0:N−1 := {ψ(t) ∈ R
p : t ∈ [0, N − 1]d} and let

e := vec(E0:N ) andψ := vec(Ψ0:N−1). Then, we can write
equations (13a)–(13b) compactly as follows:

e = E0e0 +Eww +Evv, (16a)

ψ = Ψ0e0 +Ψww +Ψvv, (16b)

whereE0 ∈ R
(N+1)n×n, Ew ∈ R

(N+1)n×Nn and Ev ∈
R

(N+1)n×Np. In particular,E0 is defined as follows:

E0 :=
[
I Φe(1, 0)

T . . . Φe(N, 0)
T
]T
,

where Φe(t, τ) := Ae(t − 1) . . .Ae(τ), for all (t, τ) ∈
[1, N ]d × [0, N − 1]d with t > τ (note thatΦe(t, τ) :=
Ae(t − 1), when t = τ + 1) andΦe(t, t) = I, for all t ∈
[1, N ]d. In addition,Ew andEv are block lower triangular
matrices, and in particular,Ew := M(Be(·);Φe(·, ·), N)
andEv := M(De(·);Φe(·, ·), N), where

M(P(·);Φe(·, ·), N) :=


0 0 . . . 0

P(0) 0 . . . 0

Φe(2, 1)P(0) P(1) . . . 0
...

... . . .
...

Φe(N, 1)P(0) Φe(N, 2)P(1) . . . P(N − 1)



.

Furthermore, we have that

Ψ0 := YxE0, Ψw := YxEw, Ψv := YxEv + I.

For the derivation of (16b), we have used the fact that

ψ = Yxe+ v,

which follows from (13b) and itself implies, in view of (16a),
that

ψ = YxE0e0 +YxEww + (YxEv + I)v,

from which the result follows readily.

D. Formulation of the Stochastic Optimal Control Problem
with Covariance Assignment Constraints

Our objective is to find a control policy that minimizes
the expected value of a finite sum of convex quadratic
functions (costs per stage) of the statex(t) of the stochastic
linear system (1a)-(1b), subject to an inequality constraint
on the squaredℓ2-norm of the input (random) sequence
U0:N−1. We will assume that the set of admissible control
policies, which is denoted byP, consists of all control
policies π := {µ(·; t); t ∈ [0, N − 1]d}, where at each
staget, the control lawµ(·; t) is a causal (non-anticipative),
measurable function of the elements of the output process
Y0:t and in particular, anaffinecombination of the elements
of the latter process (or more precisely, the complete filtration
of the sigma field generated by the elements ofY0:t). In
particular, for eacht ∈ [0, N − 1]d, the control lawµ(·; t)
will map a given (random) finite-length sequenceY0:t to
a (random)m-dimensional input vectoru(t). We write
π = {µ(Y0:t; t) : t ∈ [0, N − 1]d}. Next, we give the
precise formulation of the stochastic optimal control problem
with incompleteand imperfect state information subject to
covariance assignment constraints.

Problem 1: Let N , q ∈ Z
++ and Σ0, Σf ∈ S

++
n be

given. In addition, let{Q(t) ∈ S
+
n : t ∈ [0, N − 1]d}

and {R(t) ∈ S
+
m : t ∈ [0, N − 1]d} be given sequences

of positive semi-definite matrices and let alsoℓ be a given
positive number. Then, find an optimal control policyπ◦ :=



{µ◦(Y0:0; 0), . . . , µ
◦(Y0:N−1;N − 1)} ∈ P that minimizes

the performance index

J(π) := E

[N−1∑

t=0

x(t)TQ(t)x(t)
]

(17)

over all admissible feedback control policiesπ =
{µ(Y0:0; 0), . . . , µ(Y0:N−1;N − 1)} ∈ P subject to (i)
the difference equation (1a)-(1b),(ii), the following input
constraint:

C(π) ≤ 0, C(π) := E

[N−1∑

t=0

u(t)TR(t)u(t)
]
− ℓ, (18)

and (iii) the following terminal constraints in terms of the
mean and the covariance of the (random) state vectorx(t)
at t = N :

h(x(N)) = 0, H(x(N)) � 0,

where

h(x(N)) := E [x(N)] , (19a)

H(x(N)) := Σf − E
[
x(N)x(N)T

]
. (19b)

Remark 2 Note that instead of the positive semi-definite
constraint H(x(N)) � 0, where H(x(N)) is given in
(19b), one should in principle enforce the following ma-
trix equality constraint:H(x(N)) = 0, or equivalently,
E
[
x(N)x(N)T

]
= Σf . Note that the latter matrix equal-

ity constraint together with the vector equality constraint
h(x(N)) = E [x(N)] = 0 imply that the terminal state
covariance should be equal to a prescribed positive definite
matrix (strict covariance assignment constraint). As we have
shown in our previous work in [12], the matrix equality
constraintH(x(N)) = 0 is non-convex, whereas the positive
semi-definite constraintH(x(N)) � 0 corresponds to a con-
vex relaxation of the latter. These remarks will become more
clear later on, when we discuss the process of converting
Problem 1 into a tractable finite-dimensional optimization
problem.

