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Distributed Partitioning Algorithms for Locational
Optimization of Multi-Agent Networks in SE(2)

Efstathios Bakolas

Abstract—This work is concerned with the development of
distributed spatial partitioning algorithms for locational opti-
mization problems involving networks of agents with planar
rigid body dynamics subject to communication constraints. The
domain of the problems we consider is a three-dimensional,
non-flat manifold embedded in the state space of the agents,
which we refer to as the terminal manifold. The approach
we propose allows us to associate the partition of the three-
dimensional terminal manifold, which is induced by a non-
quadratic proximity metric and comprised of non-convex cells,
with a one-parameter family of partitions of two-dimensional,
flat manifolds, which are induced by (parametric) quadratic
proximity metrics and comprised of convex polygonal cells. By
exploiting the special structure of the parametric partitions, we
develop distributed partitioning algorithms that converge in a
finite number of steps. Subsequently, we utilize the solutions to
the latter problems to solve a class of locational optimization
problems over the terminal manifold. Numerical simulations that
illustrate the capabilities of the proposed algorithms are also
presented.

I. I NTRODUCTION

In this paper, we propose distributed algorithms for Voronoi-
like partitioning and locational optimization problems involv-
ing networks of planar rigid bodies with limited communi-
cation capabilities. On one hand, the partitioning algorithms
are intended to allow the agents of the network to com-
pute their regions of influence over a three-dimensional non-
flat manifold embedded in their six-dimensional state space
in the presence of communication constraints. This three-
dimensional manifold, which we refer to as theterminal
manifold, consists of all the states that can be reached by the
agents of the network with zero linear and angular velocities.
The proposed partitioning algorithms yield a Voronoi-like
partition of the terminal manifold, which is a subdivision of
the latter into a finite collection of non-overlapping, but not
necessarily convex, cells that are in one-to-one correspondence
with the agents of the network (generators of this Voronoi-
like partition). On the other hand, the locational optimization
problem seeks for the optimal configurations of the agents of
the network on the terminal manifold with respect to a relevant
performance index.

At this point, we wish to emphasize that our goal is
the development of partitioning and locational optimization
algorithms that can be implemented in adistributed way. In
particular, in the proposed framework, every agent will be able
to perform the necessary computations for the characterization
of its own cell independently from the other agents of the same
network (for instance, no global grid of the terminal manifold
will be employed). In addition, for these computations, the
agents will rely on (local) information which can exchange
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with their neighbors in the topology induced by the Voronoi-
like partition (two agents are neighbors, if the boundariesof
their cells have a non-trivial intersection).

One of the most well-studied locational optimization prob-
lems for multi-agent networks is the so-called coverage prob-
lem in the Euclidean plane, whose performance index is the
expected value of the square of the Euclidean distance metric
for a given density function. It turns out that the minimizers
of this problem are the centroids of the cells of the standard
Voronoi partition generated by the multi-agent network [1]–
[5]. Despite the existence of a significant body of work on
consensus-type problems for multi-agent networks evolving
in SE(2) or SE(3) [6]–[9], as well as more abstract non-
Euclidean spaces including connected, compact, and homo-
geneous manifolds [10]–[13], no significant efforts have been
reported for addressing locational optimization problemsin
similar settings.

We wish to emphasize at this point that with the exception of
standard Voronoi partitions of convex and compact subsets of a
Euclidean space, whose proximity metric is the Euclidean dis-
tance, the development of distributed algorithms for Voronoi-
like partitioning problems with non-Euclidean (generalized)
proximity metrics and non-flat domains can be a complex
task. This increased complexity can be mainly attributed to
the fact that the latter partitions may be comprised of cells
that are non-convex in general. In addition, the ability of
a partitioning algorithm to be implemented in a distributed
fashion hinges upon the ability of each agent to discover its
neighbors in the topology of this partition (in this context, two
agents are neighbors if the boundaries of their cells have a non-
trivial intersection [14]) without having global knowledge of
the partition a priori. In the case of standard Voronoi partitions,
it is well known that each agent can discover its neighbors (in
this special case, two agents are neighbors if their cells share
a common edge, in two dimensions, or a common face, in
higher dimensions) by means of simple distributed algorithms
that exploit basic geometric properties of the standard Voronoi
diagram and its dual, the Delaunay triangulation or graph [1],
[15]–[17]. However, it is not obvious how the heading angles
or the inertial properties of the agents, when the latter are
modeled as rigid bodies, will affect both the structure of the
cells that comprise the partition (these cells may not even be
convex, as we have already mentioned) and their neighboring
relations with the other agents from the same network.

Literature review: Voronoi partitions are useful tools for
the development of distributed algorithms for control and
optimization problems involving multi-agent networks and
sensor networks [1], [2], [18]–[25]. Voronoi-like partitions
whose proximity metrics do not solely stem from geometric
considerations, such as the Euclidean distance, but encodein-
stead information about the dynamics of the agents, which we
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will collectively refer to asstate-dependentproximity metrics,
have been studied extensively in our previous work (see, for
instance, [14], [22], [26]–[29]). In particular, Refs. [27]–[29],
which were originally motivated by [30], present partitioning
algorithms that allow the agents of a network to compute
their own cells from partitions that are induced by state-
dependent proximity metrics independently from each other. In
these references, however, communication constraints arenot
accounted. In addition, the applicability of the algorithms pre-
sented in these references is limited to partitioning problems
over compact subsets offlat spaces (that is, linear or affine
subspaces) with quadratic proximity metrics. The solutions
of such problems turn out to be affine partitions comprised
of convex polygonal cells whose combinatorial complexity is
similar to that of standard Voronoi partitions.

Statement of contributions:The first objective of this work is
the development of distributed algorithms for the computation
of a Voronoi-like partition of the three-dimensionalterminal
manifold, whose proximity metric is taken to be the cost that
will be incurred by an agent of the network for its transition
to an arbitrary state in this manifold. This transition costwill
be measured in terms of the decrease of a relevant (gener-
alized) energy metric that occurs during the corresponding
state transition. This proximity metric is non-quadratic and
state-dependent. Consequently, the cells that comprise this
Voronoi-like partition may be non-convex, in general, and they
cannot be computed by directly applying any of the available
techniques in the relevant literature [31], [32]. To address this
difficult, at a first glance, partitioning problem, we propose
an approach that is based on a specialembeddingtechnique.
With this technique, the original partitioning problem is asso-
ciated with a one-parameter family of partitioning problems
whose domains are two-dimensional flat sub-manifolds of the
terminal manifold and their proximity metrics are (parametric)
quadratic functions. It turns out that the solution to each of
these parametric partitioning problems corresponds to an affine
partition comprised of convex polygonal cells with a modest
combinatorial complexity. In this work, we exploit the special
structure of these affine partitions in order to develop a novel
distributed partitioning algorithm for their computation. The
proposed algorithm, which leverages a certain optimization-
based interpretation of the partitioning problem, finds exactly a
representative sample of boundary points for any of the cells of
the affine partition in a finite number of steps. This is in sharp
contradistinction with the partitioning algorithms presented in
our previous work [27]–[29], which can find boundary points
of the cells that comprise an affine partition only asymptoti-
cally (practically, the algorithms proposed in these references
can achieve accuracy that is comparable with that achieved by
the algorithm proposed herein only after a significantly large
number of iterations). After the solution to each parametric
two-dimensional partitioning problem has been characterized,
one can immediately obtain the solution to the original three-
dimensional partitioning problem by stacking appropriately the
former solutions next to each other and along the parameter
axis. In this way, we characterize the three-dimensional and
non-convex cells that comprise the partition of the (non-flat)
terminal manifold, which are hard to compute directly, by
repeatedly applying efficient algorithms for the computation
of the convex polygonal cells that comprise each parametric
affine partition. We wish to emphasize at this point that some
of the key ideas and techniques of the proposedfinite stepsand

distributedpartitioning algorithms for affine partitions and in
particular, their optimization-based philosophy, constitute fun-
damental contributions to partitioning problems for spatially
distributed multi-agent networks, and their applicability could
potentially be extended to more general classes of problems.

It is important to highlight that the partitioning algorithms
proposed herein allow the agents of the network to compute
their own cells independently from their teammates based on
local information only (distributed partitioning algorithms). To
achieve this, we present an iterative scheme that seeks to find
a communication range for each agent of the network that is
sufficiently large to allow the latter to communicate directly
with its neighbors in the topology of the Voronoi-like partition,
which is not known a priori. The main challenge here comes
from the fact that the proximity metric that determines the
topology of the Voronoi-like partition is different from the
Euclidean distance that in turn determines whether two agents
are close enough to communicate with each other or not.

The second objective of this work is to address a certain
class of coverage-type locational optimization problems over
the terminal manifold in a distributed way. To this aim, we
use the proposed Voronoi-like partitioning algorithms in order
to allow each agent of the network to find its minimizing
state based on information that is encoded in its own cell.
It turns out that the minimizing position of each agent is
an appropriately weighted average of the optimal positions
of a family of locational optimization problems whose do-
mains correspond to two-dimensional, flat sub-manifolds of
the (three-dimensional) terminal manifold. On the other hand,
we show that the minimizing heading angle of each agent for
the original locational optimization problem can be computed
directly by solving a trigonometric algebraic equation over a
compact interval, which admits a solution always.

Structure of the paper:The rest of the paper is orga-
nized as follows. Section II presents the formulation of the
partitioning problem subject to communication constraints.
In Section III, we embed the original partitioning problem
into a one-parameter family of partitioning problems that can
be addressed by means of distributed algorithms. Distributed
solutions to coverage-type locational optimization problems
are presented in Section IV. Section V presents numerical
simulations, and finally, Section VI concludes the paper with a
summary of remarks together with directions for future work.

II. PROBLEM FORMULATION

A. Notation

We denote byRn the set ofn-dimensional real vectors
and by R≥0 the set of non-negative real numbers. The set
of integers and the set of non-negative integers are denotedby
Z andZ≥0, respectively. We write|α| to denote the 2-norm of
a vectorα ∈ Rn. The unit circle inR2 will be denoted byS1,
that is,S1 := {x ∈ R2 : |x| = 1}. Given a unit vectore in
R2, we will write e ∈ S1 (note the vectore is written in bold
font). If ϑ is the angular parameter that corresponds to a unit
vectore = e(ϑ) in S1 (for instance,e(ϑ) = [cosϑ, sinϑ]T),
we will write ϑ ∈ S1 instead ofϑ ∈ [2kπ, (2k + 1)π[, for
somek ∈ Z, with a slight abuse of notation (note that the
angular parameterϑ is written in normal font). In addition,
we write B(x; η) to denote the closed ball of radiusη > 0
aroundx ∈ Rn, that is,B(x; η) := {z ∈ Rn : |z−x| ≤ η}.
Given two (column) vectorsα ∈ Rn1 , β ∈ Rn2 , we denote
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by col(α,β) the (n1 + n2)-dimensional real (column) vector
that corresponds to their concatenation. The notation can be
extended in the natural way for the concatenation of three or
more vectors. In addition, given a vectorc ∈ Q ⊆ Rn1+n2 ,
where c = col(α,β), α ∈ A ⊆ Rn1 and β ∈ B ⊆ Rn2 ,
we write α = πA(c) and β = πB(c) (note that πA(·)
andπB(·) are projection operators). Furthermore,bd(A) and
int(A) denote, respectively, the boundary and the interior of
a setA. The relative boundary and the relative interior of a
setA will be denoted byrbd(A) and rint(A), respectively.
Given two pointsα, β ∈ Rn, we denote by[α,β] the line
segment connecting them (including the two endpoints), that
is, [α,β] := {x ∈ Rn : x = tα+ (1− t)β, 0 ≤ t ≤ 1}. In
addition, we denote by]α,β] and [α,β[ the set[α,β]\{α}
and the set[α,β]\{β}, respectively. Furthermore, given a
symmetric matrixP = PT ∈ Rn×n, we denote byλmin(P)
andλmax(P) its minimum and maximum (real) eigenvalues,
respectively. Similarly, the minimum and the maximum sin-
gular values of a matrixA ∈ Rm×n are denoted byσmin(A)
andσmax(A), respectively. Given two matricesA andB, we
denote bybdiag(A,B) their corresponding block diagonal
matrix. Moreover, we writePn andKn to denote the convex
(open) cone ofn × n positive definite (symmetric) matrices
and the set ofn × n skew symmetric matrices, respectively.
Finally, we will denote bySO(3) the rotation group for three-
dimensional spaces.

B. Equations of Motion

We consider a team ofn agents distributed in the con-
figuration spaceQ := X × S1, whereX ⊆ R2; we write
q = col(x, ϑ) to denote a configuration vector inQ, where
x = πX (q) ∈ X and ϑ ∈ S1. We assume that thei-th
agent from the team, wherei ∈ In := {1, . . . , n}, is initially
located atq0

i := col(x0
i , θ

0
i ), wherex0

i ∈ X and θ0i ∈ S1

denote, respectively, its position and heading angle at time
t = 0 measured with respect to an inertial reference frame. It
is assumed thatx0

i 6= x0
j , for all i, j ∈ In with i 6= j. The

joint vector of the initial positions of then agents is denoted
by X0, that is,X0 := col(x0

1, . . . ,x
0
n). The set comprised

of the initial positions of then agents will be denoted by
{X0}, that is, {X0} := {x0

i ∈ X , i ∈ In}. Note that
X0 ∈ X

n whereas{X0} ( X . The joint vectors of the
initial configurations and initial heading angles are denoted
by Q0, whereQ0 := col(q0

1 , . . . , q
0
n), andΘ0, whereΘ0 :=

col(θ01, . . . , θ
0
n), respectively. The set of initial configurations

will be denoted by{Q0}, where{Q0} := {q0
i ∈Q, i ∈ In}.

