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Abstract—1In this paper, we address the problem of charac-
terizing the optimal strategy for guiding the so-called Isotropic
Rocket to a fixed target in the presence of a partially known
flowfield. We reformulate the guidance problem into an equiv-
alent two-player pursuit evasion game, where the evader has a
modified vectogram. First, we characterize the optimal strate-
gies for both players, assuming that the evader is capturable.
Then, we derive the necessary condition for capture, and
visualize the capturability envelope using numerical simulations
in which we compute the level sets of the optimal value function
(isochrones). In addition, we consider a more general case of
the game, where the pursuer is affected by friction (or drag).
In that case, we identify the capture zones from geometric
properties of the isochrones.

I. INTRODUCTION

Pursuit-evasion scenarios are ubiquitous in natural and
man-made interactions. The most direct examples are found
in wildlife and warfare; however, the analogy can be ex-
tended to nearly any situation where two or more parties
have conflicting interests. In this paper, we study the optimal
guidance problem for the Isotropic Rocket to a fixed target
in the presence of a partially known flowfield, which is an
extension of [1]. This problem can be interpreted as a two-
player zero-sum linear pursuit-evasion game (PEG) that is
a variation of the standard Isotropic Rocket problem [2].
In the standard problem, the evader has single integrator
dynamics with constant speed. In the problem treated herein,
we assume that the evader’s velocity can be decomposed into
two components: one that is controlled by the evader, and
the other, a known constant component (analogous to known
constant wind). Our objective is to determine the time of
capture and capture condition for the modified game, and
to investigate whether and how partial knowledge of the
evader velocity can be advantageous to the pursuer, when
both parties are engaged in optimal play.

Literature Review: Differential games have been well studied
since their conception. However, the plethora of possible
variations in games provide opportunities for continued ex-
ploration. The seminal work of Isaacs [2] introduces at large
the concept of differential games, and proposes a number
of pursuit-evasion games (PEGs), including the Isotropic
Rocket problem. Isaacs provides a framework to analyze
and geometrically visualize the game, and presents detailed
analysis of the game of kind, and optimal feedback strategies
for the game of degree. A different approach to differential
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games including PEGs, built upon variational and optimal
control theory is proposed in [3]. Alternative approaches
to address PEGs are presented in [4]-[6]. In particular, [6]
introduces the concept of the stroboscopic strategy as an
alternative to the feedback strategies proposed by Isaacs.
A comparison of feedback and stroboscopic strategies can
be found in [7]. In [4], linear PEGs of a particular class,
including the Isotropic Rocket problem, are treated as differ-
ential games with a terminal cost function. Linear-quadratic
games are addressed in [5] and [8]. An optimal feedback
strategy and the conditions for existence of a saddle point
are presented in [5], while [8] deals with uncertain dynamic
models, and provides conditions for existence of closed loop
strategies. Furthermore, [9] investigates the optimality of
Isaacs’ solution to the Isotropic Rocket problem and presents
geometrical results on the game of kind. Finally, a tutorial-
like exposition of PEGs can be found in [10].

In [11], a three-dimensional surveillance game of kind
is analyzed, drawing analogy with the Isotropic Rocket
problem. The problem of minimum time guidance of the
Isotropic Rocket in the presence of known winds and fixed
target location is addressed in [1] using principles of optimal
control theory. The interception of a moving target by
multiple pursuers in wind, utilizing a continuously updated
Voronoi-like partition of the state space, is presented in [12].

Differential games are a favored tool to model problems
with uncertainties [13]-[18]. In particular, the problem of
missile guidance with model uncertainties is addressed as a
two-person game in [17]. In [18], the problem of aircraft
defense against a homing missile is formulated as a linear
quadratic differential game, and optimal strategies are devel-
oped for all players.

Original Contributions: In this paper, we treat the optimal
guidance of the Isotropic Rocket in a partially uncertain flow-
field, as a two-person zero sum differential game with free
terminal time. Given the initial conditions, we employ the
standard framework of Isaacs to theoretically characterize the
envelope of capturability (or controllability in the presence
of uncertainty), and devise an optimal strategy for guidance
of the Isotropic Rocket within that envelope. Furthermore,
we present the solution to the problem in the presence of
friction, and highlight the difference in the qualitative nature
of the solution.

