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Abstract—This work is concerned with the development of with their neighbors in the topology induced by the Voronoi-

distributed spatial partitioning algorithms for locational opti-  |ike partition (two agents are neighbors, if the boundadés
mization problems involving networks of agents with planar iheir cells have a non-trivial intersection)
rigid body dynamics subject to communication constraints. The )

domain of the problems we consider is a three-dimensional, One of the most well-studied locational optimization prob-
n%n-};lat mani;‘old tembec:ﬂedtin t.helstate _fSFl’gceTlg’f the agents, lems for multi-agent networks is the so-called coveragépro
which we refer to as the terminal manifold. The approac ; ; : ;

we propose allows us to associate the partition of tﬁg three- lem in the Euclidean plane, whose perfqrmance_ index is th?
dimensional terminal manifold, which is induced by a non- €Xpected value of the square of the Euclidean distance anetri
quadratic proximity metric and comprised of non-convex cells, for a given density function. It turns out that the minimizer
with a one-parameter family of partitions of two-dimensional, of this problem are the centroids of the cells of the standard
flat manifolds, which are induced by (parametric) quadratic \Voronoi partition generated by the mu|ti_agent network_[l]

proximity metrics and comprised of convex polygonal cells. By ; ; P
exploiting the special structure of the parametric partitions, we [5]. Despite the existence of a significant body of work on

develop distributed partitioning algorithms that converge in a Cconsensus-type problems for multi-agent networks evglvin
finite number of steps. Subsequently, we utilize the solutions to in SE(2) or SE(3) [6]-[9], as well as more abstract non-
the latter problems to solve a class of locational optimization Euclidean spaces including connected, compact, and homo-
problems over the terminal manifold. Numerical simulations that geneous manifolds [10]-[13], no significant efforts haverbe
illustrate the capabilities of the proposed algorithms are also reported for addressing locational optimization probleims

resented. S .
P similar settings.

| INTRODUCTION We wish to em_phas_iz_e at this point that with the exception of
) ’ T ] ~standard Voronoi partitions of convex and compact subdets o
_Inthis paper, we propose distributed algorithms for Voienogclidean space, whose proximity metric is the Euclidean di
like partitioning and locational optimization problemsaiv-  tance, the development of distributed algorithms for Viaien
ing networks of planar rigid bodies with limited communijjke partitioning problems with non-Euclidean (generati}
cation capabilities. On one hand, the partitioning al@on$ proximity metrics and non-flat domains can be a complex
are intended to allow the agents of the network to comgask. This increased complexity can be mainly attributed to
pute their regions of influence over a three-dimensional nofhe fact that the latter partitons may be comprised of cells
flat manifold embedded in their six-dimensional state spageat are non-convex in general. In addition, the ability of
in the presence of communication constraints. This threg-partitioning algorithm to be implemented in a distributed
dimensional manifold, which we refer to as therminal fashion hinges upon the ability of each agent to discover its
manifold consists of all the states that can be reached by théighbors in the topology of this partition (in this contebao
agents of the network with zero linear and angular velogitieagents are neighbors if the boundaries of their cells hawma n
The proposed partitioning algorithms yield a Voronoi-likgyiyial intersection [14]) without having global knowledgpf
partition of the terminal manifold, which is a subdivisiof othe partition a priori. In the case of standard Voronoi piarts,
the latter into a finite collection of non-overlapping, buitn jt js well known that each agent can discover its neighbars (i
necessarily convex, cells that are in one-to-one correire  thjs special case, two agents are neighbors if their celisesh
with the agents of the network (generators of this Voronok common edge, in two dimensions, or a common face, in
like partition). On the other hand, the locational Optlm‘lﬂa higher dimensions) by means of Simp|e distributed algmﬂh
problem seeks for the optimal configurations of the agents @t exploit basic geometric properties of the standaraivor
the network on the terminal manifold with respect to a reIHevadiagram and its dual, the Delaunay triangulation or gragh [1
performance index. [15]-[17]. However, it is not obvious how the heading angles
At this point, we wish to emphasize that our goal i®r the inertial properties of the agents, when the latter are
the development of partitioning and locational optimiaati modeled as rigid bodies, will affect both the structure & th
algorithms that can be implemented indistributedway. In  cells that comprise the partition (these cells may not even b
particular, in the proposed framework, every agent will biea convex, as we have already mentioned) and their neighboring
to perform the necessary computations for the charactiniza relations with the other agents from the same network.