Note again thatQ0 ∈ Q
n whereas{Q0} ( Q. It is also

assumed that each agent has a prescribed initial velocity, which
is denoted byv0

i ∈ R3. In particular,v0
i := col(ν0

i , w
0
i ) ∈ R3,

where ν0
i ∈ R2 and w0

i ∈ R correspond, respectively, to
the (initial) linear velocity and angular velocity of thei-
th agent expressed in a body-fixed frame. In addition, we
denote the initial state vector of thei-th agent byz0

i , where
z0
i := col(q0

i ,v
0
i ). The state space of thei-th agent will be

denoted byZ, whereZ := X × R3. Again, the joint vector
of initial states and the corresponding set are denoted byZ0,
whereZ0 ∈ Z

n, and{Z0}, where{Z0} ( Z, respectively.

The kinematics of thei-th agent are described in an inertial
frame by the following vector equation:

q̇i = T(θi)vi, qi(0) = q0
i , (1)

where qi := col(xi, θi) ∈ Q and vi := col(νi, wi) ∈ R3

denote, respectively, its configuration (whose componentsare
measured with respect to an inertial reference frame) and its
velocity vector (whose components are measured with respect
to a body-fixed reference frame) at timet. Note that for a
given ϑ ∈ S1, the rotation matrixT(ϑ) ∈ SO(3), where

T(ϑ) := bdiag(T1(ϑ), 1), T1(ϑ) :=
[

cosϑ − sinϑ
sinϑ cosϑ

]

, (2)

acts uponvi, which is the velocity of thei-th agent in the
body-fixed frame, to generatėqi, which is the i-th agent’s
velocity in the inertial frame. Note that in the kinematic model
described by (1), the heading angleθi of the i-th agent does
not necessarily match with the direction of its linear velocity.

Next, we express the dynamics of thei-th agent in the body-
fixed frame as follows:

Mv̇i +C(vi)vi + g(qi) = τi, vi(0) = v0
i , (3)

with M := diag(m,m, J) ∈ P3, where m > 0 is the
mass of each agent andJ > 0 is its moment of inertia, and
C(vi) ∈ K3, for all vi ∈ R3. In addition, the termsC(vi)vi

andg(qi) correspond, respectively, to the resultant centripetal-
Coriolis and gravitational forces / moments applied to thei-th
agent [33], [34]. Furthermore,τi denotes the control input of
the i-th agent. Finally, we will denote the joint state vector of
the i-th agent at timet by zi, wherezi := col(qi,vi) ∈ Z.

C. Communication Among the Agents

It is assumed that thei-th agent can only communicate with
the agents from the same network that lie within its “communi-
cation range,” which is denoted byηi. Givenηi > 0, we denote
byNc(i, ηi) the index-set of all the agents of the network that
lie within the communication range of thei-th agent, that is,
Nc(i, ηi) := {ℓ ∈ In\{i} : x0

ℓ ∈ B(x0
i ; ηi)}. In particular, we

assume that thei-th agent sends a message omni-directionally,
which can reach any point within its communication range
(broadcastcommunication), requesting any agent that received
this message to send back a confirmation message. From
that point onwards, thei-th agent can establish direct com-
munication channels with any agents lying inB(x0

i ; ηi) so
that it can directly exchange information with them (point-to-
point communication). We will assume that each agent can
determine the relative configurations of the agents lying in
its communication range with respect to itself via exchange
of relevant information. In addition, we will assume that this
exchange of information can take place infinitely fast. In other
words, we won’t explicitly account for any communication
delays although, we will briefly present ways that would allow
us to account for such delays in practice.

It is interesting to note that ifX is a compact subset of
R2, then there exists a closed ballB(x◦;µ), centered at some
point x◦ ∈ X with radiusµ > 0, such thatX ⊆ B(x◦;µ),
from which it is easy to show thatX ⊆ B(x0

i ; 2µ), for all i ∈
In. The situation is illustrated in Fig. 1. Therefore, by taking
ηi = 2µ, it is guaranteed thatNc(i, ηi) = In\{i}. As we will
see later on, requiring thatηi ≥ 2µ for all i ∈ In may be an
unnecessarily strong assumption. This is because in order for
an agent to be able to compute its own cell from a Voronoi-
like partition, it may not be necessary to communicate with
every other agent from the same network. It is important to
note that by maintaining a large communication range that can
cover the whole position space,X , at each time, an agent may
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Fig. 1. Consider a square position spaceX that is contained in a
closed ballB(x◦;µ). We observe that all the agents of the network
can communicate with each other by maintaining a communication
range that is greater than or equal to2µ (note that this lower
bound is attained when, for instance, two different agents are located,
respectively, at the verticesA andB, whereAB is a diagonal of the
square domain). In most cases, however, the required communication
range can be significantly smaller than2µ.

be incurring an unnecessarily high communication cost (e.g.,
battery usage). This is clearly illustrated in Fig. 1 in which the
communication rangeηi of thei-th agent is sufficiently large to
contain all of its neighbors in the topology of the Voronoi-like
partition illustrated in the same figure (in this topology, two
agents are neighbors if their polygonal cells share a common
edge) and at the same time it is significantly smaller than2µ.
In this work, we will assume that all the agents can adjust
their communication ranges so that the latter are sufficiently,
but not unnecessarily, large to allow them to collect all the
(local) information required for the computation of their own
cells from the Voronoi-like partition. This perspective isin
agreement with the paradigm for distributed computation of
standard Voronoi partitions that was proposed in [2], [15].The
approach that we will employ in this work is, however, very
different from the one adopted in these references.

D. The Partitioning Problem over the Terminal ManifoldT

In this section, we will provide the exact formulation of the
partitioning problem over the terminal manifoldT . In simple
words, our objective is to subdivide the terminal manifold
T into n non-overlapping regions, which we will refer to
as Voronoi cells or simply cells. In addition, each cell will
be uniquely associated with an agent of the network and
in particular, it will exclusively consist of points inT that
are “closer” to its corresponding agent than to any other
agent of the network. Here, the closeness between the agents
and an arbitrary point inT will be measured in terms of
an appropriateproximity metric. In particular, for a given
z0
i ∈ {Z0}, we take the proximity (generalized) metric to

be the functionδ(·; z0
i ) : T → R≥0 with

δ(q; z0
i ) := s(q; z0

i )
TMs(q; z0

i ), (4)

whereq := col(x, ϑ) and

s(q; z0
i ) := col(Λ(x0

i − x), ε(1− cos(θ0i − ϑ)))
+T(θ0i )v

0
i . (5)

In the last equation,Λ is a known diagonal matrix inP2 and
ε is a known positive constant. The choice of the proximity
metric is motivated by the fact that in Lyapunov-based analysis
for steering problems inSE(2) or SE(3) [33]–[35], functions
similar to δ are used as generalized energy metrics or Lya-
punov candidate functions. Specifically, the quantityδ(q; z0

i )
can be interpreted as the decrease of a relevant generalized
energy that thei-th agent will incur for the transition from its
initial statez0

i to the statezT (q) ∈ T , for a givenq ∈ Q.
By plugging (5) in (4), it follows that

δ(q; z0
i ) = m|Λ(x0

i − x)|2 +
∣

∣M
1

2 v0
i

∣

∣

2

+ ε2J(1− cos(θ0i − ϑ))2
+ 2m(x0

i − x)TΛT1(θ
0
i )ν

0
i

+ 2εJw0
i (1− cos(θ0i − ϑ)). (6)

It is important to note that the proximity metricδ is a
non-quadratic function ofq. The exact formulation of the
partitioning problem overT is given next.

Problem 1: Partitioning Problem overT Subject to Com-
munication Constraints:Suppose thatX is a compact and
convex polygonal subset ofR2 which is contained in the
closed ballB(x◦;µ) of radius µ > 0 that is centered at
some pointx◦ ∈ X , and letZ0 := col(z0

1 , . . . , z
0
n), where

z0
i = col(q0

i ,v
0
i ), i ∈ In, be the initial joint state of the multi-

agent network inZn. In addition, letηi > 0 be the communi-
cation range of thei-th agent, which is an adjustable quantity
for all i ∈ In, and letH := col(η1, . . . , ηn). Then, determine
a collection of setsV(Z0;H) := {Vi(z0

i ; ηi), i ∈ In} of
the terminal manifoldT such that:

(i) T =
⋃

i∈In
V

i(z0
i ; ηi),

(ii) rint(Vi(z0
i ; ηi)) ∩ rint(Vj(z0

j ; ηj)) = ∅, for all i, j ∈
In, i 6= j,

(iii) A state zT (q) ∈ T , wherezT (q) := col(q,0) and
q ∈ Q, belongs toVi(z0

i ; ηi) for somei ∈ In, if, and
only if, δ(q; z0

i ) ≤ δ(q; z0
j ), for all j ∈ Nc(i, ηi), where

δ(q; z0
i ) is defined in Eq. (6).

Remark 1 Note that the purpose of conditions (i) and (ii)
is to ensure that the collection of setsV(Z0;H) :=
{Vi(z0

i ; ηi), i ∈ In} forms a partition ofT in the strict
mathematical sense; in particular, condition (i) ensures that
V(Z0;H) achieves complete covering ofT whereas con-
dition (ii) guarantees that the cells comprisingV(Z0;H)
will not overlap with each other. It should also be noted that
the presence of the communication constraints described in
Section II-B are reflected in condition(iii) of Problem 1. By
virtue of this condition, thei-th agent is confined to compare
its proximity to a statezT (q) ∈ T with the agents that lie
within its communication range only.

Remark 2 Besides the existence of communication con-
straints, the facts that the proximity metric in Problem 1 is
non-quadratic and its domain is non-flat make this problem
challenging (for instance, the cells that compriseV(Z0;H)
may be non-convex, in general). In particular, Problem 1
cannot be directly associated with any well-studied familyof
partitioning problems and it is not clear how it can be solved
in a distributed way.
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III. T HE ONE-PARAMETER FAMILY OF PARTITIONING
PROBLEMS

In this section, we will address the original three-
dimensional partitioning problem over the terminal manifold
T (Problem 1) by embedding it into a one-parameter family
of two-dimensional partitioning problems. Specifically, the
domain of each parametric problem is a two-dimensional sub-
manifoldT ϑ of T , which consists of all statesz ∈ T whose
heading angle components are equal to a givenϑ ∈ S1, that
is, T ϑ := {z ∈ T ( Z : z = zϑ(x), x ∈ X}, where
zϑ(x) := col(x, ϑ,0). Note that for a givenϑ ∈ S1, the two-
dimensional manifoldT ϑ is homeomorphic, in the topological
sense, to the manifoldQϑ := {q = col(x, ϑ) ∈Q : x ∈ X},
which is in turn homeomorphic toX ; we write T ϑ ∼ Qϑ

andQϑ ∼ X . To address the parametric partitioning problem
in T ϑ, for a given ϑ ∈ S1, we will need a (generalized)
proximity metric that, in contrast withδ, reflects the fact that
the heading angle component of an arbitrary terminal state
in T ϑ is constant. In particular, givenϑ ∈ S1 and i ∈ In,
we define the generalized distance of thei-th agent, which is
emanating from the statez0

i ∈ {Z0} to a statezϑ(x) ∈ T ϑ,
to be the functionδϑ(·; z0

i ) : X → R≥0 where

δϑ(x; z
0
i ) := δ(col(x, ϑ); z0

i ). (7)

In light of (6) and (7), we can writeδϑ(x; z0
i ) more compactly

as follows:

δϑ(x; z
0
i ) = |Π

1

2 (x0
i − x)|2 + 2(x0

i − x)Triϑ + σi
ϑ, (8)

whereΠ := mΛ2 and

riϑ := mΛT1(θ
0
i )ν

0
i , (9a)

σi
ϑ := ε2J(1− cos(θ0i − ϑ))2 + |M

1

2 v0
i |2

+ 2εJw0
i (1− cos(θ0i − ϑ)). (9b)

By completing the square in (8), we take

δϑ(x; z
0
i ) = |Π

1

2 (x− x0
i )|2 − 2(x− x0

i )
TΠ

1

2 Π
− 1

2 riϑ + σi
ϑ

= |Π 1

2 (x− x0
i −Π−1riϑ)|2 − |Π− 1

2 riϑ|2 + σi
ϑ.

We immediately conclude that

δϑ(x; z
0
i ) = |Π

1

2 (x− ξiϑ)|2 + µi
ϑ, (10)

ξiϑ := x0
i +Π−1riϑ, µi

ϑ := −|Π− 1

2 riϑ|2 + σi
ϑ. (11)

Note that, becauseδϑ(x; z0
i ) ≥ 0 for all x ∈ R2, it is

necessarily true thatµi
ϑ ∈ R≥0 for all i ∈ In, given that

µi
ϑ = δϑ(ξ

i
ϑ; z

0
i ). In view of (10), we conclude that the

proximity metric, δϑ, for the parametric partitioning prob-
lem over the (two-dimensional and flat) sub-manifoldT ϑ

of the (three-dimensional and non-flat) terminal manifold
T is a (parametric) quadratic function ofx, for any given
ϑ ∈ S1. Based on the previous observation and the fact that
T ϑ ∼ Qϑ ∼ X , it is expected (and will be proven later
on) that the solution to the resulting partitioning problem
will be a so-calledaffine partition [36]. Affine partitions of
convex polygonal domains are comprised of convex polygonal
cells and their combinatorial complexity is similar to thatof
standard Voronoi partitions [36].

Next, we formulate precisely the parametric partitioning
problem over a sub-manifoldT ϑ of the terminal manifold
T , for a givenϑ ∈ S1.

