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This work deals with the problem of guiding a controlled object to a given target set
in a three-dimensional configuration space in the presence of wind with an uncertain
spatiotemporal velocity field. The proposed guidance law utilizes (imperfect) measure-
ments of the velocity of the local wind along the ensuing path of the controlled object
to a given target set. No information about the velocity gradients (temporal and spa-
tial) of the wind is assumed to be available. The development of the proposed guidance
feedback law is based on the utilization of a backstepping algorithm that forces the
controlled object to follow closely the motion of a lower order kinematic model that is
driven by a pure pursuit navigation law. In this way, the controlled object converges
to its target set in finite time. Two kinematic models that describe the motion of
the controlled object are considered. In the first model, the rate of change of the air
velocity of the controlled object is unconstrained, whereas in the second one, it has to
remain perpendicular to the air velocity at all times. Numerical simulations which are
based on real wind data are presented.

Nomenclature
ξ = position vector of the controlled object, m
ν = air velocity vector of the controlled object, m/s
νg = ground velocity vector of the controlled object, m/s
α = control input of the fully-actuated controlled object, m/s2

| · | = norm (magnitude) of a vector
ᾱ = upper bound on the norm of the control input, m/s2

̟ = control input of the under-actuated controlled object, rad/s
ω = measurement of the wind’s velocity, m/s
∆ω = measurement error of the wind’s velocity, m/s
ω̄ = upper bound on the norm of ω, m/s
∆ω̄ = upper bound on the norm of ∆ω, m/s
CO = controlled object
LOS = line-of-sight (the ray from the controlled object to its destination)
tf = arrival time, s
Tǫ = target set
ǫ = accuracy of convergence, m
R
n = set of n-dimensional real vectors

C = set of continuous functions
C

1 = set of continuously differentiable functions

I. Introduction

This work deals with the problem of steering a controlled object (CO, for short) with second
order kinematics to a given target set in finite time in the presence of uncertain wind, whose velocity
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varies both temporally and spatially. It is assumed that the CO obtains imperfect measurements of
the velocity of the local wind along its ensuing path via onboard sensors. Alternatively, the CO can
measure the local wind velocity by comparing the measurements of its air and ground velocities,
where the ground velocity is measured by using, for example, a Global Positioning System (GPS)
receiver. Yet, no information about the gradients, both temporal and spatial, of the wind’s velocity
field is available.

Traditionally, problems of steering a CO, such as an aerial vehicle or a missile, in the presence of
wind have been addressed within the framework of optimal control [1–5]. The powerful techniques
of optimal control are often based on a number of strong assumptions, which may not always be
satisfied in practice. In particular, for the minimum-time steering problem of a CO with first order
kinematics in the presence of wind, the so-called Zermelo navigation problem [1], one typically
assumes that the spatiotemporal velocity field of the wind is globally and perfectly known a priori;
an assumption that is very restrictive in practice. In Ref. [6], a number of different ways to overcome
this problem for different information patterns about the local wind have been proposed for a CO
with first order kinematics. In this work, the results presented in Ref. [6] are extended to the case
when the motion of the CO is described by a second order kinematic model. In particular, the case
that is considered first is when the CO can directly control the rate of change of its air velocity; the
CO will be characterized as fully actuated. Note that the fully actuated CO can regulate both the
direction and the magnitude of its air velocity along its ensuing path. It will be required, however,
that the airspeed of the CO should not vary significantly, by means of a relevant soft constraint.
Subsequently, the case when the CO can only control the rate of change of the direction of its air
velocity will be considered; the CO will be characterized as under-actuated. Note that the under-
actuated CO can only regulate the components of the time derivative of its air velocity that are
perpendicular to the air velocity. Consequently, the under-actuated CO must travel at a constant
airspeed at all times (hard constraint).

The problem of steering a CO with second order kinematics in the presence of wind has received
a considerable amount of attention in the recent literature. The majority of the available results
focus, however, on the two-dimensional problem of steering the so-called Dubins car or vehicle [7, 8]
under the assumption that the wind field is either constant or time varying, yet spatially invariant,
and perfectly known (see Refs. [5, 9, 10] and [11], respectively). The steering problem for simple
extensions of the Dubins vehicle model in three dimensions in the presence of a priori known,
spatially varying wind is addressed in [12] and [13] by means of numerical solution techniques.
Tracking problems for similar kinematic models in the presence of wind have been studied, for
example, in [14] and [15]. The problem of guiding the Dubins vehicle in the presence of stochastic
wind in minimum expected time at a given target set can be found in [16]. The main advantage
of the formulation of the steering problem as a stochastic optimal control problem has to do with
the fact that in the latter case only the statistics of the stochastic velocity field of the wind are
assumed to be available a priori. The latter assumption is less restrictive than the one that the
CO has global knowledge of the wind’s velocity field, as would be the case in the corresponding
deterministic optimal control problem. Yet, the intensity and the mean of the noise that models the
stochastic component of the wind in [16] are taken to be constant (spatially and temporally) and
known a priori.

The problem of optimal interception of a moving target by a fully actuated CO with second order
kinematics, which is equivalent to the steering problem in the presence of wind, is a well studied
problem [17–19]. Typically, the performance index in the latter class of problems is taken to be
the control effort required for the interception of the moving target by the CO at a given terminal
time assuming that the target’s velocity is an either constant or time-varying vector, which is a
priori known to the CO, and the accuracy of convergence to the target is not explicitly prescribed.
Recently, the minimum-time steering problem in the presence of wind with a time-varying velocity
field and an explicit bound on the norm of the control input of the CO was addressed in [20].

The main contribution of this work is the presentation of the solution to the guidance problem of
a CO to a given target set in the presence of uncertain wind under less restrictive assumptions than
the ones typically made in the literature. In particular, it is explicitly required that the proposed
feedback guidance law does not depend on a priori knowledge of the global velocity field of the wind.
The target set of the CO is assumed to be a neighborhood of a fixed position vector, the target
point, where the “size” of this neighborhood determines the accuracy of convergence of the CO to
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the target point. In addition, the requirement of finite time convergence has the following meaning:
No matter how “small” the target set is taken to be, the CO will reach it after a finite amount of
time, which is upper bounded by a finite bound that is independent of the “size” of the target set.

The approach adopted in this work is based on an integral backstepping algorithm [21, 22] in
vector form, which furnishes a feedback control law that is continuous everywhere except from an
isolated point, which is never attained in the time interval of interest, and drives the position vector
of the CO to a given target set in finite time. The proposed feedback guidance law essentially forces
the CO to track a reference velocity signal that depends explicitly on the position of the CO rather
than the time. This position-dependent reference signal has the special property that it can steer the
lower order kinematic model to its target set in finite time, when it acts as its control input. In this
way, a feedback guidance law is developed that enforces finite time convergence of the CO’s position
vector to its target set in the presence of spatially and temporally varying disturbances. Because the
proposed guidance law is (at least) continuous, it does not suffer from the chattering phenomenon
that appears in the implementation of, say, discontinuous sliding mode controllers [23, 24], which
can be employed alternatively to address similar classes of problems.

The rest of the paper is organized as follows. Section II highlights some of the key limitations
of standard control techniques, namely the proportional-derivative and the proportional-integral-
derivative control laws, which render them unsuitable for the problem treated herein. The steering
problems for both the fully actuated and the under-actuated COs are formulated in Section III.
Feedback guidance laws for the two kinematic models of the CO, which are based on an integral
backstepping algorithm, are presented in Section IV. Numerical simulations, which utilize real
wind data, are presented in Section V. Finally, Section VI concludes the paper with a summary of
remarks.

