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Abstract— This work deals with a finite-horizon covariance The authors of [7], [8] framed the finite-horizon covariance
control problem for discrete-time stochastic linear systems control problem as a stochastic optimal control problem
with incomplete state information subject to constraints. We assuming perfect state information. The authors of the same

show that under the assumption that the class of admissible f h | lored imil tochasti timal
control policies for this stochastic optimal control problem [EIEr€NCES have also explored a similar stochastic optima

is comprised of sequences of non-anticipative (causal) control control problem in the case of incomplete state informa-
laws that can be expressed as linear combinations of the tion [9]. The stochastic optimal control problem considere
past and present output measurements of the system, then in these references can be viewed as an extension / varia-
the covariance control problem can be reduced to a finite- j5n of the standard finite-horizon LQG (Linear Quadratic
dimensional, _determlnlstlc _n_onllnear program with a convex G . bl f hastic |i 101112
performance index. In addition, we show that the nonlinear aUSSIaI_’]) pro em for stochastic linear SyStemS_[ ]'[ ]
program can be associated with a convex program via a Simp|e The main d|ﬁerence betWeen the Standard f|n|te'h0r|zon
relaxation technique that allows us to express the non-convex LQG problem and the covariance control problem lies in
matrix equality constraint induced by the boundary condition  their terminal state constraints. In particular, in the téni
on the terminal state covariance as a positive semi-definite 1,5rizon covariance control problem, the requirement on
(convex) constraint. . . . - L .
the terminal state is that its probability distribution il
match a prescribed Gaussian distribution in contrast wi¢h t
standard finite-horizon LQG problem in which terminal state
We consider a finite-horizon covariance control problengonstraints are enforced indirectly (soft constraints) an
for a discrete-time stochastic linear system with incorgple appropriate terminal cost (typically, the expected valti@ o
state information. In other words, we seek for a control polquadratic function of the terminal state).

icy, that is, a sequence of control laws which are measurable ggme extensions of the results presented in [7], [8] on the
functions of all past and present output measurements, thgdite-horizon covariance control problem with perfecttsta
will transfer_ the_ (gqgertaln) state of the stochastic 'rr!eainformation can be found in [13], [14]. In particular, [13]
system, which is initially drawn from a known Gaussiancgnpsiders the finite-horizon covariance control problem fo
distribution, to a goal Gaussian distribution at a givenin  continuous-time stochastic linear systems subject tmiate
final stage. In the formulation of the covariance controfadratic state constraints, whereas [14] addresses e- finit
problem, we will also consider the presence of constrainfsyrizon covariance control problem with a soft constraint
on the expected value of finite sums of convex quadratigy the terminal state covariance based on the Wasserstein
functions of the state and / or the input. The main idegistance between the Gaussian distribution of the terminal
of this work is to associate the stochastic optimal contraiaie and the goal distribution. Finally, [15] presents a
problem with a tractable, deterministic, finite-dimensibn ymerical framework for the solution of the finite-horizon
optimization problem. covariance control problem for discrete-time stochagtiedr

Literature Review: The covariance control problem wasSystems _With com_plete state information based on convex
first introduced in the controls community by Hotz and Skeloptimization techniques [16], [17].
ton [1], [2]. This class of problems has been studied in tletai \j5in Contribution: In this work, we address a finite-
in the literature for both continuous-time and discreteti  qrizon covariance control problem for discrete-time ez
stochastic linear systems (the reader may refer, for iB8{an tic |inear systems subject to constraints on the expecter va
to [3]-{6]). The previous references deal with the infinite finjte sums of (convex) quadratic functions of the staté an
horizon covariance control problem and focus primarily ORne input. It is also assumed that the available state irderm
the controllability problem as well as the parametrizatioRjop, js incomplete (as we have already mentioned, the case of
of the set of its solutions. It should be mentioned that iRomplete state information was considered in [15]). In orde
many cases, the solvability conditions on the infinite-bami 1, simplify the computation of the solution to the covarianc
covariance control problem can be particularly restr&tiv  control problem with incomplete state information, we will

It is interesting to point out at this point that for manyonly consider control policies that corres_pond to sequsepée
years the finite-horizon covariance control problem has neentrol laws that can be expressed as linear combinations of
been explored in the literature until very recently [7],.[8] the past and present output measurements of the system. This

particular assumption, which is very common in the synthesi
E. Bakolas is an Assistant Professor in the Department of sharwe  f output feedback control laws for stochastic linear syste