Problem 2: Parametric Partitioning Problem overT ϑ Sub-
ject to Communication Constraints:Suppose thatX is a con-

vex and compact polygonal subset ofR2 which is contained
in the closed ballB(x◦;µ) of radiusµ > 0 that is centered
at some pointx◦ ∈ X , and letϑ ∈ S1 be given. In addition,
let Z0 := col(z0

1 , . . . , z
0
n), wherez0

i = col(q0
i , v0

i ), i ∈ In,
be the initial joint state of the multi-agent network inZn.
Furthermore, letηi > 0 be the communication range of the
i-th agent, which is an adjustable quantity for alli ∈ In, and
let alsoH := col(η1, . . . , ηn). Then, determine a collection
of setsVϑ(Z

0;H) := {Vi
ϑ(z

0
i ; ηi), i ∈ In} of the sub-

manifoldT ϑ of T such that:

(i) T ϑ =
⋃

i∈In
V

i
ϑ(z

0
i ; ηi),

(ii) rint(Vi
ϑ(z

0
i ; ηi)) ∩ rint(Vj

ϑ(z
0
j ; ηj)) = ∅, for all i, j ∈

In, i 6= j,
(iii) A statezϑ(x) ∈ T ϑ, wherezϑ(x) := col(x, ϑ,0) and

x ∈ X , belongs to the cellVi
ϑ(z

0
i ; ηi) for somei ∈

In if, and only if, δϑ(x; z0
i ) ≤ δϑ(x; z

0
j ) for all j ∈

Nc(i, ηi), whereδϑ(x; z0
i ) is defined in Eq. (10).

A. Analysis of the Partitioning Problem overT ϑ in the
Absence of Communication Constraints

Next, we propose an algorithmic solution technique for
Problem 2 in the absence of communication constraints, that
is, for the special case whenηi ≥ 2µ, for all i ∈ In, whereµ
is defined as in the formulation of Problem 2. For this special
case, we will simplify the notation used in Problem 2 by de-
noting the collection of sets asVϑ(Z

0) = {Vi
ϑ(z

0
i ), i ∈ In}.

In the absence of communication constraints, condition(iii)
of Problem 2 will have to change accordingly. In particular,
for a given ϑ ∈ S1, a statez = zϑ(x) ∈ T ϑ, where
zϑ(x) := col(x, ϑ,0) and x ∈ X , will belong to V

i
ϑ(z

0
i )

if, and only if, δϑ(x; z0
i ) ≤ δϑ(x; z

0
j ), for all j ∈ In\{i}.

This means that, in the absence of communication constraints,
the i-th agent will have to compare its transition cost to a
statezϑ(x) ∈ T ϑ with all the agents of the network always
(compare with the formulation of Problem 2). We will say
that, in the presence of communication constraints, any agent
has a smaller set of competitors than it has in the absence of
communication constraints.

Lemma 1:Let Vϑ(Z
0) = {Vi

ϑ(z
0
i ), i ∈ In} denote the

solution to Problem 2, whenηi ≥ 2µ for all i ∈ In. Then,
V

i
ϑ(z

0
i ) ⊆ V

i
ϑ(z

0
i ; ηi), for all ηi ∈ [0, 2µ[ and V

i
ϑ(z

0
i ) =

V
i
ϑ(z

0
i ; ηi) for all ηi ≥ 2µ.

It is interesting to note that Lemma 1 brings to light an
important issue regarding the well-posedness of Problem 2.
Consider, for instance, the scenario in which no other agent
lies within the communication range of thei-th agent besides
itself. In this case, thei-th agent has no competitors and will
conclude incorrectly that its own cell,Vi

ϑ(z
0
i ; ηi), coincides

with the whole sub-manifoldT ϑ. Along the same lines, the
fact thatVi

ϑ(z
0
i ; ηi) ⊇ V

i
ϑ(z

0
i ) for all ηi ∈ [0, 2µ[, which in

turn implies that∪i∈In
V

i
ϑ(z

0
i ; ηi) ⊇ ∪i∈In

V
i
ϑ(z

0
i ), for all

ηi ∈ [0, 2µ[, suggests the existence of two possibilities:
Case 1: Some of the cells ofVϑ(Z

0;H) have overlapping
(relative) interiors, which is a violation of condition(ii) of
Problem 2.
Case 2: The collection of setsVϑ(Z

0) has “coverage holes”
in the sense that∪i∈In

V
i
ϑ(z

0
i ) ( T ϑ, which is a violation

of condition (i) of Problem 2.
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However, as we will see later in this section,Vϑ(Z
0) is an

affine partition, where the word partition should be understood
in the strict mathematical sense, and as such it does not
have any coverage holes. In other words, in the absence of
communication constraints, that is, whenηi ≥ 2µ for all
i ∈ In, Problem 2 will always be well-posed. Therefore, Case
2 will never occur. By contrast, Case 1 is likely to occur, that
is, the cells that compriseVϑ(Z

0;H) may overlap with each
other (in which case, the collection of setsVϑ(Z

0;H) does
not form a partition ofT ϑ in the strict mathematical sense).

On the other hand, as we have mentioned before, requiring
that ηi ≥ 2µ for all i ∈ In can be a very conservative
condition in many cases. This is because in order for thei-
th agent to be able to compute its own cell inVϑ(Z

0;H),
which is the solution of Problem 2 in the general case,
when communication constraints come into play (that is, the
condition ηi ≥ 2µ does not necessarily hold true for all
i ∈ In), it suffices to have a communication range that will
cover all of its neighbors “in the topology” ofVϑ(Z

0), which
is the solution of Problem 2 in the absence of communication
constraints (that is, whenηi ≥ 2µ for all i ∈ In). Recall that
thei-th and thej-th agents of the network are neighbors in the
topology ofVϑ(Z

0), if, and only if, the boundaries of their
corresponding cells have a non-trivial intersection. Finding a
lower bound on the communication range of each agent so
that Problem 2 is well-posed without requiringηi ≥ 2µ for
all i ∈ In, will be the topic of Section III-C. In this section,
we will focus on the computation of the solution to Problem 2
with no communication constraints; this problem, as we have
already mentioned, is always well-posed.

Before we proceed to the description of the proposed
algorithm, we will present and examine the key features of
the solution to Problem 2 in the absence of communication
constraints. To this aim, let us consider a pair of generators
(z0

i , z
0
j ) ∈ {Z0}×{Z0}, i 6= j. Their corresponding bisector

with respect to the generalized metricδϑ, which is denoted
as B(z0

i , z
0
j ; δϑ), will consist of all states inT ϑ that are

equidistant fromz0
i and z0

j with respect toδϑ, that is, the
stateszϑ(x) ∈ T ϑ, where x ∈ X satisfies the following
equation:

δϑ(x; z
0
i ) = δϑ(x; z

0
j ). (12)

It turns out thatB(z0
i , z

0
j ; δϑ) is a line segment that lies in

T ϑ.

Proposition 1: For a given ϑ ∈ S1, the bisector
B(z0

i , z
0
j ; δϑ) corresponding to the pair of generators

(z0
i , z

0
j ) ∈ {Z0}×{Z0}, i 6= j, with respect to the generalized

metric δϑ is the loci of all stateszϑ(x) ∈ T ϑ, wherex ∈ X

satisfies the following equation:

xTγϑ(z
0
i , z

0
j ) = ζϑ(z

0
i , z

0
j ), (13)

with

γϑ(z
0
i , z

0
j ) := 2Π(ξiϑ − ξ

j
ϑ), (14a)

ζϑ(z
0
i , z

0
j ) := |Π

1

2 ξiϑ|2 − |Π
1

2 ξ
j
ϑ|2 + µi

ϑ − µj
ϑ, (14b)

whereξiϑ, ξjϑ, µi
ϑ andµj

ϑ satisfy (11).

The derivation of (13) follows readily after substitution of (10)
in (12). Note that the left hand side of Eq. (13) defines a linear
functional overX . Therefore, the same equation describes a
particular level set of a linear functional, which implies [37]

γϑ(z
0
i , z

0
j )

B(z0
i , z

0
j ; δϑ)

|ζϑ(z0
i , z

0
j )|

Cij

Cji

ξiϑ
x0
i

ξ
j
ϑ

x0
j

X
O

Fig. 2. The projection of the bisectorB(z0

i , z
0

j ; δϑ) into X is a
line segment, which is neither (by default) perpendicular to the line
segment[x0

i ,x
0

j ] (note that the pointsx0

i andx0

j are the projections
of z0

i andz0

j into X , respectively) nor it passes through the midpoint
of the same segment, as does the bisector ofx0

i andx0

j in a standard
Voronoi partition, which is shown in dashed line. It also corresponds
to the collection of all points inX that belong to the intersections
of the c-level sets ofδϑ(·; z0

i ) andδϑ(·; z0

j ), for all c ≥ 0.

that the collection of all pointsx that satisfy this equation
corresponds to a straight line inX . This straight line is
orthogonal to the vectorγϑ(z

0
i , z

0
j ) and its distance from the

origin x = 0 (point O in Fig. 2) is equal to|ζϑ(z0
i , z

0
j )|.

Alternatively, the projection ofB(z0
i , z

0
j ; δϑ), for a given

ϑ ∈ S1, into X corresponds to the collection of all points that
belong to the intersection of thec-level sets ofδϑ(·; z0

i ) and
δϑ(·; z0

j ), that is, the sets{x ∈ X : δϑ(x; z
0
i ) = c} and{x ∈

X : δϑ(x; z
0
j ) = c}, respectively, for allc > 0. Note that these

level sets are ellipsoids centered atξiϑ and ξ
j
ϑ, respectively.

It is interesting to note that the projection ofB(z0
i , z

0
j ; δϑ)

into X divides the latter into two compact sets (assuming that
X is also compact), namelyCij and Cji, which have non-
overlapping interiors. In particular, the setCij consists of all
pointsx ∈ X for which δϑ(x; z0

i ) ≤ δϑ(x; z
0
j ) whereasCji

consists of all pointsx ∈ X for which δϑ(x; z0
i ) ≥ δϑ(x; z0

j ).
Fig. 2 illustrates the key points of the previous discussion.

In light of the previous discussion, we will now associate
the solution to the parametric partitioning problem (Problem 2)
with an affinepartition ofX ( R2.

Proposition 2: Let ϑ ∈ S1 be given, and letZ0 :=
col(z0

1 , . . . , z
0
n), where z0

i = col(q0
i ,v

0
i ) and q0

i =
col(x0

i , θ
0
i ). In addition, letVϑ(Z

0) := {Vi
ϑ(z

0
i ), i ∈ In}

denote the solution to Problem 2, whenηi ≥ 2µ for all i ∈ In.
Then,Vϑ(Z

0) is an affine partition with combinatorial com-
plexity Θ(n)1.

Proof: In light of Eq. (13), the bisectorB(z0
i , z

0
j ; δϑ),

which is the image of the set{x ∈ X : xTγϑ(z
0
i , z

0
j ) =

ζϑ(z
0
i , z

0
j )} under the functionzϑ(·), is a straight line that

lies in T ϑ, for all the pairs of distinct generators(z0
i , z

0
j ) ∈

{Z0} × {Z0}, i 6= j. In addition, for any statezϑ(x) ∈ T ϑ

that does not belong to the bisector of any pair of dis-
tinct generators, there is a unique indexℓ ∈ In such that

1We denote byΘ(f(n)) the set of functionsF : Z>0 → [0,∞) for which
there existc1, c2 > 0 andn0 ∈ Z>0 such thatc1f(n) ≤ F (n) ≤ c2f(n),
for all n ≥ n0.
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δϑ(x; z
0
ℓ ) < δϑ(x; z

0
k), for all k ∈ In\{ℓ}. We conclude

that V(Z0) is an affine partition inT ϑ. The result on
the combinatorial complexity ofV(Z0) follows immediately
from Theorem 18.2.3 in [36, p. 439].

Note that the partitionVϑ(Z
0) := {Vi

ϑ(z
0
i ), i ∈ In}

of T ϑ is homeomorphic, in the topological sense, to a
partition X ϑ(Z

0) = {X i
ϑ(z

0
i ), i ∈ In} of X (recall that

X ∼ T ϑ), where X
i
ϑ(z

0
i ) := πX (Vi

ϑ(z
0
i )). Practically,

this means that instead of computingVϑ(Z
0), we should

computeX ϑ(Z
0), which is the affine partition generated by

the point-set{Ξϑ} := {ξiϑ ∈ R2, i ∈ In} with respect to
the (generalized) proximity metricδϑ. Despite the fact that
the set{Ξϑ} is the new set of generators, we will continue
writing X ϑ(Z

0) instead ofX ϑ(Ξϑ) in order to emphasize
the correspondence between the cells ofX ϑ and the agents
of the network, which are originally located at the point-
set {Z0} ∈ Z. In our previous work [28], [29], we have
proposed partitioning algorithms that allow the agents of a
network to compute approximations of the boundaries of their
own cells independently from their teammates. The approach
proposed in these references suggests that the characterization
of the boundarybd(X i

ϑ(z
0
i )) of the cell X i

ϑ(z
0
i ) of the i-

th agent can be achieved with the application of a bisection
search algorithm over a family of rays{Γ(ξiϑ, e), e ∈ S1}
that emanate from pointξiϑ and coverX . In particular, the
goal of the line search algorithm is to find the intersection of
the rayΓ(ξiϑ, e) and the (unknown) boundarybd(X i

ϑ(z
0
i )) of

X
i
ϑ(z

0
i ). In this way, one obtains a convenient parametrization

of bd(X i
ϑ(z

0
i )) in terms of the unit vectore ∈ S1.