III. R EDUCTION OF THESTOCHASTIC OPTIMAL

CONTROL PROBLEM TO A TRACTABLE CONVEX

PROGRAM

A. Set of Admissible Control Policies

Finding the solution to Problem 1 can be a very complex
task. In our previous work [14], [15], we have proposed
solution techniques in which the proposed feedback control
policy was taken to be a sequence of control laws that
were affine functions of the present and all past output
measurements. It turns out that the computation of the latter
feedback policy can incur a significant cost when the number
of stages,N , is large given that the control law at each stage
depends on the present and all past measurements. Herein,
we restrict our search to a subset ofP that consists of policies
π = {µ(·; t) : t ∈ [0, N − 1]d}, where

µ(Ψ0:t; t) = ū(t) +
t∑

τ=0

F(t, τ)ψ(t), (20)

for t ∈ [0, N − 1]d, whereF(t, τ) ∈ R
m×p for all (t, τ) ∈

[0, N−1]d× [0, N−1]d with t ≥ τ , andŪ0:N−1 := {ū(t) ∈
R

m : t ∈ [0, N − 1]d} is a finite-length sequence of (open-
loop) reference input signals. We will denote this subset of
P asP̂. Note that the fact that̂P is a subset ofP is a direct
consequence of the fact that the state estimatex̂(t) is an
affine function of the present and past output measurements,
that is,x̂(t) is an affine function of the elements ofY0:t [23].

Note that there is nothing that prevents us from setting
F(t, τ) = 0 for all τ ∈ [0, t−σ−1]d, for someσ ∈ [0, t−1]d.
In this caseµ(·; t) will be an affine function of the elements
of the truncated output processΨt−σ:t, that is,

µ(Ψt−σ:t; t) = ū(t) +

t∑

τ=t−σ

F(t, τ)ψ(t). (21)

For instance, ifσ = 1, then µ(·; t) will depend only on
the current and the most recent output residuals,ψ(t) and
ψ(t − 1), respectively, whereas ifσ = 0, then µ(·; t) will
depend only on the current output residual,ψ(t). In the
subsequent discussion, we will present the most general
cases in which the control law depends on the whole history
of output estimation errors and satisfies equation (20). The
analysis for the case when the control law depends only
on a truncated version of the history of output estimation
errors can be done in a similar (and obvious) way after the
necessary modifications have been carried out.

In order to find the closed-loop dynamics of the discrete-
time linear system given in (1a)-(1b), we will have to set
u(t) = µ(Ψ0:t; t), whereµ(Ψ0:t; t) is defined in (20). Then,

u := ū+Kψ, (22)

whereū := vec(Ū0:N−1) andK ∈ R
Nm×Np is anN ×N

block lower triangular matrix with blocksKi,j ∈ R
m×p. In

particular,Ki,j := F(i− 1, j − 1), if i ≥ j, andKi,j := 0,
if i < j. In view of (16b), equation (22) gives

u = ū+U0(K)e0 +Uw(K)w +Uv(K)v, (23)

with U0(K) := KΨ0, Uw(K) := KΨw, andUv(K) :=
KΨv. Equation (23) induces an one-to-one mapping that
associates a control policyπ ∈ P̂ with the decision variables
(ū,K). In particular, given(ū,K), the corresponding control
policy π = {µ(Et+1ψ; t) : t ∈ [0, N − 1]d}, with

µ(Et+1ψ; t) := Et+1(ū+U0(K)e0+Uw(K)w+Uv(K)v),

whereEt+1 ∈ R
1×Nm, for t ∈ [0, N − 1]d, is a block row

vector withN blocks (Et+1)1,i ∈ R
m, for i ∈ [1, N ]d. In

particular,(Et+1)1,i = I, for i = t + 1, and(Et+1)1,i = 0,
otherwise. We denote the latter mapping as̟ and we write
π = ̟(ū,K). The inverse mapping,̟ −1, can be defined
similarly; we write (ū,K) = ̟−1(π).

