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Abstract— This work is concerned with an optimal covari-
ance control problem for stochastic linear systems subject to
quadratic state integral constraints. In particular, our object ive
is to design a feedback control law that will steer the covariance
matrix of the (random) terminal state vector of a stochastic
linear system to a designated positive semi-definite matrix while
minimizing the expected value of the control effort required for
this “covariance transition” or “Schr ödinger bridge” subject
to integral quadratic state inequality constraints. We address
this problem by imbedding it into a one-parameter family
of unconstrained covariance control problems that are more
tractable, both analytically and computationally, than the orig-
inal, constrained covariance control problem. In this way, the
original problem is essentially reduced to a finite-dimensional
optimal parameter selection problem, which can be addressed
by means of gradient descent-type algorithms.

I. I NTRODUCTION

This work deals with the problem of steering the (random)
state of a stochastic linear system, which is drawn from a
known Gaussian distribution, to a terminal state which is
also drawn from a Gaussian distribution at a given terminal
time subject to mean integral state constraints. We refer to
this problem as the finite time horizon covariance control
problem. The motivation for studying this type of problems
stems from broad classes of control applications involving
stochastic control systems in which the control objectives
are more appropriately described in terms of the root-mean-
square values of the terminal state vector [1], [2].

Literature Review:The importance of developing a “co-
variance control theory” was first highlighted in the literature
by Hotz and Skelton [1], [2]. Ideas and techniques presented
in these references were subsequently extended in a series of
papers (see, for example, [3]–[6]). In all these references, the
emphasis is placed on covariance control problems with an
infinite time horizon and the objective is to steer the covari-
ance of the state of a stochastic linear system to a “reachable”
steady statecovariance matrix. In general, the solvability of
the infinite time horizon covariance control problem requires
the satisfaction of rather stringent conditions and typically,
one has to first characterize a parametrization of the subset
of the convex cone of positive definite matrices that consists
of all the “reachable”steady statecovariance matrices for a
given linear stochastic system.

The interest in this class of problems has been recently
revived in light of the significant results reported in [7],
[8], where the covariance control problem was placed in a
stochastic optimal control framework and connections with
the theory ofSchr̈odinger bridgeswere also established. In
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particular, the authors of [7], [8] identified two different
subclasses of stochastic optimal control problems whose
performance index is the expected value of the control effort
or energy. In the first subclass [7], the time horizon is finite
and it is also assumed that the uncertainty is injected to the
system via the same channels as the control inputs. It turns
out that in this case, the problem can be reduced, under
some mild technical assumptions, to a system of two Riccati
equations that are coupled only via their boundary conditions
and practically admits a closed-form solution. The case when
the input channels and process noise channels are not neces-
sarily the same is treated in [8]. In this case, the existenceof
solutions to the minimum effort covariance control problem
is equivalent to the solvability of a Schrödinger nonlinear
system, which involves a system of coupled Riccati equations
with coupled boundary conditions, which is an open problem.
For this class of problems, one has to resort to numerical
techniques of convex optimization in order to characterize
suboptimal solutions [9].

Main Contribution: In this paper, we consider an optimal
covariance control problem using the framework of finite-
horizon stochastic optimal control similar in spirit to the
Refs. [7], [8], which have been the main source of inspiration
for this work. What distinguishes this work from the previous
two references is the fact that in our problem formulation,
we explicitly account for the presence of mean integral
quadratic state inequality constraints, which are intended
to confine the sample trajectories of the stochastic system
within a “narrow” tube as is illustrated in Fig. 1. Herein,
we will refer to the extension of the classic finite-horizon
LQG (Linear Quadratic Gaussian) problem [10], [11] with
full-state observation but with boundary conditions in terms
of the covariance of the state vector as the unconstrained
LQG covariance control (unconstrained LQGCC) problem,
whereas the same problem subject to the (mean) integral
quadratic state inequality constraints will be referred asthe
constrainedLQG covariance control (constrained LQGCC)
problem. It should be mentioned here that the solution to the
unconstrained LQG covariance control problem (in which
both the state and the input appear in the running cost)
can easily be recovered from the solution to the constrained
LQGCC problem.

