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Abstract— This work deals with a finite-horizon covariance
control problem for discrete-time stochastic linear systems
with incomplete state information subject to constraints. We
show that under the assumption that the class of admissible
control policies for this stochastic optimal control problem
is comprised of sequences of non-anticipative (causal) control
laws that can be expressed as linear combinations of the
past and present output measurements of the system, then
the covariance control problem can be reduced to a finite-
dimensional, deterministic nonlinear program with a convex
performance index. In addition, we show that the nonlinear
program can be associated with a convex program via a simple
relaxation technique that allows us to express the non-convex
matrix equality constraint induced by the boundary condition
on the terminal state covariance as a positive semi-definite
(convex) constraint.

I. I NTRODUCTION

We consider a finite-horizon covariance control problem
for a discrete-time stochastic linear system with incomplete
state information. In other words, we seek for a control pol-
icy, that is, a sequence of control laws which are measurable
functions of all past and present output measurements, that
will transfer the (uncertain) state of the stochastic linear
system, which is initially drawn from a known Gaussian
distribution, to a goal Gaussian distribution at a given (finite)
final stage. In the formulation of the covariance control
problem, we will also consider the presence of constraints
on the expected value of finite sums of convex quadratic
functions of the state and / or the input. The main idea
of this work is to associate the stochastic optimal control
problem with a tractable, deterministic, finite-dimensional
optimization problem.

Literature Review: The covariance control problem was
first introduced in the controls community by Hotz and Skel-
ton [1], [2]. This class of problems has been studied in detail
in the literature for both continuous-time and discrete-time
stochastic linear systems (the reader may refer, for instance,
to [3]–[6]). The previous references deal with the infinite-
horizon covariance control problem and focus primarily on
the controllability problem as well as the parametrization
of the set of its solutions. It should be mentioned that in
many cases, the solvability conditions on the infinite-horizon
covariance control problem can be particularly restrictive.

It is interesting to point out at this point that for many
years the finite-horizon covariance control problem has not
been explored in the literature until very recently [7], [8].
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The authors of [7], [8] framed the finite-horizon covariance
control problem as a stochastic optimal control problem
assuming perfect state information. The authors of the same
references have also explored a similar stochastic optimal
control problem in the case of incomplete state informa-
tion [9]. The stochastic optimal control problem considered
in these references can be viewed as an extension / varia-
tion of the standard finite-horizon LQG (Linear Quadratic
Gaussian) problem for stochastic linear systems [10]–[12].
The main difference between the standard finite-horizon
LQG problem and the covariance control problem lies in
their terminal state constraints. In particular, in the finite-
horizon covariance control problem, the requirement on
the terminal state is that its probability distribution will
match a prescribed Gaussian distribution in contrast with the
standard finite-horizon LQG problem in which terminal state
constraints are enforced indirectly (soft constraints) via an
appropriate terminal cost (typically, the expected value of a
quadratic function of the terminal state).

Some extensions of the results presented in [7], [8] on the
finite-horizon covariance control problem with perfect state
information can be found in [13], [14]. In particular, [13]
considers the finite-horizon covariance control problem for
continuous-time stochastic linear systems subject to integral
quadratic state constraints, whereas [14] addresses a finite-
horizon covariance control problem with a soft constraint
on the terminal state covariance based on the Wasserstein
distance between the Gaussian distribution of the terminal
state and the goal distribution. Finally, [15] presents a
numerical framework for the solution of the finite-horizon
covariance control problem for discrete-time stochastic linear
systems with complete state information based on convex
optimization techniques [16], [17].

Main Contribution: In this work, we address a finite-
horizon covariance control problem for discrete-time stochas-
tic linear systems subject to constraints on the expected value
of finite sums of (convex) quadratic functions of the state and
the input. It is also assumed that the available state informa-
tion is incomplete (as we have already mentioned, the case of
complete state information was considered in [15]). In order
to simplify the computation of the solution to the covariance
control problem with incomplete state information, we will
only consider control policies that correspond to sequences of
control laws that can be expressed as linear combinations of
the past and present output measurements of the system. This
particular assumption, which is very common in the synthesis
of output feedback control laws for stochastic linear systems
(see [18] and references therein), will allow us to make a con-