Next, we will present the key ideas of the approach pre-
sented in [28], [29] by adopting, however, an optimization
point of view in lieu of the geometric perspective utilized
therein. This more abstract perspective will help us set the
scene for the development of a novelexactpartitioning algo-
rithm, which will be presented in Section III-B. First, we will
make the mild assumption2 that {Ξϑ} ( int(X ). Next, we
consider the following two (mutually exclusive) cases:

Case 1: Pointξiϑ does not belong to the interior ofX i
ϑ(z

0
i ). In

this case, it is not guaranteed that the intersection of the ray
Γ(ξiϑ, e) and the boundarybd(X i

ϑ(z
0
i )) will be non-empty

for all e ∈ S1. If, for somee ∈ S1, this intersection is non-
empty, then it will either be comprised of two (unknown)
points, which are denoted byx▽

ϑ(i; e) and x△

ϑ(i; e), or will
correspond to a whole edge of the convex polygonX

i
ϑ(z

0
i ),

denoted as[x▽

ϑ(i; e),x
△

ϑ(i; e)] (a singular case occurs when
x▽

ϑ(i; e) ≡ x△

ϑ(i; e), which implies that the intersection
bd(X i

ϑ(z
0
i ))∩Γ(ξiϑ, e) is a singleton and in particular, a vertex

of the convex polygonX i
ϑ(z

0
i )). In both of these two subcases,

we have that

x▽

ϑ(i; e) := ξiϑ + ̺
ϑ
(i; e, In)e, (15a)

x△

ϑ(i; e) := ξiϑ + ̺ϑ(i; e, In)e, (15b)

2Note that by removing this rather mild assumption, our analysiswill
change only but slightly, yet the presentation will become more complex
since we will have to discuss separately a list of singular cases that are of
low interest in practice.

where

̺
ϑ
(i; e, In) := infRϑ(i; e, In), (16a)

̺ϑ(i; e, In) := supRϑ(i; e, In), (16b)

Rϑ(i; e, In) := {̺ ≥ 0 : ξiϑ + ̺e ∈ X and

δϑ(ξ
i
ϑ + ̺e; z0

i ) ≤ min
j∈In

δϑ(ξ
i
ϑ + ̺e; z0

j )}. (16c)

In view of (15a)-(16c), it follows thatx△

ϑ(i; e) (resp.,
x▽

ϑ(i; e)) enjoys the following two properties: 1) it is the point
in the segment ofΓ(ξiϑ, e) contained inX that is the furthest
(resp., nearest) toξiϑ, in terms of the Euclidean distance, and
2) it is closer to thei-th agent, in terms of the proximity
metric δϑ, than to any other agent from the same network.
The characterization ofx△

ϑ(i; e) andx▽

ϑ(i; e) is based on the
observation that at these two points, thecontinuousfunction
Di

ϑ(·; In) : X → R, where

Di
ϑ(x; In) := δϑ(x; z

0
i )− min

j∈In\{i}
δϑ(x; z

0
j ), (17)

should change sign as one traverses the rayΓ(ξiϑ, e) without
exiting X (except from some special cases). In particular,
we have thatDi

ϑ(x; In) > 0 for all x ∈ [ξiϑ,x
▽

ϑ(i; e)[, and
Di

ϑ(x; In) < 0 for all x ∈]x▽

ϑ(i; e),x
△

ϑ(i; e)[. The sign of
Di

ϑ will change one more time, ifx△

ϑ(i; e) 6= x′
ϑ(i; e,X ),

where x′
ϑ(i; e,X ) is the point of intersection ofΓ(ξiϑ, e)

with bd(X ), that is, {x′
ϑ(i; e,X )} = Γ(ξiϑ, e) ∩ bd(X );

in this last case, we have thatDi
ϑ(x; In) > 0 for all

x ∈]x△

ϑ(i; e),x
′
ϑ(i; e,X )].

If, on the other hand, the intersection ofΓ(ξiϑ, e) and
bd(X i

ϑ(z
0
i )) is empty, thenRϑ(i; e, In) = ∅ and we set

̺
ϑ
(i; e, In) := +∞ and̺ϑ(i; e, In) := −∞; in addition, both

x▽

ϑ(i; e) andx△

ϑ(i; e) will be assigned null values. Intuitively,
when the intersection ofΓ(ξiϑ, e) andbd(X i

ϑ(z
0
i )) is empty,

we have thatDi
ϑ(x; In) > 0 for all x ∈ Γ(ξiϑ, e) ∩ X , that

is, the cost that thei-th agent will incur to reach any state
zϑ(x) ∈ T ϑ with x ∈ [ξiϑ,x

′
ϑ(i; e,X )] is strictly greater than

the cost that will be incurred by at least one different agent
from the same network to reach the same state.

Case 2: Point ξiϑ is an interior point ofX i
ϑ(z

0
i ). In this

case, the intersection ofΓ(ξiϑ, e) and bd(X i
ϑ(z

0
i )) will be

a singleton, namely{x△

ϑ(i; e)}, for all e ∈ S1; we also
set x▽

ϑ(i; e) := ξiϑ. In this case,Di
ϑ(x; In) < 0 for all

x ∈ [ξiϑ,x
△

ϑ(i; e)[ and, if in additionx△

ϑ(i; e) 6= x′
ϑ(i; e,X ),

thenDi
ϑ(x; In) > 0 for all x ∈]x△

ϑ(i; e),x
′
ϑ(i; e,X )].

The two cases that we previously described are illustrated
in Fig. 3. We observe therein thatξiϑ /∈ int(X i

ϑ(z
0
i )),

and consequently, for differente ∈ S1, the intersection
bd(X i

ϑ(z
0
i )) ∩ Γ(ξiϑ, e) will either be empty or consist of

two points (except from the singular cases in which the ray
Γ(ξiϑ, e) passes through vertexA or vertexB). By contrast,
ξ
j
ϑ ∈ int(X j

ϑ(z
0
j )), which means thatbd(X j

ϑ(z
0
j ))∩Γ(ξiϑ, e)

will be a singleton for alle ∈ S1.

As shown in [27]–[29], in which similar classes of partition-
ing problems were considered, one can utilize simple bisection
search algorithms to characterizex▽

ϑ(i; e) andx△

ϑ(i; e). Such
algorithms generate sequences of “query” points that will
eventually converge within the prescribed error toleranceto
the desired, unknown points of interest. Because, as is stressed
in [16], there are many practical problems in which a Voronoi-
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X

ξiϑ
ξ
j
ϑ

x′
ϑ(i; e,X ) x′

ϑ(j; e,X )
Γ(ξiϑ, e)

Γ(ξjϑ, e)
x▽

ϑ(i; e)

x△

ϑ(i; e)

x△

ϑ(j; e)

Dj
ϑ > 0

Dj
ϑ < 0

Di
ϑ > 0

Di
ϑ > 0

Di
ϑ < 0

X
i
ϑ

X
j
ϑ

A

B

Fig. 3. Point ξj

ϑ belongs to the interior ofX j

ϑ, which implies that
the intersection of the rayΓ(ξj

ϑ, e) with the boundarybd(X j

ϑ) of
the cellX j

ϑ will be a singleton for alle ∈ S1. On the other hand,
point ξi

ϑ does not belong toX i
ϑ, and in this case, the intersection of

Γ(ξi
ϑ, e) with bd(X i

ϑ) can 1) be empty, 2) consist of two points or
3) be a single point (vertex of a cell), namely pointA or pointB.

like partition of a given set have to be known with high ac-
curacy, the tolerance error for the bisection search algorithms
that seek forx▽

ϑ(i; e) andx△

ϑ(i; e) should be very small or,
equivalently, a large number of “query” points have to be
generated during the iterative process. It is also possiblethat
the bisection search may end up performing vacuous searches
along rays that do not intersect with the boundary of the cell
of interest, in which casesx▽

ϑ(i; e) and x△

ϑ(i; e) should be
assigned null values, as we have already explained. Note that
during a vacuous search, the bisection search algorithm, which
is an exhaustive and consistent algorithm, will generate the
maximum number of query points (maximum number of steps)
that the prescribed error tolerance dictates before it returns a
null output. As we will see next, a careful analysis based on the
interpretation of the problems of findingx▽

ϑ(i; e) andx△

ϑ(i; e)
as optimization problems, which we discussed before, will
reveal that it is possible to characterize these points exactly at
a finite number of steps, which is in sharp contradistinction
with the bisection-based algorithm, which can characterize the
same points only asymptotically.

B. An Exact and Finite-Steps Algorithm for the Partitioning
Problem overT ϑ in the Absence of Communication Con-
straints

Motivated by the previous discussion, we will next propose
a partitioning algorithm that characterizes exactly and ina
finite number of steps the boundary points of thei-th cell of
the Voronoi-like partitionX ϑ(Z

0) of X , for any i ∈ In.
This algorithm aims at finding the boundary points of the
cell X i

ϑ(z
0
i ) by solving the two optimization problems that

are described in terms of Eqs. (16a)-(16c). The main idea
of the proposed approach lies in the fact that the solutions
to the previous optimization problems correspond to two
points, namely,x▽

ϑ(i; e) andx△

ϑ(i; e), at which, as we have
mentioned, the sign of a certain continuous function changes
as one traverses the rayΓ(ξiϑ, e) without exitingX (except
from some special cases); in other words, the pointsx▽

ϑ(i; e)
andx△

ϑ(i; e) should be roots of the latter function. Next we
describe the process for finding these two points by leveraging
the previous remarks.

First we observe that if, for a givene ∈ S1 and i ∈ In, the

setRϑ(i; e, In), which is defined in Eq. (16c), is non-empty,
then̺

ϑ
(i; e, In) and̺ϑ(i; e, In), which are defined in (16a)

and (16b), respectively, will be (finite) non-negative numbers
that belong necessarily to the setRϑ(i; e, In)∪{|x′

ϑ(i; e,X )−
ξiϑ|}, where|x′

ϑ(i; e,X )−ξiϑ| is equal to the length of the line
segment that corresponds to the restriction ofΓ(ξiϑ, e) in X (as
we have already mentioned,x′

ϑ(i; e,X ) denotes the point of
intersection ofΓ(ξiϑ, e) andbd(X )) andRϑ(i; e, In) denotes
the set of non-negative numbers that satisfy the following
equation (in̺):

δϑ(ξ
i
ϑ + ̺e; z0

i ) = δϑ(ξ
i
ϑ + ̺e; z0

j ), (18)

for all j ∈ In\{i}; we denote each of these solutions by
̺ϑ(i; j, e) and thus,Rϑ(i; e, In) := {̺ϑ(i; k, e) ∈ R≥0, k ∈
In\{i}}. Note that, in view of (18), all pointsy ∈ X with
y = ξiϑ + ̺e, whereρ ∈ Rϑ(i; e, In), will also belong to the
bisectorB(z0

i , z
0
j ; δϑ) that corresponds to the pair(z0

i , z
0
j ) ∈

{Z0} × {Z0}. Equation (18) can also be written as follows:

̺2|Π 1

2 e|2 + µi
ϑ = ̺2|Π 1

2 e|2 + |Π 1

2 (ξiϑ − ξ
j
ϑ)|2

+ 2̺(ξiϑ − ξ
j
ϑ)

TΠe+ µj
ϑ, (19)

from which it follows that ̺ = ̺ϑ(i; j, e) satisfies the
following linear equation:

αϑ(i; j, e)̺+ βϑ(i, j) = 0, j ∈ In\{i}, (20)

whereαϑ(i; j, e) := 2(ξiϑ − ξ
j
ϑ)

TΠe and βϑ(i, j) := µj
ϑ −

µi
ϑ + |Π 1

2 (ξiϑ − ξ
j
ϑ)|2. Therefore,

̺ϑ(i; j, e) =
µi
ϑ − µj

ϑ − |Π
1

2 (ξiϑ − ξ
j
ϑ)|2

2(ξiϑ − ξ
j
ϑ)

TΠe
, (21)

provided that the vectorΠ(ξiϑ − ξ
j
ϑ) is not orthogonal to the

vector e; otherwise, in the definition of the setRϑ(i; e, In)
we should replaceIn\{i} with In\{i, j}. Note that the vector
Π(ξiϑ − ξ

j
ϑ) is orthogonal toe if, and only if, the vector

γϑ(z
0
i , z

0
j ), which is defined in (14a), is orthogonal toe.

Since the vectorγϑ(z
0
i , z

0
j ) is orthogonal to the bisector

B(z0
i , z

0
j ; δϑ) (refer to the discussion following Proposition 1),

we conclude (assumingξiϑ 6= ξ
j
ϑ) thatΠ(ξiϑ−ξ

j
ϑ) is orthogo-

nal to the vectore if, and only if, e is parallel to the bisector
B(z0

i , z
0
j ; δϑ). Obviously, in the latter case the intersection of

the rayΓ(ξiϑ, e) and the bisectorB(z0
i , z

0
j ; δϑ) will be empty,

and consequently, Eq. (18) will have no solution.