To address the constrained optimal covariance control
problem, we imbed it into a one-parameter family of uncon-
strained LQGCC problems. Each parametric unconstrained
LQGCC problem is subsequently associated with the min-
imum effort covariance control problem addressed in [7],
[8] via a time-varying input transformation. The final step is
to solve the (finite-dimensional) optimal parameter selection
problem, which seeks for the optimal parameter that will



determine the optimal control law that solves the constrained
stochastic optimal control problem. The proposed approach
is based on standard results from the theory of Lagrangian
duality as in [12], [13].

Structure of the paper:The rest of the paper is organized
as follows. The LQGCC problem is formulated in Section II
and is subsequently imbedded in a family of unconstrained
LQGCC problems in Section III. In Section IV, we associate
the constrained LQGCC problem with a finite-dimensional
optimal parameter selection problem. Illustrative numerical
simulations are included in Section V, and finally, Section VI
concludes the paper with a summary of remarks.

II. PROBLEM FORMULATION

A. Notation

We denote byRn the set ofn-dimensional real vectors.
The space of continuous functions over an interval[α, β] that
are taking values inRm×n is denoted byC([α, β];Rm×n).
Furthermore, given a probability space(Ω,F, P ), we denote
by Ln

2 ([α, β]; Ω,F, P ) the Hilbert space of mean square
integrable stochastic processes{x(t) : t ∈ [α, β]} in
(Ω,F, P ), wherex(t) is a n-dimensional (random) vector
at eacht ∈ [α, β]. Finally, we will denote the cone of
n×n (symmetric) positive definite and positive semi-definite
matrices byPn andPSn, respectively.

B. Formulation of the Optimal Covariance Control Problem

We consider a stochastic linear system that satisfies the
following stochastic differential equation:

dx(t) = A(t)x(t)dt+B(t)u(t)dt+C(t)dw(t), (1)

with x(t0) = x0, for t ∈ [t0, tf ], where{x(t), t ∈ [t0, tf ]}
and {u(t) : t ∈ [t0, tf ]} denote the state and the input
stochastic processes, respectively, in a probability space
(Ω,F, P ). At each timet ∈ [t0, tf ], x(t) and u(t) are n-
dimensional andm-dimensional vectors, respectively. The
input process{u(t) : t ∈ [t0, tf ]} is assumed to belong to
Lm
2 ([t0, tf ]; Ω,F, P ) and to have finitek-moments for allk >

0. We will henceforth refer to an input process that satisfies
these properties asadmissible. In addition, {w(t) : t ∈
[t0, tf ]} is a standard Brownian motion, which is adapted to
an increasing family ofσ-algebras{F(t0, t), t ∈ [t0, tf ]},
that is,F(t0, t1) ⊆ F(t0, t2) for all t0 ≤ t1 ≤ t2 ≤ tf , where
F(t0, t) ⊆ F, for all t ∈ [t0, tf ]. At each timet the (random)
vectorw(t) is p-dimensional. We will be considering input
and state processes that are non-anticipative with respectto
{F(t0, t), t ∈ [t0, tf ]}. Finally, A(·) ∈ C([t0, tf ];Rn×n),
B(·) ∈ C([t0, tf ];R

n×m) andC(·) ∈ C([t0, tf ];R
n×p).

Now, let us assume that the initial statex0 is a random
vector drawn from the multi-variate normal distribution
N (0,Σ0), where Σ0 ∈ Pn is the initial covariance of
system’s state, that is,E{x0x

T
0} = Σ0. Recently, the problem

of steering the state of the stochastic linear system (1) from
the initial (random) vectorx0 ∼ N (0,Σ0) to a terminal
(random) vectorxf at a given timet = tf , where xf ∼
N (0,Σf), and whereΣf ∈ Pn is the terminal covariance,
that is,E{xfx

T
f
} = Σf , via a control input that minimizes

N (µ0,Σ0)

N (µf ,Σf)