nection between the covariance control problem and the rich
literature on feedback control design for stochastic discrete-
time linear systems [18]–[22]. In particular, we show that,by
following a similar approach with the one proposed in [18],
the stochastic optimal control problem can be reduced to
a (finite-dimensional) deterministic nonlinear program. This
nonlinear program can in turn be associated with a convex
program via a simple relaxation technique that allows us to
express the non-convex matrix equality constraint induced
by the boundary condition on the terminal state covariance
as a positive semi-definite (convex) constraint. We argue
that the control policy associated with the relaxed convex
program favors the generation of closed-loop trajectories
whose endpoints are expected to be concentrated closer to the
mean of the goal Gaussian distribution than a representative
sample of points drawn from the latter distribution.

Structure of the paper: The rest of the paper is orga-
nized as follows. In Section II, we formulate the covariance
control problem as a stochastic optimal control problem
with incomplete state information. In Section III, we reduce
the stochastic optimal control problem to a deterministic
nonlinear program, which we subsequently associate with
a convex program via a simple relaxation technique. Finally,
Section IV concludes the paper with a summary of remarks.

II. PROBLEM FORMULATION

A. Notation

We denote byRn and R
m×n the set ofn-dimensional

real vectors andm × n real matrices, respectively. We
write Z≥0 and Z>0 to denote the set of non-negative in-
tegers and strictly positive integers, respectively. Given a
probability space(Ω,F, P ) and N ∈ Z>0, we denote by
ℓn2 ({0, . . . , N}; Ω,F, P ) the Hilbert space of mean square
summable random sequences{x(t) : t ∈ {0, . . . , N} ⊂
Z≥0} on (Ω,F, P ), wherex(t) is an-dimensional (random)
vector at eacht ∈ {0, . . . , N}. We writeE [·] to denote the
expectation operator. Given a square matrixA, we denote
its trace bytrace(A). We write0 and I to denote the zero
matrix and the identity matrix, respectively. Furthermore,
we denote bybdiag(A1, . . . ,Aℓ) the block diagonal matrix
whose diagonal elements are matricesAi, i ∈ {1, . . . , ℓ}, of
compatible dimensions. Finally, we will denote the convex
cone ofn×n symmetric positive definite and positive semi-
definite matrices byPn andPn, respectively. The space of
symmetricn × n matrices will be denoted bySn. Given a
matrix A ∈ Pn (resp.Pn), we will also writeA ≻ 0 (resp.,
� 0), where≻ (resp.�) denotes the Loewner partial order
in Pn (resp.Pn).

B. Formulation of the Optimal Covariance Control Problem

For a givenN ∈ Z>0, let {A(t) ∈ R
n×n : t ∈

{0, . . . , N − 1}}, {B(t) ∈ R
n×m : t ∈ {0, . . . , N − 1}},

{C(t) ∈ R
n×p : t ∈ {0, . . . , N − 1}}, {G(t) ∈ R

n×q : t ∈
{0, . . . , N − 1}} and{N(t) ∈ R

p×r : t ∈ {0, . . . , N − 1}}
be known sequences of real matrices. Let us also consider
a discrete-time stochastic linear system described in terms

of the following stochastic difference equation and output
equation, respectively:

x(t+ 1) = A(t)x(t) +B(t)u(t) +G(t)w(t), (1a)

y(t) = C(t)x(t) +N(t)ν(t), (1b)

for t ∈ {0, . . . , N − 1}, where the initial statex(0) = x0

is a random vector drawn from a known Gaussian distri-
bution N (0,Σ0) with Σ0 ∈ Pn. Furthermore,{x(t), t ∈
{0, . . . , N}}, {u(t) : t ∈ {0, . . . , N − 1}} and {y(t), t ∈
{0, . . . , N − 1}}, or simply {x(t)}Nt=0, {u(t)}N−1

t=0 , and
{y(t)}N−1

t=0 denote, respectively, the state, the control input,
and the output (random) sequences (or processes) on a
complete probability space(Ω,F, P ). The control input se-
quence{u(t)}N−1

t=0 is assumed to belong toℓm2 ({0, . . . , N −
1}; Ω,F, P ) and to have finitek-moments for allk > 0. We
will henceforth refer to a control input sequence that satisfies
these properties asadmissible. In addition, {w(t) : t ∈
{0, . . . , N−1}} and{ν(t) : t ∈ {0, . . . , N−1}}, or simply
{w(t)}N−1

t=0 and {ν(t)}N−1
t=0 , are sequences of independent

normal random variables with zero mean and unit covariance,
that is,

E [w(t)] = 0, E
[

w(t)w(τ)T
]

