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Abstract— This work is concerned with an optimal covari- particular, the authors of [7], [8] identified two different
ance control problem for stochastic linear systems subject to subclasses of stochastic optimal control problems whose
qutadéatu_: Stat? mctj%grakl Conftrf‘;”ts-t#“ tpafﬁ'°$'ar' o objective  parformance index is the expected value of the control &ffor
:’Is’la('[)rixef)lfg?hi ‘(aand%(r:n)C?er;rﬁn;Wstaza V\\;cho?egf : g;)ovcahr;asrtnﬁ:e or energy. In the first subclass [7], the time _ho.r|;on is finite
linear system to a designated positive semi-definite matrix while and it is also assumed that the uncertainty is injected to the
minimizing the expected value of the control effort required for ~ system via the same channels as the control inputs. It turns
this “covariance transition” or “Schr ddinger bridge” subject  out that in this case, the problem can be reduced, under
Eg.s'”ter%ﬁla%“%dra.tr'rszté"é?n'”‘?tqQr?tlgyacoonnsérag‘:gmggra]f’adr:]‘?lss some mild technical assumptions, to a system of two Riccati
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of unpconstraine)(lj covariange control proble?ns that are mo)r/e equat|0ns_ that are qoupled only via their bpundary conustio
tractable, both analytically and computationally, than the orig- ~ and practically admits a closed-form solution. The casenwhe
inal, constrained covariance control problem. In this way, the the input channels and process noise channels are not neces-
original problem is essentially reduced to a finite-dimensional ~sarily the same is treated in [8]. In this case, the existafice
optimal parameter selection problem, which can be addressed g|ytions to the minimum effort covariance control problem
by means of gradient descent-type algorithms. is equivalent to the solvability of a Satdinger nonlinear
system, which involves a system of coupled Riccati equation
with coupled boundary conditions, which is an open problem.

This work deals with the problem of steering the (randomlror this class of problems, one has to resort to numerical
state of a stochastic linear system, which is drawn from tgchniques of convex optimization in order to characterize

known Gaussian distribution, to a terminal state which isuboptimal solutions [9].

e}lso dravyn from a Gagssian distribution at a given terminal \1ain Contribution: In this paper, we consider an optimal
time subject to mean integral state constraints. We refer {Qyariance control problem using the framework of finite-
this problem as the finite time horizon covariance contrghorizon stochastic optimal control similar in spirit to the
problem. The motivation for studying this type of problemszets. (7], [8], which have been the main source of inspiratio
stems from broad classes of control applications involvingy thjs work. What distinguishes this work from the previous
stochastic controll systems in wh|_ch the control objectivegyo references is the fact that in our problem formulation,
are more appropriately de_scnbed in terms of the root-meage explicitly account for the presence of mean integral
square values of the terminal state vector [1], [2]. quadratic state inequality constraints, which are intende
Literature Review:The importance of developing a “co- to confine the sample trajectories of the stochastic system
variance control theory” was first highlighted in the litenee ~ Within a “narrow” tube as is illustrated in Fig. 1. Herein,
by Hotz and Skelton [1], [2]. Ideas and techniques presentade will refer to the extension of the classic finite-horizon
in these references were subsequently extended in a série$ @G (Linear Quadratic Gaussian) problem [10], [11] with
papers (see, for example, [3]-[6]). In all these referenitess  full-state observation but with boundary conditions imter
emphasis is placed on covariance control problems with @f the covariance of the state vector as the unconstrained
infinite time horizon and the objective is to steer the covariLQG covariance control (unconstrained LQGCC) problem,
ance of the state of a stochastic linear system to a “reaghabWhereas the same problem subject to the (mean) integral
steady stateovariance matrix. In general, the solvability ofquadratic state inequality constraints will be referredtas
the infinite time horizon covariance control problem regsir constrainedLQG covariance control (constrained LQGCC)
the satisfaction of rather stringent conditions and tylpjca problem. It should be mentioned here that the solution to the
one has to first characterize a parametrization of the subs#tconstrained LQG covariance control problem (in which
of the convex cone of positive definite matrices that coasisboth the state and the input appear in the running cost)
of all the “reachable’steady stateovariance matrices for a can easily be recovered from the solution to the constrained
given linear stochastic system. LQGCC problem.