In addition, we should remove fromIn each indexj
for which either̺ϑ(i; j, e) ≤ 0 or the corresponding point
y = ξiϑ + ̺ϑ(i; j, e)e does not belong to the interior of
X , that is,̺ϑ(i; j, e) ≥ |x′

ϑ(i; e,X ) − ξiϑ|. Finally, if there
exists a non-empty setJ , whereJ ( In\{i, j}, such that
̺ϑ(i; j, In) = ̺ϑ(i; ℓ, In) for all ℓ ∈ J , then all the indices in
J should be removed fromIn, to avoid any duplicates. After
removing all these indices, which we refer to asinadmissible,
we obtain an index setI ′

n = I ′
n(i; e, ϑ) (henceforth, we

will simply write I ′
n to avoid the notational clutter), which

is a subset ofIn\{i}. Let us assume thatI ′
n contains

N = N(i; e, ϑ) elements with1 ≤ N ≤ n − 1 (later on,
we will separately discuss the special case in whichI ′

n = ∅
or, equivalently,N = 0 when necessary). We subsequently
associate the index setIN = IN (i, e, ϑ) := {1, . . . , N} to
the index-set{j1, . . . , jN}, which in turn corresponds to the
permutation ofI ′

n with

0 < ̺ϑ(i; j1, e) < · · · < ̺ϑ(i; jN , e) < |x′
ϑ(i; e,X )− ξiϑ|,
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whereindex(·; i) is a bijective mapping fromIN to I ′
n such

that jk := index(k; i), for k ∈ IN . Furthermore, to each
̺ϑ(i; jk, e) with k ∈ IN , we associate the following point:

xϑ(i; jk, e) := ξiϑ + ̺ϑ(i; jk, e)e, k ∈ IN . (22)

In addition, for a givene ∈ S1, we define the function
∆i

ϑ(·; e) : Γ(ξiϑ, e) ∩X → R, where

∆i
ϑ(x; e) := δϑ(x; z

0
i )− min

k∈I ′
n

δϑ(x; z
0
k). (23)

A key observation that our algorithm will exploit is that
∆i

ϑ(·; e) is a continuous function whose sign is preserved
over each of the following line segments:]ξiϑ,xϑ(i; j1, e)[
and ]xϑ(i; jk, e),xϑ(i; jk+1, e)[, for all k ∈ IN ∩ [1, N − 1],
and ]xϑ(i; jN , e),x

′
ϑ(i; e,X )[. Note that the endpoints of

the previous intervals correspond to candidate roots of the
equation∆i

ϑ = 0. For this reason together with the continuity
of ∆i

ϑ, it follows that the sign of∆i
ϑ does not change over each

of these intervals (sign changes can occur only at the endpoints
of the previous intervals that are roots of the equation∆i

ϑ = 0).
Let us now consider the following two cases3:

Case 1: If ∆i
ϑ(x; e) ≥ 0 for any x ∈]ξiϑ,xϑ(i; j1, e)[

(and thus, as we have already explained, for allx ∈
]ξiϑ,xϑ(i; j1, e)[, in view of the continuity of∆i

ϑ), then ξiϑ
will not belong to the interior ofX i

ϑ. Thus, it is possible that
the intersection ofΓ andbd(X i

ϑ) will be empty in which case
bothx▽

ϑ andx△

ϑ will be assigned null values. Note that in this
last case,∆i

ϑ(x; e) > 0 for all x ∈]ξiϑ,x′
ϑ[.

If the intersection ofΓ andbd(X i
ϑ) is non-empty, or equiv-

alently, it is not true that∆i
ϑ(x; e) > 0 for all x ∈]ξiϑ,x′

ϑ[,
then this intersection will either consist of two points, namely
x▽

ϑ and x△

ϑ , or it will correspond to a whole edge ofX i
ϑ

that is denoted by[x▽

ϑ ,x
△

ϑ ]. (When x▽

ϑ ≡ x△

ϑ , we have a
singular case in which the previous edge is condensed to
a single vertex ofX i

ϑ). Next, we describe how to charac-
terize x▽

ϑ and x△

ϑ . In particular, if k ∈ IN ∩ [1, N − 1],
is the smallest index for which∆i

ϑ(x; e) < 0 for any
x ∈]xϑ(i; jk, e),xϑ(i; jk+1, e)[, then we setj▽ := jk. If there
is no such indexk, the only possibility is that∆i

ϑ(x; e) < 0 for
anyx ∈]xϑ(i; jN , e),x

′
ϑ[, in which case we setj▽(i; e) := jN

andx▽

ϑ := xϑ(i; j
▽(i; e), e).

We continue with the characterization ofx△

ϑ . To this
aim, we seek for the smallest indexℓ ∈ IN ∩ [k,N − 1]
such that∆i

ϑ(x; e) > 0 for any (and thus for all)x ∈
]xϑ(i; jℓ, e),xϑ(i; jℓ+1, e)[. If such index ℓ exists, we set
j△(i; e) := jℓ andx△

ϑ := xϑ(i; j
△(i; e), e). Otherwise, there

are two possibilities. The first one is that∆i
ϑ(x; e) > 0 for any

x ∈]xϑ(i; jN , e),x
′
ϑ[, in which case we setj△(i; e) := jN and

x△

ϑ := xϑ(i; j
△(i; e), e). The second one is that∆i

ϑ(x; e) < 0
for anyx ∈]x▽

ϑ ,x
′
ϑ[, in which case we setx△

ϑ := x′
ϑ.

Case 2: If, on the other hand,∆i
ϑ(x; e) < 0 for any (and

thus for all) x ∈ [ξiϑ,xϑ(i; j1, e)[, then ξiϑ will belong to
the interior of X i

ϑ. In this case, we setx▽

ϑ := ξiϑ and in
order to findx△

ϑ , we need to find first the smallest index
k ∈ IN ∩ [1, N − 1] such that∆i

ϑ(x; e) > 0 for any
x ∈]xϑ(i; jk, e),xϑ(i; jk+1, e)[. If such k exists, we set
j△(i; e) := jk and x△

ϑ := xϑ(i; j
△(i; e), e). Otherwise, we

check if∆i
ϑ(x; e) > 0 for anyx ∈]xϑ(i; jN , e),x

′
ϑ[, in which

3In the discussion of these two cases and in order to avoid the notational
clutter, we will remove the arguments from the following variables:x▽

ϑ
, x△

ϑ
,

x′

ϑ
, X i

ϑ andΓ, given that bothi, ξi
ϑ

ande will be fixed.

case we setj△(i; e) := jN and x△

ϑ := xϑ(i; j
△(i; e), e).

Finally, if ∆i
ϑ(x; e) < 0 for any x ∈]ξiϑ,x′

ϑ[, we set
x△

ϑ := x′
ϑ.

In the special case whenI ′n = ∅, we consider again two
cases. Specifically, if it holds true that

µi
ϑ = δ(ξiϑ; z

0
i ) < min

ℓ∈In\{i}
δ(ξiϑ; z

0
ℓ ),

then x▽

ϑ := ξiϑ and x△

ϑ = x′
ϑ. Otherwise, bothx△

ϑ and x▽

ϑ

will be assigned null values.

The pseudo-code of the algorithm that we just described
is given in Algorithm 1. The outputs of Algorithm 1 are the

Algorithm 1 Exact Line Search Algorithm
1: procedure EXLSEARCH
2: Input data: Z0, ϑ
3: Input variables: i, e, In
4: Output variables: x▽

ϑ(i; e), x
△

ϑ(i; e)
5: I ′

n ← In\{i}
6: for j ∈ I ′

n do
7: if j is inadmissiblethen
8: I ′

n ← I ′
n\{j}

9: IN := {1, . . . , length(I ′
n)}

10: if IN = ∅ then
11: if µi

ϑ < minℓ∈In\{i} δϑ(ξ
i
ϑ; z

0
ℓ ) then

12: x▽

ϑ(i; e)← ξiϑ; x△

ϑ(i; e)← x′
ϑ(i; e,X )

13: else
14: x▽

ϑ(i; e)← null; x△

ϑ(i; e)← null
return

15: for ℓ ∈ IN do
16: jℓ ← index(ℓ; i)
17: computexϑ(i; jℓ, e) via (22)
18: if ℓ = 1 then
19: x← (xϑ(i; j1, e) + ξiϑ)/2
20: else
21: x← (xϑ(i; jℓ, e) + xϑ(i; jℓ−1, e))/2

22: D
i
ℓ ← ∆i

ϑ(x; e)

23: D
i
N+1 ← ∆i

ϑ((xϑ(i; jN , e) + x′
ϑ(i; e,X ))/2; e)

24: if D
i
1 < 0 then

25: x▽

ϑ(i; e)← ξiϑ
26: j△ ← min{ℓ ∈ IN ∪ {N + 1} : D

i
ℓ > 0} − 1

27: if j△ 6= null then
28: x△

ϑ(i; e)← xϑ(i; index(j
△; i), e)

29: else
30: x△

ϑ(i; e)← x′
ϑ(i; e,X )

31: else
32: j▽ ← min{ℓ ∈ ∪{N + 1} : D

i
ℓ < 0} − 1

33: if j▽ 6= null then
34: x▽

ϑ(i; e)← xϑ(i; index(j
▽; i), e)

35: j△ ← min{ℓ ∈ IN ∩ [j▽, N ] : D
i
ℓ+1 > 0}

36: if j△ 6= null then
37: x△

ϑ(i; e)← xϑ(i; index(j
△; i), e)

38: else
39: x△

ϑ(i; e)← x′
ϑ(i; e,X )

40: else
41: x▽

ϑ(i; e)← null; x△

ϑ(i; e)← null

two points,x▽

ϑ(i; e) andx△

ϑ(i; e), for a giveni ∈ In and a
given unit vectore. To obtain a polygonal approximation of
the boundarybd(X i

ϑ(z
0
i )) of the cellX i

ϑ(z
0
i ), we will utilize

a finite gridE over S1, whereE := {ek, k ∈ Z≥0 ∩ [1, k]}
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andk is a positive integer (design parameter). The idea is to
characterizex▽

ϑ(i; e) andx△

ϑ(i; e) for eache ∈ E and remove
all pointsx▽

ϑ(i; e) that coincide withξiϑ. The implementation
details of this idea are given in Algorithm 2. Note that the
polygonal approximation of the cellX i

ϑ(z
0
i ) obtained in this

way is exact atx▽

ϑ(i; e) and x△

ϑ(i; e) for eache ∈ E and
is computed in a finite number of steps, in contrast with
our previous work [27]–[29], in which these boundary points
were only characterized asymptotically via a bisection search
algorithm.

Algorithm 2 Independent Computation of a Cell by its
Associated Agent

1: procedure CELLCOMP
2: Input data: Z0, ϑ
3: Input variables: i, E, In
4: Output variables: bd(X i

ϑ)
5: S0 ← ∅
6: for eachk ∈ {1, . . . , k} do
7: e← ek
8: {x▽

ϑ(i; e),x
△

ϑ(i; e)} = EXLSEARCH(i, ek, In;
Z0, ϑ)

9: Sk ← Sk−1

10: if x△

ϑ(i; e) 6= null then
11: Sk ← Sk ∪ {x△

ϑ(i; e)}
12: if x▽

ϑ(i; e) 6= ξiϑ then
13: Sk ← Sk ∪ {x▽

ϑ(i; e)}
14: bd(X i

ϑ)← Sk

C. Analysis of the Partitioning Problem in the Presence of
Communication Constraints

Next, we present a distributed algorithm that solves Prob-
lem 2 in the presence of communication constraints, that is,
when it is not necessarily true thatηi ≥ 2µ, for all i ∈ In4.
In this case, thei-th agent of the network may not be able
to correctly characterize the minimum or the maximum of
Rϑ(i; e, In) given that it may not be in position to exchange
information with all the other agents. This in turn would imply
that thei-th agent may not be able to correctly compute the
boundary points of its own cell. We will henceforth denote
by X ϑ(Z

0;H), whereX ϑ(Z
0;H) := {X i

ϑ(z
0
i ; ηi), i ∈ In}

andX
i
ϑ(z

0
i ; ηi) := πX (Vi

ϑ(z
0
i ; ηi)) for i ∈ In, the partition

of X for a givenϑ ∈ S1 in the presence of communication
constraints. As before, the cells ofX ϑ(Z

0;H) are homeo-
morphic, in the topological sense, to the cells ofVϑ(Z

0;H).
It should be noted that thei-th agent is now confined to search
for the minimum and the maximum of the following set:

Rϑ(i; e,Nc(i, ηi)) := {̺ ∈ R≥0 : ξiϑ + ̺e ∈ X and

δϑ(ξ
i
ϑ + ̺e; z0

i ) ≤ min
j∈Nc(i,ηi)

δϑ(ξ
j
ϑ + ̺e; z0

j )},

in lieu of Rϑ(i; e, In), which is defined in (16c). Now, let
us henceforth denote byN (i;Vϑ(Z

0)) the index set of the
neighbors of thei-th agent in the topology of the partition
Vϑ(Z

0) whenηi ≥ 2µ (no communication constraints). Note
that the neighbors of thei-th agent in the topology ofVϑ(Z

0)

4The reader interested in applications in which the condition ηi ≥ 2µ holds
true for all i ∈ In (in such applications, the communication constraints will
not play a significant role in the partitioning problem) may skip this section
and go directly to Section III-D.

are the agents whose cells share a common edge withV
i
ϑ(z

0
i ),

which is a convex polygonal cell.

Before we proceed any further, it is important to stress that
the outcome of Algorithm 2 would remain the same, even if
we have replacedZ0 (input data) with the joint state vector
that corresponds to the concatenation of the initial statesof the
i-th agent and its neighbors in the topology of the partition
Vϑ(Z

0). As we have previously explained, the neighbors of
the i-th agent are the only agents involved in the necessary
computations for the characterization of its cell,V

i
ϑ(z

0
i ). Be-

cause of this fact, one can claim that Algorithm 2 can be easily
implemented in a distributed way. The important nuance here
is that thei-th agent is in no position to know its neighbors
without having computed its own cell first; however, an agent
cannot compute its own cell in a distributed way without
knowing its neighbors, which leads us to a cyclic argument.
Therefore, in the presence of communication constraints (in
which case it is not necessarily true thatηi ≥ 2µ), the i-th
agent will have to adjust its communication range,ηi, so that
it includes at least the agents that correspond to its neighbors
in the topology ofVϑ(Z

0) (which is the partition that solves
Problem 2, whenηi ≥ 2µ for all i ∈ In). The objective of the
i-th agent is to use a communication rangeηi ∈ [0, 2µ] that
strikes a balance between being sufficiently large to allow it to
communicate with its neighbors and being as small as possible
in order to keep the incurred communication cost low. In other
words, thei-th agent is seeking for a communication range
ηi ∈ [0, 2µ] such thatNc(i, ηi) ⊇ N (i;Vϑ(Z

0)), which in
turn implies thatVi

ϑ(z
0
i ; ηi) = V

i
ϑ(z

0
i ), as we show next.