= δ(t, τ)I, (2a)

E [ν(t)] = 0, E
[

ν(t)ν(τ)T
]

= δ(t, τ)I, (2b)

for all t, τ ∈ {0, . . . , N − 1}, where δ(t, τ) = 1 when
t = τ and δ(t, τ) = 0, otherwise. It is assumed thatx0

and {w(t)}N−1
t=0 as well as{w(t)}N−1

t=0 and {ν(t)}N−1
t=0 are

mutually independent, that is,

E
[

w(t)ν(τ)T
]

= 0, (3a)

E
[

w(t)xT
0

]

= 0, E
[

ν(t)xT
0

]

= 0, (3b)

for t, τ ∈ {0, . . . , N − 1}.

Our objective is to steer the (uncertain) statex(t) of
the stochastic linear system (1a)-(1b), which is drawn at
staget = 0 from a given multivariate normal distribution
N (0,Σ0), with Σ0 ∈ Pn, to a terminal state at stage
t = N that is drawn from a prescribed multivariate normal
distribution N (0,Σf), with Σf ∈ Pn. Note that the mean
of the two normal distributions att = 0 and t = N is
assumed to be zero, without loss of generality (or perhaps,
with minimal loss). In particular, all the solution techniques
that we will present in this work can be easily modified
to handle the non-zero mean case. Under the zero mean
assumption, the boundary conditions in terms of the state
covariance att = 0 and t = N can be written as follows:

E
[

x0x
T
0

]

= Σ0, E
[

xfx
T
f

]

= Σf ,

wherex0 = x(0) andxf = x(N). In addition, in order to be
able to leverage some powerful techniques from the design
of affine / linear controllers for discrete-time stochasticlinear
systems, we will only be considering control policies in
which the control input at staget depends on the history of
the output measurements up to staget, which is denoted by
Yt and defined asYt := {y(τ) : τ ∈ {0, . . . , N − 1}}. Fur-
thermore, we will also consider constraints on the expected
value of finite sums of (convex) quadratic functions of the



state and the input. Next, we provide the exact formulation
of the covariance control problem we just described.

Problem 1: Let N ∈ Z>0, c > 0, andΣ0, Σf ∈ Pn be
given. In addition, assume that for allt ∈ {0, . . . , N−1} the
matricesQ(t) andR(t) belong toPn andPm, respectively.
Furthermore, the matricesQc(t) andRc(t) belong toPn and
Pm, respectively. LetYt denote the information set of the
system (1a)-(1b) at timet, which consists of all the output
measurements up to staget, that is,Yt := {y(τ) : τ ∈
{0, . . . , t}}. In addition, letΠ denote the class of admissible
control policiesπ := {µ(Yt; t) : t ∈ {0, . . . N − 1}}, where
µ(·; t) is a causal (non-anticipative) feedback law which
maps the random setYt to a randomm-dimensional vector;
in particular,

µ(Yt; t) :=

t
∑

τ=0

K(t, τ), y(τ),

for t ∈ {0, . . . , N − 1}, whereK(t, τ) ∈ R
m×p for all

(t, τ) ∈ {0, . . . , N − 1} × {0, . . . , N − 1} with t ≥ τ .
Then, find an optimal control policyπ◦ := {µ◦(Yt; t) : t ∈
{0, . . . N − 1}} ∈ Π that minimizes the performance index:

J(π) := E

[

N−1
∑

t=0

x(t)TQ(t)x(t) + u(t)TR(t)u(t)
]

, (4)

subject to (1a)-(1b), the following inequality constraint:

h (π) ≤ c,

where

h (π) := E

[

N−1
∑

t=0

x(t)TQc(t)x(t) + u(t)TRc(t)u(t)
]

, (5)

and the boundary conditions in terms of the state covariance
of the (random) state vectorx(t) of the closed-loop system
at the stagest = 0 and t = N :

E
[

x0x
T
0

]

= Σ0, E
[

xfx
T
f

]

= Σf , (6)

wherex0 = x(0) andxf = x(N).