The interest in this class of problems has been recently To address the constrained optimal covariance control
revived in light of the significant results reported in [7],problem, we imbed it into a one-parameter family of uncon-
[8], where the covariance control problem was placed in strained LQGCC problems. Each parametric unconstrained
stochastic optimal control framework and connections withQGCC problem is subsequently associated with the min-
the theory ofSchibdinger bridgeswere also established. In imum effort covariance control problem addressed in [7],

[8] via a time-varying input transformation. The final step i
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determine the optimal control law that solves the conséin N (1o, o)

stochastic optimal control problem. The proposed approach
is based on standard results from the theory of Lagrangian
duality as in [12], [13].

Structure of the paperThe rest of the paper is organized
as follows. The LQGCC problem is formulated in Section Il
and is subsequently imbedded in a family of unconstrained
LQGCC problems in Section Ill. In Section 1V, we associate
the constrained LQGCC problem with a finite-dimensional
optimal parameter selection problem. lllustrative nueeri Fig. 1. The problem of steering the uncertain state of a stochastic
simulations are included in Section V, and finally, Sectidn Vcontrol system, which is drawn from a known Gaussian distribution

i (1o, o) to a terminal state that is also drawn from a known
concludes the paper with a summary of remarks. distribution A/ (¢, X¢), at a given final time (finite time horizon co-

variance control problem). By considering state integral constraints,
Il. PROBLEM FORMULATION the sample paths of the Sddinger bridge are expected to lie within
a “narrow” tube.

N(va zf)

A. Notation

We denote byR" the set ofn-dimensional real vectors.
The space of continuous functions over an intefwal3] that
are taking values ilR™*™ is denoted byC([«, 8]; R™*™).
Furthermore, given a probability spa¢®, §, P), we denote
by £3([e, 8]; 2,5, P) the Hilbert space of mean square
integrable stochastic processés(t) : ¢t € [, 0]} in

the expected value of the control effort was addressed in [7]
[8]. In this work, we examine a similar optimal covariance

control problem when, in addition, a mean integral quadrati

state (inequality) constraint is enforced. The motivation
stems from classical linear quadratic control problems, in
. . . which, the objective is to steer the state of the system to
(.5, P), wherex(t) is a n-dimensional (random) vector the origin in a way that strikes a balance between using

at eacht € [«,f]. Finally, we will denote the cone of , ble” control effort while also keening the deas
n xn (Ssymmetric) positive definite and positive semi-definite < >0navle” controf €riort while also keeping the eaa
matrices byP, andPS,,, respectively. of the system’s state from the origin _small on average (see

Fig. 1). In the framework proposed in [7], [8], the aspect
of penalizing state deviations explicitly and in particulda

mean integral quadratic state constraints, is missings Thi

We consider a stochastic linear system that satisfies tH@'K is intended to fill this gap.
following stochastic differential equation: Problem 1: Constrained LQGCC ProblenGiven 0 <

B to < tf < oo, ¢ > 0, and positive definite (symmetric)
da(t) = A@)x(t)dt + B(t)u(t)dt + C(t)dw(t), (1) matricesQy, 2o, X find an admissible control input®(-)

with z(to) = xo, for ¢ € [to, t¢], where{z(t), t € [to, t]} that minimizes the performance index
and {u(t) : ¢ € [to,ts]} denote the state and the input tr .
stochastic processes, respectively, in a probability espac J(u(-);to, ts) := E{/ u(t) u(t)dt}, (2)
(Q,5,P). At each timet € [to,t], x(t) and u(t) are n- to
dimensional andn-dimensional vectors, respectively. Thesubject to the (stochastic) dynamic constraints (1), tharme
input process{u(t) : t € [to,t¢]} is assumed to belong to integral quadratic state constrailatz(-)) < ¢, with

B. Formulation of the Optimal Covariance Control Problem

L3 ([to, te]; 2, F, P) and to have finité-moments for alk > t
0. We will henceforth refer to an input process that satisfies h(z(-)) := E{ ()T Q(t)x(t)dt}, 3)
these properties aadmissible In addition, {w(t) : t € to

