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Abstract—We consider the problem of characterizing an and Pareto optimal solutions from the theory of non-zero-
evading strategy for an agent traversing a convex polygon sum games. Some excellent expositions of differential game

populated by a group of pursuers. We address the problem by ith extensive discussions on PEGs, can be found in [4]
associating it with a generalized Voronoi partitioning problem, [8]-[10] ’ '

which encodes information about the proximity relations be-
tween the evader and the pursuers based on the value function A characteristic class of differential games involving mul
of a pursuit-evasion game involving the evader and each tiple players are the so-callegroup PEGs, which involve,

pursuer from the group individually. The generalized Voronoi .
partition furnishes a collection of continuous paths which have N general, a group of pursuers and a group of evaders [11]-

the following property: When the evader travels along any of [19]. A special subclass of group PEGs, known asgtwip
these paths, none of the pursuers will have a unilateral incentive pursuit problems, deals with the case when a group of
to initiate the pursuit against it. With the proposed approach,  pursuers aims at capturing a unique evader. In our previous
the problem of evasion from the group of pursuers admits an work, we have addressed a special class of group pursuit

elegant geometric solution, which can be computed by means . .
of known computational techniques. Numerical simulations that Problems [20]-{22], by making use of a particular class of

illustrate the theoretical developments are presented. generalized Voronoi diagrams, whose proximity metric & th
minimum time that would be required for each pursuer to
I. INTRODUCTION individually capture the evader provided that all the other

pursuers did not participate in the pursuit of the latter. In
We address the problem of evasion of an agent frorthese references, it was assumed that all the pursuers had a
a group of pursuers that are distributed inside a convepriori partial or complete knowledge of the feedback stygte
polygon. Instead of directly addressing the problem udieg t of the evader; an assumption that essentially reduced the
framework of multi-player differential games, we proposé®’EG to a problem of pursuit with anticipation [8], which
a geometric solution technique which allows the evadds an optimal control problem. The idea of using Voronoi
to account for the presence of a pursuer only if the twdiagrams in PEGs has also been employed recently in [23].
players are sufficiently “close,” with respect to an appiater

, Main Contributions:In this work, we consider the problem
pseudo-metric, to each other.

of determining a collection of paths for an evader that aims
Previous work The first attempt to study pursuit evasionat traversing a given convex polygon, which is populated
games (PEGs, for short) within a self-contained mathematdy a group of pursuers, in such a way that will not excite
cal framework is attributed to Isaacs [1], who generalizexl t any pursuer to go after it. The problem is addressed by
theory of zero-sum games from the classical game theory [@ksociating it with a particular class of generalized Voion
to problems with dynamic constraints. The approach dadiagram / partitioning problems, whose solution can be com-
Isaacs focuses on problems involving two strictly competit puted by means of available techniques from computational
players, whose solution requires the computation of the sgeometry. In particular, the space to be partitioned is the
calledvalue functiorof the differential game, a concept sim-convex polygon that the evader has to traverse, and the
ilar to the cost-to-go function from dynamic programmingjpoint-set that generates this partition (the set of genesat
which satisfies a nonlinear partial differential equatiookn  consists of the initial positions of the pursuers. Furthenen
as the Hamilton-Jacobi-Isaacs equation. Bergovitz intted the proximity metric of the generalized Voronoi diagram,
an alternative framework to address PEGs based on varihat is, the generalized distance function that determines
tional techniques [3]. PEGs for players with linear dynasmicthe proximity relations between the generators (that is, th
and quadratic reward/loss functions were first studied Jn [4initial locations of the pursuers) and an arbitrary pointtia
The results of Isaacs and Bergovitz on differential gamgsolygon (which corresponds to any possible location of the
with only two (strictly competitive) players were extended evader) is the value function of a well-known PEG, namely
problems involving multiple players in [5]-[7]. In partilawr, the isotropic rocket pursuitevasion) problem. In this way,
[7] discusses linear quadratic differential games thaton- the pursuers are not required to have a priori knowledge
tradistinction with [4], involve players that do not necasly  of the strategy of the evader in order to determine which
have strictly competitive objectives and thus admit défgr one of them is the “closest,” in terms of the capture time,
solution concepts similar to, for example, Nash equilibrido the latter. Another important fact that distinguishess th
work from our previous one has to do with the fact that
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boundaries of the cells that comprise the generalized \ron Problem 1:Let S ¢ R? be a convex polygon whose
partition will furnish a collection of paths, which we refer  boundarydS consists ofms edges, denoted b¥,,, where
as theevading roadmaypa subset of which solves the evasionu € Mg := {1,...,ms}, and letX C int(S). In addition,
problem. let us consider a group of pursuers, where #tk pursuer