Engineering and Engineering Mechanics, The Universityexab at Austin, . .
Austin, Texas 78712-1221, USA, Email: bakolas@austinagsdu (see [18] and references therein), will allow us to make a con
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nection between the covariance control problem and the rigdf the following stochastic difference equation and output
literature on feedback control design for stochastic éiger equation, respectively:
time linear systems [18]-[22]. In particular, we show thmst,
following a similar approach with the one proposed in [18], z(t +1) = A(t)z(t) + B)u(t) + G(t)w(?),
the stochastic optimal control problem can be reduced to y(t) = Ct)x(t) + N(t)v(t),

for t € {0,...,N — 1}, where the initial state:(0) = =

(1a)
(1b)
a (finite-dimensional) deterministic nonlinear prograrhist

nonlinear program can in turn be associated with a convex . -
iS a random vector drawn from a known Gaussian distri-

program via a simple relaxation technique that allows us t8 tion A'(0, %) with X € P,. Furthermore {x(t), ¢ ¢
express the non-convex matrix equality constraint induce N}}Z {Ou(t) . 60{0 m N - 1)} and’ {y(t)’ ¢ c
by the boundary condition on the terminal state covarianc ""’N o 1 6r simplgl.:{;c’(t)}N {u(t)}Nfl’ and
as a positive semi-definite (convex) constraint. We argu 7(1;).};]7“1 denot’e respectivel thet:s(%é\te the tgc())n{rol inout
that the control policy associated with the relaxed conve Y =0 ! P Y. ' put,

program favors the generation of closed-loop trajectorieasnOI the output (random) sequences (or processes) on a

whose endpoints are expected to be concentrated closer to gg)mplete probability spack?, §, P). The control input se-

S quence{u(t)};! is assumed to belong @ ({0, ..., N —
mean of the goal Gaussian distribution thaq a represeetati }:0, §, P) and to have finite:-moments for allk > 0. We
sample of points drawn from the latter distribution.

will henceforth refer to a control input sequence that fiats
Sructure of the paper: The rest of the paper is orga- these properties aadmissible. In addition, {w(t) : t €
nized as follows. In Section II, we formulate the covariancg0,..., N —1}} and{v(t): ¢t € {0,..., N —1}}, or simply
control problem as a stochastic optimal control problemuw(t)}¥:! and {v(t)})!, are sequences of independent
with incomplete state information. In Section I, we reduc normal random variables with zero mean and unit covariance,
the stochastic optimal control problem to a deterministi¢hat is,
nonlinear program, which we subsequently associate with

a convex program via a simple relaxation technique. Fipally ~ E[w(t)] =0, E [w(t)w(r)T] =6(t, 7L, (2a)
Section IV concludes the paper with a summary of remarks. E[v(¢)] = 0, E [v(t)v(r)T] = do(t, 7)1, (2b)

t = 7 and é(¢t,7) = 0, otherwise. It is assumed that

and {w(t)};! as well as{w(t)} ;' and {v(t)} " are

mutually independent, that is,
E [w(t)u(T)T] =0,
E [w(t)z{] =0,

A. Notation

We denote byR™ and R"™*" the set ofn-dimensional
real vectors andm x n real matrices, respectively. We
write Z>¢ and Z-, to denote the set of non-negative in-
tegers and strictly positive integers, respectively. Giae
probability space(2,§,P) and N € Z-,, we denote by fort,7 € {0,...,N —1}.

3({0,...,N}; 2,8, P) the Hilbert space of mean square oy gpjective is to steer the (uncertain) statg) of
summable random sequences(i) : ¢ € {0,....N} C  the stochastic linear system (la)-(1b), which is drawn at
Z>o} on (Q,§, P), wherex(t) is an-dimensional (random) giage; — 0 from a given multivariate normal distribution
vector at each ¢ {0,...,_]\7}. We write E [] to denote the N(0,%0), with Sy € P,, to a terminal state at stage
expectation operator. Given a square maiix we denote ; _ n that is drawn from a prescribed multivariate normal
its trace bytrace(A). We write 0 andI to denote the zero istribution N(0,%f), with ¢ € B,,. Note that the mean
matrix and the identity matrix, respectively. Furthermoress he two normal distributions at = 0 andt = N is

we denote bybdiag(A,, ..., As) the block diagonal matrix ,qqumed to be zero, without loss of generality (or perhaps,

whose diagonal elements are matri¢es i € {1,...,¢}, of  ith minimal loss). In particular, all the solution technis
compatible dimensions. Finally, we will denote the conveXnat we will present in this work can be easily modified

cone ofn x n symmetric positive definite and positive semi-y, handle the non-zero mean case. Under the zero mean
definite matrices by, and P,,, respectively. The space of 5qq mption, the boundary conditions in terms of the state

symmetricn x n matrices will be denoted b$,.. Given &  qyariance at = 0 andt = N can be written as follows:
matrix A € P, (resp.P,), we will also write A >~ 0 (resp.,

= 0), where~ (resp. =) denotes the Loewner partial order
in P, (resp.P,).

