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Abstract— We consider the problem of characterizing an
evading strategy for an agent traversing a convex polygon
populated by a group of pursuers. We address the problem by
associating it with a generalized Voronoi partitioning problem,
which encodes information about the proximity relations be-
tween the evader and the pursuers based on the value function
of a pursuit-evasion game involving the evader and each
pursuer from the group individually. The generalized Voronoi
partition furnishes a collection of continuous paths which have
the following property: When the evader travels along any of
these paths, none of the pursuers will have a unilateral incentive
to initiate the pursuit against it. With the proposed approach,
the problem of evasion from the group of pursuers admits an
elegant geometric solution, which can be computed by means
of known computational techniques. Numerical simulations that
illustrate the theoretical developments are presented.

I. I NTRODUCTION

We address the problem of evasion of an agent from
a group of pursuers that are distributed inside a convex
polygon. Instead of directly addressing the problem using the
framework of multi-player differential games, we propose
a geometric solution technique which allows the evader
to account for the presence of a pursuer only if the two
players are sufficiently “close,” with respect to an appropriate
pseudo-metric, to each other.

Previous work: The first attempt to study pursuit evasion
games (PEGs, for short) within a self-contained mathemati-
cal framework is attributed to Isaacs [1], who generalized the
theory of zero-sum games from the classical game theory [2]
to problems with dynamic constraints. The approach of
Isaacs focuses on problems involving two strictly competitive
players, whose solution requires the computation of the so-
calledvalue functionof the differential game, a concept sim-
ilar to the cost-to-go function from dynamic programming,
which satisfies a nonlinear partial differential equation known
as the Hamilton-Jacobi-Isaacs equation. Bergovitz introduced
an alternative framework to address PEGs based on varia-
tional techniques [3]. PEGs for players with linear dynamics
and quadratic reward/loss functions were first studied in [4].
The results of Isaacs and Bergovitz on differential games
with only two (strictly competitive) players were extendedto
problems involving multiple players in [5]–[7]. In particular,
[7] discusses linear quadratic differential games that, incon-
tradistinction with [4], involve players that do not necessarily
have strictly competitive objectives and thus admit different
solution concepts similar to, for example, Nash equilibria
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and Pareto optimal solutions from the theory of non-zero-
sum games. Some excellent expositions of differential games,
with extensive discussions on PEGs, can be found in [4],
[8]–[10].

A characteristic class of differential games involving mul-
tiple players are the so-calledgroup PEGs, which involve,
in general, a group of pursuers and a group of evaders [11]–
[19]. A special subclass of group PEGs, known as thegroup
pursuit problems, deals with the case when a group of
pursuers aims at capturing a unique evader. In our previous
work, we have addressed a special class of group pursuit
problems [20]–[22], by making use of a particular class of
generalized Voronoi diagrams, whose proximity metric is the
minimum time that would be required for each pursuer to
individually capture the evader provided that all the other
pursuers did not participate in the pursuit of the latter. In
these references, it was assumed that all the pursuers had a
priori partial or complete knowledge of the feedback strategy
of the evader; an assumption that essentially reduced the
PEG to a problem of pursuit with anticipation [8], which
is an optimal control problem. The idea of using Voronoi
diagrams in PEGs has also been employed recently in [23].

Main Contributions:In this work, we consider the problem
of determining a collection of paths for an evader that aims
at traversing a given convex polygon, which is populated
by a group of pursuers, in such a way that will not excite
any pursuer to go after it. The problem is addressed by
associating it with a particular class of generalized Voronoi
diagram / partitioning problems, whose solution can be com-
puted by means of available techniques from computational
geometry. In particular, the space to be partitioned is the
convex polygon that the evader has to traverse, and the
point-set that generates this partition (the set of generators)
consists of the initial positions of the pursuers. Furthermore,
the proximity metric of the generalized Voronoi diagram,
that is, the generalized distance function that determines
the proximity relations between the generators (that is, the
initial locations of the pursuers) and an arbitrary point inthe
polygon (which corresponds to any possible location of the
evader) is the value function of a well-known PEG, namely
the isotropic rocket pursuit(evasion) problem. In this way,
the pursuers are not required to have a priori knowledge
of the strategy of the evader in order to determine which
one of them is the “closest,” in terms of the capture time,
to the latter. Another important fact that distinguishes this
work from our previous one has to do with the fact that
the feedback strategy of the evader depends explicitly on
the computed generalized Voronoi partition. In particular, the