Structure of the paperThe rest of the paper is organizedfrolm the group corgmences_at a pzmte ); Vc‘j”tg an initial
as follows. Section Il presents the formulation of the ewasi YEIOCity Vi € V and its motion is described by Egs. (1a)-

problem, which is subsequently addressed in Section It- Se(lb)' and an evader c_:ommencingzate By C 95, for Some
tion IV presents numerical simulations, and finally, Seeto 4 € M, whose motion is described by Eq. (2). Then, find

concludes the paper with a summary of remarks. an inputu, € U, with the application of which the evader
will traverse the sefS such that

Il. FORMULATION OF THE DIFFERENTIAL GAME max |xe (£ %e, e ) — xi (£ %5, us)| > €,
PROBLEM €Ty

Let us consider a group of pursuers, where each pursuer]cor allt € [0,Ts] and for allu; € Uy, wheree, > 0 is the

is located, at time = 0, atx; € R? with a prescribed initial c_aptu_rability ragiusof the evasion problem andls is the
velocity v; € R?, wherei € Z,, := {1,...,n}. We denote first ime at whichx. (Tss) € 9S\{E,.}.

by X :={x; e R*: ie€Z,} andV:={v; e R*: i€ Z,},
respectively, the sets of the initial positions and velesibf
the pursuers. The motion of theth pursuer, where € Z,,,
is described by the following set of equations

Remark 1 Problem 1 is a differential game that involves
n + 1 players. Typically, problems of this kind require the
solution of a system of coupled nonlinear PDEs [6], [24],
which is a computationally intractable task. In this worle w

Xi = V;, x;(0) = X, (1a) devise a different geometric approach, which will allow us
Vi =, vi(0) = Vi, (1b) to avoid dealing directly with the multi-player differeati
game.
wherex; := [z;, y]T € R? andv; = [v;, w;]T € R? _ _ _
are, respectively, the position and velocity vectors ofittie Before we address the differential game that involvesl

vehicle at timet. In addition,u; denotes the control input of players, we shall first examine the PEG that involves only
the i-th pursuer, which attains values in the 8gt:= {v € w0 players, namely, théth pursuer and the evader. In the
R? : |v| < 4,}, wherew, corresponds to the maximum latter case, no other pursuer except from tHh pursuer is
acceleration of each pursuer. allowed to participate in the pursuit of the evader. We shall
. . . .refer to this problem as theth pursuit-evasion game-th
In addition, we consider an evader whose motion |]s_> . .

) . . . . . EG, for short). We assume that theh PEG terminates,
described by the following single integrator kinematic ralod . . . i

if there exists a control paifu;, u.) € U, x U and a time

Xe = Ue,  Xe(0) = Xe, (2) 7 >0 such that

wherex, := [r., y.]T € R? andx, := [Z., 7|7 € R? [%: (73 %i, ) — X (T3 %e, Ue)| < €.

are, respectively, the position vectors of the evader a¢ tim . ) i i

t andt = 0. Finally, u. is the control input of the evader In a}dd|t|on, for a given pair of inputtu;, ue) € Uy, x Ue, we
(velocity vector), which attains values in the &t = {v € define the capture time, denoted Byu;, u.), as follows
R? : |v| < @.}, wherea, is the maximum attainable speed T(ui,ue) == inf{t > 0 [x;(t; %, wi) — e (t; %e, ue)| < o},
of the evader. ©)