II. Limitations of Standard Control Techniques for the Steering Problem in the Presence
of Uncertain Spatiotemporal Wind

This section highlights some fundamental limitations of standard control techniques to address
the problem of steering a controlled object (CO, for short) to a given target set in finite time, in
the presence of uncertain wind. To this aim, the steering problem for a CO whose motion in the
absence of wind is described by the double integrator kinematic model will be briefly discussed. In
particular, let one assume that the equations of motion of the CO are given by

ξ̇ = ν, ν̇ = α, ξ(0) = ξ̄, ν(0) = ν̄, (1)

where ξ ∈ R
3 (ξ̄ ∈ R

3) and ν ∈ R
3 (ν̄ ∈ R

3) are the position and velocity vectors of the CO at time
t (time t = 0), and α is the control input. The objective is to drive the position vector of the CO
to the origin.

A popular feedback control law used in stabilization and tracking problems of mechanical sys-
tems is the so-called proportional-derivative control law [25], which is described, in its simplest form,
by the following equation

αPD(ξ, ν) := −kξξ − kνν, (2)

where the gains kξ and kν are real constants (design parameters) or constant matrices, in general.
One can show, by utilizing standard arguments from Lyapunov stability analysis, that in the ab-
sence of disturbances (induced by the wind, in this case), the CO’s state vector (concatenation of
position and velocity vectors) would converge to the origin asymptotically from any initial state,
after selecting appropriately the gains kξ and kν . Because in the presence of disturbances, the in-
clusion of an integral term in the applied control law can improve the performance of the controller
of the CO, it will now be assumed that the control input applied to the CO is not only a function
of ξ and ν, but also ψ, where ψ(t) :=

∫ t

0
ξ(s)ds; one writes α(ξ, ν, ψ). Next, let one consider a

vector σ(ξ, ν, ψ) ∈ R
3, where σ(ξ, ν, ψ) := kνν + kξξ + kψψ, and where kξ, kν and kψ are positive

constants [26]. It follows readily that

σ̇(ξ, ν, ψ) = kνα(ξ, ν, ψ) + kξν + kψξ. (3)
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Let V (ξ, ν, ψ) :=
1

2
|σ(ξ, ν, ψ)|2 be a candidate generalized Lyapunov function. Note that V (ξ, ν, ψ)

is not a positive definite function (it does not vanish at the origin only); hence the “generalized”
qualifier. It follows readily that

V̇ (ξ, ν, ψ) = 〈σ(ξ, ν, ψ), σ̇(ξ, ν, ψ)〉 = 〈σ(ξ, ν, ψ), kνα(ξ, ν, ψ) + kξν + kψξ〉. (4)

Now, let one consider the following proportional-derivative-integral (PID, for short) control law

αPID(ξ, ν, ψ) := −
kξ
kν
ν −

kψ
kν
ξ −

λ

kν
σ(ξ, ν, ψ), (5)

where λ is a positive constant. By setting α(ξ, ν, ψ) = αPID(ξ, ν, ψ), one takes

V̇ (ξ, ν, ψ) = −λ〈σ(ξ, ν, ψ), σ(ξ, ν, ψ)〉 ≤ 0. (6)

It follows that the system trajectories will converge, as t → ∞, to the sliding surface σ(ξ, ν, ψ) =
kνν + kξξ + kψψ = 0, or equivalently,

σ(ξ, ν, ψ) = kνψ̈ + kξψ̇ + kψψ = 0. (7)

Note that Eq. (7) describes an exponentially stable, and thus bounded-input bouded-output stable,
linear time invariant system that is driven by an input σ, which is a bounded function of time;
something that follows readily from Eq. (6) and the definition of V . Therefore, if σ → 0 as t→ ∞,
then ψ̇ → 0 and ψ → 0, and thus the position vector ξ = ψ̇ will asymptotically converge to the origin.
As shown in [27], Eqs. (3)-(6) imply that V is bounded, and σ, V̇ are uniformily continuous functions
of time. Application of the Barbalat’s lemma yields V̇ (ξ, ν, ψ) → 0 as t → ∞ and consequently,
σ → 0 as t → ∞ as well. Moreover, in view of (7), it is also true that ν → 0 as t → ∞, where
ν = ψ̈. Consequently, the motion of the CO becomes very slow as it approaches the origin. This is
not necessarily a desirable situation, given that it is possible that as the CO approaches its target
(the origin), its airspeed may not be sufficiently large to compensate any local wind; consequently,
the arrival of the CO to its target may be delayed, if not completely prevented.

A possible modification of the PID control law given in (5) so that it explicitly accounts for the
presence of wind is considered next. In particular, the motion of the CO is now described by the
following set of equations

ξ̇ = ν + ω(t, ξ), ν̇ = α(ξ, ν, ψ), ξ(0) = ξ̄, ν(0) = ν̄, (8)

where ν ∈ R
3 (ν̄ ∈ R

3) is the air velocity of the vehicle at time t (time t = 0) and ω(t, ξ) denotes
the velocity of the local wind. Let one assume, for the sake of the argument, that ω(t, ξ) is perfectly
measured by the CO along its ensuing path to its target. In addition, let νg := ν + ω(t, ξ) and
ν̄g := ν̄ +ω(0, ξ̄), where νg and ν̄g ∈ R

3 denote the inertial (or ground) velocities of the CO at time
t and t = 0, respectively. Then, the equations of motion of the CO in terms of the state vector
(ξ, νg) are given by

ξ̇ = νg, ν̇g = αg(ξ, νg, ψ), ξ(0) = ξ̄, νg(0) = ν̄g, (9)

where αg(ξ, νg, ψ) is the (inertial) acceleration vector of the CO, which satisfies the following equa-
tion

αg(ξ, νg, ψ) =
d

dt
(ν + ω(t, ξ)) = ν̇ +

d

dt
ω(t, ξ)

= α(ξ, νg − ω(t, ξ), ψ) +∇tω(t, ξ) +∇ξω(t, ξ)ξ̇

= α(ξ, νg − ω(t, ξ), ψ) +∇tω(t, ξ) +∇ξω(t, ξ)νg. (10)

Therefore, the new equations describing the motion of the CO (Eq. (9)) have been brought to the
double integrator form given in Eq. (1). This standard approach is often adopted in, for example,
path following problems in the presence of wind (see, for example, [28]). Therefore, one could argue
that the PID control law

αg(ξ, νg, ψ) = αPID(ξ, νg, ψ) = −
kξ
kν
νg −

kψ
kν
ξ −

λ

kν
σ(ξ, νg, ψ), (11)
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will solve the steering problem for the system described by Eq. (9) (in the presence of wind) similar
to the way the PID control law (5) solves the steering problem for the system described by Eq. (1)
(in the absence of wind). However, the realization of the control law (11) could only be achieved
with the application of the actual control input α(ξ, ν, ψ) = α(ξ, νg − ω(t, ξ), ψ), which satisfies, in
light of Eq. (10), the following equation

α(ξ, ν, ψ) = αPID(ξ, νg(ν), ψ)−∇tω(t, ξ)−∇ξω(t, ξ)νg(ν), (12)

where νg(ν) := ν + ω(t, ξ). Consequently, the realization of the control law (12) requires, in turn,

not only knowledge of ω(t, ξ) (in order to compute νg) but its total time derivative
d

dt
ω(t, ξ) :=

∇tω(t, ξ) + ∇ξω(t, ξ)νg(ν) as well. In contrast with the assumption that the CO has access to
(imperfect) measurements of the velocity of the local wind, ω(t, ξ), which is often more or less true

in practice, the assumption that the total time derivative
d

dt
ω(t, ξ) can be accurately measured by

the CO “on the fly” is hardly verifiable. Moreover, even if measurements of
d

dt
ω(t, ξ) were becoming

available to the CO along its ensuing path, the objective that ξ → 0 would only be achieved
asymptotically, that is, as t → ∞. It should also be mentioned that in many applications, it is
desirable that the CO maintains a constant (either approximately or exactly) airspeed, |ν|, rather
than a constant ground speed, |νg|. Consequently, once again the state vector (ξ, ν) constitutes a
more natural choice for the state vector of the CO, in terms of enforcing the more intuitive constant
speed constraint, than the state vector (ξ, νg).