B. Closed-loop dynamics

In view of (5a) and (23), the closed loop dynamics of the
control system can be written compactly as follows:

x = X0x0 +Xu(U0(K)e0 +Uw(K)w +Uv(K)v)

+Xuū+Xww, (24)



or equivalently,

x = Gx0
x0 + Gūū+ Ge0(K)e0

+ Gw(K)w + Gv(K)v, (25)

where Gx0
:= X0, Gū := Xu, Ge0(K) := XuKΨ0,

Gw(K) := Xw +XuKΨw, andGv(K) := XuKΨv.

C. Expressions of the cost and constraint functions in terms
of the decision variables̄u andK

The cost function can be written as follows:

J(π) = E
[
xTQx

]
= E

[
trace(xxTQ)

]
, (26)

whereQ := bdiag(Q(0), . . . ,Q(N − 1),0) ∈ S
+
(N+1)n. In

view of (25), Eq. (26) can be written as follows:

J(π) = E
[
trace

(
(Gx0

x0 + Gūū

+ Ge0(K)e0 + Gw(K)w + Gv(K)v)

× (Gx0
x0 + Gūū

+ Ge0(K)e0 + Gw(K)w + Gv(K)v)TQ
)]

=: J (K). (27)

In view of (2a)– (4b) and (15), Eq. (27) implies that

J (K) = trace
(
(Gx0

(Σ0 + µ0µ
T
0)G

T
x0

+ 2Gx0
µ0ū

TG
T
ū + Gūūū

TG
T
ū

+ 2Gx0
Σ̃0Ge0(K)T

+ Ge0(K)Σ̃0Ge0(K)T + Gw(K)WGw(K)T

+ Gv(K)VGv(K)T)Q
)
, (28)

whereW = bdiag(W, . . . ,W) andV = bdiag(V, . . . ,V).
In the previous derivation, we have used the fact that, in the
light of (15), we have that

E
[
x0e

T
0

]
= E

[
(x̂0 + e0)e

T
0

]
= Σ̃0. (29)

The input constraint functionC(π) can be written com-
pactly as follows:

C(π) = E
[
uTRu

]
− ℓ = E

[
trace(uuTR)

]
− ℓ, (30)

whereR := bdiag(R(0), . . . ,R(N − 1)) ∈ S
+
Nm. In view

of (23), Eq. (30) can be written as follows:

C(π) = E
[
trace

(
(ū+U0(K)e0 +Uw(K)w +Uv(K)v)

× (ū+U0(K)e0 +Uw(K)w +Uv(K)v)TR
)]

− ℓ

=: C(F). (31)

In light of (2a)–(4b) and (15), Eq. (31) implies that

C(K) = trace
(
ūūT +U0(K)Σ̃0U0(K)T

+Uw(K)WUw(K)T

+Uv(K)VUv(K)T)R
)
− ℓ. (32)

Next, we express the terminal constrainth(x(N)) = 0

in terms of the decision variables(ū,K). To this aim, we
observe that in view of (25), equation (19a) becomes

h(x(N)) = E
[
EN+1

(
Gx0

x0 + Gūū+ Ge0(K)e0

+ Gw(K)w + Gv(K)v
)]

=: h̃(ū), (33)

whereEN+1 := [0, 0, . . . ,0, I]. In view of (2a)–(2b) and
the fact thatE[x0] = µ0 andE[e0] = 0, it follows that

h̃(ū) = EN+1(Gx0
µ0 + Gūū). (34)

From (6) and (34), it follows that the terminal constraint
h̃(ū) = 0 can be written equivalently as follows:
[
AN−1B . . . B

]
ū = χ, χ := −EN+1Gx0

µ0. (35)

Proposition 1: Suppose thatN ≥ n. If Assumption 1
holds true, then the linear constrainth̃(ū) = 0, whereh̃(ū)
is defined in (34), will always be feasible.

Proof: If (8) holds true, then the system of (algebraic)
linear equations that is given in (35) will always admit a
solution. This is because the vectorχ := −EN+1Gx0

µ0 will
always belong to the range of

[
B . . . An−1B

]
given that

N ≥ n, by hypothesis.