Organization of the paper: The problem formulation is
presented in Section II, and Section III contains a detailed
analysis of the optimal strategy and the capturability condi-
tions for the modified Isotropic Rocket problem. Numerical
simulations and geometric visualization of the solution to
the game are given in Section IV, followed by concluding



remarks in Section V.

II. PROBLEM FORMULATION

Consider the problem of optimal guidance of an Isotropic
Rocket to the origin in a partially unknown flowfield, in
the two-dimensional Euclidean plane. The dynamic equations
corresponding to this system are:

TR = UR + Wy + Wy,
ugr = Fsin(¢),

YR = VR + Wy + Wy,
or = Fcos (¢), (D

where [zg,yr|" is the position vector of the rocket, and
[ur,vr|T is its velocity, at time t. The initial state at time
t = 0 is denoted by [7ro,YRo,UR0,VRo] . The uncertain
component of the flow field is w = [w,,w,|T and the known
component is @ = [W;,w,]T. The problem is to find the
control input ¢(z g, yr, ur,vr) that drives the rocket to the
origin in the minimum possible time, in the presence of the
most adverse flowfield.

}T

The equivalent zero-sum two-player differential game is
stated as follows. Consider two agents, a pursuer P and
an evader F, in the two-dimensional Euclidean plane R2.
At each instant of time ¢, the position vectors of P and E
are denoted by [zp,yp|* and [zg,yr|" respectively. The
magnitude of the pursuer’s acceleration is equal to ' which
is a constant, and the control input of P is the direction
¢ of its acceleration. Our problem departs from Isaac’s
Isotropic Rocket problem [2] in that the evader’s velocity
can be decomposed into two components, of which one is
controllable and has a constant magnitude w. E can control
the heading v of this component. It is notable that the evader
has single integrator dynamics, so it can change its direction
of motion abruptly if required, that is, it can “swerve”. The
pursuer has second order dynamics, and is unable to execute
a similar maneuver.

The uncontrollable component of the evader’s velocity is
always known to the pursuer, and is constant in time and
space. This known component is denoted by w = [y, W, ] "
The resulting modified vectograms for the evader are illus-
trated in Figure 1. The base case of the Isotropic Rocket
problem which is treated in [2] can be recovered by setting
w = 0. The variation from the base case in the present
problem could be viewed as P having an informational
advantage in the game over F, or that E is constrained in
his movement by an uncontrollable constant component.

The state of the game at a given time instant ¢ is denoted
by ¢ = [vp,yp,up,vp,2p,yr|". The dynamics of the two
agents in RS are described by the following equations:

ip=up yp = vp,
Up = Fsin (¢) vp = Fcos (¢),
T = wsin (¢Y) + 0, Y = wcos (1) + wy. 2)

Note that w = —w and w = —&. For convenience, we
will denote the vector field of the system given in (2) by
f(x,¢,9). Let r := [z,y]T, where © := zp — xp and
Yy := yg — yp, be the relative position vector of E with
respect to P. Capture occurs when r < [, where r := ||7|.

Fig. 1. Modified vectograms for the evader. The vectogram when ||w|| >
|lw]|| is illustrated on the left, while the one for ||w|| < ||w]|, is on the
right. O is the actual position of the evader, and O’ is the center of its
circular vectogram displaced due to the flowfield.

The payoff of the game P (x, ¢, 1) is the time of capture
resulting from inputs (¢, ) applied to the game with initial
condition x. Hence, the problem at hand qualifies as a game
of degree, although the constraint for capturability which is
usually pertaining to a game of kind is also discussed in this
paper. For simplicity, we assume that there is no initial or
terminal cost.

The time of capture is the quantity that the pursuer seeks
to minimize and the evader seeks to maximize. Consequently,
the value of the game V () is defined by the equation

V() = minmax P (z,,9), 3)

provided that this minmax exists. In the expression for
the value function of this problem, the terms involving the
control inputs of the two players are independent of each
other. Hence, one could say that max and min operators
“commute.” The value function thus defined in equation (3)
yields the following equation for the game, called the main
equation:

L+ minmax (VoV(@), f(2,6,0)] =0, @)

where V)V denotes the gradient of the value function with
respect to the state x. The problem is to find the optimal
strategies ¢(x) and 1 (x) that satisfy equation (4).