[to, %]} is & standard Brownian motion, which is adapted tQyhereQ(t)— Q, € SP,, for all ¢ € [to, ], and the boundary
an increasing family ob-algebras{3(to,t), t € [to,t]},  conditions in terms of the covariance of the (random) state
that IS,s(to,tl) - g(to, tg) for all to <t <ty <ty, where VeCtOI':L‘(t) at timet = to andt = ts:

S(to,t) C 3§, for all ¢ € [to, t¢]. At each timet the (random)

vector w(t) is p-dimensional. We will be considering input E{woz} = 8o,  E{wsaf} =, 4

and state processes that are non-anticipative with respec _ _

(3(to.t), t € [to.ts]}. Finally, A(-) € Cl[to, te]; R?*™), twherexo = z(tg) and_a:(tf) = l‘f.- |
B(-) € C([to, ts]; R"*™) and C(-) € C([to, t¢]; R™*P). Problem 1 can be imbedded in a one-parameter family of
unconstrained covariance control problems, which arefsign
icantly more tractable, both analytically and computaditn

The objective in this class of problems is to address the
covariance control problem for the stochastic linear syste
(1) with boundary conditions (4) while minimizing the cost
function J,, where

Now, let us assume that the initial statg is a random
vector drawn from the multi-variate normal distribution
N(0,%), where 3y € P, is the initial covariance of
system’s state, that i&{xoz}} = . Recently, the problem
of steering the state of the stochastic linear system (1h fro
the initial (random) vector;y ~ N (0,X,) to a terminal .
(random) vectorz¢ at a given timet = tf, where z¢ ~ . . T )
N(0,%¢), and whereX; € P, is the terminal covariance, Iau(A)sto, tr) := E{/to u(t; A) u(t; A)dt} + Ah(z; A),
that is, E{z¢x[} = ¢, via a control input that minimizes (5)



for a given\ > 0. Note that the hard integral state inequalitywe have that
constrainth(z) < ¢, is replaced by a “soft constraint” that tr
is reflected in the new running cost. The exact formulation / [u(t)Tu(t) + /\m(t)TQ(t)z(t)} dt =

of the previously described problem is given next. to ,
23

Problem 2: Parametric, Unconstrained LQGCC Problem: +/ lu(t) + B(t)Ts(t; )\)(E(t)|2dt
Let A > 0and0 < ty5 < tf < oo be given. Then to
find an admissible control input®(-; A) that minimizes the b T
augmented performance index given in Eq. (5) subject to (1) +/t tr(S( A)C()C(1))dt
and the boundary conditions in terms of the covariance of the ”tf
(random) state vectar®(¢; A), which are given in Eq. (4). +/ dw(t)TC(t)TS(t; M) z(t)

After we address Problem 2, we will be able to reduce t“tf
Problem 1 to a finite-dimensional optimal parameter selec- +/ 2(t)TS(; \)C(t)dw(t)
tion problem. In particular, the latter problem, will fushi an to
optimal parametei® such that the optimal control input that — 2(t))TS(te; N (te) + z(to) TS (to; N (to),
solves Problem 1, provided that the latter problem admits a
solution, is given by which in turn implies

PO, el © B [0+ 0T Qs) an -

It is important to highlight at this point that, for a givenmo E{ | (t) + B(t)S(t; N(t)|2dt}
negative scalai, Problem 2 is essentially an unconstrained tot
LQG problem [11], [14] but with boundary conditions in f ] T
terms of the covariance of the state vector. Next we char- T ] tr(S(HA)C(H)C(t)")dt
acterize the solution to Problem 2 provided that the set of _ alr .
minimizers of.Jy is non-empty (the existence of solutions to br(S(tr; A)Xe) + tr(S(to; A) Xo), (11)
Problem 2 will be revisited later on). where we have used the fact that