boundaries of the cells that comprise the generalized Voronoi
partition will furnish a collection of paths, which we referto
as theevading roadmap, a subset of which solves the evasion
problem.

Structure of the paper:The rest of the paper is organized
as follows. Section II presents the formulation of the evasion
problem, which is subsequently addressed in Section III. Sec-
tion IV presents numerical simulations, and finally, Section V
concludes the paper with a summary of remarks.

II. FORMULATION OF THE DIFFERENTIAL GAME

PROBLEM

Let us consider a group ofn pursuers, where each pursuer
is located, at timet = 0, at x̄i ∈ R

2 with a prescribed initial
velocity v̄i ∈ R

2, wherei ∈ In := {1, . . . , n}. We denote
by X := {x̄i ∈ R

2 : i ∈ In} andV := {v̄i ∈ R
2 : i ∈ In},

respectively, the sets of the initial positions and velocities of
the pursuers. The motion of thei-th pursuer, wherei ∈ In,
is described by the following set of equations

ẋi = vi, xi(0) = x̄i, (1a)

v̇i = ui, vi(0) = v̄i, (1b)

where xi := [xi, yi]
⊺ ∈ R

2 and vi := [vi, wi]
⊺ ∈ R

2

are, respectively, the position and velocity vectors of thei-th
vehicle at timet. In addition,ui denotes the control input of
the i-th pursuer, which attains values in the setUp := {ν ∈
R

2 : |ν| ≤ ūp}, where ūp corresponds to the maximum
acceleration of each pursuer.

In addition, we consider an evader whose motion is
described by the following single integrator kinematic model

ẋe = ue, xe(0) = x̄e, (2)

where xe := [xe, ye]
⊺ ∈ R

2 and x̄e := [x̄e, ȳe]
⊺ ∈ R

2

are, respectively, the position vectors of the evader at time
t and t = 0. Finally, ue is the control input of the evader
(velocity vector), which attains values in the setUe = {ν ∈
R

2 : |ν| ≤ ūe}, whereūe is the maximum attainable speed
of the evader.

Up to this point, we have not mentioned anything about the
set of admissible control inputs, that is, the type of control
inputs that the pursuers and the evader can employ. For now,
we will assume that bothui andue depend on the timet and
the composite state vector[x⊺1 , · · · , x

⊺

n, x
⊺

e ]
⊺ and they satisfy,

in addition, regularity conditions that guarantee the existence
and uniqueness of solutions to the initial value problems
described by Eqs. (1a)-(1b) and (2), respectively. We will
denote byUp andUe the set of admissible control inputs for
the i-th pursuer and the evader, respectively. Furthermore,
we henceforth writet 7→ xi(t; x̄i, ui), and t 7→ xe(t; x̄e, ue)
to denote the solutions of the initial value problems given in
Eqs. (1a) and (2), respectively, for a givenn-tuple of inputs
(u1, . . . , un) ∈ Un

p and an inputue ∈ Ue.

Next, we formulate the problem of evasion from a group
of pursuers.

Problem 1: Let S ⊂ R
2 be a convex polygon whose

boundary∂S consists ofmS edges, denoted byEµ, where
µ ∈ MS := {1, . . . ,mS}, and letX ⊂ int(S). In addition,
let us consider a group of pursuers, where thei-th pursuer
from the group commences at a pointx̄i ∈ X with an initial
velocity v̄i ∈ V and its motion is described by Eqs. (1a)-
(1b), and an evader commencing atx̄e ∈ Eµ ⊂ ∂S, for some
µ ∈ MS , whose motion is described by Eq. (2). Then, find
an inputue ∈ Ue with the application of which the evader
will traverse the setS such that

max
i∈In

|xe(t; x̄e, ue)− xi(t; x̄i, ui)| > ǫc,

for all t ∈ [0, TS ] and for allui ∈ Up, whereǫc > 0 is the
capturability radiusof the evasion problem andTS is the
first time at whichxe(TS) ∈ ∂S\{Eµ}.