Fig. 1. The problem of steering the uncertain state of a stochastic
control system, which is drawn from a known Gaussian distribution
N (µ0,Σ0) to a terminal state that is also drawn from a known
distributionN (µf ,Σf), at a given final time (finite time horizon co-
variance control problem). By considering state integral constraints,
the sample paths of the Schrödinger bridge are expected to lie within
a “narrow” tube.

the expected value of the control effort was addressed in [7],
[8]. In this work, we examine a similar optimal covariance
control problem when, in addition, a mean integral quadratic
state (inequality) constraint is enforced. The motivation
stems from classical linear quadratic control problems, in
which, the objective is to steer the state of the system to
the origin in a way that strikes a balance between using
“reasonable” control effort while also keeping the deviations
of the system’s state from the origin small on average (see
Fig. 1). In the framework proposed in [7], [8], the aspect
of penalizing state deviations explicitly and in particular, via
mean integral quadratic state constraints, is missing. This
work is intended to fill this gap.

Problem 1: Constrained LQGCC Problem:Given 0 ≤
t0 < tf < ∞, c > 0, and positive definite (symmetric)
matricesQ0, Σ0, Σf find an admissible control inputu◦(·)
that minimizes the performance index

J(u(·); t0, tf) := E{

∫ tf

t0

u(t)Tu(t)dt}, (2)

subject to the (stochastic) dynamic constraints (1), the mean
integral quadratic state constrainth(x(·)) ≤ c, with

h(x(·)) := E{

∫ tf

t0

x(t)TQ(t)x(t)dt}, (3)

whereQ(t)−Q0 ∈ SPn for all t ∈ [t0, tf ], and the boundary
conditions in terms of the covariance of the (random) state
vectorx(t) at time t = t0 and t = tf :

E{x0x
T
0} = Σ0, E{xfx

T
f
} = Σf , (4)

wherex0 = x(t0) andx(tf) = xf .

Problem 1 can be imbedded in a one-parameter family of
unconstrained covariance control problems, which are signif-
icantly more tractable, both analytically and computationally.
The objective in this class of problems is to address the
covariance control problem for the stochastic linear system
(1) with boundary conditions (4) while minimizing the cost
function Jλ, where

Jλ(u(·;λ); t0, tf) := E{

∫ tf

t0

u(t;λ)Tu(t;λ)dt}+ λh(x;λ),

(5)



for a givenλ ≥ 0. Note that the hard integral state inequality
constrainth(x) ≤ c, is replaced by a “soft constraint” that
is reflected in the new running cost. The exact formulation
of the previously described problem is given next.

Problem 2: Parametric, Unconstrained LQGCC Problem:
Let λ ≥ 0 and 0 ≤ t0 < tf < ∞ be given. Then
find an admissible control inputu◦(·;λ) that minimizes the
augmented performance index given in Eq. (5) subject to (1)
and the boundary conditions in terms of the covariance of the
(random) state vectorx◦(t;λ), which are given in Eq. (4).

After we address Problem 2, we will be able to reduce
Problem 1 to a finite-dimensional optimal parameter selec-
tion problem. In particular, the latter problem, will furnish an
optimal parameterλ◦ such that the optimal control input that
solves Problem 1, provided that the latter problem admits a
solution, is given by

u◦(t) = u◦(t;λ◦), t ∈ [t0, tf ]. (6)

It is important to highlight at this point that, for a given non-
negative scalarλ, Problem 2 is essentially an unconstrained
LQG problem [11], [14] but with boundary conditions in
terms of the covariance of the state vector. Next we char-
acterize the solution to Problem 2 provided that the set of
minimizers ofJλ is non-empty (the existence of solutions to
Problem 2 will be revisited later on).