Proposition 1:Let A > 0 and Xy, 3¢ € P, be given. E{z(t)"S(t; Nz(t)} = B{z(t)"}S(t; NE{z(t)}
Then, if Problem 2 admits a solution, an optimal control law (S NS N) (12)

that solves this problem will be given by
together withE{xz(t9)} = E{z(t)} = 0, and the fact
w(t;N) = —B(H)TS(t; N)a° (£ \), (7) that, formally, E{dw(t)} = 0 (given that the increment
dw(t) of a Brownian motion process follows a Gaussian

where {2°(t; \), t € [fo,#]} denotes the stochastic Statedlstrlbutlon with zero mean and covariancgI, that is,

N(0,dtT) [15]), for ¢t € [to,t¢]. EqQ. (7) follows
rocess generated by the optimal stochastic input proce %
F{Juc’(t;)\),gt c [to,tf]}y and S(P; )\) satisfies the ffllowl?ng readlly from (11). The fact that the optimal control satisfie

. : . . Eq. (7) in turn allows to show by direct computation that
Riccati (matrix) equation: Eq. (9) also holds true. (Note that we have skipped a
. - number of steps in this proof, which are based on standard
=S(5A) = AQ(t) + S(;A)A(E) + A(t) 'S(E:A) arguments and techniques that can be found in the literature

—S(LENB(H)B()TS(t;\), (8) of stochastic linear-quadratic optimal control [11], [L4}m

In light of Proposition 1 and its proof, we have that for
with boundary conditiorS(t;; A) = S¢()), whereS¢(A\) € a given\ > 0, the optimal cost of Problem 2/°()\) :=
SP,, is such that the covariance of the state of the system,, (u(-; \°)) satisfies the following equation:
driven by the control input°(-; A), which is denoted by

. t
S(t;A) = E{2°(t; \)(2°(; A))"} and evolves according to J°(\) = / ftr(C(t)TS(t; A)C(t))dt
the following first-order linear differential matrix equeart: to
. + tr (S(to; A)Zo — S(tr; A) ) - 13)
2t A) = (A1) - B(H)B(t) S(# )‘))ET)(t; A) T In light of Proposition (1), the main challenge for solving
+ 3t A) (A1) — B()B(t) S(t; 1)) Problem 2 is for the state covariand¥(-; \) to satisfy the
+B(t)B()", (9) prescribed boundary conditions at time= ¢, and¢ = i,

which are given in (10). As is highlighted in [7], [8], this is
a challenging problem given that the Riccati equations (8)
and (9) are coupled. More precisely, (9) depends on both
S(t; A) and 3(¢; \) whereas (8) depends, at a first glance,
only onS(¢; A). Unfortunately, it turns out that the system of
B(to;A) = o,  E(lr;A) =Xy (10) the two Iéicc;ti equations is not in triangular form because
Proof: LetS(¢; \) be the solution to the Riccati Eq. (9). the boundary condition for Eq. (8) is not prescribed; indtea
Then, in view of Lemma 7.1 and its proof [14, pg. 287—289]it has to be chosen so that the state covaridite\) satisfy

satisfies at timeg = 0 andt = ¢ the following boundary
conditions:



the prescribed boundary conditions at tilne ¢, andt = t;.  effort covariance control problem addressed in these -refer
As is shown in [7], [8], under the assumption th8 € ences corresponds to Problem 1 in the special case when
P,,, which implies that the state covariance matkiX¢; A) A = 0. The cost function in this case is the expected value
belongs tdP,, for all [ty, ts] as implied immediately from (9) of the minimum control effort and is denoted by, that is,
whose initial condition is a matrix i®,,), the time-varying tf

matrix H(t; A) := X(t;A)~! — S(¢;A) is well defined for Jo(uo(-): to, tr) = E{/ u(®)Tu(t)dt), 17)

all t € [to, t]. Then, in light of the identityL H(¢; \)~ = to

-1 (. Nl it
—H(t; )7 GHEGA)H(GA) 7 itis easy to show that and the corresponding minimum effort control input at time
CH(N) = A6)TH(E ) + H(E VA1) t, which is denoted by:°(¢; 0), is given by

+H(t; VBB TH(t; \) — AQ(1) u®(t;0) := —B(t)"S(t;0)2°(t; 0), (18)