Remark 1 Note that in the formulation of Problem 1, we
have explicitly required that the optimal control policy,π◦,
is comprised of control laws that can be written as linear
combinations of the past and present output measurements of
the system. This requirement reflects an implicit assumption
on the validity of the so-calledseparation principle [23] in
our problem. The main practical benefit of this approach is
that it can allow us to forge direct connections with the lit-
erature on the control design of affine / linear controllers for
discrete-time stochastic linear systems, which offers many
powerful computational tools based on convex optimization
techniques [16], [17].

In the absence of the inequality constraint given in (5),
that is, whenQc(t) ≡ 0 andRc(t) ≡ 0, one can conjecture,
based on the results presented in [9] for the same problem
but for the continuous-time case, that the optimal control

policy π◦ = {µ◦(Yt; t) : t ∈ {0, . . . , N − 1}} is a sequence
of output feedback control lawsµ◦(Yt; t) with

µ◦(Yt; t) = K◦(t)x̂(t), t ∈ {0, . . . , N − 1}, (7)

where x̂(t) corresponds to the conditional mean ofx(t)
given Yt, that is, x̂(t) := E [x(t)|Yt]. The evolution ofx̂
is determined by the following recursive scheme (Kalman
filtering algorithm [24, pp. 174-175]):

x̂(t|t− 1) =

(A(t− 1) +B(t− 1)K◦(t− 1))x̂(t− 1), (8a)

x̂(t) = x̂(t|t− 1) +Λ◦(t)
(

y(t)−C(t)x̂(t|t− 1)
)

, (8b)

for t ∈ {1, . . . , N − 1} and x̂(0) = E(x0) = 0, where the
optimal estimation gain matrixΛ◦(t) is determined by the
following recursive scheme:

P(0|0) = E[x0x
T
0] = Σ0, (9a)

P(t|t− 1) = A(t− 1)P(t− 1|t− 1)A(t− 1)T

+G(t− 1)G(t− 1)T, (9b)

Λ◦(t) = P(t|t− 1)C(t)T

×
[

C(t)P(t|t− 1)C(t)T +N(t)N(t)T]−1, (9c)

P(t|t) =
[

I−Λ◦(t)C(t)
]

P(t|t− 1), (9d)

for t ∈ {1, . . . , N}.

Furthermore, the optimal control gain matrixK◦(t) that
appears in (7) and (8a) satisfies the following equation:

K◦(t) = −L(t)A(t), (10)

whereL(t) is given by the following equation:

L(t) =
(

B(t)TS(t+1)B(t)+R(t)
)−1

B(t)TS(t+1). (11)

The matrixS(t) that appears in the previous equation satis-
fies the following recursive (Riccati-type) equation:

S(t) = Q(t) +A(t)T
(

S(t+ 1)− L(t)T
[

B(t)TS(t+ 1)B(t)

+R(t)
]

L(t)
)

A(t) (12)

with boundary conditionS(N) = Sf , where the matrixSf

belongs toPn. In addition, the matrixSf is such that the state
covarianceΣ(t) := E

[

x(t)x(t)T
]

of the closed-loop system,
which is driven by the control policyπ◦ = {K◦(t)x̂(t) : t ∈
{0, . . . , N − 1}}, satisfies the boundary conditions given in
(6). Now, it is easy to show that

Σ(t) = Σ̂(t) +P(t|t), (13)

for t ∈ {0, . . . , N}, whereP(t|t) is the covariance of the
estimation error, that is,P(t; t) := E

[

(x(t) − x̂(t))(x(t) −

x̂(t))T
]

, which satisfies Eq. (9a)–(9d), and̂Σ(t) is the covari-
ance of the state estimatex̂(t), that is,Σ̂(t) := E

[

x̂(t)x̂(t)T
]