Note that the control law given in Eq. (12) can better handle, in practice, the presence of
uncertain wind than the PD control that results from (12) after setting kψ = 0 or the one defined
in Eq. (2), because of the inclusion of the integral term. If the temporal and spatial gradients of the
wind’s velocity were also measurable “on the fly” and an upper bound on the measurement error of
d

dt
ω(t, ξ) was known, for example, |

d

dt
ω(t, ξ)| ≤ γ, for all t ≥ 0 and ξ ∈ R

3, where γ is a positive

constant, then one could utilize instead the following guidance law [27]

α(ξ, ν, ψ) = αPID(ξ, νg(ν), ψ)−∇tω(t, ξ)−∇ξω(t, ξ)νg(ν)− κ(γ)sgn(σ), (13)

where sgn(σ) denotes the n-dimensional vector whose components are given by the signs of the cor-
responding components of the vector σ, and κ(γ) is an appropriately chosen positive constant. The
last term in (13) is a sliding control term that accounts for the uncertainty due to the measurement
errors of the gradients (spatial and temporal) of the wind velocity. Alternatively, one can consider
the term −κ̂(γ)σ/|σ|, where again κ̂(γ) is a positive constant, in lieu of −κ(γ)sgn(σ). Both of these
new control terms, which are purport to account for the effects of the unknown component of the
time derivative of the wind’s velocity, introduce discontinuities in the guidance law, that are often
undesirable in practice (chattering phenomenon).

It should be noted here that in order to enforce the finite time convergence of the CO to its target
set in the presence of an uncertain spatiotemporal field, one would typically utilize, for example,
discontinuous sliding mode controllers (see [24] and references therein). The implementation of these
discontinuous controllers, however, suffer from the chattering phenomenon [23]. It will be shown
that the problem of guiding the position vector of the CO to a given target in finite time in the
presence of uncertain wind can be solved by means of a controller that is continuous everywhere,
except from an isolated point that is never attained during the time interval of interest.

III. The Guidance Problem in the Presence of Uncertain Wind

The main objective of this work is the design of (at least) continuous feedback guidance laws
that, in contrast with the PD and the PID control laws presented in Section II, can drive the position
vector of the CO to the origin in finite time in the presence of wind with an uncertain spatiotemporal
velocity field, while the latter is traveling at an either approximately or exactly constant airspeed
(soft and hard constraints, respectively). The characterization of the guidance law will be made
under the assumption that the velocity field of the wind is not known a priori but is measured along
the ensuing path of the CO to its target set by onboard sensors. In addition, the measurements of
the local wind’s velocity are imperfect and no information about its total time derivative (spatial
and temporal gradients) is available to the CO at all times.

5



In particular, it is assumed that the wind velocity can be expressed as the vector sum of a known
(measured) component, ω(t, ξ), and an uncertain one, ∆ω(t, ξ) (measurement error). Alternatively,
one can think of ω(t, ξ) and ∆ω(t, ξ) as, respectively, the slowly varying (dominant wind) and the
rapidly changing (gusting wind) components of the wind [29].

Assumption 1. The CO located at the position vector ξ at time t obtains a measurement ω(t, ξ) of
the local wind’s velocity ω(t, ξ)+∆ω(t, ξ), where ∆ω(t, ξ) corresponds to the unknown measurement
error, which is modeled as deterministic noise. It is assumed that the mapping (t, ξ) 7→ ω(t, ξ) is
continuous everywhere in [0,∞)×R

3 and, in addition, the mapping ξ 7→ w(t, ξ) is locally Lipschitz
continuous uniformly over t in any compact interval in [0,∞). In addition, there exist ω̄, ∆ω̄ ≥ 0,
where ω̄ + ∆ω̄ ∈ [0, 1), and β > 0, such that |ω(t, ξ)| ≤ ω̄ and |∆ω(t, ξ)| ≤ min{∆ω̄, β|ξ|}, for all
ξ ∈ R

3 and t ≥ 0.

Remark 1 Assumption 1 will facilitate the convergence analysis that will be presented in Sec-
tion IV. In simple words, Assumption 1 states that the sum of the maximum magnitudes of the
measured wind velocity and the measurement error never exceeds the “nominal” unit airspeed of the
CO. This assumption is not necessary for the convergence analysis; milder assumptions can be made
instead based on, for example, Propositions 8 and 10 from Ref. [6]. These assumptions, however,
are either non-verifiable a priori or require that the wind velocity field has a particular structure.

Remark 2 Note that Assumption 1 requires that the measurement error, ∆ω, behaves as an ad-
missible uncertainty (that is, it decreases as the CO approaches its target set); by contrast, the total
wind velocity ω +∆ω is not assumed to behave in the same way.

Two different kinematic models for the CO will be considered. The first model, that will be
referred to as the fully actuated kinematic model, will be described by the following set of equations

ξ̇ = ν + ω(t, ξ) + ∆ω(t, ξ), ν̇ = α, ξ(0) = ξ̄, ν(0) = ν̄. (14)

The situation is illustrated in Fig. 1. One observes that the input α can be expressed as the vector
sum of three mutually perpendicular components, that is, α = αν + α⊥

ν + α⊥⊥
ν , where αν ∈ R

3

corresponds to the component of α that is parallel to ν, that is, αν := 〈α, ν〉ν/|ν|2, provided
that ν 6= 0, and α⊥

ν and α⊥⊥
ν correspond to two mutually orthogonal components of α that are

both perpendicular to ν. In Fig. 1, the component α⊥⊥
ν is pointing into the page. An important

observation here is that, on the one hand, the component αν is responsible for any changes on
the airspeed of the CO, |ν|, along its ensuing path. On the other hand, the components α⊥

ν and
α⊥⊥
ν , which are perpendicular to ν at all times, can only change the direction of motion of the CO,

but they cannot affect its airspeed. Because in this particular model, the CO can control each of
the three components of α independently, both its airspeed and the direction of its motion can be
regulated simultaneously.

Remark 3 Although the kinematic model described by Eq. (14) neglects completely important
system nonlinearites, including the dynamics of the vehicle in response to the wind, its utilization
allows one to place the emphasis on the essentials of the geometry of the guidance problem. In
particular, the guidance laws that will be presented next will correspond to “outer-loop” guidance
laws, where the system nonlinearities are assumed to be handled by appropriate inner control
loops [28]. In this way, one can gain useful insights into the geometry of the steering problem
in the presence of wind.

The finite time guidance problem for the CO, whose motion is described by Eq. (14), to a given
target set is formulated next.

Problem 1. Suppose that Assumption 1 holds and let ǫ > 0 be given. Find a feedback control
law α(ξ, ν;ω) ∈ C(R3\{0} × R

3), that will drive the system described by Eq. (14) to the target set
Tǫ := {(ξ, ν) ∈ R

6 : |ξ| ≤ ǫ} in finite time tf(ǫ) < t̄f , where 0 < t̄f <∞, for any ǫ > 0.