III. THEORETICAL ANALYSIS

In this section, we will derive the condition for captura-
bility, and the optimal strategies to be employed when it
is satisfied. We will demonstrate that the case where the
evader has a modified vectogram is easily reduced to the
base case of the standard problem by performing a simple
variable transform. We will also investigate how the presence
of friction for the pursuer affects these results.

A. Optimal strategy within the region of capturability

From equations (2) and (4), the main equation can be
written as

1 + UPVJEP + UPVyP + m(gn [FSin<¢)VuP + FCOS(¢>VUP] +
mex [wsin()Vy,, + weos(V)Vy, | + Wy Vi, + Wy Vy, = 0.



Let pp :=/V2, + V2, and pg = /VZ +V2 .
From [2], we have

Sln(¢) = _Vup/ppa

Sln(w) = VQJE/pEa

COS(@
cos(1))

_V'UP /pP

Then the main equation becomes

UpVayp +VpVyp — Fpp +wpp + 0V, +wyVy, +1=0.

Next we define the so-called retrogressive path equations
[2] using equations (2) and (5). Here, the integration is
performed backward in time, starting from the terminal point
of the game. Henceforth, the variable of integration will be
7 =T — t. There are 12 equations (6 for the states, 6 for
partial derivatives of the value function), which are given as
follows:

j"j = _fj(ma (E,.T,Z),

VTP = 1.}Z/P = VTE = VyE =0,

vup = VJ;P7
Vop =Vyp  (6)

We define the terminal states x(7") at capture, in terms of
five parameters s;, ¢ = 1,...,5, keeping in mind that at the
termination of the game, » € {z € R? : ||z| < [}. The
terminal states are:

Tp = 81, Up = 53,

yg = 1+ lcos(ss). (7)

Yyp = S2,

vp =S4, Tg = S1+Isin(ss),

The equations in (7) correspond to a parametrization of the
terminal surface, and provide initial conditions to integrate
the equations in (6) backwards. At the terminal surface, we
know that r = ||r|| = [, and the time derivative of r yields:

7 = sin(ss) (wsin(y) + Wy — up)
+ cos(ss) (weos(y) + Wy — vp).  (8)

The part of the terminal surface in which capture can occur
is called the Usable Part (UP) which is defined as follows:

max 7 < 0. 9)
$E[0,27]

At the terminal surface, the value function equals zero. By
differentiating ) with respect to each of the five parameters
si, we can get the rest of the initial conditions that are
needed to solve the equations in (6). For instance, for the
first parameter,

0
Yy, Ve =0, (10)
881
Similarly,
VyP + VyE‘ =0, VUP = V'UP =0,
Ve psin(ss) — Vypcos(ss) = 0. (11)

We define a parameter A such that V,, = Asin(ss) and
Vyr = Acos(ss). We know from (11) that V,, = =V,
and V,, = -V,,.

Integrating the equations in (6) with the initial conditions
from equations in (11), we get expressions for the partial
derivatives of the value function. From the partial derivatives

of V, we obtain the optimal strategies of the two players in
terms of the parameters of the terminal surface. The partial
derivatives are given as follows:

Vup = —AT8In(85), Vyp = —ATCOS(S5). (12)

The expressions for the other partial derivatives are similarly
obtained. From equations (5) and (12), we have,

QZ’:ZZ_J:SE)-

Now we integrate the rest of the equations in (6), to obtain

13)

xp = s1 + 1 sin(ss) — wr sin(ss) — W, T,
yE = S2+1 cos(s5) — wT cos(s5) — WyT,
Fr?