Remark 1 Problem 1 is a differential game that involves
n + 1 players. Typically, problems of this kind require the
solution of a system of coupled nonlinear PDEs [6], [24],
which is a computationally intractable task. In this work, we
devise a different geometric approach, which will allow us
to avoid dealing directly with the multi-player differential
game.

Before we address the differential game that involvesn+1
players, we shall first examine the PEG that involves only
two players, namely, thei-th pursuer and the evader. In the
latter case, no other pursuer except from thei-th pursuer is
allowed to participate in the pursuit of the evader. We shall
refer to this problem as thei-th pursuit-evasion game (i-th
PEG, for short). We assume that thei-th PEG terminates,
if there exists a control pair(ui, ue) ∈ Up × Ue and a time
τ ≥ 0 such that

|xi(τ ; x̄i, ui)− xe(τ ; x̄e, ue)| ≤ ǫc.

In addition, for a given pair of inputs(ui, ue) ∈ Up×Ue, we
define the capture time, denoted byT (ui, ue), as follows

T (ui, ue) := inf{t ≥ 0 : |xi(t; x̄i, ui)− xe(t; x̄e, ue)| ≤ ǫc},
(3)

provided that the set on the right hand side of (3) is non-
empty; otherwise,T (ui, ue) := ∞. Note that T (ui, ue)
denotes the time at which thei-th pursuer driven by the
control inputui will capture the evader, which is driven by
the inputue, for the first time.

Definition 1: Thei-th PEG is feasible, if there exists a pair
of control inputs(ui, ue) ∈ Up×Ue such thatT (ui, ue) < ∞.

Next, we formulate thei-th PEG, which amounts to the
characterization of a pair of control inputs(u⋆

i , u
⋆
e) that

furnish a saddle point of the capture timeT (ui, ue).

Problem 2 (i-th PEG): Let us consider thei-th pursuer
and the evader, whose motion is described, respectively,
by Equations (1a)-(1b) and (2). In addition, letUK

p ⊂ Up

and UK
e ⊂ Ue denote the sets that consists of all the

time-invariant feedback lawsui = ui(xe, xi, vi) and ue =



ue(xe, xi, vi), respectively, that areK-strategies1. Then, find
a pair of K-strategies(u⋆

i , u
⋆
e) ∈ UK

p × UK
e , such that

T (u⋆
i , u

⋆
e) < ∞ andT (u⋆

i , u
⋆
e) = Tsp, where

Tsp := max
ue∈Ue

min
ui∈Up

T (ui, ue) = min
ui∈Up

max
ue∈Ue

T (ui, ue). (4)

Remark 2 Note that themin andmax operators that appear
in Eq. (4) commute; something that, although true for the
value function of thei-th PEG, does not hold true in
general [10].

Thei-th PEG is known in the literature as theisotropic rocket
pursuit-evasion game [1]. The timeTsp corresponds to the
value functionof this zero-sum differential game. We wish to
highlight at this point that in the formulation of Problem 2,
the inputsu⋆

i and u⋆
e are constrained to be time-invariant

feedback laws, and in particular,K-strategies, in accordance
with the treatment of PEGs by Isaacs [1]. We shall henceforth
denote byTsp(xe, xi, vi) the value function of thei-th PEG
when at timet the evader is located atxe whereas, at the
same time, thei-th pursuer is commencing at the pointxi

with velocity vi.