Up to this point, we have not mentioned anything about th rovided that the set on the right hand side of (3) is non-
set of admissible control inputs, that is, the type of cdntr empty; otherwise,T'(ui,u,) := oc. Note thatT(u;,u,)
inputs that the pursuers and the evader can employ. For NWnotes the time at \;\’/hii:h thisth pursuer driven lt;y ethe
we wil assume that both; ?ndu@ depend on the tlmea_nd control inputu; will capture the evader, which is driven by
the composite state vectpx; ,--- , xj, xI]T and they satisfy, inputu,, for the first time.
in addition, regularity conditions that guarantee the texise
and uniqueness of solutions to the initial value problems Definition 1: Thei-th PEG is feasible, if there exists a pair
described by Egs. (1a)-(1b) and (2), respectively. We wilpf controlinputs(u;,ue) € Uy xUe such thal'(u;, ue) < oc.
denote byi/, andi/, the set of admissible control inputs for  Next, we formulate the-th PEG, which amounts to the
the i-th pursuer and the evader, respectively. Furthermorgharacterization of a pair of control inputs:;, u}) that
we henceforth writel — x;(¢;%;, u;), andt — xc(t;Xe,ue)  furnish a saddle point of the capture tirfiguw,, u. ).
to denote the solutions of the initial value problems given i
Egs. (1a) and (2), respectively, for a givertuple of inputs
(u1,...,un) €Uy and an inputu, € Ue.

Problem 2 {-th PEG): Let us consider the-th pursuer
and the evader, whose motion is described, respectively,
by Equations (1a)-(1b) and (2). In addition, Eef C Uy

Next, we formulate the problem of evasion from a grougnd UK < U, denote the sets that consists of all the
of pursuers. time-invariant feedback laws;, = wu;(x.,x;,v;) and u, =



ue(Xe, X3, Vi ), respectively, that aré -strategies. Then, find C constitutes thedarget setof the i-th PEG. Note that the
a pair of K-strategies(u},uy) € Z/l,f( x UX, such that target set, when expressed in terms of the relative position

e !

T(uf,ul) < oo andT(uf,u}) = Typ, Where y, becomes a fixed subset BFf.
Top = mase min T(u;,ue) = min max T(ui;ue). (4)  Figure 1 illustrates the level sets of the value function

Ty, of the i-th PEG as a function of the initial position
Remark 2 Note that thenin andmax operators that appear of the evader, when théth pursuer is initially located at
in Eq. (4) commute; something that, although true for théhe origin & = 0) and its velocity vecto; is parallel to
value function of thei-th PEG, does not hold true in the negativey—axis. We observe that theth pursuer can
general [10]. capture the evader relatively fast provided that the later

sufficiently close to the former at = 0 and, in addition,
The:-th PEG is known in the literature as tteetropic rocket jts velocity points towards the evader. The collection of

pursuit-evasion game [1]. The tini&, corresponds to the the initial positions of the evader that are more favorable
value functiorof this zero-sum differential game. We wish toto the i-th pursuer belong to the region that is confined
hlghllght at this pOint that in the formulation of Problem 2,between the curve Segmer&and'D and the circular arc
the inputsu; and vy are constrained to be time-invarianty) (thick dashed black line), as is illustrated in Fig. 1. In
feedback laws, and in particuldf;strategiesin accordance particular, ) corresponds to the so-callassable partof
with the treatment of PEGs by Isaacs [1]. We shall henceforiie boundarydC of the target set of theth PEG, whereas
denote by, (x.,x;,v;) the value function of thé-th PEG  the curve segment8 and D, which intersect the target set
when at timet the evader is located a. whereas, at the §c tangentially, constitute thbarrier of the i-th PEG. The
same time, the-th pursuer is commencing at the poiit barrier determines a manifold that cannot be crossed during
with velocity v;. optimal play by both players and along which the value
Proposition 1: Let y; = X; — %, andv; € R? be given. If functionTy, undergoes discontinuous jumps (more precisely,
there exists a paifu;, u?) € UX x UX that solves the-th ~ the manifold whereTy, undergoes discontinuous jumps is
PEG, then the value functiofii, of the i-th PEG satisfies determined by the barrier and the £80). As shown in [1],

the following quartic equation if B andD intersect with each other, then the set that will be
enclosed by them and the usable ganf C will correspond
V1V + 297 T, + V]V, T5, = Q*(Tsp), to the so-calledcapture zoneThe last term describes the
Q(Ty) = €c — ucTyp + UpT, /2, (5) set of initial positions of the evader from which the latter

can always be captured by theth pursuer regardless of

the future actions of the evader. It turns out that the curve
Proof: The value functiorl, and the corresponding segmentd3 andD do not intersect with each other, provided

pair of inputs(u},u}) are determined by the solution of thethat

following PDE (known as the Isaacs-Hamilton-Jacobi or the Qipe, > U2, (8)

main equation)

if |yi| > €., andT, = 0, otherwise (trivial capture).