Tp =81 — 83T + 5 sin(ss),
2
yp = S1 — S4T + 5 cos(ss). (14)
Let Q(7) i=1l—wr+ FTTz From equations (14), the optimal
strategy for the players is given by
. g —xp — (up — Wy)T
sin(ss) = )
’ Q)
E—yp — (vp — Wy)T

Q(r)

B. Analogy to base case by means of a variable transform

cos(ss) = 4 (15)

Recalling that » = [ — p,yr — yp|T and defining the
effective velocity vector of P as @ := [up — Wy, vp — ﬂ)y]T,
we can condense equations (15) into the following equation:

r? —2(r-a)r +a’r? = Q*(7). (16)
Equation (16) gives the value function for the entire state
space under the assumption that the conditions for capture
are satisfied. In particular, under this assumption, the smallest
positive root of equation (16) is the time of capture. Alter-
natively, the time taken for termination of the game with
successful capture of E by P, starting from an arbitrary
initial condition, is the least positive root of equation (16).
The base case corresponds to the known component w being
identically zero. The optimal game strategy for the case with
the modified evader dynamics is very similar to the base case
found in [2], because the variable change of up = up — w,
and vp = vp — w, preserves the form of the dynamic
equations.

C. Condition for capturability

The criterion for capturability is derived in a reduced space
where the state vector is taken to be x, = [r,y,up,vp|’.
In the reduced space, the pursuer is always at the origin
and x and y are the position coordinates of F with respect
to P. The capturability conditions for the base case with
w = 0 are derived in a three-dimensional reduced space in
[2]. By employing a similar procedure and using the analogy
between the base case and our case of interest, we can
characterize the condition for capturability, based solely on



the input parameters to the game. In particular, the dynamic
equations in the reduced space are now given as follows:

up = Fsin(¢),
Op = Fcos (¢).

& = wsin (Y) + 0, — up,

y = weos (¢) + wy — vp, (17)

The terminal states of the game, which define the terminal
surface, are given by equation (7). The Usable Part is defined
by equation (9). The Boundary of the Usable Part (BUP) is
determined by the equation maxe(o 2 7 = 0, at 7 = [, and
is given by

(s3 — Wg)sin(s1) + (84 — Wy)cos(s1) —w =0.  (18)

In place of the partial derivatives of the value function in
the preceeding analysis, we will use the costate variables
vj,j = 1,...,4, which represent the normal vector to the
terminal surface at &, = [x,y,up,vp]T. Then, the main
equation is given by

min max i(Tr, 9, ¥0)v; =0, 19
lin ma Z fi(@r, 6:) (19)

whereas the retrogressive path equations are given by
x_]:_fj(m’ra(g71z)7 V] :Zylflj(a‘,’ﬁéa/lz)a (20)

1
where ¢,j = 1, ..., 4. The terminal conditions in equation (7)
become the initial conditions for the state variables when
integrating equation (20). Furthermore, the initial conditions
for v;,7 =1, ..., 4, are given by

vy =sin(sy), v =cos(s1), v3=0, vy=0. (21)

These initial conditions are chosen such that v;,j =1, ..., 4,
are normal to the terminal surface and satisfy equation (20)
at the terminal surface. Integrating the retrogressive path
equations, we get the expressions for the state variables at
time 7 as follows:

z =sin(sy) (I — wr — F1/2) + (s3 — w,)T,

y = cos(s1) (l —wT — F72/2) + (54 — Wy)T,

up = 83 — Frsin(sy), vp = s4 — Frcos(s1). (22)

1) The barrier: The barrier in this game is defined as the

semipermeable manifold formed by the envelopes of constant
time manifolds (isochrones) which are described by equation
(16). If we assume that the condition for capturability is
satisfied, the barrier corresponds to a discontinuity in the
value function and the strategy of pursuit, and it is not
crossed in optimal play. For this problem, the projections
of the isochrones on the « — y plane are circular, and Q(7)
is the radius of the isochrone for time 7. Henceforth in this
paper, the term isochrones will denote the cross-section of
the isochronic manifolds at a particular velocity, usually the
initial velocity of the pursuer.