Proposition 1: Let ȳi = x̄i − x̄e and v̄i ∈ R
2 be given. If

there exists a pair(u⋆
i , u

⋆
e) ∈ UK

p × UK
e that solves thei-th

PEG, then the value functionTsp of the i-th PEG satisfies
the following quartic equation

ȳ
⊺

i ȳi + 2ȳ⊺i v̄iTsp + v̄
⊺

i v̄iT
2
sp = Q2(Tsp),

Q(Tsp) = ǫc − ūeTsp + ūpT
2
sp/2, (5)

if |ȳi| > ǫc, andTsp = 0, otherwise (trivial capture).

Proof: The value functionTsp and the corresponding
pair of inputs(u⋆

i , u
⋆
e) are determined by the solution of the

following PDE (known as the Isaacs-Hamilton-Jacobi or the
main equation)

∇xi
Tsp(xe, xi, vi)vi + min

ui∈Up

∇vi
Tsp(xe, xi, vi)ui

+ max
ue∈Ue

∇xe
Tsp(xe, xi, vi)ue = −1, (6)

where ∇xℓ
:= [∂xℓ

, ∂yℓ
], for ℓ ∈ {i, e}, and ∇vi

:=
[∂vi

, ∂wi
]. It turns out that Equation (6) can be solved semi-

analytically to furnish Eq. (5). The reader may refer to [1,
pp. 106–112] for more details.

Remark 3 Proposition 1 implies that both the strategies and
the value function of thei-th PEG depend only on the
relative position vectoryi between the two players, where
yi := xi − xe, and thei-th pursuer’s velocityvi. Now let
t 7→ yi(t; ȳi, ui, ue) denote the solution of the following
initial value problem

ẏi = ẋi − ẋe = vi − ue, yi(0) = ȳi, (7)

wherevi satisfies Eq. (1b) and̄yi := x̄i − x̄e. Then, thei-th
PEG admits a solution, if there exists a control pair(ui, ue) ∈
Up × Ue such thatyi(τ) ∈ C := {y ∈ R

2 : |y| ≤ ǫc}, where

1For the definition ofK-strategies, the reader may refer to [1].

C constitutes thetarget setof the i-th PEG. Note that the
target set, when expressed in terms of the relative position
y, becomes a fixed subset ofR2.

Figure 1 illustrates the level sets of the value function
Tsp of the i-th PEG as a function of the initial position
of the evader, when thei-th pursuer is initially located at
the origin (̄xi = 0) and its velocity vector̄vi is parallel to
the negativey−axis. We observe that thei-th pursuer can
capture the evader relatively fast provided that the latteris
sufficiently close to the former att = 0 and, in addition,
its velocity points towards the evader. The collection of
the initial positions of the evader that are more favorable
to the i-th pursuer belong to the region that is confined
between the curve segmentsB and D and the circular arc
Y (thick dashed black line), as is illustrated in Fig. 1. In
particular, Y corresponds to the so-calledusable part of
the boundary∂C of the target set of thei-th PEG, whereas
the curve segmentsB andD, which intersect the target set
∂C tangentially, constitute thebarrier of the i-th PEG. The
barrier determines a manifold that cannot be crossed during
optimal play by both players and along which the value
functionTsp undergoes discontinuous jumps (more precisely,
the manifold whereTsp undergoes discontinuous jumps is
determined by the barrier and the setC\Y). As shown in [1],
if B andD intersect with each other, then the set that will be
enclosed by them and the usable partY of C will correspond
to the so-calledcapture zone. The last term describes the
set of initial positions of the evader from which the latter
can always be captured by thei-th pursuer regardless of
the future actions of the evader. It turns out that the curve
segmentsB andD do not intersect with each other, provided
that

2ūpǫc > ū2
e, (8)

in which case the pursuer can always enforce the capture
of the evader in finite time. The inequality (8) is known as
the capture condition. In this work, we will assume that the
capture condition always holds; an assumption that actually
renders our problem more challenging. It should also be
mentioned that when the capture condition is satisfied but
the evader commences at a point that does not belong to the
region confined between the curve segmentsB andD and
the circular arcY, then it can utilize swerve-like maneuvers
in order to significantly delay its capture by the pursuer. For
more details on the definition of the barrier and the usable
part of the target set and their role in the solution of PEGs,
the reader may refer to [1].