Remark 4 The requirement that the CO must reach its target set in finite time has the following
meaning: For a given ǫ > 0, the CO driven by the feedback control law α(ξ, ν;ω) must converge to
the target set Tǫ after tf(ǫ) units of time, where tf(ǫ) ≤ t̄f <∞, that is, tf(ǫ) is upper bounded by a
finite bound, t̄f , which is independent of ǫ.
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Tǫ

−ξ/|ξ|
α

α⊥

ν

α⊥⊥

ν

αν

ν

ξ̄

Fig. 1 The steering problem in the presence of wind for a controlled object whose motion is
described by Eq. (14).

Next, a different kinematic model that describes the motion of the underactuated CO is in-
troduced. It will be referred to as the under-actuated kinematic model, which is described by the
following equations [19, 30]

ξ̇ = ν + ω(t, ξ) + ∆ω(t, ξ), ν̇ = ̟ × ν, ξ(0) = ξ̄, ν(0) = ν̄, (15)

where ̟ is the new control input and × denotes the cross product operation. Note that ν̇ = ̟× ν
is, by definition, perpendicular to the air velocity ν at all times, and thus, it can be written as
follows ν̇ = ̟ × ν = ν̇⊥ν + ν̇⊥⊥

ν , where ν̇⊥ν and ν̇⊥⊥
ν are two mutually orthogonal components of

ν̇, which span a plane that is perpendicular to the air velocity ν. The situation is illustrated in
Figure 2 (note that ν̇⊥⊥

ν is pointing into the page).
Note that only the components of ̟ that are perpendicular to ν can affect the motion of the

under-actuated CO. It is also interesting to highlight that the state constraint: |ν(t)| = 1, for all
t ∈ [0, tf ] (hard constraint), is now encoded in the new equations of motion of the CO given in (15).
In particular, ν̇ is now perpendicular to ν, and thus the CO is constrained to travel with constant
airspeed (there is no component of ν̇ parallel to ν to change the CO’s airspeed). Consequently,
the control input can only affect the direction of motion of the under-actuated CO. The steering
problem in this case is formulated as follows.

Problem 2. Address Problem 1 for the system described by Eq. (15). Equivalently, address Prob-
lem 1 under the additional (hard) state constraint: |ν(t)| = 1, for all t ∈ [0, tf ].

IV. Pure Pursuit Guidance via Vector Backstepping

In this section, Problems 1 and 2 are addressed. In particular, feedback laws aimed at making
the system described by Eqs. (14) and (15) to evolve similarly to a lower order kinematic model,
whose air velocity acts as the control input, will be presented next.
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Tǫ

−ξ/|ξ|

ν̇⊥⊥

ν

ν̇⊥

ν

ν

ξ̄

Fig. 2 The steering problem in the presence of wind with an uncertain spatiotemporal velocity
field for a controlled object whose motion is described by Eq. (15).

A. Pure Pursuit Navigation in Uncertain Spatiotemporal Wind

Let one consider the following lower order kinematic model

ξ̇ = ν(ξ) + ω(t, ξ) + ∆ω(t, ξ), ξ(0) = ξ̄, (16)

where ν(ξ) is the new control input. Let one assume that there exists ν⋆(·) ∈ C
1(R3\{0}), that will

drive the system (16) to the target set T ⋆
ǫ := {ξ ∈ R

3 : |ξ| ≤ ǫ} in finite time. The idea is to design
a feedback law that will force the velocity of the actual CO, whose motion is described by either
Eq. (14) or Eq. (15), to track the air velocity signal ν⋆(ξ), which is not an explicit function of time
but depends instead on the position vector ξ of the CO. As will be shown next, one can exploit the
special property of ν⋆(ξ) to steer the lower order kinematic model of CO described by Eq. (16) to
the target set T ⋆

ǫ in finite time, in order to design guidance laws that solve Problems 1 and 2. This
will be achieved with the utilization of an integral backstepping algorithm [21, 22] in vector form.
In particular, let ν⋆(ξ) = νPP(ξ), where

νPP(ξ) := −
ξ

|ξ|
, |ξ| > 0. (17)

The control law νPP(ξ) will be referred to as the pure pursuit navigation law because of its intrinsic
relation with the well known pure pursuit strategy [31, 32] from differential pursuit-evasion games
(for more details, see Ref. [6]). In particular, with the application of the pure pursuit navigation
law, the air velocity of the lower order CO points towards the target, that is, the direction −ξ/|ξ|
(known as the LOS direction), without explicitly accounting for the local wind. Because the local
wind is not directly compensated, the pure pursuit navigation law νPP(ξ) constantly tries to correct
the error between the direction of the ground velocity ξ̇ and the direction −ξ/|ξ|.

Proposition 1. Let ǫ > 0 and suppose that all conditions of Assumption 1 hold. Then, the pure
pursuit navigation law νPP(ξ) given by Eq. (17), will drive the system described by Eq. (16) to the
target set T ⋆

ǫ := {ξ ∈ R
3 : |ξ| ≤ ǫ} in finite time from any initial state ξ̄ ∈ R

3\T ⋆
ǫ . In addition,

〈∇ξVPP(ξ), ξ̇〉 = 〈∇ξVPP(ξ), νPP(ξ) + ω(t, ξ) + ∆ω(t, ξ)〉 ≤ −cPP, for all |ξ| > 0, (18)
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where VPP(ξ) := |ξ| and cPP := 1− ω̄ −∆ω̄.

Proof. The total time derivative of VPP(ξ) = |ξ| along the trajectories of the system (16), when
ν = νPP(ξ), is given by

d

dt
VPP(ξ) = 〈∇ξVPP(ξ), ξ̇〉 = 〈ξ/|ξ|, νPP(ξ) + ω(t, ξ) + ∆ω(t, ξ)〉

= −1 + 〈ξ/|ξ|, ω(t, ξ) + ∆ω(t, ξ)〉, (19)

where the facts that ∇ξVPP(ξ) = ξ/|ξ| = −νPP(ξ) and |νPP(ξ)| ≡ 1 have been used. By hypothesis,
|ω(t, ξ)| ≤ ω̄ and |∆ω(t, ξ)| ≤ min{∆ω̄, β|ξ|} ≤ ∆ω̄, for all t ≥ 0 and ξ ∈ R

3\{0}, where 0 ≤
ω̄ +∆ω̄ < 1, which along with the Cauchy Schwarz inequality imply that

d

dt
VPP(ξ) ≤ −1 + ω̄ +∆ω̄ < 0, (20)

and the result follows readily (note that the time derivative of VPP is upper bounded by a strictly
negative number).

Remark 5 Note that a control law ν̃PP(ξ) := −ϑ(ω̄,∆ω̄)ξ/|ξ|, where ω̄ + ∆ω̄ < ϑ(ω̄,∆ω̄) ≤ 1,
will also work in this case. By taking ϑ(ω̄,∆ω̄) ≡ 1, the CO will always travel with constant unit
airspeed, which is taken to be the “nominal” airspeed in this work.

Lemma 1. Let r ∈ R
3. Then,

∇ξνPP(ξ)r =
1

|ξ|3
〈ξ, r〉ξ −

1

|ξ|
r =

1

|ξ|
(〈νPP(ξ), r〉νPP(ξ)− r). (21)

In addition,

|∇ξνPP(ξ)r| ≤ 2|r|/|ξ|. (22)

Proof. Equation (21) follows from standard vector calculus. In addition,

|∇ξνPP(ξ)r| ≤ (|〈νPP(ξ), r〉||νPP(ξ)|+ |r|)/|ξ|

≤ |r|(|νPP(ξ)|
2 + 1)/|ξ|

≤ 2|r|/|ξ|, (23)

where the fact that |νPP(ξ)| ≡ 1 along with the Cauchy Schwarz and the triangle inequalities have
been used.