.
(To establish (13), one simply has to note that the estimation
error x(t) − x̂(t) is orthogonal to the estimatêx(t)). It is
straightforward to show that the covarianceΣ̂(t) of the state



estimatex̂(t) satisfies the following recursive Lyapunov (or
Stein [25]) equation:

Σ̂(t+ 1) = (A(t) +B(t)K◦(t))Σ̂(t)(A(t) +B(t)K◦(t))T

+Λ◦(t)N(t)N(t)TΛ◦(t)T, (14)

with Σ̂(0) = 0, for all t ∈ {0, . . . , N − 1}. Let us now
denote aŝΣ(t;Sf), whereΣ̂(0;Sf) = Σ̂(0) = 0, the solution
to Eq. (14) whenK◦(t) = K◦(t;Sf) for a givenSf ∈ Pn.
Then, it follows readily from the previous discussion and
(13) that Problem 1 reduces to the solution of the following
(implicit) nonlinear algebraic matrix equation:

Σ(N) = Σ̂(N ;Sf) +P(N |N) = Σf . (15)

Unfortunately, the computation ofSf ∈ Pn that solves
Eq. (15) can be, in general, a very complex task.

III. PRACTICAL NUMERICAL SOLUTION TECHNIQUES

In this section, we will first reduce the stochastic optimal
control problem, which was formulated in Problem 1, to a
deterministic nonlinear program (NLP). The only non-convex
element of this NLP will be a matrix equality constraint that
results from the boundary condition on the terminal state
covariance. Subsequently, we will associate the NLP with a
convex program via a simple relaxation technique.

Next, we summarize the key steps for the transcription
of Problem 1 (stochastic optimal control problem) into a
deterministic, finite-dimensional nonlinear program. Thefirst
step is to express the solution to the difference equation (1a)
and the corresponding output from equation (1b) in the
following compact form:

x = Bu+ Gw + x0, (16a)

y = Cx+Nν, (16b)

where the vector

x := [x(0)T, . . . , x(N)T]T ∈ R
(N+1)n

corresponds to the sequence of states fort ∈ {0, . . . , N} and
the vectors

u := [u(0)T, . . . , u(N − 1)T]T ∈ R
Nm,

y := [y(0)T, . . . , y(N − 1)T]T ∈ R
Np

correspond to the sequence of inputs and outputs fort ∈
{0, . . . , N − 1}, respectively. Furthermore, the vectors

w := [w(0)T, . . . , w(N − 1)T]T ∈ R
Nq,

ν := [ν(0)T, . . . , ν(N − 1)T]T ∈ R
Nr

correspond to the sequence of process and measurement
noise signals, respectively, fort ∈ {0, . . . , N − 1}. In
addition, the matricesB ∈ R

(N+1)n×Nm, G ∈ R
(N+1)n×Nq

satisfy, respectively, the following equations:

B :=


































0 0 . . . 0

B(0) 0 . . . 0

Φ(2, 1)B(0) B(1) . . . 0
...

...
. ..

...
Φ(N, 1)B(0) Φ(N, 2)B(1) . . . B(N − 1)



































,

G :=


































0 0 . . . 0

G(0) 0 . . . 0

Φ(2, 1)G(0) G(1) . . . 0
...

...
. . .

...
Φ(N, 1)G(0) Φ(N, 2)G(1) . . . G(N − 1)



































,

where

Φ(t, τ) := A(t− 1) . . .A(τ), Φ(τ, τ) = I,

for (t, τ) ∈ {0, . . . , N} × {0, . . . , N} with t ≥ τ . Further-
more,

C :=
[

bdiag(C(0), . . . ,C(N − 1)),0
]

,

N := bdiag(N(0), . . . ,N(N − 1)).

Finally, x0 := Γx0, where

Γ :=
[

I Φ(1, 0)T . . . Φ(N, 0)T
]T

.

Since in the formulation of Problem 1, it is explicitly required
that π = {µ(Yt; t) : t ∈ {0, . . . , N − 1}} ∈ Π, which
implies that the inputu(t) = µ(Yt; t) can be written as a
linear combination of the elements ofYt, that is,

u(t) = µ(Yt; t) =

t
∑

τ=0

K(t, τ)y(τ),

for t ∈ {0, . . . , N−1}. The previous equation can be written
more compactly as follows:

u = Ky, (17)

where

K :=


































K(0, 0) 0 . . . 0

K(1, 0) K(1, 1) . . . 0

K(2, 0) K(2, 1) . . . 0
...