Proposition 3: Let Vϑ(Z
0) := {Vi

ϑ(z
0
i ), i ∈ In} denote

the Voronoi-like partition that solves Problem 2, whenηi ≥ 2µ
for all i ∈ In (absence of communication constraints). If, for
a giveni ∈ In, there existsη⋆i ∈]0, 2µ] such thatNc(i, η

⋆
i ) ⊇

N (i;Vϑ(Z
0)), thenVi

ϑ(z
0
i ; ηi) = V

i
ϑ(z

0
i ), for all ηi ≥ η⋆i .

Proof: It suffices to show that

X
i
ϑ(z

0
i ; ηi) := πX (Vi

ϑ(z
0
i ; ηi)) = πX (Vi

ϑ(z
0
i )) =: X i

ϑ(z
0
i ),

for anyηi ≥ η⋆i . By its definition, every cell of the affine parti-
tion X ϑ(Z

0) can be written as the intersection ofn−1 closed
half-spaces confined inX , which is by hypothesis a compact
and convex polygonal set. In particular, the cellX

i
ϑ(z

0
i ), i ∈

In, can be written as follows [36]:X i
ϑ(z

0
i ) = ∩j∈In\{i}Cij ,

where Cij := {x ∈ X : δϑ(x; z
0
i ) ≤ δϑ(x; z

0
j )} for

j ∈ In\{i}. We conclude thatX i
ϑ(z

0
i ) is a convex polygon

which may only share its edges with its neighboring cells,
which implies thatX i

ϑ(z
0
i ) = ∩j∈N (i;Xϑ(Z0))Cij , where

N (i;X ϑ(Z
0)) = N (i;Vϑ(Z

0)). Therefore,

∩j∈In\{i} Cij = ∩j∈JCij = ∩j∈N (i;Xϑ(Z0))Cij ,

for any index-setJ with N (i;X ϑ(Z
0)) ⊆ J ⊆ In\{i}. The

result follows readily by takingJ := Nc(i, η
⋆
i ).

In view of Proposition 3, the inclusionNc(i, ηi) ⊇
N (i;Vϑ(Z

0)) implies that

̺ϑ(i; e,Nc(i, ηi)) = ̺ϑ(i; e, In), (24a)

̺
ϑ
(i; e,Nc(i, ηi)) = ̺

ϑ
(i; e, In). (24b)

It should be stressed here that thei-th agent needs to be
in position to determine whether the inclusionNc(i, ηi) ⊇
N (i;Vϑ(Z

0)) holds true or not, via a relevant stopping crite-
rion whose verification is solely relied on (local) information
obtained from agents lying within its communication range.
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The following proposition stresses an importantmonotonicity
property enjoyed by Voronoi-like partitions, which will prove
useful in the subsequent analysis.

Proposition 4: Let N (i;Vϑ(Z
0)) denote the index-set of

the neighbors of thei-th agent in the topology ofVϑ(Z
0),

for a given ϑ ∈ S1, and letN ′ ⊆ N ′′ ⊆ N (i;Vϑ(Z
0)).

In addition, let {Z ′} := {z0
j ∈ {Z0}, j ∈ N ′} ∪ {z0

i }
and {Z ′′} := {z0

j ∈ {Z0}, j ∈ N ′′} ∪ {z0
i }, and let

Z ′ and Z ′′ denote the corresponding joint vectors inZn1

and Z
n2 , respectively, wheren1 := card(N ′) + 1 and

n2 := card(N ′′) + 1. Moreover, letVϑ(Z
′) and Vϑ(Z

′′)
denote the partitions that solve Problem 2 whenηi ≥ 2µ for all
i ∈ In, with Z ′ andZ ′′ in lieu ofZ0, respectively. In addition,
let Vϑ(z

0
i |Z ′) andVϑ(z

0
i |Z ′′) denote, respectively, the cells

from the partitionVϑ(Z
′) andVϑ(Z

′′) that are associated
with the agent emanating from the statez0

i . Then,

Vϑ(z
0
i |Z ′) ⊇Vϑ(z

0
i |Z ′′) ⊇V

i
ϑ(z

0
i ). (25)

Remark 3 Proposition 4 implies that the cell associated with
a particular agent will either remain the same or expand, if
any agents are removed from its network. This result is quite
intuitive given that the more agents the network has, the harder
would be for any of its agents to “claim” that a particular state
in T ϑ is closer to them than to any of their teammates (since
there are more “competitors”). It is interesting to note that
Lemma 1 is a direct consequence of Proposition 4.

Next, we propose an algorithm that will allow thei-th agent
to discover all of its neighboring agents in the topology of
Vϑ(Z

0) by adjusting appropriately its communication range.
To this aim, letηi = η0i > 0 be the initial communication
range of thei-th agent and letVi

ϑ(z
0
i ; η

0
i ) be its corresponding

cell. Now let η1i > η0i be its communication range at stage
k = 1 which is such thatNc(i, η

1
i ) ) Nc(i, η

0
i ). Let

ℓ ∈ Nc(i, η
1
i )\Nc(i, η

0
i ). Then theℓ-th agent, which was not

within the communication range of thei-th agent at stage
k = 0, can directly exchange information with the latter
via a communication channel established at stagek = 1.
In addition, let us assume that theℓ-th agent is closer, in
terms of the metricδϑ, to at least one of the points in the
relative boundary ofVi

ϑ(z
0
i ; η

0
i ). Then, we claim that the

communication rangeη0i is not sufficiently large to allow the
i-th agent to exchange information with all of its neighbors in
the topology ofVϑ(Z

0), that is,Nc(i, η
0
i ) ( N (i;Vϑ(Z

0)).
Next, we prove this claim.

Proposition 5: Let ηk+1
i > ηki > 0 and suppose that

Nc(i, η
k+1
i ) ) Nc(i, η

k
i ) for somek ∈ Z≥0. If there is ℓ ∈

Nc(i, η
k+1
i )\Nc(i, η

k
i ) such thatδϑ(x; z0

ℓ ) < δϑ(x; z
0
i ) for

somex ∈ bd(X i
ϑ(z

0
i ; η

k
i )), thenNc(i, η

k
i ) ( N (i;Vϑ(Z

0)).

Proof: By hypothesis, there is a statezϑ(x) ∈
rbd(Vi

ϑ(z
0
i ; η

k
i )) ⊆ V

i
ϑ(z

0
i ; η

k
i ) such that δϑ(x; z0

ℓ ) <
δϑ(x; z

0
i ). Therefore,zϑ(x) /∈ V

i
ϑ(z

0
i ), and we conclude

immediately thatVi
ϑ(z

0
i ; η

k
i ) ) V

i
ϑ(z

0
i ). This in turn im-

plies thatNc(i, η
k
i ) ⊆ N (i;Vϑ(Z

0)) in light of Proposi-
tion 4. We claim that actuallyNc(i, η

k
i ) ( N (i;Vϑ(Z

0))
for if Nc(i, η

k
i ) = N (i;Vϑ(Z

0)), then we would have
V

i
ϑ(z

0
i ; η

k
i ) = V

i
ϑ(z

0
i ), which contradicts the fact that

V
i
ϑ(z

0
i ; η

k
i ) ) V

i
ϑ(z

0
i ), which we have already proved. We

conclude thatNc(i, η
k
i ) ( N (i;Vϑ(Z

0)).

The upshot of Proposition 5 is that, at stagek, the i-th

agent should increase its communication range toηk+1
i > ηki ,

if it is not true that all the points in the relative boundary
of its own cell, which was computed at stagek, are closer
to it than to any other agent that would lie within the closed
ball B(x0

i ; η
k+1
i ). The previous observation leads naturally to

the following update law for thei-th agent’s communication
range:

ηk+1
i = min{γηki , 2µ}, k ∈ Z≥0, (26)

whereγ > 1 (typically, γ = 2). Note that otherwise, that is, if
δϑ(x; z

0
ℓ ) ≥ δϑ(x; z0

i ) for everyx ∈ bd(X i
ϑ(z

0
i ; η

k
i )) and for

anyℓ ∈ N (i, ηk+1
i )\Nc(i, η

k
i ), we will not be able to conclude

with certainty thatNc(i, η
k
i ) ⊇ N (i;Vϑ(Z

0)). Thei-th agent
will have to keep increasing its communication range until it
successfully discovers all of its neighbors in the topologyof
Vϑ(Z

0). The occurrence of this event should be checked at
each step via a relevant stopping criterion.

Unfortunately, the techniques and the stopping criteria used
in [1], [15] for the discovery of the neighbors of an agent
in the topology of the standard Voronoi partition cannot be
used in our case. This is because the index-setsNc(i, ηi)
andN (i;Vϑ(Z

0)) are not induced by the same metric; in
particular, the first one is induced by the Euclidean distance
whereas the second one by the (generalized) proximity metric
δϑ. Next, we show how one can account for this “metric
mismatch.” To this aim, let̄δiϑ(ηi) denote the maximum value
of δϑ(·; z0

i ) overX i
ϑ(z

0
i ; ηi), that is,

δ̄iϑ(ηi) := max{δϑ(x; z0
i ) : x ∈ X

i
ϑ(z

0
i ; ηi)}. (27)

Because in the formulation of the partitioning problem over
T ϑ the position spaceX is assumed to be a convex and
compact polygonal set, all the cells ofX ϑ(Z

0;H) will also
be compact and convex polygons. Therefore, the restriction
of the convex quadratic functionδϑ in the cell X i

ϑ(z
0
i ; ηi)

will always attain its maximum value inbd(X i
ϑ(z

0
i ; ηi)), and

specifically, at one (or more) of its vertices [38], for alli ∈ In.
Now let x̄ϑ(ηi) be the corresponding maximizer, which is not
necessarily unique. Unless̄xϑ(ηi) belongs to the boundary of
X , there exists at least onej ∈ Nc(i, ηi) such that the latter
point is equidistant from thei-th and thej-th agents in terms of
δϑ, that is,δϑ(x̄ϑ(ηi); z

0
j ) = δϑ(x̄ϑ(ηi); z

0
i ) = δ̄iϑ(ηi). In this

case, it is also true that̄xϑ(ηi) ∈ bd(E
i

ϑ(ηi)) ∩ bd(E
j

ϑ(ηi)),
where E

ℓ

ϑ(ηi) := {x ∈ X : δϑ(x; z
0
ℓ ) ≤ δ̄iϑ(ηi)}, for

ℓ = i, j, are thēδiϑ(ηi)-sub-level sets ofδϑ(·; z0
i ) andδϑ(·; z0

j ),
respectively, which are (closed) ellipsoids inX centered at
ξiϑ and ξ

j
ϑ. Note thatE

j

ϑ(ηi) = {x ∈ X : |Π 1

2 (ξjϑ −
x)|2 ≤ δ̄iϑ(ηi) − µj

ϑ}, which implies thatE
j

ϑ(ηi) ⊆ {x ∈
X : |Π 1

2 (ξjϑ − x)|2 ≤ δ̄iϑ(ηi)} =: E
j

ϑ(ηi) (the previous
inclusion follows readily in view ofµj

ϑ ≥ 0). In the light of
the Rayleigh quotient inequality together with the definition
of E

j

ϑ(ηi), we have that

δ̄iϑ(ηi) ≥ |Π
1

2 (ξjϑ − x)|2 ≥ λmin(Π)|ξjϑ − x|2,
for all x ∈ E

j

ϑ(ηi), which in turn implies that

|ξjϑ − x| ≤
√

δ̄iϑ(ηi)/λmin(Π) =: ψi
ϑ(ηi), (28)

for all x ∈ E
j

ϑ(ηi). It follows immediately that
B(ξiϑ;ψ

i
ϑ(ηi)) ⊇ E

j

ϑ(ηi). Now, let us consider the stripeS
that is formed by the collection of all balls of radiusψi

ϑ(ηi)
which are translations ofB(ξiϑ;ψ

i
ϑ(ηi)) and are tangent to



12

the boundary ofX i
ϑ(z

0
i ; ηi), as is illustrated in Fig. 4 (in this

figure, the balls of the stripeS are depicted with dashed lines).
Note that any generatorξℓϑ ∈ {Ξϑ} that does not belong to
X

i
ϑ(z

0
i ; ηi) and whose distance frombd(X i

ϑ(z
0
i ; ηi)), in terms

of δϑ(·; z0
ℓ ), is less than or equal tōδiϑ(ηi) will belong toS.

In addition, the stripeS will be contained itself in the closed
ball B(x0

i ; ψ̄
i
ϑ(ηi)), which is centered at the initial location

of the i-th agent and has radius

ψ̄i
ϑ(ηi) := ψi

ϑ(ηi) + d̄iϑ(ηi), (29)

where d̄iϑ(ηi) denotes the maximum (Euclidean) distance
betweenx0

i and the boundary ofX i
ϑ(z

0
i ; ηi), that is,

d̄iϑ(ηi) := max{|x0
i − x|, x ∈ bd(X i

ϑ(z
0
i ; ηi))}.

Again, the maximum in the previous expression will be
attained at one (or more) of the vertices of the convex and
compact polygonX i

ϑ(z
0
i ; ηi) [38].