B. Pure Pursuit Feedback Guidance Law for the Fully Actuated Controlled Object

Next, a feedback guidance law that addresses Problem 1 is presented. As it has been mentioned
already, the proposed guidance law will constantly attempt to steer the CO such that it follows
closely the motion of a first order kinematic model driven by the pure pursuit navigation law
introduced earlier.

Proposition 2. Let ǫ > 0 be given and suppose that all the conditions of Assumption 1 hold. Then,
the guidance law

αPP(ξ, ν;ω) = −
k

µ
(ν − νPP(ξ)) +

1

µ
νPP(ξ) +

1

|ξ|
(〈νPP(ξ), ν + ω(t, ξ)〉 νPP(ξ)− (ν + ω(t, ξ))) , (24)

where 0 < µ < (1 − ω̄ − ∆ω̄)/β, k > µβ and νPP(ξ) := −ξ/|ξ|, will drive the system described
by Eq. (14) to the target set Tǫ := {(ξ, ν) ∈ R

6 : |ξ| ≤ ǫ} in finite time tf from any initial state
(ξ̄, ν̄) ∈ R

6\Tǫ. In addition, the airspeed |ν(t)| will remain bounded for all t ∈ [0, tf ], and in
particular,

|ν(t)| ≤ 1 +

√

2

µ
(VPP(ξ̄, ν̄)− ǫ), for all t ∈ [0, tf ], (25)
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where VPP(ξ, ν) := |ξ| +
µ

2
|ν − νPP(ξ)|

2, for all (ξ, ν) ∈ R
6\Tǫ. Finally, the travel time satisfies the

following upper bound

tf ≤
VPP(ξ̄, ν̄)− ǫ

λPP
<
VPP(ξ̄, ν̄)

λPP
<∞, (26)

where λPP := 1− ω̄ −∆ω̄ − µβ.

Proof. In light of Lemma 1, |∇ξνPP(ξ)∆ω(t, ξ)| ≤ 2|∆ω(t, ξ)|/|ξ|. By hypothesis |∆ω(t, ξ)| ≤
min{∆ω̄, β|ξ|} ≤ β|ξ|. Therefore,

|∇ξνPP(ξ)∆ω(t, ξ)| ≤ 2β, for all |ξ| > 0. (27)

Moreover, in view of (21) and the fact that ∇ξVPP(ξ) = −νPP(ξ), the guidance law αPP(ξ, ν;ω)
given in Eq. (24) can be written as follows

αPP(ξ, ν;ω) = −
k

µ
(ν − νPP(ξ))−

1

µ
∇ξVPP(ξ) +∇ξνPP(ξ)(ν + ω(t, ξ)). (28)

The time derivative of VPP(ξ, ν) := VPP(ξ) +
µ

2
|ν − νPP(ξ)|

2 evaluated along the trajectories of the

system described by Eq. (14) is given by

V̇PP(ξ, ν) = 〈∇ξVPP(ξ, ν), ξ̇〉+ 〈∇νVPP(ξ, ν), ν̇〉

= 〈∇ξVPP(ξ), ξ̇〉 − µ〈∇ξνPP(ξ)ξ̇, ν − νPP(ξ)〉+ µ〈ν̇, ν − νPP(ξ)〉

= 〈∇ξVPP(ξ), ν + ω(t, ξ) + ∆ω(t, ξ)〉

− µ〈∇ξνPP(ξ)(ν + ω(t, ξ) + ∆ω(t, ξ)), ν − νPP(ξ)〉

+ µ〈αPP(ξ, ν;ω), ν − νPP(ξ)〉

= 〈∇ξVPP(ξ), νPP(ξ) + ω(t, ξ) + ∆ω(t, ξ)〉+ 〈∇ξVPP(ξ), ν − νPP(ξ)〉

− µ〈∇ξνPP(ξ)(ν + ω(t, ξ) + ∆ω(t, ξ)), ν − νPP(ξ)〉

+ µ〈αPP(ξ, ν;ω), ν − νPP(ξ)〉

= 〈∇ξVPP(ξ), νPP(ξ) + ω(t, ξ) + ∆ω(t, ξ)〉

− µ〈∇ξνPP(ξ)∆ω(t, ξ), ν − νPP(ξ)〉

− k|ν − νPP(ξ)|
2

≤ −cPP − µ〈∇ξνPP(ξ)∆ω(t, ξ), ν − νPP(ξ)〉 − k|ν − νPP(ξ)|
2, (29)

where cPP := 1− ω̄ −∆ω̄, and (18) and (28) have been used. In addition, by (27) and the Cauchy
Schwarz inequality, it follows that

−〈∇ξνPP(ξ)∆ω(t, ξ), ν − νPP(ξ)〉 ≤ |∇ξνPP(ξ)∆ω(t, ξ)||ν − νPP(ξ)| ≤ β(1 + |ν − νPP(ξ)|
2), (30)

for all t ∈ [0,∞) and ξ ∈ R
3\{0}, where the fact that 2a ≤ 1 + a2, a ∈ R, has been used. In light

of (30) along with the fact that k > µβ, which is true by hypothesis, (29) implies that

V̇PP(ξ, ν) ≤ − (cPP − µβ)− (k − µβ) |ν − νPP(ξ)|
2 ≤ −λPP,

where λPP := cPP − µβ, λPP > 0 (by hypothesis). It follows that

VPP(ξ(t), ν(t))− VPP(ξ̄, ν̄) ≤ −λPPt. (31)

In addition, by the triangle inequality,

|ν(t)| ≤ |νPP(ξ(t))|+ |ν(t)− νPP(ξ(t))|

≤ 1 +

√

2

µ
(VPP(ξ(t), ν(t))− |ξ(t)|)

≤ 1 +

√

2

µ
(VPP(ξ(t), ν(t))− ǫ)

≤ 1 +

√

2

µ
(VPP(ξ̄, ν̄)− ǫ),
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where VPP(ξ, ν) := |ξ| +
µ

2
|ν − νPP(ξ)|

2 > ǫ, for all t ∈ [0, tf ] and (ξ, ν) ∈ R
6\Tǫ. In addition, let t′

f

be the first time instant at which VPP(ξ(t
′

f
), ν(t′

f
)) = ǫ. Then,

|ξ(t′
f
)| ≤ |ξ(t′

f
)|+

µ

2
|ν(t′

f
)− νPP(ξ(t

′

f
))|2 = VPP(ξ(t

′

f
), ν(t′

f
)) = ǫ.

Therefore, tf ≤ t′
f
. Furthermore, by setting t = t′

f
in (31), it follows that

tf ≤ t′
f
≤
VPP(ξ̄, ν̄)− ǫ

λPP
≤
VPP(ξ̄, ν̄)

λPP
.

Remark 6 Note that because the wind velocity is, in general, both temporally and spatially varying,
the feedback guidance law αPP(ξ, ν;ω) is practically a time-varying feedback law.

Remark 7 One observes that by selecting a sufficiently large µ, and thus placing a large weight on
the velocity error term |ν − νPP(ξ)|

2 that appears in the definition of VPP, the upper bound on the
airspeed given by the right hand side of (25) becomes approximately equal to one.