Proposition 1: Let λ ≥ 0 and Σ0, Σf ∈ Pn be given.
Then, if Problem 2 admits a solution, an optimal control law
that solves this problem will be given by

u◦(t;λ) = −B(t)TS(t;λ)x◦(t;λ), (7)

where {x◦(t;λ), t ∈ [t0, tf ]} denotes the stochastic state
process generated by the optimal stochastic input process
{u◦(t;λ), t ∈ [t0, tf ]} and S(·;λ) satisfies the following
Riccati (matrix) equation:

−Ṡ(t;λ) = λQ(t) + S(t;λ)A(t) +A(t)TS(t;λ)

− S(t;λ)B(t)B(t)TS(t;λ), (8)

with boundary conditionS(tf ;λ) = Sf(λ), whereSf(λ) ∈
SPn is such that the covariance of the state of the system
driven by the control inputu◦(·;λ), which is denoted by
Σ(t;λ) := E{x◦(t;λ)(x◦(t;λ))T} and evolves according to
the following first-order linear differential matrix equation:

Σ̇(t;λ) = (A(t)−B(t)B(t)TS(t;λ))Σ(t;λ)

+Σ(t;λ)(A(t)−B(t)B(t)TS(t;λ))T

+B(t)B(t)T, (9)

satisfies at timet = 0 and t = tf the following boundary
conditions:

Σ(t0;λ) = Σ0, Σ(tf ;λ) = Σf . (10)

Proof: Let S(t;λ) be the solution to the Riccati Eq. (9).
Then, in view of Lemma 7.1 and its proof [14, pg. 287–289],

we have that
∫ tf

t0

[

u(t)Tu(t) + λx(t)TQ(t)x(t)
]

dt =

+

∫ tf

t0

|u(t) +B(t)TS(t;λ)x(t)|2dt

+

∫ tf

t0

tr(S(t;λ)C(t)C(t)T)dt

+

∫ tf

t0

dw(t)TC(t)TS(t;λ)x(t)

+

∫ tf

t0

x(t)TS(t;λ)C(t)dw(t)

− x(tf)
TS(tf ;λ)x(tf) + x(t0)

TS(t0;λ)x(t0),

which in turn implies

E{

∫ tf

t0

[

u(t)Tu(t) + λx(t)TQ(t)x(t)
]

dt} =

E{

∫ tf

t0

|u(t) +B(t)TS(t;λ)x(t)|2dt}

+

∫ tf

t0

tr(S(t;λ)C(t)C(t)T)dt

− tr(S(tf ;λ)Σf) + tr(S(t0;λ)Σ0), (11)

where we have used the fact that

E{x(t)TS(t;λ)x(t)} = E{x(t)T}S(t;λ)E{x(t)}

+ tr(S(t;λ)Σ(t;λ)) (12)

together withE{x(t0)} = E{x(tf)} = 0, and the fact
that, formally, E{dw(t)} = 0 (given that the increment
dw(t) of a Brownian motion process follows a Gaussian
distribution with zero mean and covariancedt I, that is,
dw(t) ∼ N (0, dt I) [15]), for t ∈ [t0, tf ]. Eq. (7) follows
readily from (11). The fact that the optimal control satisfies
Eq. (7) in turn allows to show by direct computation that
Eq. (9) also holds true. (Note that we have skipped a
number of steps in this proof, which are based on standard
arguments and techniques that can be found in the literature
of stochastic linear-quadratic optimal control [11], [14]).

In light of Proposition 1 and its proof, we have that for
a givenλ ≥ 0, the optimal cost of Problem 2,J◦(λ) :=
Jλ◦(u(·;λ◦)) satisfies the following equation:

J◦(λ) =

∫ tf

t0

tr(C(t)TS(t;λ)C(t))dt

+ tr (S(t0;λ)Σ0 − S(tf ;λ)Σf) . (13)

In light of Proposition (1), the main challenge for solving
Problem 2 is for the state covarianceΣ(·;λ) to satisfy the
prescribed boundary conditions at timet = t0 and t = tf ,
which are given in (10). As is highlighted in [7], [8], this is
a challenging problem given that the Riccati equations (8)
and (9) are coupled. More precisely, (9) depends on both
S(t;λ) and Σ(t;λ) whereas (8) depends, at a first glance,
only onS(t;λ). Unfortunately, it turns out that the system of
the two Riccati equations is not in triangular form because
the boundary condition for Eq. (8) is not prescribed; instead,
it has to be chosen so that the state covarianceΣ(·;λ) satisfy



the prescribed boundary conditions at timet = t0 andt = tf .
As is shown in [7], [8], under the assumption thatΣ0 ∈
Pn, which implies that the state covariance matrixΣ(t;λ)
belongs toPn for all [t0, tf ] as implied immediately from (9)
whose initial condition is a matrix inPn), the time-varying
matrix H(t;λ) := Σ(t;λ)−1 − S(t;λ) is well defined for
all t ∈ [t0, tf ]. Then, in light of the identityd

dt
H(t;λ)−1 =

−H(t;λ)−1 d

dt
H(t;λ)H(t;λ)−1, it is easy to show that

−Ḣ(t;λ) = A(t)TH(t;λ) +H(t;λ)A(t)