: } T T
— (BN +HHEA)BOBE) —C(H)C(1))  where S(£;0), ¢ € [to,t], denotes the solution to the
x (B(t; A) + H(t; N)). (14) Riccati equation (8), when = 0, with boundary condition
. . . S(tr;0) = S¢(0). Note that the matris¢(0) € PS,, is chosen
As_explam_ed in [8], the system of the two coupled R'C'sécfh t)hat t;1(e )covariancE(t;O) — Ef{(xo)(t;o)(xo(t;o))T}
cati equations (9) and (14), corresponds to a nonllne%ratisfiefs the boundary conditions given in Eq. (10) at time

S e e o ver e ol andi i W proceed b presentinga Ume-vaying nu
the matricesB(¢) angC(t) do not cgincide for all imes ansformation that will allow us to associate the paraioetr
nconstrained LQGCC problem with a minimum control

£. In the latter case, one may have to confine the searéﬁort covariance control problem with the same boundary

to subopfumal SOlu“(.)nS of .(9) and (14), Wh'Ch. can .beconditions on the state covariance but subject to stoahasti
characterized numerically via known convex optimizatio

techniques r’(Iinear) dynamic constraints that will be different fronote

of the unconstrained LQGCC problem.
In the special case wheB(t) = C(t), for t € [to, tf] . ;
(identical input and noise channels), that is, when th Theorem 1:Let A > 0 and letX, X € P, be given. In

) . ddition, suppose that there exiSs € PS,, such that the
noise affects the control system through the input channe iccati Equation (8) admits a symmetric soluti®(t; A) that
Eq. (14) reduces to

is well-defined for allt € [to,ts] and satisfies the boundary
_H(ta /\) = A(t)TH(t, )\) + H(t, /\)A(t) condition S(tf; )\) = Sf_ Then, the control inpumo(,; )\)

) TEr( \) given in (18) solves Problem 2 with boundary conditions (4)

+HEGEABB() H(EA) —AQ(1),  (19) if, and only if, the problem of minimizing the performance

which is now decoupled fror8(; \). However, even though, index .
in the latter case, (9) and (15) may appear to form a NVt te) e E /f ATo(Hdt 19
system of decoupled Riccati matrix equations, this is digtua Jo(v(-)ito, tr) :=E{ to v(t) v(t)dt} (19)
incorrect given that these two equations are still coupled biect to the d . fraints:
via their boundary conditions. In particular, the boundar;?u JECt 10 the dynamic constraints:

conditions (4) imply that dz(t) = A(t)z(t)dt + B(t)v(t)dt + C(t)dw(t),  (20)

—1_ Qs . _
o = S(to: M)+ Hlfo: A) (163)  \vhereA () :i= A(t)—B(t)B(1)TS(t: \), for ¢ € [to, #], and
X =S(ts M) + H(tes A). (16b)  the boundary conditions given in Eq. (4), admits an optimal

In the unconstrained case, that is, when= 0, and when solutionv°(.).

B(t) = C(t), for all t € [to,t¢], one can actually obtain Proof: After we apply the following input transforma-
solvability conditions as well as closed form expressiontion:

for the boundary conditions &(¢p; \) and H(to; A), when -

the problem admits a solution, as was recently shown in () = u(t) +B@) S(HA)z(t), € [to, ], (21)
[7]. In the constrained case, howeyer, the exi_stenpe of thg Equation (11), we take

term AQ(t) destroys the homogeneity of the Riccati matrix

equations (8) and (15) in terms &(¢; A) and H(t; \), & T -

respectively. Consequently, one can no more reduce et [u(®) u(t) + Az ()" Q(t)x(t)] dt} =

. . . . to
system of Riccati equations (8) and (15) into a decoupled b £
system of first order linear matrix equations in terms of E{ u(t)Tv(t)dt}+/ tr(S(t; \)C(t)C(t)T)dt
S(t; \)~t and H(¢; M)~ 1, in contradistinction with [7]. to to
—tr(S(te; A)Xf) + tr(S(to; M) Xo), (22)