...
.. .

...
K(N − 1, 0) K(N − 1, 1) . . . K(N − 1, N − 1)



































.

It follows readily that

x = Xww +X νν + χ, (18a)

u = Uww + Uνν + ξ, (18b)

where

Xw := G +BK(I− CBK)−1CG, (19a)

X ν := BK(I− CBK)−1N , (19b)

Uw := K(I− CBK)−1CG, (19c)

Uν := K(I− CBK)−1N , (19d)



and

χ := x0 +BK(I− CBK)−1Cx0, (20a)

ξ := K(I− CBK)−1Cx0. (20b)

Note that the inverse ofI − CBK is always well defined
given thatCBK turns out to be a block lower triangular
matrix whose block diagonal elements are zero matrices. In
addition, the performance index can be written as follows:

J(π) = E

[

N−1
∑

t=0

x(t)TQ(t)x(t) + u(t)TR(t)u(t)
]

= E

[

xTQx+ uTRu
]

, (21)

where Q := diag(Q(0), . . . ,Q(N − 1),0) and R :=
diag(R(0), . . . ,R(N − 1)). In view of Eqs. (18a)–(20b),
we can write the performance index as follows:

J(π) = E

[

(Xww +X νν + χ)TQ(Xww +X νν + χ)

+ (Uww + Uνν + ξ)TR(Uww + Uνν + ξ)
]

,

which, in view of Eqs. (2a)-(2b) and (3a)-(3b), can be
written:

J(π) = trace(XwQX T
w
+X νQX T

ν
)

+ trace(UwRUT
w
+ UνRUT

ν
)

+ trace(QE
[

χχT
]

+RE
[

ξξT
]

). (22)

As is highlighted in [18], Eq. (22) does not allow us by
itself to conclude whetherJ(π), with π ∈ Π, can be
expressed as a convex function of the block lower triangular
matrix K. To overcome this problem, we will make use
of a bilinear transformation, which was suggested in [18].
This transformation will allow us to express the performance
index as a convex function of a new decision variable, which
is denoted asΨ and is defined as follows:

Ψ := K(I− CBK)−1. (23)

Using similar arguments as those in the discussion following
Eq. (20b), we conclude thatΨ is always well-defined and it
is actually a block lower triangular matrix. In addition, from
(23) we have that

K = (I+ΨCB)−1Ψ, (24)

where the right hand side of Eq. (24) is well defined
based again on similar arguments as those in the discussion
following Eq. (20b). In view of (24), Eqs. (19a)–(19d) and
(20a)–(20b) become, respectively,

Xw := (I+BΨC)G, X ν := BΨN , (25a)

Uw := ΨCG, Uν := ΨN , (25b)

and

χ := (I+BΨC)x0, ξ := ΨCx0. (26)

Thus, we have that

E
[

χχT
]

= (I+BΨC)ΓΣ0Γ
T(I+BΨC)T, (27a)

E
[

ξξT
]

= ΨCΓΣ0Γ
TCTΨT, (27b)

where in the previous derivations, we have used the following
identity

E
[

x0x
T
0

]

= ΓT
E
[

x0x
T
0

]

Γ = ΓTΣ0Γ. (28)

Therefore, in view of Eqs. (22), (25a)–(25b) and (27a)–(27b),
and the fact thatXw, X ν , Uw andUν are linear or affine
functions of the new decision variableΨ, it follows that the
performance indexJ(π), whenπ ∈ Π, can be expressed as a
convex function of the elements of the new decision variable
Ψ.