2) Escape condition from the structure of the barrier:
Let the components of the effective velocity vector of P be
Up = u, — Wy and Vp := v, — Wy, where 4 := [ip,vp|T
The condition for E to escape is that the two parts of the
barrier on either side of the axis of symmetry will intersect.
Alternatively, there exists 79 > 0 such that at time 7 = 79, T
and u are collinear. One should note here that the effective

velocity vector corresponds to the axis of symmetry of the
barrier. The intersection of the barrier manifolds means that
there is a portion of the state space such that, if the game
is initiated from there, P cannot win provided that F plays
optimally [2]. However, in this paper we confine our analysis
to cases where capture is unavoidable. From the collinearity
condition between r and u, we have

x/yZﬂJp/@p. (23)
Rewriting the equations (22) in terms of Q(7) as defined
earlier, and substituting into equation (23), we have after
simplification:

2

FTT—l-l—wT:O, or Q(r) =0.
Equation (24) is the condition for the barrier manifolds to
intersect such that there is a zone of definite capture and a
cut-off zone where escape is possible. The condition that the
barrier manifolds intersect directly implies that the radius of
the isochrone is zero at some time 7. For this to be possible,
we require that equation (24) has a real positive root, for
which it is necessary that w? > 2F1.

(24)

On the other hand, the sufficient condition for capture to
certainly occur for all initial positions of E is

w? < 2F1. (25)

It is interesting to note that the condition given in (25) is the
same as the capture condition for the base case. By contrast,
the axis of symmetry of the isochrone diagram is rotated
depending on the magnitude and direction of the known
component w.

D. Case with friction

We now consider another variation of the standard
Isotropic Rocket problem in which the evader has a modified
vectogram and the pursuer’s velocity is affected by a negative
feedback term, which acts as a friction force or drag. The
implicit assumptions here are that w < £ and ||w|| < £,
since % is the limiting speed of P [2]. For capture to occur, P
must have an advantage in speed over E. The new dynamic

equations are:

Yyp = vp,
Op = Fcos (¢) — kvp,
Y = wcos (1) + Wwy.

Tp =up,
up = Fsin (¢) — kup,

tp = wsin (V) + w0y, (26)

By using a procedure similar to the one described in Section
II-A, we obtain the retrogressive state variable expressions
as follows:

k‘r_l ) kr_k -1
Tp = 8] — S3 (e A ) + F'sin(ss) <6kQT> ,

eFm —1 e —kr—1
Yp = 51 — S4 ( ) + Fcos(ss) (l#) ,

k
xp = 81 + 1 sin(ss) — wr sin(ss) — W, T,
)

yg = 2+ 1 cos(s5) — wT cos(s5) — WyT. (27)



Here, let Q(7) be defined as follows:
ek 4+ kr—1
k2 '

From equations (27), we get the optimal strategy for both
players in the presence of friction:

Q(T)—l—wT+F< (28)

k(xg —xp + W) — up (1 - e””)

sin(ss) = Q) ,
_ o _ _ kT
cos(s5) = k(ye —yp + HZ(SET) vp (1—e™7) 29)

Now we consider the condition for capturability when fric-
tion is present in the pursuer’s dynamics. By using similar
arguments to the analysis presented in Section III-C, we
arrive at the condition for capture as Q(7) > 0 for all 7 > 0,
where Q(7) is defined in equation (28). Simplifying, we get
the condition for capture as:
Femy <, otk
wk F —wk
We observe that the capturability condition for the Isotropic
Rocket is independent of the known component w. However,
under the condition of capturability, the solution to the dif-
ferential game shows qualitative and quantitative differences
from the base case, as will be evidenced in the following
section.

N =k (30)

IV. NUMERICAL SIMULATIONS

In this section, the theoretical results from Section III
are illustrated with the aid of numerical simulations. For all
simulations in this section, we assume that the condition for
capturability holds. The relevance of the barrier described in
Section III- B to the resultant trajectory of P can be observed
by using different initial positions of the evader E. The initial
position of E relative to the barrier indicates the type of
pursuit trajectory followed by P. For initial locations of
that are not across the barrier from P, the pursuit trajectory
is directly towards E' at all times, and the game ends with the
capture of E. For locations of E that are across the barrier
from P, the trajectory of the former involves a “swerve”
maneuver, and to counter this, P initally moves away from
E, executes a turn and then finally captures E. We know
that the barrier corresponds to a discontinuity in the value
function for the game. This practically means that there exist
initial locations of E that are close to each other, but on either
side of the barrier, for which we find a large discrepancy in
the times of capture.