Remark 8 In the proof of Proposition 2, the generalized Lyapunov function VPP(ξ, ν) = |ξ|+
µ

2
|ν−

νPP(ξ)|
2 has been used. Note that VPP is a Lipschitz continuous function that does not belong to

C
1 in every neighborhood of the origin; hence, the “generalized” qualifier. It should be mentioned

here that one can use a more general class of candidate (generalized) Lyapunov functions, which
are given by ṼPP(ξ, ν) := VPP(ξ) + 1

2µ(|ξ|)|ν − νPP(ξ)|
2, where ψ 7→ µ(ψ) is a function in C

1([0,∞))
such that µ1 ≤ µ(|ξ|) < µ2, for all |ξ| ≥ 0, where µ1 and µ2 are positive constants. One can show,
by using similar arguments as in the proof of Proposition 2, that the corresponding feedback control
law in this case will be given by

α̃PP(ξ, ν;ω) := −
k

µ(|ξ|)
(ν − νPP(ξ))−

1

µ(|ξ|)
∇ξVPP(ξ) +∇ξνPP(ξ)(ν + ω(t, ξ))

−
1

2µ(|ξ|)
〈∇ξµ(|ξ|), ν + ω(t, ξ)〉(ν − νPP(ξ)). (32)

With the use of the control law (32), one has the flexibility of weighting the (soft) constraint
ν = νPP(ξ) along the ensuing path of the CO, via the term 1

2µ(|ξ|)|ν − νPP(ξ)|
2 that appears in the

definition of ṼPP, based on the relative distance of the CO from its target instead of imposing a
globally uniform weight.

It should be highlighted at this point that the pure pursuit guidance law αPP(ξ, ν;ω) given in
Eq. (24) requires knowledge of the velocity of the local wind. This is in contrast with the pure pursuit
navigation law νPP(ξ) that drives (16), which is completely independent of the wind. One observes
here that the use of the integral backstepping logic increased the required level of information about
the local wind that should be available to the CO along its ensuing path. Now let ν⊥

PP
(ξ) and ν⊥⊥

PP
(ξ)

be two mutually perpendicular unit vectors which along with νPP(ξ) form an orthonormal triad of
basis vectors that travels along the ensuing path of the CO. In particular, one has

νg(ν) = 〈νPP(ξ), νg(ν)〉 νPP(ξ) + 〈ν⊥
PP

(ξ), νg(ν)〉 ν
⊥

PP
(ξ) + 〈ν⊥⊥

PP
(ξ), νg(ν)〉 ν

⊥⊥

PP
(ξ).

It is then interesting to note that (24) can be written as follows

αPP(ξ, ν;ω) = −
k

µ
(ν − νPP(ξ)) +

1

µ
νPP(ξ) +

1

|ξ|
(〈νPP(ξ), νg(ν)〉 νPP(ξ)− νg(ν)) ,

= −
k

µ
(ν − νPP(ξ)) +

1

µ
νPP(ξ)−

1

|ξ|

(

〈ν⊥
PP

(ξ), νg(ν)〉 ν
⊥

PP
(ξ) + 〈ν⊥⊥

PP
(ξ), νg(ν)〉 ν

⊥⊥

PP
(ξ)

)

,

where νg(ν) := ν + ω(t, ξ). One immediately concludes that the last term in the right hand side of
Eq. (24) is always perpendicular to νPP(ξ) and vanishes when νg(ν) is parallel to νPP(ξ) (the LOS
direction or its opposite). Consequently, the role of the last term in the right hand side of Eq. (24)
is to rotate the air velocity of the CO to point towards the correct direction that will allow the latter
to converge to its target set.
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Proposition 3. The norm |αPP(ξ, ν;ω)| of the guidance law given by Eq. (24) satisfies the following
upper bound

|αPP(ξ, ν;ω)| ≤ (k/µ+ 2/ǫ)

√

2

µ
(VPP(ξ̄, ν̄)− ǫ) + 1/µ+ 2(ω̄ + 1)/ǫ, (33)

where VPP(ξ, ν) := |ξ|+
µ

2
|ν − νPP(ξ)|

2, for all (ξ, ν) ∈ R
6\Tǫ and t ∈ [0, tf ] .

Proof. By Eq. (28), the triangle inequality and the fact that |∇ξVPP(ξ)| = |νPP(ξ)| = 1, for all
|ξ| > 0, it follows that

|αPP(ξ, ν;ω)| ≤ k/µ|ν − νPP(ξ)|+ 1/µ+ |∇ξνPP(ξ)(ν + ω(t, ξ))|. (34)

Similarly to the proof of Proposition 2, one can show that

|ν(t)− νPP(ξ)| ≤

√

2

µ
(VPP(ξ̄, ν̄)− ǫ), |ν(t)| ≤ 1 +

√

2

µ
(VPP(ξ̄, ν̄)− ǫ), (35)

which along with (22) imply that

|∇ξνPP(ξ(t))(ν(t) + ω(t, ξ(t)))| ≤ 2(|ν(t)|+ ω̄)/ǫ, (36)

for all t ∈ [0, tf ]. The result follows readily from (34)-(36).

Remark 9 Note that, in practice, the norm |αPP(ξ, ν;ω)| is upper bounded by an a priori known
bound ᾱ > 0, which reflects the limits of the operational envelope of the CO. The condition (33)
allows one to tune the gains k and µ in order to achieve a given accuracy of convergence, ǫ, of the
CO to its target set, while the condition |αPP(ξ, ν;ω)| ≤ ᾱ is satisfied at all times. In particular,
|αPP(ξ, ν;ω)| becomes smaller when one selects a sufficient large µ, or more precisely, a small ratio
k/µ; something that places a large weight on the error |ν − νPP(ξ)|

2 that appears in the definition
of VPP. Note, however, that in light of Proposition 2, the gains k and µ should be chosen such that
k/µ > β and µ < (1− ω̄−∆ω̄)/β; in addition, by selecting a large µ, the upper bound on the arrival
time, t̄f , will become large as well.

C. Pure Pursuit Feedback Guidance Law for the Under-Actuated Controlled Object

In the previous analysis, it has been assumed that the CO can control the time derivative of its
air velocity under no explicit constraints. However, in many applications it is required that the CO
should maintain a constant airspeed; consequently, the time derivative of its air velocity has to be
perpendicular to the air velocity at all times.

In order to address Problem 2, the following approach is adopted. The control input vector ̟PP

that steers the under-actuated CO is taken to be such that its cross product with the air velocity ν
equals a third vector that, at each time t, is as “close” as possible to the vector αPP, which is given
by Eq. (24) (the control input of the fully actuated CO). In particular, the new control input ̟PP

would ideally satisfy the following cross product (vector) equation ̟PP(ξ, ν;ω) × ν = αPP(ξ, ν;ω),
for all (ξ, ν) along the CO’s ensuing path. However, unless αPP(ξ, ν;ω) is perpendicular to ν, the
cross product (vector) equation does not admit a solution. One standard approach is to subtract
the component 〈αPP(ξ, ν;ω), ν〉ν/|ν|

2 = 〈αPP(ξ, ν;ω), ν〉ν from αPP(ξ, ν;ω) and, subsequently, solve
the resulting cross product (vector) equation

̟PP(ξ, ν;ω)× ν = αPP(ξ, ν;ω)− 〈ν, αPP(ξ, ν;ω)〉ν, (37)

which now admits infinite solutions. The minimum norm solution to Eq. (37) is given by (see, for
example, [33])

̟PP(ξ, ν;ω) =
1

|ν|2
ν × αPP(ξ, ν;ω) = ν × αPP(ξ, ν), (38)
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where αPP(ξ, ν;ω) is given by Eq. (24). Note that Eq. (37) implies that there is an error ∆ν̇ between
the desired time derivative of the air velocity, αPP(ξ, ν;ω), and the actual one, ̟PP(ξ, ν;ω)×ν. The
error ∆ν̇ corresponds to the projection of αPP(ξ, ν;ω) on the air velocity vector ν. In particular,

∆ν̇(ξ, ν;ω) := αPP(ξ, ν;ω)−̟PP(ξ, ν;ω)× ν = 〈ν, αPP(ξ, ν;ω)〉ν. (39)

It can be shown, by using similar arguments as in the proof of Proposition 2, that the feedback
guidance law (38) will (locally) solve Problem 2.