[1l. REDUCTION OF THEPARAMETRIC, UNCONSTRAINED ) ) o )
LQGCC FROBLEM TO A MINIMUM CONTROL EFFORT where S(¢; A) is the solution of (8), which is well defined
COVARIANCE PROBLEM for all ¢t € [to,t¢], by hypothesis. The substitutiom(t) =
v(t) — B(t)TS(t; \)z(t) in Eqg. (1) yields the stochastic
In this section, we will show how to associate Problem Zinear system given by (20). Now, the last two terms in (22)
with the finite-horizon minimum effort covariance controlcannot be affected directly by the control input and theltesu
problem addressed in [7], [8]. In a nutshell, the minimunfollows. [ ]



Theorem 1, which associates the unconstrained LQGQ@8e uniform controllability overto, ¢s] of the deterministic
problem (for a given\ > 0) to the minimum effort co- time-varying linear system
variance control problem, has significant practical valoe, . -
the light of the recent results presented in [7], [8]. Note #(t) = A(t)x(t) + B(t)o(t),
that the proposed input transformation (21) requires on — _ A(4) -—
the solution to the Riccati equation (8) that is well define:s(é?irzv([ig 'tf] lg(;zj folfgg];&)(i)Ae(té([toAtf]t .)R+m]3£§)_I<N(é\),\',
in [to,tf] for an appropriately chosen boundary conditiory,, K(t) _ —B(t)TS(t; A) and in light 0} T7heorem 8 from
St € PS,. The matrix S¢ is irrelevant to enforcing the 7], we have that the,problem of minimizing, subject to
boundary conditions (10) in terms of the covariance matri 0) and the boundary conditions given in Eq. (4) admits a

(- A) of Problem 2. The boundary conditions (10) in terms,ition, Equivalently, by virtue of Theorem 1, Problem 2
of the covariance matrices will be accounted only in theymits a solution and the proof is complete. -

solution to the minimum effort covariance control problem
subject to the new stochastic linear dynamic constrair@ (2

which are derived after the application of the time-varying
input transformation (21). In this section, we address the optimal parameter selection

To see the practical benefit of associating Problem 2 witAroblem that will allow us to find the optimal solution to
the minimum effort LQGCC problem, let us consider thé’roblem 1, which we formulate next.
case whenB(t) = C(t) for all ¢ € [to, ], in which the  Proplem 3: Find the parametex° that maximizes the ob-
two Riccati equations, namely Eq. (9) and Eqg. (15) are onljactive function : [0, 00) — R, whereg()) := J°()\) — Ac,
coupled via their boundary conditions, as we have aIreatﬁovided that the set of local maximizers ¢f-) is non-
explained. However, as we have previously underlined, igmpty.
this case both Riccati equations are non-homogeneous du
to the presence of the terxQ(¢). This fact does not allow
us to reduce Eqg. (9) and Eq. (15) to a system of first-ord
linear (differential) matrix equations as in [7]. By folldwg
the approach proposed in this section, Problem 2 will b
reduced to a minimum effort covariance control proble
subject to the new stochastic linear dynamic constrainmengi
in (20), which are determined by the time-varying input - 5 o N
transformation defined in Theorem 2. The important nuan (t) = u(t:1°), foor t € [to,te], whereu®(;1°) solves
here is that this transformation does not affect &) roblem 2 forh = A°.
matrix, in other words, théB(¢) matrix in (1) and (20) is Theorem 2:Suppose that for any\ > 0, there is an
exactly the same. Therefore, if it is true tHa{t) = C(¢), admissible pair(z(-; \),u(-; A)) such thath(z(;\)) < c.
for all ¢ € [to, t¢], for the optimal covariance Problem 2, in Then, Problem 3 admits a solutiofi > 0 such that.°(t) =
which the stochastic dynamic constraints are given in Bg. (u®(¢; A°), for t € [to, tf].
then the same holds true for the minimum effort covariance  p.gor The proof of this theorem is similar to that
control problem, which is equivalent to Problem 2 and Whosg, theorem 4.1 in [13]. We simply highlight the main
stochastic dynamic constraints are given by (20). Theeeforiye g pehing it. In particular, under the assumption of the
in principle, we will be able to find the solution to Problem 2, iciance of an admissible ba@w(-- A),u( \)) for some
in closed form as in [7]. Another advantage of associating -, proplem 3 always admits a solution. Now, it follows
Problem 2 with @ minimum effort covariance control problem, standard arguments based on the theory of Lagrangian
via the time-varying !nput transformation is that the qw:rst. duality [17] that the existence of a solutiokf,, to Problem 3
of existence of solutions to Problem 2 can be answered injg,jies the existence of a solution to the constrained LQGCC
more straightforward way. problem and, in addition®(t) = u°(t; A°), for t € [to, t¢].
Corollary 1: Suppose thaA (t) = B(t), for all t € [to, t] [ |

and let ETO* %r € P, be given. LetA(t) = A(t) — Ref. [13] also presents a numerical algorithm for the