Next, we will express the positive semi-definite constraint,
H(x(N)) � 0, in terms of the elements of the decision
variables(ū,K). To this aim, we note that in view of (2a)–
(3), (15), (29), equation (19b) gives

H(x(N)) = Σf −EN+1

(
Gx0

(Σ0 + µ0µ
T
0)G

T
x0

+ Gx0
µ0ū

TG
T
ū + Gūūµ

T
0G

T
x0

+ Gūūū
TG

T
ū

+ Ge0(K)Σ̃0G
T
x0

+ Gx0
Σ̃0Ge0(K)T

+ Ge0(K)Σ̃0Ge0(K)T + Gw(K)WGw(K)T

+ Gv(K)VGv(K)T
)
ET

N+1 =: H(ū,K). (36)

In particular,

H(ū,K) = Σ̂f −H1(ū)H1(ū)
T −H2(K)H2(K)T

−H3(K)

= Σ̂f −Λ(ū,K)Λ(ū,K)T −H3(K), (37)

where

Σ̂f := Σf −EN+1Gx0
Σ0G

T
x0
,

H1(ū) := EN+1

(
Gx0

µ0 + Gūū
)
,

H2(K) := EN+1

(
Ge0(K)Σ̃0Ge0(K)T

+ Gw(K)WGw(K)T + Gv(K)VGv(K)T
)1/2

,

H3(K) := EN+1

(
Ge0(K)Σ̃0G

T
x0

+ Gx0
Σ̃0Ge0(K)T

)
ET

N+1,

andΛ(ū,K) :=
[
H1(ū) H2(K)

]
.

An important observation at this point is thatH1(ū) and
H2(K) are affine functions of̄u andK, respectively, and
consequently,Λ(ū,K) is an affine (joint) function of(ū,K).

Proposition 2: Let Σ0, Σf ∈ S
++
n . The constraints

H(ū,K) � 0 and M(ū,K) � 0 are equivalent in
the sense that the setSH := {(ū,K) ∈ R

Nm ×
R

Nm×Np : H(ū,K) � 0} and the setSM := {(ū,K) ∈
R

Nm × R
Nm×Np : M(ū,K) � 0}, where

M(ū,K) :=

[
I [H1(ū) H2(K)]

[H1(ū) H2(K)]T Σ̂f −H3(K)

]

=

[
I Λ(ū,K)

Λ(ū,K)T Σ̂f −H3(K)

]
(38)



are equal. In addition, the positive semi-definite constraint
M(ū,K) � 0 can be written as an LMI (convex) constraint
in terms of the elements of(ū,K).

Proof: Because the matrixH(ū,K) is the Schur
complement ofI in the matrixM(ū,K), which is defined in
(38), it follows that the constraintH(ū,K) � 0 is equivalent
to the following constraintM(ū,K) � 0. Note that the
latter positive semi-definite constraint can be expressed as
an LMI constraint in terms of the elements of(ū,K) [24].

Problem 2: Given ℓ > 0 and Σ0, Σf ∈ S
++
n , find the

matrix K⋆ ∈ R
Nm×Np that minimizesJ (K) subject to

C(K) ≤ 0, h̃(ū) = 0, and H(ū,K) � 0 whereJ (K),
C(K), h̃(ū), andM(ū,K) are defined in (28), (32), (34)
and (38), respectively.

Proposition 3: Under the assumption that the set of con-
trol policies is restricted to the subsetP̂ of P, Problem 1 and
Problem 2 are equivalent in the sense that ifπ◦ ∈ P̂ solves
Problem 1, then(ū◦,K◦) = ̟(π◦) solves Problem 2, and
vice versa.

Proof: The proof follows readily after noting that
J(π) = J (K), C(π) = C(K), h̃(ū) = h(x(N)), and
H(x(N)) = H(ū,K) provided thatπ = ̟(ū,K) together
with Proposition 2.

Remark 3 An important observation at this point is that
with the proposed reduction of the stochastic optimal control
problem (Problem 1) to a convex program (Problem 2), we
can decrease the dimension of the latter convex program by
truncating the history of output residuals that the control
laws at each stage will depend to. Note, on the other hand
that the longer the history of the output residuals, the better
performance can be achieved, especially in the presence of
stringent constraints. Therefore, one should choose the length
of this history in such a way that strikes a balance between
performance and computational tractability.

IV. CONCLUSION

In this work, we have proposed a systematic approach for
the reduction of a stochastic optimal control problem with
partial state information subject to covariance assignment
and input energy constraints into a tractable convex program.
In contrast with our previous work on similar problems, in
this work we have proposed separation-based control policies
which are sequences of feedback control laws that are affine
mappings of either the complete history of output estimation
errors, which are computed with the aid of a discrete-time
Kalman filter algorithm, or a truncation of the latter history.
In our approach, the size of the resulting convex problem
depends on the length of the truncated history of the output
estimation errors; something that allows us to design control
policies that strike a balance between good performance
and computational scalability. In our future work, we will
consider the nonlinear stochastic optimal control problem
with state covariance assignment constraints.

Acknowledgement:This work was supported in part by the

National Science Foundation (award no. CMMI-1753687).

REFERENCES

[1] W. M. Wonham, “On the separation theorem of stochastic control,”
SIAM J. Control, vol. 6, no. 2, pp. 312–326, 1968.