(3a)

E [v(t)z)] =0, (3b)

E [xol‘g] = 20, E [xfxﬂ = Ef7

wherezy = 2(0) andxs = «(NN). In addition, in order to be
able to leverage some powerful techniques from the design

B. Formulation of the Optimal Covariance Control Problem

For a givenN € Z., let {A(t) € R"*" t €
{0,...,N —1}}, {B(t) e R™*™ : t € {0,...,N —1}},
{Ct) eR™P: te{0,...,N—1}}, {G(t) e R"™: t €
{0,...,N —1}} and{N(¢) e RP*": t € {0,...,N —1}}

of affine / linear controllers for discrete-time stochatitiear
systems, we will only be considering control policies in
which the control input at stagedepends on the history of
the output measurements up to stagevhich is denoted by
Y: and defined a3, := {y(r) : 7 €{0,...,N —1}}. Fur-

be known sequences of real matrices. Let us also considbermore, we will also consider constraints on the expected
a discrete-time stochastic linear system described ingermalue of finite sums of (convex) quadratic functions of the



state and the input. Next, we provide the exact formulatiopolicy 7° = {u°()4;t) : t € {0,...,N —1}} is a sequence
of the covariance control problem we just described. of output feedback control lawg®();t) with

Problem 1: Let N € Z+g, ¢ > 0, and Xy, ¢ € P, be 0( ) .4\ _ TEO (1) 4
given. In addition, assume that for alE {0,..., N —1} the wist) =K (0e(), te{0,... . N1} ()
matricesQ(¢) andR(t) belong toP,, andP,,, respectively. where #(¢) corresponds to the conditional mean woft)
Furthermore, the matricég.(¢) andR.(t) belong toP,, and  given ), that is, #(¢) := E [(t)|)}]. The evolution ofz
P, respectively. Lety; denote the information set of the js determined by the following recursive scheme (Kalman
system (1a)-(1b) at time, which consists of all the output fjtering algorithm [24, pp. 174-175]):
measurements up to stagethat is,); := {y(r) : 7 €
{0,...,t}}. In addition, letII denote the class of admissible z(t|t — 1) =
control policiesr := {u(Vy;¢) : t € {0,... N —1}}, where (A(t—1)+B(t— DK°(t —1))i(t —1), (8a)
p(5t) is a causal (non-anticipative) feedback law which = . 1)+ A CCa(t— 1 sb
maps the random s@t, to a randomm-dimensional vector; (1) = &(t]t = 1) + A°(8) (y(2) ()]t = 1)), (8b)

in particular, fort € {1,...,N — 1} and 2(0) = E(x¢) = 0, where the
t optimal estimation gain matriA°(¢) is determined by the
WY t) = ZK(t,T),y(T)7 following recursive scheme:
7=0
P(0|0) = E[zoz]] = o, 9a
for t € {0,...,N — 1}, whereK(t,7) € R™*? for all (0[0) = Elzoo] 0 ; (%3)
(t,7) € {0,....,N — 1} x {0,...,N = 1} with t > . P(tft —1) = A(t - DP(t — 1t = 1)A(t - 1)
Then, find an optimal control policy°® := {u°(M4;t) : t € +G(t—-1)G(Et-1)T, (9b)
{0,...N — 1}} € II that minimizes the performance index: A°(t) = P(t|t — )C(t)T
= . x [COP(tt - 1)C(H)T + NN, (9¢)
J(m) =B Y 2T QW)z(t) + u®)RMu(t)], (@) P(tf) = [T— A°()C(0)]P(H — 1), ()
t=0

subject to (1a)-(1b), the following inequality constraint forte {1,...,N}.
Furthermore, the optimal control gain matd&°(¢) that

him) <e, appears in (7) and (8a) satisfies the following equation:
where
. K°(t) = ~L(H)A(1), (10)
h(m) = E[ > () Qe(t)a(t) + U(t)TRc(t)U(t)}a (5)  whereL(t) is given by the following equation:
t=0