As will be illustrated in the numerical simulations that will be presented in Section V, the use of
the proposed guidance law ̟PP gives good results in practice even when one considers challenging
scenarios, where for example, the vectors ν and νPP are, at time t = 0, opposite. Next, a feedback
control law, which guarantees (almost) global finite time convergence of the under-actuated CO to
its target set for the two-dimensional case, is presented.

D. Pure Pursuit Feedback Guidance Law for the Under-Actuated Controlled Object in a
Two-Dimensional Case

Next, it is shown that by using similar arguments to the ones employed for the development of
the guidance law (24) for the fully actuated CO, but in a way that respects the fact that now the
CO is under-actuated, one can develop a guidance law that solves the steering problem (almost)
globally for the two-dimensional case.

In particular, let ν(θ) := (ν[1](θ), ν[2](θ)), where ν[1](θ) = cos θ, ν[2](θ) = sin θ and θ denotes the
heading angle of the CO, that is, θ = atan2(ν

[2], ν[1]), θ ∈ [−π, π]; in addition, θ̄ = atan2(ν̄
[2], ν̄[1]),

where ν̄ := (ν̄[1], ν̄[2]). Note that |ν(θ)| = 1 for all θ ∈ [−π, π]. The input of the CO in this case is
the rate of change of the heading angle, that is, u = θ̇. Then, the equations of motion of the CO in
the two-dimensional plane can be written as follows

ξ̇ = ν(θ) + ω(t, ξ) + ∆ω(t, ξ), ν̇ = α(θ, u), ξ(0) = ξ̄, ν(0) = ν̄, (40)

where the acceleration α(θ, u) is constrained to satisfy the following equation:

α(θ, u) = (−θ̇ sin θ, θ̇ cos θ) = u(− sin θ, cos θ).

Note that α(θ, u) is always perpendicular to the air velocity vector ν(θ).
Now, let ξ = (ξ[1], ξ[2]) and ω(t, ξ) = (ω[1](t, ξ), ω[2](t, ξ)). Then, the pure pursuit navigation

law can be written as follows: νPP(ξ) = (cos θPP(ξ), sin θPP(ξ)), where θPP(ξ) = atan2(−ξ
[2],−ξ[1]),

for all ξ ∈ R
2\T ⋆

ǫ . Note that, by definition, the function θPP(·) takes values on [−π, π] and belongs
to C

1(R2\T ⋆
ǫ ), for any ǫ > 0. It is straightforward for one to show that

∇ξθPP(ξ) = 1/|ξ|2(−ξ[2], ξ[1]), for all ξ ∈ R
2\T ⋆

ǫ . (41)

In light of Assumption 1, it is also easy to show that

〈∇ξθPP(ξ),∆ω(t, ξ)〉 ≤ β. (42)

Let one consider the following feedback control law

uPP(ξ, θ;ω) = uα
PP

(ξ, θ;ω) + uβ
PP
(ξ, θ) + uγ

PP
(ξ, θ), (43)

where

uα
PP

(ξ, θ;ω) := 〈∇ξθPP(ξ), ν(θ) + ω(t, ξ)〉,

uβ
PP

(ξ, θ) :=







−
1− cos(θ − θPP(ξ))

µ sin(θ − θPP(ξ))
, if |θ − θPP(ξ)| ∈ (0, π) ∪ (π, 2π), ξ ∈ R

2\T ⋆
ǫ ,

0, if θ = θPP(ξ), ξ ∈ R
2\T ⋆

ǫ ,

uγ
PP

(ξ, θ) := −
k

µ
sin(θ − θPP(ξ)). (44)
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Note that, for every ξ ∈ R
2\T ⋆

ǫ , uβ
PP
(ξ, ·) is continuous at θ = θPP(ξ), for any ǫ > 0. To see this, it

suffices to observe that limϑ→0(1 − cosϑ)/ sinϑ = 0 by application of L’Hopital’s rule. Note that

uβ
PP
(ξ, θ) is not well defined when |θ − θPP(ξ)| = π (singular direction). The modification of the

proposed control law such that this singular direction is always avoided is beyond the scopes of this
paper. Let one consider the candidate (generalized) Lyapunov function

VPP(ξ, θ) = VPP(ξ) +
µ

2
(ν(θ)− νPP(ξ))

2 = VPP(ξ) + µ(1− 〈ν(θ), νPP(ξ)〉) (45)

= VPP(ξ) + µ(1− cos(θ − θPP(ξ)). (46)

Moreover, uβ
PP
(ξ, θ) can be written alternatively as follows

uβ
PP
(ξ, θ) = −

1

µ sin(θ − θPP(ξ))
〈∇ξVPP(ξ), ν(θ)− νPP(ξ)〉. (47)

Then, provided that |θ − θPP(ξ)| 6= π, the time derivative of VPP(ξ, θ) along the trajectories of the
system (40) after closing the loop with the control law (43) is given by

V̇PP(ξ, θ) = 〈∇ξVPP(ξ, θ), ξ̇〉+ 〈∇θVPP(ξ, θ), θ̇〉

= 〈∇ξVPP(ξ), ξ̇〉+ µ sin(θ − θPP(ξ))(uPP(ξ, θ;ω)− 〈∇ξθPP(ξ), ξ̇〉)

= 〈∇ξVPP(ξ), ν(θ) + ω(t, ξ) + ∆ω(t, ξ)〉

+ µ sin(θ − θPP(ξ))(uPP(ξ, θ;ω)− 〈∇ξθPP(ξ), ν(θ) + ω(t, ξ) + ∆ω(t, ξ)〉)

= 〈∇ξVPP(ξ), νPP(ξ) + ω(t, ξ) + ∆ω(t, ξ)〉+ 〈∇ξVPP(ξ), ν(θ)− νPP(ξ)〉

+ µ sin(θ − θPP(ξ))(uPP(ξ, θ;ω)− 〈∇ξθPP(ξ), ν(θ) + ω(t, ξ) + ∆ω(t, ξ)〉)

= 〈∇ξVPP(ξ), νPP(ξ) + ω(t, ξ) + ∆ω(t, ξ)〉

− µ sin(θ − θPP(ξ))〈∇ξθPP(ξ),∆ω(t, ξ)〉 − k sin2(θ − θPP(ξ))

≤ −cPP + µβ| sin(θ − θPP(ξ))| − k sin2(θ − θPP(ξ))

≤ −cPP +
µβ

2
(1 + sin2(θ − θPP(ξ)))− k sin2(θ − θPP(ξ))

≤ −cPP +
µβ

2
−

(

k −
µβ

2

)

sin2(θ − θPP(ξ)), (48)

where (42), (43), (47), Proposition 1, and the fact that 2a ≤ 1 + a2, a ∈ R, were employed. By
taking 0 < µ < 2cPP/β and k > µβ/2, it follows that

V̇PP(ξ, θ) ≤ −cPP +
µβ

2
< 0.

Therefore, for every ǫ > 0, the CO whose motion is described by (40), when driven by the feedback
guidance law (43), will reach the target set Tǫ from any initial condition (ξ̄, ν̄(θ̄)) ∈ R

4\Tǫ in finite
time tf , provided that |θ(t)−θPP(ξ(t))| 6= π, for all t ∈ [0, tf(ǫ)]. In addition, tf(ǫ) ≤ VPP(ξ̄, θ̄)/(cPP−
µβ/2), for all ǫ > 0.