[2] B. Jamison, “Reciprocal processes: The stationary Gaussian case,”
Ann. Math. Stat., vol. 41, no. 5, pp. 1624–1630, 1970.

[3] A. Hotz and R. E. Skelton, “Covariance control theory,”Int. J. Control,
vol. 16, pp. 13–32, Oct 1987.

[4] J.-H. Xu and R. E. Skelton, “An improved covariance assignment
theory for discrete systems,”IEEE Trans. Autom. Control, vol. 37,
pp. 1588–1591, Oct 1992.

[5] K. Yasuda, R. E. Skelton, and K. M. Grigoriadis, “Covariance
controllers: A new parametrization of the class of all stabilizing
controllers,”Automatica, vol. 29, no. 3, pp. 785–788, 1993.

[6] K. M. Grigoriadis and R. E. Skelton, “Minimum-energy covariance
controllers,”Automatica, vol. 33, no. 4, pp. 569–578, 1997.

[7] B. C. Levy and A. Beghi, “Discrete-time Gauss-Markov processes
with fixed reciprocal dynamics,”J. Math. Syst. Est. Control, vol. 7,
pp. 55–80, 1997.

[8] I. G. Vladimirov and I. R. Petersen, “State distributionsand minimum
relative entropy noise sequences in uncertain stochastic systems:
The discrete-time case,”SIAM Journal on Control and Optimization,
vol. 53, no. 3, pp. 1107–1153, 2015.

[9] Y. Chen, T. Georgiou, and M. Pavon, “Optimal steering of a linear
stochastic system to a final probability distribution, PartI,” IEEE
Trans. on Autom. Control, vol. 61, no. 5, pp. 1158 – 1169, 2016.

[10] Y. Chen, T. Georgiou, and M. Pavon, “Optimal steering of alinear
stochastic system to a final probability distribution, PartII,” IEEE
Trans. Autom. Control, vol. 61, no. 5, pp. 1170–1180, 2016.

[11] E. Bakolas, “Optimal covariance control for stochasticlinear systems
subject to integral quadratic state constraints,” inACC (2016), (Boston,
MA), 2016.

[12] E. Bakolas, “Optimal covariance control for discrete-time stochastic
linear systems subject to constraints,” inIEEE CDC (2016), pp. 1153–
1158, Dec 2016.

[13] M. Goldshtein and P. Tsiotras, “Finite-horizon covariance control of
linear time-varying systems,” inIEEE (CDC), pp. 3606–3611, Dec.
2017.

[14] E. Bakolas, “Covariance control for discrete-time stochastic linear
systems with incomplete state information,” in2017 American Control
Conference (ACC), pp. 432–437, May 2017.

[15] E. Bakolas, “Constrained minimum variance control for discrete-
time stochastic linear systems,”Systems & Control Letters, vol. 113,
pp. 109–116, 2018.

[16] J. Skaf and S. P. Boyd, “Design of affine controllers via convex
optimization,” IEEE Trans. Autom. Control, vol. 55, no. 11, pp. 2476–
2487, 2010.

[17] M. Agarwal, E. Cinquemani, D. Chatterjee, and J. Lygeros, “On
convexity of stochastic optimization problems with constraints,” in
ECC (2009), pp. 2827–2832, 2009.

[18] J. A. Primbs and C. H. Sung, “Stochastic receding horizoncontrol of
constrained linear systems with state and control multiplicative noise,”
IEEE Trans. Autom. Control, vol. 54, no. 2, pp. 221–230, 2009.

[19] D. Chatterjee, P. Hokayem, and J. Lygeros, “Stochastic receding hori-
zon control with bounded control inputs: A vector space approach,”
IEEE Trans. Autom. Control, vol. 56, no. 11, pp. 2704–2710, 2011.

[20] P. Hokayem, E. Cinquemani, D. Chatterjee, F. Ramponi, and
J. Lygeros, “Stochastic receding horizon control with output feedback
and bounded controls,”Automatica, vol. 48, no. 1, pp. 77 – 88, 2012.

[21] B. Kouvaritakis and M. Cannon,Model Predictive Control: Classical,
Robust and Stochastic. Springer, NY., 2015.

[22] G. Chen, G. Chen, and S. Hsu,Linear Stochastic Control Systems.
Taylor & Francis, 1995.

[23] J. Speyer and W. Chung,Stochastic Processes, Estimation, and Con-
trol. Society for Industrial and Applied Mathematics, 2008.

[24] G. Calafiore and L. El Ghaoui,Optimization Models. Cambridge, UK:
Cambridge University Press, 2014.