-1
and the boundary conditions in terms of the state covariancd(t) = (B()"S(t+1)B(t)+R(t))  B(t)'S(t+1). (11)
of the (random) state vectar(¢) of the closed-loop system

at the stages — 0 and¢ = N: The matrixS(t) that appears in the previous equation satis-

fies the following recursive (Riccati-type) equation:
E [zoz)] = o, E[ze2f] = =¥, 6

[zozo] = o, E [erar] © S(t) = Q(t) + AW (S(t+ 1) L) [B()TS(t + 1B()
wherexy = z(0) andzf = z(N).
+R(#)] L(t)) A(t) 12)
Remark 1 Note that in the formulation of Problem 1, we
have explicitly required that the optimal control poliey;,  with boundary conditiorS(N) = S;, where the matrixS;
is comprised of control laws that can be written as lineabelongs tdP,,. In addition, the matri¥S¢ is such that the state
combinations of the past and present output measurementscof/arianceX(t) := E[z(t)z(t)"] of the closed-loop system,
the system. This requirement reflects an implicit assumptiovhich is driven by the control policy® = {K°(t)z(¢) : t €
on the validity of the so-calledeparation principle [23] in  {0,..., N — 1}}, satisfies the boundary conditions given in
our problem. The main practical benefit of this approach i6). Now, it is easy to show that
that it can allow us to forge direct connections with the lit- R
erature on the control design of affine / linear controllens f E(t) = X(t) + P(t]), (13)
discrete-time stochastic linear systems, which offersyman . .
powerful computational tools based on convex optimizatiof?” ¢ € {0,---, N}, whereP(t[¢) is the covariance of the
techniques [16], [17]. estimation error, that isP(¢;¢) := ]E[(x(tA) —2(t)(xz(t) —

&(t))T], which satisfies Eq. (9a)—(9d), aiilt) is the covari-

In the absence of the inequality constraint given in (5)ance of the state estimatét), that is,3(t) := E[2(t)2(t)T].
that is, whenQ.(¢t) = 0 andR.(t) = 0, one can conjecture, (To establish (13), one simply has to note that the estimatio
based on the results presented in [9] for the same problegnror z(t) — 2(t) is orthogonal to the estimate(t)). It is
but for the continuous-time case, that the optimal contrditraightforward to show that the covariane¢t) of the state



estimatez(t) satisfies the following recursive Lyapunov (orsatisfy, respectively, the following equations:
Stein [25]) equation:

B =
S(t+ 1) = (A1) + BOK® (1) () (A() + BOK® (1) A 0.0
A ONONETA W), (14) e

with 3(0) = 0, for all ¢ € {0,...,N — 1}. Let us now : : - :
denote a:(t; S¢), whereX(0; S¢) = 3(0) = 0, the solution ®(N,1)B(0) @(N,2)B(1) ... B(N-—1)
to Eq. (14) whenK°(t) = K°(t;S¢) for a givenSs € P,,.

Then, it follows readily from the previous discussion and 9 =

(13) that Problem 1 reduces to the solution of the following 0 0 0
(implicit) nonlinear algebraic matrix equation: G(0) 0 0
A P(2,1)G(0) G(1) 0
3(N)=3(N;Sf) + P(N|N) = 3. (15)
Unfortunately, the computation o8; € P, that solves (N, 1)G(0) @(N,2)G(1) ... G(N-1)
Eqg. (15) can be, in general, a very complex task. where

P(t,7):=At—-1)...A(r), ®(r,7)=1,
IIl. PRACTICAL NUMERICAL SOLUTION TECHNIQUES for (t,7) € {0,...,N} x {0,..., N} with ¢ > 7. Further-

more,
In this section, we will first reduce the stochastic optimal )

control problem, which was formulated in Problem 1, to a C = [bdiag(C(0),...,C(N —1)),0],

deterministic nonlinear program (NLP). The only non-coave N := bdiag(N(0),...,N(N —1)).

element of this NLP will be a matrix equality constraint thatF
results from the boundary condition on the terminal state
covariance. Subsequently, we will associate the NLP with a r:=[1 ®@1,07 ... <I>(N,0)T]T
convex program via a simple relaxation technique.