The following numerical values are used throughout this
section: F' = 1 and | = 0.2. The initial position of the
pursuer P is taken to be the origin. The values of the other
parameters are varied to study different conditions of interest.

A. Case without friction

First, we study the case without friction, that is, k = 0.
The initial velocity of P is [1.1400, — 1.0450]T and w =
0.5. These values satisfy the capturability condition. In this
section, we compare cases with varying magnitude of the

known component w. The variation in the barrier shape with
the magnitude of w is of interest because the barrier shape
dictates the capture trajectory along with the time of capture
in each case.

There are three possible combinations for w and ||w||:

(1) w = 0: This is the case where there is no known com-
ponent in the evader’s dynamics, and the resulting isochrone
diagram for initial velocity of the pursuer is shown in Figure
2(a). This is the base case of the Isotropic Rocket game
formulated and studied by Isaacs.

(2) w # 0 and w # 0: The evader’s modified vectograms
are shown in Figure 1. When ||w| < w, the corresponding
isochrone diagram is as illustrated in Figure 2(b). The new
axis of symmetry can be obtained by a rotation from that
of Figure 2(a), and there is also elongation of the barrier.
As is seen when ||w]|| > w, the elongation of the barrier is
more pronounced as ||w|| increases. The isochrone diagram
for this case is illustrated in Figure 2(c). The elongation of
the barrier as ||w|| increases is reflected as greater difference
in times of capture for evader locations initially across the
barrier from each other.

The quantitative difference in the value of the game due to
the modified vectogram is represented by the change in shape
of the isochrone diagrams. The time of capture depends on
w and the effective velocity vector w, which in turn depends
on w.

(3) w = 0: In this case, there is no ambiguity in the evader’s
movement. The problem is reduced to an optimal control
problem for the pursuer [1], and the barrier in Figure 2(d) is
shortened, and unlike the other cases, there is no reduction
in the radius of the isochrones from the terminal circle. This
is consistent with the fact that the condition for escape can
never be satisfied in this case. Again, the axis of symmetry
can be obtained by a rotation from that of Figure 2(a). For
all cases, the angle of rotation of the axis of symmetry is
the angle between the velocity vector w and the effective
velocity vector u.

B. Case with friction, k # 0

Figures 2(e) and 2(f) illustrate the isochrone diagrams for
w = [0.7,0.7]7 and w = [0, 0]T respectively, with k = 0.5.
When both k and ||w|| are not zero, the trace of the centers
of circles in the isochrone cross section at the initial velocity
of P is no longer a straight line. This is the only case where
we observe a qualitative difference in the solution to the
differential game.

V. CONCLUSION

In this paper, we have studied the optimal guidance prob-
lem for the Isotropic Rocket in a partially known flowfield.
Two cases have been discussed: one without friction and
the other where the rocket is affected by a friction force
or drag. The condition for capturability (successful guidance
to the origin) has been derived, and the optimal strategies
for the corresponding Isotropic Rocket pursuit-evasion game
have been presented. The guidance problem of the Isotropic
Rocket to a fixed target in a partially uncertain flowfield
is of high relevance to problems where the dynamic model
contains uncertainties, or there are uncontrollable external



Fig. 2.

(d) w=0, w=1[0.2,0.2]T

(e) w = [0.7,0.7]T

) w=1[0,0]"

The isochrone cross sections corresponding to the initial velocity of P are shown in figures (a), (b), (c) and (d), for k& = 0, and for different

times 7 where 7 € [0, 3]. Isochrone cross sections in the presence of friction (k = 0.5) are shown in (e) and (f), for different times = where 7 € [0, 5].
The trace of the centers of the isochronic circles is shown as a blue dashed line.

components. These elements of the control problem can be
modeled as the secondary (opposing) player in a PEG, who
is at best passive, or at worst, adversarial to the primary
player that is of interest to us. One such instance of a control
problem is capture of orbital debris where the debris (evader)
is non-cooperative, or affected by constant winds in the upper
atmosphere. In future, we will extend this work to study cases
where the known component of the evader’s velocity has a
time-varying profile.
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