+H(t;λ)B(t)B(t)TH(t;λ)− λQ(t)

− (Σ(t;λ) +H(t;λ))(B(t)B(t)T −C(t)C(t)T)

× (Σ(t;λ) +H(t;λ)). (14)

As explained in [8], the system of the two coupled Ric-
cati equations (9) and (14), corresponds to a nonlinear
Schr̈odinger system. The solvability of such systems cannot
be determined easily in the more general case in which
the matricesB(t) and C(t) do not coincide for all times
t. In the latter case, one may have to confine the search
to suboptimal solutions of (9) and (14), which can be
characterized numerically via known convex optimization
techniques.

In the special case whenB(t) = C(t), for t ∈ [t0, tf ]
(identical input and noise channels), that is, when the
noise affects the control system through the input channels,
Eq. (14) reduces to

−Ḣ(t;λ) = A(t)TH(t;λ) +H(t;λ)A(t)

+H(t;λ)B(t)B(t)TH(t;λ)− λQ(t), (15)

which is now decoupled fromS(t;λ). However, even though,
in the latter case, (9) and (15) may appear to form a
system of decoupled Riccati matrix equations, this is actually
incorrect given that these two equations are still coupled
via their boundary conditions. In particular, the boundary
conditions (4) imply that

Σ−1

0
= S(t0;λ) +H(t0;λ) (16a)

Σ−1

f
= S(tf ;λ) +H(tf ;λ). (16b)

In the unconstrained case, that is, whenλ = 0, and when
B(t) = C(t), for all t ∈ [t0, tf ], one can actually obtain
solvability conditions as well as closed form expressions
for the boundary conditions ofS(t0;λ) andH(t0;λ), when
the problem admits a solution, as was recently shown in
[7]. In the constrained case, however, the existence of the
term λQ(t) destroys the homogeneity of the Riccati matrix
equations (8) and (15) in terms ofS(t;λ) and H(t;λ),
respectively. Consequently, one can no more reduce the
system of Riccati equations (8) and (15) into a decoupled
system of first order linear matrix equations in terms of
S(t;λ)−1 andH(t;λ)−1, in contradistinction with [7].

III. R EDUCTION OF THEPARAMETRIC, UNCONSTRAINED

LQGCC PROBLEM TO A M INIMUM CONTROL EFFORT

COVARIANCE PROBLEM

In this section, we will show how to associate Problem 2
with the finite-horizon minimum effort covariance control
problem addressed in [7], [8]. In a nutshell, the minimum

effort covariance control problem addressed in these refer-
ences corresponds to Problem 1 in the special case when
λ = 0. The cost function in this case is the expected value
of the minimum control effort and is denoted byJ0, that is,

J0(u0(·); t0, tf) = E{

∫ tf

t0

u(t)Tu(t)dt}, (17)

and the corresponding minimum effort control input at time
t, which is denoted byu◦(t; 0), is given by

u◦(t; 0) := −B(t)TS(t; 0)x◦(t; 0), (18)

where S(t; 0), t ∈ [t0, tf ], denotes the solution to the
Riccati equation (8), whenλ = 0, with boundary condition
S(tf ; 0) = Sf(0). Note that the matrixSf(0) ∈ PSn is chosen
such that the covarianceΣ(t; 0) := E{x◦(t; 0)(x◦(t; 0))T}
satisfies the boundary conditions given in Eq. (10) at timet =
t0 andt = tf . We proceed by presenting a time-varying input
transformation that will allow us to associate the parametric
unconstrained LQGCC problem with a minimum control
effort covariance control problem with the same boundary
conditions on the state covariance but subject to stochastic
(linear) dynamic constraints that will be different from those
of the unconstrained LQGCC problem.