Proposition 6: The closed ballB(x0
i ; ηi) will contain the

point-set{Ξi
ϑ} := {ξℓϑ, ℓ ∈ N (i;Vϑ(Z

0))}, provided that
ηi ≥ min{ψ̄i

ϑ(ηi), 2µ}, whereψ̄i
ϑ(ηi) is defined in (29).

Proof: Let ξℓϑ ∈ {Ξi
ϑ}. By definition, the cellX ℓ

ϑ(z
0
ℓ ) ∈

X ϑ(Z
0) that is associated withξℓϑ will share a common edge

with the cellX i
ϑ(z

0
i ) ∈ X ϑ(Z

0). Consequently, there exists
a point x ∈ bd(X i

ϑ(z
0
i )) that is “equidistant” with respect

to δϑ from the i-th and theℓ-th agents, that is,δϑ(x; z0
ℓ ) =

δϑ(x; z
0
i ). Now let ¯̄δiϑ := maxy∈X i

ϑ
(z0

i
) δϑ(y; z

0
i ). We claim

that ¯̄δiϑ = δ̄iϑ(2µ), where δ̄iϑ(·) is defined in (27). To prove
this, we first show that the non-negative (and thus lower
bounded) functionδ̄iϑ(·) is a non-increasing function ofηi
over [0, 2µ]. To this aim, it suffices to note that given two
communication ranges, namelyη′i and ηi, with η′i ≥ ηi, we
have thatNc(i, ηi) ⊆ Nc(i, η

′
i), which in turn implies that

V
i
ϑ(z

0
i ; η

′
i) ⊆ V

i
ϑ(z

0
i ; ηi), in view of Proposition 4. We also

know that Nc(i, 2µ) ⊇ N (i;Vϑ(Z
0)) = N (i;X ϑ(Z

0)),
which implies thatX i

ϑ(z
0
i ; 2µ) = X

i
ϑ(z

0
i ). Then, in view

of the monotone convergence theorem from real analysis, it
follows readily thatmaxy∈X i

ϑ
(z0

i
) δϑ(y; z

0
i ) =

¯̄δiϑ = δ̄iϑ(2µ) =

limk→∞ δ̄iϑ(η
k
i ), where {ηki }k∈Z≥0

is a non-increasing se-
quence of positive numbers such thatlimk→∞ ηki = 2µ.
The fact thatδ̄iϑ(ηi) is a non-increasing function ofηi also
implies that for anyηi ∈ [0, 2µ] and for the same point
x ∈ bd(X i

ϑ(z
0
i )) ( X

i
ϑ(z

0
i ; ηi), which is not necessarily a

boundary point ofX i
ϑ(z

0
i ; ηi), it holds that

δϑ(x; z
0
ℓ ) ≤ ¯̄δiϑ = δ̄iϑ(2µ) ≤ δ̄iϑ(ηi), for all ηi ∈ [0, 2µ].

However, ifδϑ(x; z0
ℓ ) ≤ δ̄iϑ(ηi), thenx belongs to the ellipsoid

E
ℓ

ϑ(ηi) := {x ∈ X : |Π 1

2 (ξℓϑ − x)|2 ≤ δ̄iϑ(ηi)}, which is

contained necessarily inS ∪X
i
ϑ(z

0
i ; ηi). Because,E

ℓ

ϑ(ηi) ⊆
(S ∪ X

i
ϑ(z

0
i ; ηi)) ⊆ B(x0

i ; ψ̄
i
ϑ(ηi)), we conclude thatξℓϑ ∈

B(x0
i ; ψ̄

i
ϑ(ηi)).

Before we proceed any further, we will need the following
lemma.

Lemma 2:Let ν > 0 andw > 0 be such that|ν0
i | ≤ ν and

|w0
i | ≤ w, for all i ∈ In, respectively. Then,|riϑ| ≤ r, where

r := λmax(Λ)mν, for all i ∈ In and allϑ ∈ S1.

Proof: In view of Eq. (9a), we have that
|riϑ| ≤ m|ΛT1(θ

0
i )ν

0
i | ≤ mσmax(Λ)|T1(θ

0
i )ν

0
i | =

mλmax(Λ)|ν0
i | ≤ λmax(Λ)mν, for all i ∈ In, where

we have used the facts thatσmax(Λ) =
√

λmax(Λ2) =

√

λ2max(Λ) = λmax(Λ), given thatΛ is a diagonal matrix
in P2, and |T1(θ

0
i )ν

0
i | = |ν0

i |, given that T1(θ
0
i ) is an

orthogonal matrix.

Next, we present a condition that will serve as thestopping
criterion of the iterative process for the discovery of the
neighbors of thei-th agent.

Proposition 7: Let ν, w, andr be positive constants defined
as in Lemma 2 and letϑ ∈ S1 be given. In addition, suppose
that for a givenηi > 0, we have thatηi ≥ crlbiϑ(ηi) (crlb:
communication range lower bound), where

crlbiϑ(ηi) := min{ψ̄i
ϑ(ηi) + r/λmin(Π), 2µ}, (30)

where ψ̄i
ϑ(ηi) is defined as in (29). Then, the closed ball

B(x0
i ; ηi) contains all the neighbors of thei-th agent in

the topology of the partitionVϑ(Z
0), which corresponds to

the solution of Problem 2 whenηi ≥ 2µ, for all i ∈ In,
that is,Nc(i, ηi) ⊇ N (i;Vϑ(Z

0)), which also implies that
V

i
ϑ(z

0
i ; ηi) = V

i
ϑ(z

0
i ).

Proof: In view of Proposition 6 and its proof, it follows
that ξjϑ ∈ B(x0

i ; ψ̄
i
ϑ(ηi)) for eachj ∈ N (i;Vϑ(Z

0)) given
that ηi ≥ crlbiϑ(ηi) ≥ min{ψ̄i

ϑ(ηi), 2µ}, which in turn holds
true in the light of (30). Consequently,

|x0
i − x0

j | = |x0
i − ξ

j
ϑ + ξ

j
ϑ − x0

j | ≤ |x0
i − ξ

j
ϑ|+ |ξ

j
ϑ − x0

j |
≤ ψ̄i

ϑ(ηi) + |Π−1r
j
ϑ|

≤ ψ̄i
ϑ(ηi) + σmax(Π

−1)|rjϑ|
≤ ψ̄i

ϑ(ηi) + r/λmin(Π),

where in the previous derivation we have also used the
triangle inequality together with Lemma 2, and the fact that
σmax(Π

−1) = 1/σmin(Π) = 1/λmin(Π), which holds true
given thatΠ is a diagonal matrix inP2 (note that in this case,
σmin(Π) =

√

λmin(Π2) =
√

λ2min(Π) = λmin(Π)). We
conclude that ifηi ≥ crlbiϑ(ηi), wherecrlbiϑ(ηi) is defined
as in (30), then the closed ballB(x0

i ; ηi) will contain the
set {x0

ℓ , ℓ ∈ N (i;Vϑ(Z
0))}, from which we immediately

conclude thatNc(i, ηi) ⊇ N (i;Vϑ(Z
0)).

Remark 4 It is important to note that (30) is an implicit
inequality, given thatηi appears at both of its sides.

The step-by-step description of the distributed algorithmfor
the computation of the (boundary of) cellX i

ϑ(z
0
i ) is given

in Algorithm 3. This algorithm also provides a valuēηiϑ >
0 such that the inequalityηi ≥ crlbiϑ(ηi) holds true for the
communication rangeηi = η̄iϑ.

Remark 5 In the proposed approach, thei-th agent computes
its own cell independently from the other agents of the same
network while discoveringin parallel its neighbors in the
topology of the Voronoi-like partition. In addition, we have
made the assumption that thei-th agent can essentially execute
Algorithm 3 “instantaneously.” It is actually not difficultto
explicitly account for the effect of the time period between
the execution of two consecutive while loops of Algorithm 3
on the required communication range of thei-th agent. To this
aim, let us denote bȳτ an upper bound on this time period.
Then, the update law for the communication range of thei-th
agent at stagek + 1 should be given by

ηk+1
i = min{γηki + δη, 2µ}, (31)
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Algorithm 3 Distributed Algorithm for the Independent Com-
putation of thei-th Cell of X ϑ(Z

0;H) by the i-th Agent
1: procedure DISTRCELLCOMP
2: Input data: Z0, ϑ
3: Input variables: i, E, ηi, γ
4: Output variables: bd(X i

ϑ), η̄
i
ϑ

5: k ← 0
6: ηki ← ηi
7: {Z0

k} ← {z0
ℓ ∈ {Z0} : ℓ ∈ Nc(i, η

k
i )} ∪ {z0

i }
8: bd(X i

ϑ(Z
0
k)) = CELLCOMP(i,E,Nc(i, η

k
i );Z

0
k , ϑ)

9: computecrlbiϑ(η
k
i ) via (30)

10: while ηki < crlbiϑ(η
k
i ) do

11: ηk+1
i ← γηki

12: {Z0
k+1} ← {z0

ℓ ∈ {Z0} : ℓ ∈ Nc(i, η
k+1
i )} ∪

{z0
i }

13: bd(X i
ϑ(Z

0
k+1)) = CELLCOMP(i,E,Nc(i, η

k+1
i );

Z0
k+1, ϑ)

14: computecrlbiϑ(η
k+1
i ) via (30)

15: k ← k + 1
16: bd(X i

ϑ)← bd(X i
ϑ(Z

0
k))

17: η̄iϑ ← ηki

whereδη := 2ν̄τ̄ with ν̄ be defined as in Proposition 7. Note
that the correction term,δη, corresponds to the maximum
increase on the relative distance between thei-th agent and
any other agent from the same network that can take place
within τ̄ units of time.

D. The Partitioning Problem over the Terminal ManifoldT
After having addressed the partitioning problems over the

terminal manifoldT ϑ for each ϑ ∈ S1 (Problem 2), the
solution to the partitioning problem overT (Problem 1)
will follow readily by stacking the solutions to the para-
metric problems next to each other as the parameterϑ runs
through S1. In particular, in the special case in which no
communication constraints are enforced, that is,ηi ≥ 2µ
for all i ∈ In, we have that the solution to Problem 2 is
simply the partitionV(Z0) := {Vi(z0

i ), i ∈ In}, where
V

i(z0
i ) := ∪ϑ∈S1 [V

i
ϑ(z

0
i ) × {ϑ}], i ∈ In. In the presence

of communication constraints, there is one additional stepthat
needs to be made, namely to find a uniform lower bound onηi
that is independent ofϑ. In particular, Proposition 7 together
with Algorithm 3 allow us to characterize a positive number
η̄iϑ such thatVi

ϑ(z
0
i ; ηi) = V

i
ϑ(z

0
i ) for all ηi ≥ η̄iϑ and for

a givenϑ ∈ S1. Then, the maximum of̄ηiϑ over S1, which
is always attained and is denoted byη⋆i , will be such that
V

i(z0
i ; ηi) = V

i(z0
i ) for all ηi ≥ η⋆i .

Remark 6 In order to simplify the presentation, it will be
henceforth assumed that the communication range of thei-th
agent,ηi, satisfies the following inequality:ηi ≥ η⋆i , for all
i ∈ In, and consequently, there will be no need to distinguish
between the partitionV(Z0) and the partitionV(Z0;H) and
their cells.

IV. COVERAGE-TYPE LOCATIONAL OPTIMIZATION IN T ϑ

AND T

In this section, we address a class of coverage-type loca-
tional optimization problems for multi-agent networks with

x0
i

x0
j

ξ0i
ξ0j

E
i

ϑ(ηi)

E
j

ϑ(ηi)

ηi ψi
ϑ(ηi)

ψi
ϑ(ηi)

r/λmin(Π)

d̄iϑ(ηi)
X

i
ϑ

X
j
ϑ

X
S

Fig. 4. The i-th agent will increase its communication range
until it discovers all of its neighbors in the topology ofVϑ(Z

0)
(or, equivalently, in the topology ofXϑ(Z

0)). To simplify this
illustration, we have assumed thatµi

ϑ = µ
j

ϑ = 0, which implies
that the ellipsoidsE

i

ϑ(ηi), E
j

ϑ(ηi) andE
j

ϑ(ηi) are all equal modulo
a linear translation.

planar rigid body dynamics based on a “divide and conquer”
approach that leverages the proposed Voronoi-like partitions
of T ϑ andT .