V. Numerical Simulations

In this section, numerical simulations, which better illustrate the analysis developed so far, are
presented. The simulations are based on a spatially varying velocity field from real wind data taken
from the file wind.mat, which can be found in MATLAB [34]. The magnitude of the wind velocities
from these data is properly scaled for simulation purposes. The quiver plot of the (normalized) wind
velocity along with the contours of the (normalized) wind speed are illustrated in Fig. 3.

In addition, it is assumed that the measurement error ∆ω(t, ξ), which is treated as deterministic
noise, corresponds to 20% of the actual wind velocity, such that the actual wind is 20% stronger than
the measured one; consequently, the guidance laws will account for a weaker wind than the actual
one. Note that for these simulations, it will not be assumed that the measurement error behaves as
an admissible uncertainty; consequently, ∆ω(t, ξ) does not necessarily decrease as the CO approaches
the origin, in contradistinction with Assumption 1. In this way, the proposed guidance laws will be

14



 

 

−4 −2 0 2 4

−4

−3

−2

−1

0

1

2

3

4

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

x

y

Fig. 3 The quiver plot of the (normalized) wind velocity along with the contours of the
(normalized) wind speed based on real wind data.

tested in more challenging scenarios than those that are in accordance with Assumption 1. Figure 4
and Figures 5, 6 illustrate the trajectories of, respectively, the fully actuated CO (Eq. (14)) driven
by the guidance law αPP(ξ, ν;ω) (Eq. (24)) and the under-actuated CO (Eqs. (15) and (40)) driven
by the guidance laws ̟PP(ξ, ν;ω) (Eq. (38)) and uPP(ξ, θ;ω) (Eq. (43)), for µ = 1 and ǫ = 0.1
and different values of the gain k. It is assumed that the CO starts from eight different locations
along the perimeter of a square centered at the origin with initial airspeed |ν̄| = 1m/s, whereas the
direction of its air velocity measured from the x-axis is π/4 rad. One observes that, in all cases,
the CO converges successfully to the target set in finite time while effectively accounting for the
presence of the spatiotemporal wind as well as the significant measurement errors. Therefore, all
the proposed guidance laws enjoy desirable robustness properties even when some of the technical
conditions given in Assumption 1 do not hold.

As is illustrated in Figure 4, for larger values of the gain k, the fully actuated CO driven by
the guidance law αPP(ξ, ν;ω) traverses paths that are “parallel” to the initial LOS direction, after
a transient phase. During this transient phase, the CO appropriately corrects the error between
the directions of its air velocity ν and νPP (LOS direction). On the other hand, when the gain k
is small, |αPP(ξ, ν;ω)| also remains small along the ensuing path of the CO and consequently, the
transient phase lasts longer and the turns that the CO makes are less sharp.

Similar observations can be made for the trajectories of the under-actuated CO driven by
̟PP(ξ, ν;ω) and uPP(ξ, θ;ω), which are illustrated, respectively, in Figures 5 and 6. Due to the
additional constraint that |ν(t)| ≡ 1, the paths that the under-actuated CO traverses in this case
consist of wider turns than the fully actuated CO driven by αPP(ξ, ν;ω) for the same values of the
ratio k/µ. The most interesting case is when the CO starts from the point with coordinates (3, 3)
in the x − y plane, in which case, the vectors ν̄ and νPP(ξ̄) are initially opposite. One observes
that both the guidance laws ̟PP(ξ, ν;ω) and uPP(ξ, θ;ω) successfully drive the under-actuated CO
to its target set, although the ensuing paths in the two cases differ significantly. Specifically, in
the case when the CO is driven by ̟PP(ξ, ν;ω), one observes a noticeable transient phase at the
beginning of the course of the CO, during which the CO moves away from the latter, while rotating
its velocity vector to aim at the target set. By selecting larger values for the gain k, this transient
phase becomes shorter. The transient phase is much shorter in the case when the CO is driven by
the guidance law uPP(ξ, θ;ω). In general, the paths of the CO that is driven by the guidance law
uPP(ξ, θ;ω) are more intuitive than those that result from the application of ̟PP(ξ, ν;ω), especially
for small values of k/µ. On the other hand, the trajectories of the under-actuated CO driven by
either ̟PP(ξ, ν;ω) or uPP(ξ, θ;ω) look similar to those of the fully actuated CO (Eq. (14)) driven
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by αPP(ξ, ν;ω), for sufficiently large values of k.
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(a) Paths generated by αPP for k = 0.5 and ǫ = 0.1
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(b) Paths generated by αPP for k = 1 and ǫ = 0.1
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(c) Paths generated by αPP for k = 2 and ǫ = 0.1
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(d) Paths generated by αPP for k = 5 and ǫ = 0.1.

Fig. 4 Paths traversed by the fully actuated CO emanating from different initial states and
driven by the guidance law αPP(ξ, ν;ω) in the presence of a spatially varying wind velocity field.

VI. Conclusions

In this work, feedback guidance laws that steer a controlled object to a given target set in the
presence of uncertain wind, whose velocity varies both spatially and temporally, have been presented.
The proposed approach was based on the use of a backstepping algorithm in vector form that has
allowed the utilization of the solution techniques for the steering problem of a lower order kinematic
model in the presence of uncertain wind, which were introduced in the author’s prior work.

An interesting issue that has arisen in the analysis of the proposed guidance scheme had to
do with the fact that the level of information about the wind required for the realization of the
proposed control law had increased compared to what was needed for the characterization of the
solution to the steering problem for the corresponding lower order kinematic model. In particular,
the navigation law that successfully steers the lower order kinematic model to its target set does
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(a) Paths generated by ̟PP for k = 0.5 and ǫ = 0.1
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(b) Paths generated by ̟PP for k = 1 and ǫ = 0.1
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(c) Paths generated by ̟PP for k = 2 and ǫ = 0.1
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(d) Paths generated by ̟PP for k = 5 and ǫ = 0.1.

Fig. 5 Paths traversed by the under-actuated CO emanating from different initial states and
driven by the guidance law ̟PP(ξ, ν;ω) in the presence of a spatially varying wind velocity
field.

not require any knowledge of the local wind. By contrast, the guidance law that results from this
wind-independent navigation law via the application of the backstepping algorithm, requires explicit
knowledge of the local wind. This observation rendered automatically some of the other navigation
laws introduced in the author’s previous work unsuitable for the problem treated in this work, given
that their implementation requires knowledge of the wind’s velocity. Consequently, the realization
of their corresponding guidance laws, via backstepping algorithms similar to the ones presented in
this work, would require knowledge of the gradient of the local wind velocity field, which is not
always available in practice.

Another interesting issue was that the direct extension of the proposed approach for the steering
of the fully actuated controlled object to the case when the latter is under-actuated cannot guarantee
global convergence in finite time, in the three-dimensional case. It was shown, however, that by
employing the backstepping control logic in a way that “respects” the kinematics of the under-
actuated controlled object, one can design feedback control laws that solve (almost) globally the
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(a) Paths generated by uPP for k = 0.5 and ǫ = 0.1
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(b) Paths generated by uPP for k = 1 and ǫ = 0.1
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(c) Paths generated by uPP for k = 2 and ǫ = 0.1
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(d) Paths generated by uPP for k = 5 and ǫ = 0.1.

Fig. 6 Paths traversed by the under-actuated CO emanating from different initial states and
driven by the guidance law uPP(ξ, θ;ω) in the presence of a spatially varying wind velocity field.

finite-time guidance problem for the two-dimensional case.
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