in which case the pursuer can always enforce the capture

Vi Top (e, iy Vi Vi + min Vi Top (e, i ViU of the evader in finite time. The inequality (8) is known as

ui €Uy . . .
+ max Vi, Tap (e, Xi, Vi)te = —1, ©6) the capture cgpdltlonln this work, we will assume that the
U €U capture condition always holds; an assumption that agtuall
where Vy, = [,,,0,,), for ¢ € {i,e}, and V,, := renders our problem more challenging. It should also be

[Dy,,dw,]. It turns out that Equation (6) can be solved gemimentioned that when the capture condition is satisfied but
Vi Yw; ]t

analytically to furnish Eq. (5). The reader may refer to [1’the evader commences at a point that does not belong to the
pp. 106-112] for more details. m region confined between the curve segmefitand D and

the circular arcy, then it can utilize swerve-like maneuvers
Remark 3 Proposition 1 implies that both the strategies ané order to significantly delay its capture by the pursuer. Fo
the value function of thei-th PEG depend only on the more details on the definition of the barrier and the usable
relative position vectol,; between the two players, where part of the target set and their role in the solution of PEGS,
y; = x; — %o, and thei-th pursuer’s velocityv;. Now let the reader may refer to [1].
t — vy;(t;y;,u;, ue) denote the solution of the following
initial value problem I1l. THE EVADING ROADMAP PROBLEM

Yi = Xi =™ Xe = Vi = Ue, ¥i(0) = Vi, ™ We are interested in characterizing a collection of contin-
wherev; satisfies Eq. (1b) ang, := %; — .. Then, thei-th uous paths that enjoy the following property: when they are
PEG admits a solution, if there exists a control ffair, u.) € traversed_ by the evader, the latter remains sufficiently “fa
U, x U, such thaty;(7) € C:={y e R? : |y| < ¢}, where away,” with respect to the value functidfi,, from each

pursuer from a given group of pursuers that are distributed
1For the definition ofK -strategies, the reader may refer to [1]. in S. We shall refer to this family of paths as tleeading
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Fig. 1. Level sets of the value functiofi, of thei-th PE, when
the i-th pursuer is initially located at the origin and its velocity is
parallel to the negativg-axis. It is interesting to note the existence
of a manifold (thick black line) where the value function undergoe
discontinuous jumps.

roadmap In order to make the meaning of “sufficiently far
away” more precise, we introduce the following definition.

Definition 2: The i-th pursuer, which is located, at time
t = 0, at a pointx; with velocity v;, has aunilateral incentive
to initiate a pursuit against the evader commencing.at
int(S), at timet > 0, when

Tsp()_(e7>_<i7\_/i) < Tsp()_(e,)_(j,\_/j), for all j € In\{l}

If none of the pursuers hasumilateral incentiveto initiate
a pursuit against the evader commencing.at S, then we
will say thatx, is anequilibrium position for Problem 1.

Proposition 2: A point x, € S is an equilibrium position
for Problem 1 if, and only if, there exist j € Z,,, where
i # 7, such that

Tsp(;(ea;(iavi) = Tsp(iev)zjavj) = ?GHIH Tsp(xea)zlvvf)~ (9)

Problem 3 (The Evading Roadmap Problem}et S C
R? be a convex polygon, and le¥ C int(S), where
X = {x; € R? i € Z,}. Then, find a collection of
continuous pathg’ := {~,, ¢ € L}, where £ is an index
set, and each path, : [0,1] — S satisfies the following
properties:i) v,(0),v¢(1) € 9S8, and~,(t) € int(S), for all
t €]0, 1], ii) every pointx € trace(y,), wheretrace(v,) =
{x € 8: x=(t), t €[0,1]}, is an equilibrium position
for Problem 1.

Remark 4 We henceforth refer to the collection of contin-
uous pathd” that solve Problem 3 as thevading roadmap

Next, we show that Problem 3 can admit a purely geome

ric solution, which is based, in turn, on a well known prop

erty enjoyed by the cells that comprise a generalized Vdron

partition. In particular, the common boundaries of two o

more cells from a generalized Voronoi partition generated

by a finite point-set (set of generators) are equidistarth wi

respect to the proximity metric of the partition, from their
corresponding generators. Let us now consider a genettalize
Voronoi partition, sayJ, generated by the point-s&twhose
proximity metric is the value functiofy, of Problem 2.
Then, the boundaries of the different cells af would
consist of points at which the evader is equidistant, with
respect toly,, from at least two pursuers from the group
of pursuers. Consequently, when the evader traverses the
common boundaries of two or more cells of the generalized
Voronoi partition®y, then no pursuer will have a unilateral
incentive to initiate the pursuit against the evader.