III. T HE EVADING ROADMAP PROBLEM

We are interested in characterizing a collection of contin-
uous paths that enjoy the following property: when they are
traversed by the evader, the latter remains sufficiently “far
away,” with respect to the value functionTsp, from each
pursuer from a given group of pursuers that are distributed
in S. We shall refer to this family of paths as theevading
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Fig. 1. Level sets of the value functionTsp of the i-th PE, when
the i-th pursuer is initially located at the origin and its velocity is
parallel to the negativey-axis. It is interesting to note the existence
of a manifold (thick black line) where the value function undergoes
discontinuous jumps.

roadmap. In order to make the meaning of “sufficiently far
away” more precise, we introduce the following definition.

Definition 2: The i-th pursuer, which is located, at time
t = 0, at a point̄xi with velocity v̄i, has aunilateral incentive
to initiate a pursuit against the evader commencing atx̄e ∈
int(S), at timet ≥ 0, when

Tsp(x̄e, x̄i, v̄i) < Tsp(x̄e, x̄j , v̄j), for all j ∈ In\{i}.

If none of the pursuers has aunilateral incentiveto initiate
a pursuit against the evader commencing atx̄e ∈ S, then we
will say that x̄e is anequilibrium position for Problem 1.

Proposition 2: A point xe ∈ S is an equilibrium position
for Problem 1 if, and only if, there existi, j ∈ In, where
i 6= j, such that

Tsp(x̄e, x̄i, v̄i) = Tsp(x̄e, x̄j , v̄j) = min
ℓ∈In

Tsp(x̄e, x̄ℓ, v̄ℓ). (9)

Problem 3 (The Evading Roadmap Problem):Let S ⊂
R

2 be a convex polygon, and letX ⊂ int(S), where
X := {x̄i ∈ R

2, i ∈ In}. Then, find a collection of
continuous pathsΓ := {γℓ, ℓ ∈ L}, whereL is an index
set, and each pathγℓ : [0, 1] 7→ S satisfies the following
properties:i) γℓ(0), γℓ(1) ∈ ∂S, andγℓ(t) ∈ int(S), for all
t ∈]0, 1[, ii) every pointx ∈ trace(γℓ), wheretrace(γℓ) =
{x ∈ S : x = γℓ(t), t ∈ [0, 1]}, is an equilibrium position
for Problem 1.

Remark 4 We henceforth refer to the collection of contin-
uous pathsΓ that solve Problem 3 as theevading roadmap.

Next, we show that Problem 3 can admit a purely geomet-
ric solution, which is based, in turn, on a well known prop-
erty enjoyed by the cells that comprise a generalized Voronoi
partition. In particular, the common boundaries of two or
more cells from a generalized Voronoi partition generated
by a finite point-set (set of generators) are equidistant, with

respect to the proximity metric of the partition, from their
corresponding generators. Let us now consider a generalized
Voronoi partition, sayV, generated by the point-setX whose
proximity metric is the value functionTsp of Problem 2.
Then, the boundaries of the different cells ofV would
consist of points at which the evader is equidistant, with
respect toTsp, from at least two pursuers from the group
of pursuers. Consequently, when the evader traverses the
common boundaries of two or more cells of the generalized
Voronoi partitionV, then no pursuer will have a unilateral
incentive to initiate the pursuit against the evader.

A. Formulation of the Partitioning Problem

Based on the previous discussion, we next formulate a
generalized Voronoi partitioning problem with respect to the
value function of Problem 2. The solution to this partitioning
problem will allow us to address Problem 3 by making use
of purely geometric arguments.