Theorem 1:Let λ ≥ 0 and letΣ0, Σf ∈ Pn be given. In
addition, suppose that there existsSf ∈ PSn such that the
Riccati Equation (8) admits a symmetric solutionS(t;λ) that
is well-defined for allt ∈ [t0, tf ] and satisfies the boundary
condition S(tf ;λ) = Sf . Then, the control inputu◦(·;λ)
given in (18) solves Problem 2 with boundary conditions (4)
if, and only if, the problem of minimizing the performance
index

J0(v(·); t0, tf) := E{

∫ tf

t0

v(t)Tv(t)dt} (19)

subject to the dynamic constraints:

dx(t) = Ã(t)x(t)dt+B(t)v(t)dt+C(t)dw(t), (20)

whereÃ(t) := A(t)−B(t)B(t)TS(t;λ), for t ∈ [t0, tf ], and
the boundary conditions given in Eq. (4), admits an optimal
solutionv◦(·).

Proof: After we apply the following input transforma-
tion:

v(t) = u(t) +B(t)TS(t;λ)x(t), t ∈ [t0, tf ], (21)

to Equation (11), we take

E{

∫ tf

t0

[

u(t)Tu(t) + λx(t)TQ(t)x(t)
]

dt} =

E{

∫ tf

t0

v(t)Tv(t)dt}+

∫ tf

t0

tr(S(t;λ)C(t)C(t)T)dt

− tr(S(tf ;λ)Σf) + tr(S(t0;λ)Σ0), (22)

whereS(t;λ) is the solution of (8), which is well defined
for all t ∈ [t0, tf ], by hypothesis. The substitutionu(t) =
v(t) − B(t)TS(t;λ)x(t) in Eq. (1) yields the stochastic
linear system given by (20). Now, the last two terms in (22)
cannot be affected directly by the control input and the result
follows.



Theorem 1, which associates the unconstrained LQGCC
problem (for a givenλ ≥ 0) to the minimum effort co-
variance control problem, has significant practical value,in
the light of the recent results presented in [7], [8]. Note
that the proposed input transformation (21) requires only
the solution to the Riccati equation (8) that is well defined
in [t0, tf ] for an appropriately chosen boundary condition
Sf ∈ PSn. The matrix Sf is irrelevant to enforcing the
boundary conditions (10) in terms of the covariance matrix
Σ(·;λ) of Problem 2. The boundary conditions (10) in terms
of the covariance matrices will be accounted only in the
solution to the minimum effort covariance control problem
subject to the new stochastic linear dynamic constraints (20),
which are derived after the application of the time-varying
input transformation (21).

To see the practical benefit of associating Problem 2 with
the minimum effort LQGCC problem, let us consider the
case whenB(t) = C(t) for all t ∈ [t0, tf ], in which the
two Riccati equations, namely Eq. (9) and Eq. (15) are only
coupled via their boundary conditions, as we have already
explained. However, as we have previously underlined, in
this case both Riccati equations are non-homogeneous due
to the presence of the termλQ(t). This fact does not allow
us to reduce Eq. (9) and Eq. (15) to a system of first-order
linear (differential) matrix equations as in [7]. By following
the approach proposed in this section, Problem 2 will be
reduced to a minimum effort covariance control problem
subject to the new stochastic linear dynamic constraints given
in (20), which are determined by the time-varying input
transformation defined in Theorem 2. The important nuance
here is that this transformation does not affect theB(t)
matrix, in other words, theB(t) matrix in (1) and (20) is
exactly the same. Therefore, if it is true thatB(t) = C(t),
for all t ∈ [t0, tf ], for the optimal covariance Problem 2, in
which the stochastic dynamic constraints are given in Eq. (1),
then the same holds true for the minimum effort covariance
control problem, which is equivalent to Problem 2 and whose
stochastic dynamic constraints are given by (20). Therefore,
in principle, we will be able to find the solution to Problem 2
in closed form as in [7]. Another advantage of associating
Problem 2 with a minimum effort covariance control problem
via the time-varying input transformation is that the question
of existence of solutions to Problem 2 can be answered in a
more straightforward way.