A. Formulation of the Partitioning Problem

Based on the previous discussion, we next formulate a
generalized Voronoi partitioning problem with respecttie t
value function of Problem 2. The solution to this partitiogi
problem will allow us to address Problem 3 by making use
9f purely geometric arguments.

Problem 4:Let S C R? be a convex polygon. Given a
collection of n distinct pointsX = {x; € R? : i ¢
Z,} C int(S), whereX := {x;, € R? : i€ Z,}, and a
corresponding collection of velocity vectors) := {v; €

R?: i € 7, }, then determine a partitiod = {¥* : i € Z,,}
of § such that
1) 8 =Uez, ¥' andint(V*) Nint(V/) = 2.
2) For eachx € ¢, it holds that
Top(x,%i, V) < Tip(x,%;5,V5), forall j € L,\{i}.

Remark 5 Problem 4 is a generalized Voronoi partitioning
problem, whose solution corresponds to a data structute tha
encodes information about the proximity relations between
the pursuers and the evader. These relations are induced by
the value functiory, of the i-th PEG, when the evader is
assumed to be initially located at an arbitrary poirt S.

In this work, we will say that two or more generators from
X, and their corresponding pursuers, are neighbors if the
intersection of the boundaries of their associated celi®is
empty and non-trivial (not a singleton). We denoteMfythe
subset ofZ,, that consists of the indices of all the pursuers
that are neighbors of theth pursuer.

The following proposition underlines an important prop-
erty enjoyed by the generalized Voronoi partition that eslv
Problem 4.

Proposition 3: Let U = {¥?, i € Z,,} correspond to the
solution of Problem 4 for a given convex polygéh and let

00 := Ujez, 0B\ OS. (10)

A pointx. € int(S) is an equilibrium position for Problem 1
if, and only if, x, € 9 for all t €]0, Ts[, whereTs is the

grst time instant at which the evader, which commences at
Ke € E, C 08, at timet = 0, reaches the séS\E,,.

Proof: Note that the boundary of each céli’ ¢ U
consists of points that belong to the intersectifhn 9,



when the latter set is honempty, along with the points that IV. NUMERICAL SIMULATIONS
belong to the intersection af’ with its neighboring cells. ) ) ) )
Consequently, the sét¥ consists of points that belong to Next, we present numerical simulations to illustrate the
the common boundaries of two or more cells exclusivelyk€y Points of the previous discussion. In particular, we
Therefore, ifx, € 99, there existi € Z,, and j € N; such consider a scenario with eight pursuers and use the follpwin
thatx, € 9¢ N 9V, which implies thatTp (x.,%;,v;) = dataiae =0.6,u, =1,¢c =02 andS = [-4,4] x [-4,4].
Tap (Xer X5, V5), aNd Top (Xe, Xk, Vi) > Tp(Xe, X, V4), for all The gener.ahzgd \Voronoi partition _that solves.Prob.I(_am 4 is
k € T,\{i, j}. Consequentlyx. is an equilibrium position illustrated in Fig. 2(a).. _T_he generallz_ed \oronoi partiticas
for Problem 1. The converse can be shown similarly. m been computed by utilizing the algorithm that is based on the
characterization of the lower envelope function. Figure)2(
Remark 6 Proposition 3 can be interpreted as follows. Inllustrates the level sets of the lower envelope function
order to solve the Evading Roadmap Problem, we first nedd;,(x). Each arrow in Fig. 2(a) corresponds to the initial
to compute the generalized Voronoi partitiéh that solves Vvelocity vectory; € V of the i-th pursuer, which is initially
Problem 4, or more precisely, determine the boundaries #fcated ak; € X (the locations of the generators are denoted
all the cells that comprise this partition. Subsequentlg, wby black crosses).
have to remove from the latter sets the points that belong |t js interesting to note that the solution to the partitiagi
to 95 in order to determine the séty. The next step i roplem suggests that, in some cases, the evader will have
to determine the paths whose trace belongs to th@¥et g traverse paths that circumvent one or more pursuers while
From these paths, the ones that belong to the roadma®  giaying relatively close to them. The evader may traverse
the ones that traverse the polyg6nin accordance with the g,ch paths, which may appear counterintuitive, at a first
requirementi) of the Evading Roadmap Problem. glance, because in this way it avoids visiting points that ar
favorable to some pursuer from the group of pursuers. (Note
athat such points lie in the region between the two curve
gegments of the barrier and the usable part of the target
set of the corresponding PEG). We also observe that the
mputed generalized Voronoi partition differs signifidan
rom the corresponding standard Voronoi partition or other

efficient computational techniques exist in the literaf@%, common types qf generallged Voronol part|t|pns generated
by the same point-set, which can be found in the relevant