Problem 4: Let S ⊂ R
2 be a convex polygon. Given a

collection of n distinct pointsX := {x̄i ∈ R
2 : i ∈

In} ⊂ int(S), whereX := {x̄i ∈ R
2 : i ∈ In}, and a

corresponding collection ofn velocity vectorsV := {v̄i ∈
R

2 : i ∈ In}, then determine a partitionV = {Vi : i ∈ In}
of S such that

1) S =
⋃

i∈In
V

i and int(Vi) ∩ int(Vj) = ∅.
2) For eachx ∈ V

i, it holds that

Tsp(x, x̄i, v̄i) ≤ Tsp(x, x̄j , v̄j), for all j ∈ In\{i}.

Remark 5 Problem 4 is a generalized Voronoi partitioning
problem, whose solution corresponds to a data structure that
encodes information about the proximity relations between
the pursuers and the evader. These relations are induced by
the value functionTsp of the i-th PEG, when the evader is
assumed to be initially located at an arbitrary pointx ∈ S.
In this work, we will say that two or more generators from
X , and their corresponding pursuers, are neighbors if the
intersection of the boundaries of their associated cells isnon-
empty and non-trivial (not a singleton). We denote byNi the
subset ofIn that consists of the indices of all the pursuers
that are neighbors of thei-th pursuer.

The following proposition underlines an important prop-
erty enjoyed by the generalized Voronoi partition that solves
Problem 4.

Proposition 3: Let V = {Vi, i ∈ In} correspond to the
solution of Problem 4 for a given convex polygonS, and let

∂V := ∪i∈In
∂Vi\∂S. (10)

A point xe ∈ int(S) is an equilibrium position for Problem 1
if, and only if, xe ∈ ∂V for all t ∈]0, TS [, whereTS is the
first time instant at which the evader, which commences at
x̄e ∈ Eµ ⊂ ∂S, at timet = 0, reaches the set∂S\Eµ.

Proof: Note that the boundary of each cellVi ∈ V

consists of points that belong to the intersectionV
i ∩ ∂S,



when the latter set is nonempty, along with the points that
belong to the intersection ofVi with its neighboring cells.
Consequently, the set∂V consists of points that belong to
the common boundaries of two or more cells exclusively.
Therefore, ifxe ∈ ∂V, there existi ∈ In and j ∈ Ni such
that xe ∈ ∂Vi ∩ ∂Vj , which implies thatTsp(xe, x̄i, v̄i) =
Tsp(xe, x̄j , v̄j), and Tsp(xe, x̄k, v̄k) ≥ Tsp(xe, x̄i, v̄i), for all
k ∈ In\{i, j}. Consequently,xe is an equilibrium position
for Problem 1. The converse can be shown similarly.

Remark 6 Proposition 3 can be interpreted as follows. In
order to solve the Evading Roadmap Problem, we first need
to compute the generalized Voronoi partitionV that solves
Problem 4, or more precisely, determine the boundaries of
all the cells that comprise this partition. Subsequently, we
have to remove from the latter sets the points that belong
to ∂S in order to determine the set∂V. The next step is
to determine the paths whose trace belongs to the set∂V.
From these paths, the ones that belong to the roadmapΓ are
the ones that traverse the polygonS in accordance with the
requirementii) of the Evading Roadmap Problem.

B. Computation of the Solution to the Evading Roadmap
Problem

Problem 4 cannot be directly associated with a class of
generalized Voronoi partitioning problems for whose solution
efficient computational techniques exist in the literature[25],
[26]. A straightforward approach to address such partitioning
problems is to use algorithms that compute approximations
of the desired partitions by utilizing a discretization grid,
say G, over the space to be partitioned. For example, one
such approach involves the use of computational techniques
that are commonly employed for the numerical solution
of partial differential equations, and in particular,direct
diffusion methods[27]. The time complexity of the approach
presented in [27] isO(card(G)), wherecard(G) denotes the
cardinality of the gridG, which is, in turn, equal to the
number of its nodes. An alternative approach is to compute
the so-called lower envelope function that bounds from below
the graphs of the proximity metric associated with each
generator inS × [0,∞) (see, for example, [28]). In our
problem, the lower envelope function, denoted byT ⋆

sp(x),
is defined as follows

T ⋆
sp(x) := min

i∈In

Tsp(x, x̄i, v̄i).