A. Locational Optimization overT ϑ

In a nutshell, the locational optimization problem overT ϑ,
for a given ϑ ∈ S1, seeks for the joint position vector of
the network,X⋆ := col(x⋆

1, . . . ,x
⋆
n), that minimizes the

performance indexHϑ(·) : Xn → R≥0 with

Hϑ(X
0) :=

∑

i∈In

∫

X i

ϑ

δϑ(x; zϑ(x
0
i ))φ1(x)dx, (32)

whereX i
ϑ := πX (Vi

ϑ) andφ1(·) : X → R≥0 is a continuous
and non-negative function (density function overX ). Note
that in the formulation of the locational optimization problem
overT ϑ, the joint vectorX⋆ corresponds to the concatenation
of the initial positions of the agents of the network that are
optimal in the following sense: if thei-th agent is located
at the configurationcol(x⋆

i , ϑ) with zero angular and linear
velocities, for eachi ∈ In, thenHϑ will attain its minimum
value. Next, we characterize the minimizers ofHϑ. In the light
of (10), we have that

Hϑ(X
0) =

∑

i∈In

∫

X i

ϑ

|Π 1

2 (x− ξiϑ)|2φ1(x)dx

+
∑

i∈In

∫

X i

ϑ

µi
ϑφ1(x)dx, (33)

whereξiϑ andµi
ϑ satisfy the respective equations in Eq. (11)

after the following substitutions:θ0i = ϑ, ν0
i = 0, andw0

i = 0
(these substitutions are made in order to account for the fact
that the states of all the agents of the network are confined to
the two-dimensional sub-manifoldT ϑ). It follows that ξiϑ =
x0
i andµi

ϑ = 0. Therefore,

Hϑ(X
0) =

∑

i∈In

∫

X i

ϑ

φ1(x)|Π
1

2 (x− x0
i )|2dx. (34)
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The minimizer ofHϑ(X
0), which is denoted asX⋆ satisfies

the first-order necessary condition for optimality [37], [39]:

(∂Hϑ(X
0)/∂x0

i )di ≥ 0, i ∈ In, (35)

for any feasible directiondi ∈ R2 of X atx0
i . Because the set

X is convex (and compact), according to the formulation of
Problem 2, we can replacedi in (35) with the vectorx−x0

i .
In addition, ifx⋆

i is an interior point ofX , then (35) becomes

∂Hϑ(X
0)/∂x0

i = 0, i ∈ In. (36)

In the light of the discussion in [3, pp. 128-131], one can show
that

(

∂Hϑ(X
0)/∂x0

i

)T
= −

∫

X i

ϑ

2φ1(x)Π(x− x0
i )dx. (37)

Thus, the solution of (36) is given by

x⋆
i = (

∫

X i

ϑ

φ1(x)xdx)/Φ1(X
i
ϑ) =: xi

cm|ϑ, (38)

for i ∈ In, where Φ1(X
i
ϑ) :=

∫

X i

ϑ

φ1(x)dx and xi
cm|ϑ

denotes the centroid ofX i
ϑ with respect to the density function

φ1(·). Note that by its definition, which is given in (38), the
centroidxi

cm|ϑ lies in the interior of the convex cellX i
ϑ.

Proposition 8: The functionHϑ(·) : Xn → R≥0, where
Hϑ(X

0) satisfies (32) forX0 ∈ X
n, attains its minimum

value at the joint position vector of the networkX⋆ :=
col(x1

cm|ϑ, . . . ,x
n
cm|ϑ), wherexi

cm|ϑ is the centroid ofX i
ϑ(z

0
i )

with respect toφ1(·) that satisfies Eq. (38), for alli ∈ In.

Proof: The (strict) convexity of|Π 1

2 (x − x0
i )|2 as a

function of x0
i , implies thatHϑ(·) is a convex function of

X0 (see, for instance, [40, p. 79]). The fact that the centroid
xi
cm|ϑ of the convex cellX i

ϑ(z
0
i ), which is by its definition an

interior point of the latter cell and consequently of the domain
X , is the unique solution to the equation∂Hϑ(X

0)/∂x0
i = 0,

for all i ∈ In, implies thatX⋆ = col(x1
cm|ϑ, . . . ,x

n
cm|ϑ) is the

unique global minimizer of the convex functionHϑ(·) in X
n.

Note that the fact thatxi
cm|ϑ is an isolated solution to (36) in

the interior ofX precludes the existence of a boundary point
of X that satisfies (35) and is also a minimizer ofHϑ(·) (the
set of minimizers ofHϑ(·) is necessarily a convex, and thus
connected, set [39]).

Remark 7 The upshot of Proposition 8 is that the projection
of the minimizing state of each agent intoX corresponds
to the centroid of its associated cell in the affine partition
X ϑ. This result mirrors the solution to popular coverage-type
locational optimization problems addressed in the literature
(see [3] and references therein). On the other hand, the solution
to the locational optimization problem overT is much more
interesting, as we will see next.

B. Locational Optimization over the Terminal ManifoldT

Next, we analyze and address the locational optimization
problem overT . To this aim, we consider a continuous and
non-negative functionφ(·) : Q → R≥0, which will play the
role of the density function overQ. To facilitate the presenta-
tion, we will assume that for anyq ∈Q, φ(q) = φ1(x)φ2(ϑ),
whereφ1(·) : X → R≥0 and φ2(·) : S1 → R≥0 are known
continuous, non-negative functions. In addition,φ2(·) is a2π-
periodic function.

We will be seeking for the joint configuration of the
network, Q⋆ := col(q⋆

1 , . . . , q
⋆
n) ∈ Q

n, that minimizes the
performance indexH(·) : Qn → R≥0, where

H(Q0) :=
∑

i∈In

∫

Qi

δ(q; zT (q0
i ))φ(q)dq, (39)

where Q
i := πQ(Vi(z0

i )) or, equivalently, Qi :=
∪ϑ∈S1

[

X
i
ϑ × {ϑ}

]

, whereX
i
ϑ := πX (Vi

ϑ(z
0
i )). It follows

immediately that

H(Q0) =
∑

i∈In

∫

Qi

|Π 1

2 (x− ξiϑ)|2φ(q)dq

+
∑

i∈In

∫

Qi

µi
ϑφ(q)dq, (40)

where ξiϑ and µi
ϑ are defined in the respective equations in

(11), after substitutingν0
i = 0 andw0

i = 0 therein. It follows
that ξiϑ = x0

i , andµi
ϑ = ε2J(1 − cos(θ0i − ϑ))2. In addition,

we have thatH(Q0) can be written as follows:H(Q0) =
H1(X

0) +H2(Θ
0), where

H1(X
0) :=

∑

i∈In

∫

Qi

φ(q)|Π 1

2 (x− x0
i )|2dq, (41a)

H2(Θ
0) :=

∑

i∈In

∫

Qi

φ(q)ε2J(1− cos(θ0i − ϑ))2dq. (41b)

In view of (41a) and the discussion in [3, pp. 128-131], it
follows that
(

∂H(Q0)/∂x0
i

)T
=

(

∂H1(X
0)/∂x0

i

)T

= −
∫

Qi

2φ(q)Π(x− x0
i )dq

= −2Π
∫

S1

φ2(ϑ)

∫

X i

ϑ

φ1(x)xdxdϑ+ 2
(

∫

Qi

φ(q)dq
)

Πx0
i

= −2Π
∫

S1

φ2(ϑ)Φ1(X
i
ϑ)x

i
cm|ϑdϑ+ 2Φ(Qi)Πx0

i , (42)

whereΦ(Qi) :=
∫

Qi φ(q)dq =
∫

S1
Φ1(X

i
ϑ)φ2(ϑ)dϑ (total

“mass” of Qi). Given thatΦ(Qi) > 0, whenQi ( Q has a
non-empty interior, we immediately conclude that the solution
to the equation∂H(Q0)/∂x0

i = 0 is given by

x⋆
i = (

∫

S1

Φ1(X
i
ϑ)φ2(ϑ)x

i
cm|ϑdϑ)/Φ(Q

i). (43)

Furthermore, in view of (41), we have that

∂H(Q0)/∂θ0i = ∂H2(Θ
0)/∂θ0i

=

∫

S1

∫

X i

ϑ

φ1(x)φ2(ϑ)(∂µ
i
ϑ/∂θ

0
i )dxdϑ

=

∫

S1

Φ1(X
i
ϑ)φ2(ϑ)(∂µ

i
ϑ/∂θ

0
i )dϑ. (44)

Therefore,∂H(Q0)/∂θ0i = 0 is equivalent to
∫

S1

Φ1(X
i
ϑ)φ2(ϑ)(1− cos(θ0i −ϑ)) sin(θ0i −ϑ)dϑ = 0. (45)

By applying standard trigonometric identities, Eq. (45) can be
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written as follow:

sin(θ0i )

∫

S1

Φ1(X
i
ϑ)φ2(ϑ) cos(ϑ)dϑ

− cos(θ0i )

∫

S1

Φ1(X
i
ϑ)φ2(ϑ) sin(ϑ)dϑ

− 1/2 sin(2θ0i )

∫

S1

Φ1(X
i
ϑ)φ2(ϑ) cos(2ϑ)dϑ

+ 1/2 cos(2θ0i )

∫

S1

Φ1(X
i
ϑ)φ2(ϑ) sin(2ϑ)dϑ = 0. (46)

By using the following identity:A cos θ+B sin θ = C cos(θ−
χ), whereC :=

√
A2 +B2 and tanχ = B/A, Eq. (46) can

be written as follows:

C1 cos(θ
0
i − χ1)− C2 cos(2θ

0
i − χ2) = 0, (47)

where the positive constantsC1 andC2 and the anglesχ1 and
χ2 can be computed accordingly. It is easy to see that (47) will
always have a solution in[0, 2π] given that the graphs of the
functionsfi(·) : [0, 2π] → R, i = 1, 2, with valuesf1(ϑ) :=
C1 cos(ϑ − χ1) and f2(ϑ) := C2 cos(2ϑ − χ2) will always
intersect. To see this, simply note thatf1(·) and f2(·) are,
respectively,2π-periodic andπ-periodic functions, from which
it follows that both of them attain every single value in the
intervals [−C1, C1] and [−C2, C2] asϑ runs through[0, 2π].
If C1 > C2 (the caseC1 < C2 can be treated similarly),
then there will beϑ1, ϑ2 ∈ [0, 2π] with ϑ1 6= ϑ2 such that
f1(ϑ1) ∈ [−C1,−C2[, which implies thatf1(ϑ1) < f2(ϑ1),
and f1(ϑ2) ∈]C2, C1], which implies thatf1(ϑ2) > f2(ϑ2).
Consequently, the sign of the expression on the left hand side
of Eq. (47) will necessarily change from negative atϑ = ϑ1 to
positive atϑ = ϑ2 (or vice versa). This implies the existence
of a root of Eq. (47) in[0, 2π]. Finally, if C1 = C2, then
Eq. (47) becomes:θ0i − χ1 = ±(2θ0i − χ2 + 2kπ), which
always has a solution in[0, 2π] for somek ∈ Z.

Proposition 9: The functionH(·) : Q
n → R≥0, where

H(Q0) is given in (39), attains its minimum value at the joint
configurationQ⋆ := col(q⋆

1 , . . . , q
⋆
n) with q⋆

i = col(x⋆
i , ϑ

⋆
i ),

wherex⋆
i is defined in Eq. (43) andϑ⋆i belongs necessarily

to the non-empty subset of the compact interval[0, 2π] that is
comprised of the roots of Eq. (45), for alli ∈ In.

Remark 8 Proposition 9 implies that the position component
of the minimizer ofH that is associated with thei-th agent
corresponds to the weighted average of the centroids of the
cells of this agent from the solution to each parametric
partitioning problem inT ϑ, for ϑ ∈ S1. This result is intuitive.
On the other hand, one can find the optimal heading angle
of the i-th agent by solving a single trigonometric equation,
namely Eq. (45), in the compact interval[0, 2π], (the latter
equation always admits a solution, as we have already shown).

V. NUMERICAL SIMULATIONS

For our simulations, we consider a network of ten agents
whose initial positions, heading angles, and linear and angular
velocities are chosen randomly. For these simulations, we have
used the following data:J = 0.1, m = 1, ε = 0.5, and
Λ := 0.5I2. The density functionφ1(·) in X was taken to be
φ1(x, y) = exp(0.1((x − 4)2 + (y − 5)2 − 0.15((x − 4)4 +
(y−5)4))), whereasφ2(ϑ) ≡ 1 (no preference is attached to a
particular terminal heading angle). Finally, the setX is taken
to be the square domain[0, 8]× [0, 8].
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Fig. 5. The partitionXϑ(Z
0) of X , which is generated by a set

of ten planar rigid bodies (their configurations inQ correspond to
the red triangles), may change significantly for differentϑ ∈ S1.
In these figures, the magenta triangles correspond to the minimizing
configurations ofHϑ in Qϑ, whereas the “∗” markers correspond
to the centroids of the cells ofXϑ(Z

0) with respect to the density
function φ1(·), whose contours are also illustrated. Finally, the “×”
markers denote the points from the setΞϑ := {ξi

ϑ, i ∈ I10}.

Figure 5 illustrates the projection of the cells of the partition
Vϑ(Z

0) of T ϑ into X , whenϑ = π/3 (Fig. 5(a)),ϑ = 2π/3
(Fig. 5(b)), ϑ = π (Fig. 5(c)) andϑ = 4π/3 (Fig. 5(d)).
Figure 6 shows the three-dimensional view of different cells
of V(Z0). As we can see in this figure, the three-dimensional
(non-convex) cell of each agent corresponds to the outcome
of stacking together the two-dimensional (convex) cells ofthe
same agent from the solutions to the one-parameter family
of two-dimensional partitioning problems overT ϑ, as the
parameterϑ runs throughS1.

VI. CONCLUSION

In this paper, we have developed distributed algorithms for
spatial partitioning and locational optimization problems for
multi-agent networks inSE(2). Two of the distinctive features
of the problems considered herein is that 1) their domain is a
non-flat manifold embedded in a higher-dimensional ambient
space and 2) the proximity metric that measures the distance
between an agent and a state in the latter manifold is a non-
quadratic function. The key idea of our approach was to embed
the original partitioning problem into a one-parameter family
of problems whose domains have the required linear structure
and their proximity metrics are parametric quadratic functions.
In our future work, we plan to extend the ideas and techniques
proposed in this work to partitioning and deployment prob-
lems involving heterogeneous multi-agent networks such as
networks whose agents have different dynamics.
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(b) Projection of cellV6(z0
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) into
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(c) Projection of cellV8(z0
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) into
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into Q := X × S1.

Fig. 6. Three-dimensional plots of the setsQ2(z0

2), Q
6(z0

6),
Q

8(z0

8), andQ10(z0

10), which correspond to the projections of the
cells V

2(z0

2), V
6(z0

6), V
8(z0

8), and V
10(z0

10), respectively, into
the configuration spaceQ := X × S1.
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