Corollary 1: Suppose thatA(t) = B(t), for all t ∈ [t0, tf ]
and let Σ0, Σf ∈ Pn be given. Let Ã(t) := A(t) −
B(t)B(t)TS(tf ;λ), for t ∈ [t0, tf ], where S(tf ;λ) is a
symmetric solution to the Riccati Equation (8) for some
terminal conditionSf(λ) ∈ PSn that is well defined for all
t ∈ [t0, tf ]. If the deterministic time-varying linear system

ẋ(t) = A(t)x(t) +B(t)u(t) (23)

is uniformly controllable over[t0, tf ], then the LQGCC
problem subject to the stochastic dynamic constraints given
in (1) always admits an optimal solution.

Proof: The proof of this corollary is based on the
classic result (see, for example, Theorem 5.5.2 in [16]),
which states that the uniform controllability over[t0, tf ] of
the (deterministic) time-varying linear system (23) implies

the uniform controllability over[t0, tf ] of the deterministic
time-varying linear system

ẋ(t) = Ã(t)x(t) +B(t)v(t),

wherev(t) := u(t)−K(t)x(t), Ã(t) := A(t) +B(t)K(t),
for t ∈ [t0, tf ] and for anyK(·) ∈ C([t0, tf ];Rm×n). Now
for K(t) = −B(t)TS(t;λ) and in light of Theorem 8 from
[7], we have that the problem of minimizingJ0 subject to
(20) and the boundary conditions given in Eq. (4) admits a
solution. Equivalently, by virtue of Theorem 1, Problem 2
admits a solution and the proof is complete.

IV. OPTIMAL PARAMETER SELECTION PROBLEM

In this section, we address the optimal parameter selection
problem that will allow us to find the optimal solution to
Problem 1, which we formulate next.

Problem 3: Find the parameterλ◦ that maximizes the ob-
jective functionφ : [0,∞) 7→ R, whereφ(λ) := J◦(λ)−λc,
provided that the set of local maximizers ofφ(·) is non-
empty.

Based on standard results from the theory of Lagrangian
duality [17], it is easy to show using similar arguments as
in [13] that the parameterλ◦ that solves Problem 3, which is
the maximizer ofφ(λ) over [0,∞), will furnish the optimal
control u◦ that solves the constrained LQGCC problem
(Problem 1). In particular, the optimal control inputu◦(·)
that solves Problem 1 will satisfy the following equation:
u◦(t) = u◦(t;λ◦), for t ∈ [t0, tf ], whereu◦(·;λ◦) solves
Problem 2 forλ = λ◦.

Theorem 2:Suppose that for anyλ ≥ 0, there is an
admissible pair(x(·;λ), u(·;λ)) such thath(x(·;λ)) ≤ c.
Then, Problem 3 admits a solutionλ◦ ≥ 0 such thatu◦(t) =
u◦(t;λ◦), for t ∈ [t0, tf ].

Proof: The proof of this theorem is similar to that
in Theorem 4.1 in [13]. We simply highlight the main
ideas behind it. In particular, under the assumption of the
existence of an admissible pair(x(·;λ), u(·;λ)) for some
λ ≥ 0, Problem 3 always admits a solution. Now, it follows
from standard arguments based on the theory of Lagrangian
duality [17] that the existence of a solution,λ◦, to Problem 3
implies the existence of a solution to the constrained LQGCC
problem and, in addition,u◦(t) = u◦(t;λ◦), for t ∈ [t0, tf ].

Ref. [13] also presents a numerical algorithm for the
computation of the gradient∂

∂λ
J◦(λ) that can be used in,

for instance, a gradient descent type algorithm. This classof
algorithms will asymptotically converge to a critical point of
φ(λ), which always exists in our case, in light of Theorem 2.
It should be noted here that ifλ◦ = 0, then the solution
to Problems is identical to the minimum effort covariance
control problem; in other words, the integral inequality
constraint remains inactive in this case.