inally, o := I'zg, where

Since in the formulation of Problem 1, it is explicitly reqed
Next, we summarize the key steps for the transcriptiothat 7 = {u(J4;t) : ¢t € {0,...,N — 1}} € II, which
of Problem 1 (stochastic optimal control problem) into @mplies that the inputu(t) = w()%;t) can be written as a
deterministic, finite-dimensional nonlinear program. Tingt  linear combination of the elements df, that is,

step is to express the solution to the difference equatiah (1
and the corresponding output from equation (1b) in the u(t) = p(Vi; t) ZK (t, )
following compact form:

fort € {0,..., N—1}. The previous equation can be written

T = Bu + Gw + o, (16a)  more compactly as follows:
y=Cx+Nv, (16b) w= Ky (17)
where the vector where
= [2(0)7,...,z(N)T]T € RV+Dn K=
K(0,0) 0 0
corresponds to the sequence of states for{0, ..., N} and K(1,0) K(1,1) 0
the vectors K(2,0) K(2,1) 0
__ T T Nm : : - ;
u = [“(O)T’--~v“<N_ 1)T]T <R K(N-1,0) K(N-1,1) ... K(N—1,N—1)
— _ p
y:=[0), ..., y(N-1)] €R It follows readily that
correspond to the sequence of inputs and outputs far T =Xpw+ Xv+Xx, (18a)
{0,...,N — 1}, respectively. Furthermore, the vectors u=U,w+U,v+E, (18b)
w = [w(0)7,...,wN —1)T| € RV, where
vi=w(0),. ... v(N -7 e RN X, =G+ BK(I-CBK)'CgG, (19a)
X, :=BK(I-CBK)"'N, (19b)
correspond to the sequence of process and measurement U, = K(1 - CBK)'Cg (19¢)
noise signals, respectively, far € {0,...,N — 1}. In v e
addition, the matrice8 < R(N-I—l)anm, Gc R(N+1)TL><NQ U, = ’C(I — CBK) N, (19d)



and where in the previous derivations, we have used the follgwin
X i= @0 + BK(I — CBK)~'Cxo, (20a) 'dentity
¢ = K(I- CBK) !Ca,. (20b) E[zoz)) = TTE[zozf]T = TSI (28)
Note that the inverse of — CBIC is always well defined Therefore, in view of Egs. (22), (25a)—(25b) and (27a)—§27b
given thatCBIK turns out to be a block lower triangular and the fact that®r’,,, X', U,, andU,, are linear or affine

matrix whose block diagonal elements are zero matrices. fanctions of the new decision variabig, it follows that the
addition, the performance index can be written as follows:performance indeX (), whenr € II, can be expressed as a

N_1 convex function of the elements of the new decision variable
J(r) =E[ 3 2T Q0)a(t) + u(t) R(t)u(t) .
t=0 Similarly, we can expresk(r), whenr € II, as follows:
=E [wT Qx + 'u,T’Ru} , (22) N_1
I T T

where @ = diag(Q(O),....QN — 1,0) and R = MM =B 3 0T Qe(0e0) +u(t) Re(t)u(t)|
diag(R(0),...,R(N — 1)). In view of Egs. (18a)—(20b), tT’O N
we can write the performance index as follows: = E{l‘ Qcx+u Rcu:|7 (29)

J(r) = E[(wa F X+ x)QXpw + Xyv+x)  where Q. = diag(Qc(0), ..., Qe(N — 1),0) and R, :=
diag(Rc(0),...,Re(IN — 1)), or equivalently,
+ Upw + U v+ E)RUHpw +U v + €|,

_ T T
which, in view of Egs. (2a)-(2b) and (3a)-(3b), can be (™) _E{a’ Qez +u RC“}

written: = trace(X o, Qe X1, + X, QX))
J(1) = trace(X QX + X, 0XT) + traceUw Ry, + Uy RU,,)
+ trace(Uw RUT + U, RUT) + trace(QeE [xx'] + RE[£€T]),  (30)

+ trace(QE[xx'] + RE[£€7]).  (22) where in the last derivation, we have used Egs. (2a)—(2b)
As is highlighted in [18], Eq. (22) does not allow us byand Egs. (3a)—(3b). Based on very similar arguments with
itself to conclude whether/(r), with = € II, can be those used to demonstrate that the perf_ormanc_e iodex
expressed as a convex function of the block lower triangul&2" P& expressed as a convex quadratic functio® ofve
matrix }C. To overcome this problem, we will make use®an show thaﬁ,(”)' whenw € II, can be expressed as a
of a bilinear transformation, which was suggested in [18[°°NVeX quadratic function o¥ as well.
This transformation will allow us to express the perform@anc Next, we will express the matrix equality constraint on
index as a convex function of a new decision variable, whicthe terminal state covariand@[xfxfT] — 3¢ = 0 in terms
is denoted adl and is defined as follows: of the new decision variabl@. To this aim, we will first