The time complexity of the previous approach is
O(ncard(G)), where n is the number of the pursuers.
Although, the algorithm that utilizes the direct diffusion
methods runs faster than the algorithm that is based on the
characterization of the lower envelope function, the latter one
is, perhaps, easier to implement. Due to space limitations,we
will not present the details of the computational techniques
that we have just discussed very briefly. The reader is urged
to refer to [27], [28] for more details.

IV. N UMERICAL SIMULATIONS

Next, we present numerical simulations to illustrate the
key points of the previous discussion. In particular, we
consider a scenario with eight pursuers and use the following
data: ūe = 0.6, ūp = 1, ǫc = 0.2 andS = [−4, 4] × [−4, 4].
The generalized Voronoi partition that solves Problem 4 is
illustrated in Fig. 2(a). The generalized Voronoi partition has
been computed by utilizing the algorithm that is based on the
characterization of the lower envelope function. Figure 2(b)
illustrates the level sets of the lower envelope function
T ⋆
sp(x). Each arrow in Fig. 2(a) corresponds to the initial

velocity vectorv̄i ∈ V of the i-th pursuer, which is initially
located at̄xi ∈ X (the locations of the generators are denoted
by black crosses).

It is interesting to note that the solution to the partitioning
problem suggests that, in some cases, the evader will have
to traverse paths that circumvent one or more pursuers while
staying relatively close to them. The evader may traverse
such paths, which may appear counterintuitive, at a first
glance, because in this way it avoids visiting points that are
favorable to some pursuer from the group of pursuers. (Note
that such points lie in the region between the two curve
segments of the barrier and the usable part of the target
set of the corresponding PEG). We also observe that the
computed generalized Voronoi partition differs significantly
from the corresponding standard Voronoi partition or other
common types of generalized Voronoi partitions generated
by the same point-set, which can be found in the relevant
literature. This is mainly due to the following two reasons.
The first one has to do with the non-uniform way that the
level sets of the proximity metric (value function of the
i-th PEG) expand along different directions throughS as
a consequence of the fact that the proximity metric is an
anisotropic, that is, a direction-dependent, pseudo-metric.
In simple words, the value functionTsp of the i-th PEG
expands faster along particular directions, and specifically,
the directions that “differ less” from the direction of the
initial velocity v̄i of the i-th pursuer located at̄xi. The
second reason has to do with the existence of manifolds
along which the value functionTsp of thei-th PEG undergoes
discontinuous jumps. The existence of these discontinuous
jumps results in situations where points that are close, in
terms of the Euclidean distance, to a particular generator are
at the same time “far away,” with respect toTsp, from the
same generator, and vice versa.

V. CONCLUSION

We have presented a solution technique to address a prob-
lem of evasion involving an evader and a group of pursuers,
when the latter are distributed inside a convex polygon. The
objective of the evader is to traverse the polygon while
remaining sufficiently “far away” from the group of pursuers,
when its proximity from them is characterized in terms of
the value function of a corresponding pursuit-evasion game.
We address the problem by associating it with a particular
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(a) Generalized Voronoi partition that solves Problem 4.
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sp
.

Fig. 2. The generalized Voronoi partition that solves Problem 4
and the level sets of the lower envelope function for a scenario
with eight pursuers.

class of generalized Voronoi partitioning problems whose
solution is computed via efficient, approximation algorithms.
In particular, it turns out that the boundaries of the cells that
comprise the proposed spatial partition furnish a collection
of paths that enjoy the following property: When the evader
traverses any of these paths, then no pursuer from the
group will have a unilateral incentive to initiate a pursuit
against it. The proposed geometric solution technique can
be easily implemented and is significantly more computa-
tionally tractable than other more straightforward approaches
aimed at directly addressing the corresponding multi-player
differential game, which typically requires the solution of a
system of coupled nonlinear PDEs.
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