For our problem, the process of computing the gradient
of J(λ) which will in turn allow us to characterize the
critical points ofφ(λ) is straightforward, given that we have
considered a single integral state constraint. In particular,
under the assumption that the gradient∂

∂λ
S(t0;λ) is well



defined for allλ > 0 and for allt ∈ [t0, tf ], one can directly
compute the gradient∂

∂λ
J◦(λ) based on (13). In particular,

we have

∂
∂λ

J◦(λ) =

∫ tf

t0

tr(C(t)T ∂
∂λ

S(t;λ)C(t))dt

+
(

∂
∂λ

S(t0;λ)Σ0 −
∂
∂λ

S(tf ;λ)Σf

)

, (24)

where the gradient∂
∂λ

S(t;λ) satisfies (formally) the follow-
ing first-order linear (differential) matrix equation:

− d

dt
∂
∂λ

S(t;λ) = ∂
∂λ

S(t;λ)
(

A(t)−B(t)B(t)TS(t;λ)
)

+
(

A(t)−B(t)B(t)TS(t;λ)
)T ∂

∂λ
S(t;λ)

+Q(t) (25)

with boundary condition:∂
∂λ

S(tf ;λ) =
∂
∂λ

Sf(λ). Therefore,
the characterization of a critical point ofJ◦(λ) can be
achieved by means of a gradient descent-type algorithm, in
which the gradient can be computed analytically via Eq. (24)
after plugging the solution to (25) in the former equation.

V. NUMERICAL SIMULATIONS

To illustrate the ideas of the previous sections, we present
numerical simulations for a simple example. In particular,
we consider the finite time horizon, constrained LQGCC
problem subject to:

dx1(t) = x2(t)dt, dx2(t) = −x1(t)dt+ u(t)dt+ dw(t).

Note that the above stochastic linear system corresponds to
the controlled version of a “stochastic” harmonic oscillator.
We assume that the initial state,x0, at time t = 0 is drawn
from the normal distributionN (0,Σ0) and the objective
is to drive it to a terminal state,xf , at time t = 2,
which is drawn from the normal distributionN (0,Σf),
where Σ0 =

[

16 5
5 16

]

, Σf =
[

0.1 0
0 0.1

]

, while minimizing
the cost:E{

∫ 2

0
u(t)Tu(t)dt}, subject to the mean integral

quadratic state constraint:E{
∫ 2

0
x(t)T

[

1.5 0
0 3

]

x(t)dt} ≤ 70.
Figure 2 illustrates the time evolution of the covariance
matrix Σ(t) of the closed-loop system, which is driven by
the optimal stochastic control that solves the constrained
LQGCC problem.

VI. CONCLUSION

In this work, we have addressed the problem of steer-
ing the covariance of the uncertain state of a stochastic
linear system subject to (hard) state integral constraints
using a stochastic optimal control framework. By build-
ing upon some recent results on the finite time horizon
covariance control problem, we have developed a more
general framework that can account for the presence of
mean integral quadratic state constraints. We have addressed
this constrained LQGCC problem by imbedding it into a
one-parameter family of unconstrained LQGCC problems,
which can in turn be directly associated with the minimum
effort covariance control problem, which has been addressed
recently in the literature. In this way, we have achieved to
reduce the original constrained covariance control problem
to a finite-dimensional optimal parameter selection problem,
which can be addressed via, for instance, gradient descent
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Fig. 2. The evolution ofσmax(Σ(t)) with time t allows us to
observe the rate at which the covarianceΣ(t) converges to theΣf

at t = tf . On the other hand, the evolution of the 1-level sets of the
quadratic functionxT

Σ(t)−1
x, at different time instants, reflects

the “path” that the covariance matrix follows until it converges toΣf

at t = tf . In this figure, the blue and the red ellipsoids correspond
to the 1-level sets ofxT

Σ
−1

0
x andxT

Σ
−1

f
x, respectively.

type algorithms. In the future, we plan to study LQGCC
problems in which the covariance of the state of the sys-
tem has to visit a sequence of prescribed positive definite
matrices.
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