. 1 expressE[zz"] as a function of. Specifically, in view of

¥ = K(I-CBK)™". @3) g, (2a)[—(2b;, (3a)~(3b) and (18b), it is straightforweod
Using similar arguments as those in the discussion follgwinshow that
Eq. (20b), we conclude thaF is always well-defined and it T
is actually a block lower triangular matrix. In additionpfn Elza’] = E[(Xww + Xov +X)
(23) we have that X (Xpw + Xyv + X)T]

K= (1+%CB) ¥, (24) = X E[ww']| X, + X, E[veT] X))

.
where the right hand side of Eq. (24) is well defined + ]E[fx ] . N
based again on similar arguments as those in the discussion = XX, + X, X, +E[xx']. (31)

following Eg. (20b). In view of (24), Egs. (19a)—(19d) and . i
(20a)—(20b) become, respectively, \I/r\:rit\g:r\llvagfféﬁgv?/)S'(ZSb)’ (272) and (28), Eq. (31) can be

X, = (I+BUC)G,  X,:=BUN, (25a)

T _ T TV1/2
U, — WCG, U, — N (25b) Elzz'] = I+ B¥C)(GG' + ')

. x (GGT+ T, IMMY2(1+BwC)". (32
an
Now, because; = 2(N) = Pyx, where

x = (I+B¥C)zy, &:=VCxy. (26)
Thus, we have that
E[xx"] = (1+B¥C)TS,I'(1+ B¥C)T,  (27a) We canwrite
E[¢¢T] = wCrz r'eTe’, (27b) E[zaf] = PyE[za|PY = ZZ7,

Py :=[0...7 ¢ RPxWV+hn,



whereZ := Py (I+B¥C)(GG" +T'SeI'T)/2 Note thatZ  [3]
is itself an affine function of'. In addition, the symmetric
matrix-valued functionf(-) : R"*" — §,,, where f(Z) := 4

ZZ" — X is convex in the sense of Definition 6.6.44 given

in [26]. Specifically, f is a convex quadratic function of

¥ as the composition of a convex quadratic function ano{5]
an affine function of®. However, then(n + 1)/2 scalar
equality constraints that are derived from the matrix eigpal (6]
constraintf(¥) = 0 are not necessarily convex. Therefore, ;
in general, Problem 1 can only be associated with an NLP,
whose numerical solution can be a complex task in generalgl
To overcome this problem, we will employ a simple convex
relaxation technique [16]. In particular, we will repladet
equality constraintf(Z) = 0 with the following constraint
f(Z) =< 0, which is convex. To see this, it suffices to note
that the inequalityf(Z) < 0, which is equivalent ta%¢ — [10]
ZZ' > 0, can be written as a (convex) positive semi-definit?ll]
constraint:

El

_ |2 Z [12]
v [% 7 w0 @)
. o (13]

In the previous derivation, we have used the fact fBat-
ZZ" is the Schur complement dfin X’. (14

It is interesting to note that if one views the state co-
variance at stagée = N as a measure of the dispersion of;, -
the endpoints of a representative sample of state trajestor
of the close-loop system from the mean of the goal normal
distribution, then the proposed relaxation leads to dekira [16
results from a practical point of view. [17]
IV. CONCLUSION (18]

In this work, we have addressed a finite-horizon covariangeg)
control problem for discrete-time stochastic linear syste
for the case when the information about the state of t
system is incomplete. In the formulation of this stochastic
optimal control problem, we have also enforced input and
state constraints in the form of explicit upper bounds on thg,
expected value of certain finite sums of (convex) quadratic
functions of the state and / or the control input. We have
shown that by restricting our attention to control policies,,
that correspond to sequences of non-anticipative control
laws that can be expressed as linear combinations of the
past and present output measurements of the system, e
stochastic optimal control problem can be associated withs)
a finite-dimensional deterministic nonlinear program. The
latter problem can be in turn reduced to a convex program vigd
a simple relaxation technique. In the future, we plan to use
some of the ideas and numerical techniques presented heri@fi
in order to develop numerical algorithms for the solution
of covariance control problems for discrete-time stodbast
nonlinear systems with incomplete state information and
subject to input and state constraints.
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