26]. A straightf d h to add h partiti
[26]. A straightforward approach to address such partitin erature. This is mainly due to the following two reasons.

roblems is to use algorithms that compute a roximatior{gh ) . .
P g P PP e first one has to do with the non-uniform way that the

of the desired partitions by utilizing a discretization dyri o . .
P y 9 G rllgvel sets of the proximity metric (value function of the

say G, over the space to be partitioned. For example, o . N
such approach involves the use of computational techniqu@éh PEG) expand along different dlrect|qn§ throu§ha§
consequence of the fact that the proximity metric is an

that are commonly employed for the numerical solutior? © : ) T :
of partial differential equations, and in particulatirect an|s_otrop|c, that is, a d|rect|on-d_ependent, p;eudounetr
diffusion methodf27]. The time complexity of the approach In simple words, the valu_e funct|.oﬂFSp. of the i-th PEG
presented in [27] i©)(card(G)), wherecard(G) denotes the eXpaf?dS faster anrLg_partlcuIa”r directions, .and_spedy;cal
cardinality of the gridG, which is, in turn, equal to the .th'e. d|rectlops Ehat dlffer. less” from the direction of the
number of its nodes. An alternative approach is to compufB!tial velocity v; of the i-th pursuer located a%;. The

the so-called lower envelope function that bounds from\lveloSecond reason has to do with the existence of manifolds

the graphs of the proximity metric associated with eacﬁ!ong Vt‘{h'Ch thg value fflj_ﬂcndﬁ?pto“hei';htﬁ EG l(er_ldergt(_)es
generator inS x [0,00) (see, for example, [28]). In our diScontinuous jumps. The existence of these discontinuous

problem, the lower envelope function, denoted T (x), jumps results in _situatio.ns where points. that are close, in
is defined as follows terms of the Euclidean distance, to a particular generator a
at the same time “far away,” with respect 1g,, from the
same generator, and vice versa.

B. Computation of the Solution to the Evading Roadm
Problem

Problem 4 cannot be directly associated with a class
generalized Voronoi partitioning problems for whose solut

T5,(x) = Znenzn Top (X, %4, V5).

. . . ) V. CONCLUSION
The time complexity of the previous approach is

O(ncard(G)), where n is the number of the pursuers. We have presented a solution technique to address a prob-
Although, the algorithm that utilizes the direct diffusionlem of evasion involving an evader and a group of pursuers,
methods runs faster than the algorithm that is based on thdien the latter are distributed inside a convex polygon. The
characterization of the lower envelope function, the taitee  objective of the evader is to traverse the polygon while
is, perhaps, easier to implement. Due to space limitatiwas, remaining sufficiently “far away” from the group of pursuers
will not present the details of the computational techngquewhen its proximity from them is characterized in terms of
that we have just discussed very briefly. The reader is urgdlde value function of a corresponding pursuit-evasion game
to refer to [27], [28] for more details. We address the problem by associating it with a particular
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(b) Level sets of the lower envelope functidiy, .

Fig. 2. The generalized Voronoi partition that solves Problem 4
and the level sets of the lower envelope function for a scenarig®!
with eight pursuers.

[21]

class of generalized Voronoi partitioning problems whose
solution is computed via efficient, approximation algamth 2]
In particular, it turns out that the boundaries of the ceikstt
comprise the proposed spatial partition furnish a coltecti

of paths that enjoy the following property: When the evader
traverses any of these paths, then no pursuer from the
group will have a unilateral incentive to initiate a pursuit[24]
against it. The proposed geometric solution technique cagy)
be easily implemented and is significantly more computa-
tionally tractable than other more straightforward apphees [26]
aimed at directly addressing the corresponding multi-gray
differential game, which typically requires the solutiohao
system of coupled nonlinear PDEs. [27]
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