B()B(t) S(tr: A), for ¢ € [to,t], where St A) IS @ compytation of the gradiengs J°(\) that can be used in,

symmetric solution to the Riccati Equation (8) for sOm&q; instance, a gradient descent type algorithm. This aéss

terminal conditionS¢(\) € IPS,, that is well defined for all 5 50rithms will asymptotically converge to a critical poif

t € [to, t]. If the deterministic time-varying linear system ;) \yhich always exists in our case, in light of Theorem 2.
i(t) = A(t)z(t) + B(t)u(t) (23) It should be _no_ted h_ere that X° =0, then the solution

to Problems is identical to the minimum effort covariance

is uniformly controllable overlty,t], then the LQGCC control problem; in other words, the integral inequality

problem subject to the stochastic dynamic constraintsngiveeonstraint remains inactive in this case.

in (1) always admits an optimal solution.

IV. OPTIMAL PARAMETER SELECTION PROBLEM

eBased on standard results from the theory of Lagrangian
guality [17], it is easy to show using similar arguments as
in [13] that the parametex® that solves Problem 3, which is
the maximizer of(A) over [0, cc), will furnish the optimal
ontrol »° that solves the constrained LQGCC problem
Problem 1). In particular, the optimal control input(-)
1that solves Problem 1 will satisfy the following equation:

For our problem, the process of computing the gradient

Proof: The proof of this corollary is based on theof J(A) which will in turn allow us to characterize the
classic result (see, for example, Theorem 5.5.2 in [16]kritical points of¢()\) is straightforward, given that we have
which states that the uniform controllability ovip,t] of considered a single integral state constraint. In pasicul
the (deterministic) time-varying linear system (23) inegli under the assumption that the gradiqﬁtS(to;)\) is well



defined for all\ > 0 and for allt € [to, t¢], one can directly
compute the gradieng%Jo()\) based on (13). In particular,
we have

LI\ =

/tf tr(C(t)" & S(t; A\)C(t))dt

to

+ (ZS(to; Mo — ZS(tr; V),

where the gradien%S(t; A) satisfies (formally) the follow-
ing first-order linear (differential) matrix equation:

— 4 28(1:0) = LS(t; ) (A(t) — BE)B(1)TS(t; 1))
+(A() - BOB0)'S(:N) &St )
+Q(t) (25)

with boundary condition:Z-S(t; A) = &S¢()). Therefore,
the characterization of a critical point of°(\) can be

(24)

achieved by means of a gradient descent-type algorithm,

Jmax QZ (5) ) ~
T2

o

4
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t

(a) Evolution ofomax (X(t)). (b_l) Evolution of 1-level sets of
z! B(t) e

Fig. 2. The evolution ofomax(X(t)) with time ¢ allows us to
observe the rate at which the covariarXé) converges to th&

att = t¢. On the other hand, the evolution of the 1-level sets of the
quadratic functionz"X(¢)~ 'z, at different time instants, reflects
the “path” that the covariance matrix follows until it converge&lo

#vt = t¢. In this figure, the blue and the red ellipsoids correspond

which the gradient can be computed analytically via Eq. (24p the 1-level sets of '35 'z and 2" ;' =, respectively.

after plugging the solution to (25) in the former equation.

V. NUMERICAL SIMULATIONS

To illustrate the ideas of the previous sections, we prese%
numerical simulations for a simple example. In particular,

type algorithms. In the future, we plan to study LQGCC
roblems in which the covariance of the state of the sys-
m has to visit a sequence of prescribed positive definite

. S ) . atrices.
we consider the finite time horizon, constrained LQGC
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