Similarly, we can expressh(π), whenπ ∈ Π, as follows:

h (π) := E

[

N−1
∑

t=0

x(t)TQc(t)x(t) + u(t)TRc(t)u(t)
]

= E

[

xTQcx+ uTRcu
]

, (29)

whereQc := diag(Qc(0), . . . ,Qc(N − 1),0) andRc :=
diag(Rc(0), . . . ,Rc(N − 1)), or equivalently,

h (π) = E

[

xTQcx+ uTRcu
]

= trace(XwQcX
T
w
+X νQcX

T
ν
)

+ trace(UwRcU
T
w
+ UνRcU

T
ν
)

+ trace(QcE
[

χχT
]

+RcE
[

ξξT
]

), (30)

where in the last derivation, we have used Eqs. (2a)–(2b)
and Eqs. (3a)–(3b). Based on very similar arguments with
those used to demonstrate that the performance indexJ(π)
can be expressed as a convex quadratic function ofΨ, we
can show thath (π), when π ∈ Π, can be expressed as a
convex quadratic function ofΨ as well.

Next, we will express the matrix equality constraint on
the terminal state covarianceE

[

xfx
T
f

]

− Σf = 0 in terms
of the new decision variableΨ. To this aim, we will first
expressE

[

xxT
]

as a function ofΨ. Specifically, in view of
Eqs. (2a)–(2b), (3a)–(3b) and (18b), it is straightforwardto
show that

E
[

xxT
]

= E
[

(Xww +X νν + χ)

× (Xww +X νν + χ)T
]

= XwE
[

wwT
]

X T
w
+X νE

[

ννT
]

X T
ν

+ E
[

χχT
]

= XwX T
w
+X νX

T
ν
+ E

[

χχT
]

. (31)

In view of (25a)-(25b), (27a) and (28), Eq. (31) can be
written as follows:

E
[

xxT
]

= (I+BΨC)(GGT + ΓΣ0Γ
T)1/2

× (GGT + ΓΣ0Γ
T)1/2(I+BΨC)T. (32)

Now, becausexf = x(N) = PNx, where

PN := [0 . . . I] ∈ R
n×(N+1)n,

we can write

E
[

xfx
T
f

]

= PNE
[

xxT
]

PT
N = ZZT,



whereZ := PN (I+BΨC)(GGT+ΓΣ0Γ
T)1/2. Note thatZ

is itself an affine function ofΨ. In addition, the symmetric
matrix-valued functionf(·) : Rn×n → Sn, wheref(Z) :=
ZZT −Σf is convex in the sense of Definition 6.6.44 given
in [26]. Specifically,f is a convex quadratic function of
Ψ as the composition of a convex quadratic function and
an affine function ofΨ. However, then(n + 1)/2 scalar
equality constraints that are derived from the matrix equality
constraintf(Ψ) = 0 are not necessarily convex. Therefore,
in general, Problem 1 can only be associated with an NLP,
whose numerical solution can be a complex task in general.
To overcome this problem, we will employ a simple convex
relaxation technique [16]. In particular, we will replace the
equality constraintf(Z) = 0 with the following constraint
f(Z) � 0, which is convex. To see this, it suffices to note
that the inequalityf(Z) � 0, which is equivalent toΣf −
ZZT � 0, can be written as a (convex) positive semi-definite
constraint:

X :=

[

Σf Z

ZT I

]

� 0. (33)

In the previous derivation, we have used the fact thatΣf −
ZZT is the Schur complement ofI in X .

It is interesting to note that if one views the state co-
variance at staget = N as a measure of the dispersion of
the endpoints of a representative sample of state trajectories
of the close-loop system from the mean of the goal normal
distribution, then the proposed relaxation leads to desirable
results from a practical point of view.

IV. CONCLUSION

In this work, we have addressed a finite-horizon covariance
control problem for discrete-time stochastic linear systems
for the case when the information about the state of the
system is incomplete. In the formulation of this stochastic
optimal control problem, we have also enforced input and
state constraints in the form of explicit upper bounds on the
expected value of certain finite sums of (convex) quadratic
functions of the state and / or the control input. We have
shown that by restricting our attention to control policies
that correspond to sequences of non-anticipative control
laws that can be expressed as linear combinations of the
past and present output measurements of the system, the
stochastic optimal control problem can be associated with
a finite-dimensional deterministic nonlinear program. The
latter problem can be in turn reduced to a convex program via
a simple relaxation technique. In the future, we plan to use
some of the ideas and numerical techniques presented herein
in order to develop numerical algorithms for the solution
of covariance control problems for discrete-time stochastic
nonlinear systems with incomplete state information and
subject to input and state constraints.
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