of its own cell independently from the other agents of theeam | jterature review: Voronoi partitions are useful tools for
network (for instance, no global grid of the terminal makifo the gevelopment of distributed algorithms for control and
will be employed). In addition, for these computations, thgptimization problems involving multi-agent networks and
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will collectively refer to asstate-dependengroximity metrics, distributed partitioning algorithms for affine partitions and in
have been studied extensively in our previous work (see, foarticular, their optimization-based philosophy, cagé fun-
instance, [14], [22], [26]-[29]). In particular, Refs. [2129], damental contributions to partitioning problems for salhti
which were originally motivated by [30], present partitiog distributed multi-agent networks, and their applicapitould
algorithms that allow the agents of a network to compufeotentially be extended to more general classes of problems
their own cells from partitions that are induced by state-
dependent proximity metrics independently from each other
these references, however, communication constraintaaire
accounted. In addition, the applicability of the algorithpre-

sented in these references is limited to partitioning [BWIH , pieve this, we present an iterative scheme that seeksdto fin
over compact subsets dfat spaces (that is, linear or affine

. A o ; . ~a communication range for each agent of the network that is
subspaces) with quadratic proximity metrics. The solgio g g

4 o 101y \fficiently large to allow the latter to communicate dihgct
of such problems turn out to be affine partitions comprlsq)‘:)J y &g e

X : .. 2 Wwith its neighbors in the topology of the Voronoi-like p#dn,
of convex polygonal cells whose combinatorial complexly iy ich is not known a priori. The main challenge here comes
similar to that of standard Voronoi partitions.

from the fact that the proximity metric that determines the
Statement of contribution3he first objective of this work is topology of the Voronoi-like partition is different from ¢h

the development of distributed algorithms for the compatat Euclidean distance that in turn determines whether twotagen

of a Voronoi-like partition of the three-dimension@rminal are close enough to communicate with each other or not.

manifold whose proximity metric is taken to be the cost that The second objective of this work is to address a certain

will be incurred by an agent of the network for its transition,ss of coverage-type locational optimization problemero
to an arbitrary state in this manifold. This transition coxt the terminal manifold in a distributed way. To this aim, we
be measured in terms of the decrease of a relevant (geqfsr i

X . : .use the proposed Voronoi-like partitioning algorithms rder
alized) energy metric that occurs during the correspondigg 510, each agent of the network to find its minimizing
state transition. This proximity metric is non-quadratitda ¢,1e pased on information that is encoded in its own cell.
\s/tate—dgﬂfndentt..t_ Conseqlglently, the ceII_s that colmap;lrlse ¥ turns out that the minimizing position of each agent is

oronoi-like partition may be non-convex, in general, aheM " 5o ropriately weighted average of the optimal positions
cannot be computed by directly applying any of the availab

, . ) X a family of locational optimization problems whose do-
tgchmques n t.he relevant I|ter§1§urg [31], [32]. To addrtss mains correspond to two-dimensional, flat sub-manifolds of
difficult, at a first glance, partitioning problem, we propos

an approach that is based on a speeabeddingechnique. the (three-dimensional) terminal manifold. On the othardha

. . . .- e . we show that the minimizing heading angle of each agent for
With this technique, the original partitioning problem Bsa- o qriginal locational optimization problem can be conepit
ciated with a one-parameter family of partitioning prob®my; e v by solving a trigonometric algebraic equation oge
whose domains are two-dimensional flat sub-manifolds of tlg

terminal manifold and their proximity metrics are (parariogt Bmpact interval, which admits a solution always. )

quadratic functions. It turns out that the solution to eaéh o Structure of the paperThe rest of the paper is orga-
these parametric partitioning prob|ems Corresponds tdfarea nlze.d' a§ follows. SeCtIOQ I presen’[s the formulatlon Of.the
partition comprised of convex polygonal cells with a modedg@rtitioning problem subject to communication constint
combinatorial complexity. In this work, we exploit the sg@c In Section Ill, we embed the original partitioning problem
structure of these affine partitions in order to develop aehovnto @ one-parameter family of partitioning problems thai c
distributed partitioning algorithm for their computatiofihe be addressed by means of distributed algorithms. Disetbut
proposed algorithm, which leverages a certain optimizatiosolutions to coverage-type locational optimization peob$
based interpretation of the partitioning problem, findsotlysa are presented in Section IV. Section V presents numerical
representative sample of boundary points for any of the oéll simulations, and finally, Section VI concludes the papehait
the affine partition in a finite number of steps. This is in ghasummary of remarks together with directions for future work
contradistinction with the partitioning algorithms pressd in

our previous work [27]-[29], which can find boundary points )
of the cells that comprise an affine partition only asymptotA. Notation
cally (practically, the algorithms proposed in these refiees
can achieve accuracy that is comparable with that achieyed
the algorithm proposed herein only after a significanthgdar f
number of iterations). After the solution to each parametr%
two-dimensional partitioning problem has been charameli
one can immediately obtain the solution to the original ehrethat is,S! i— {z € R?: |z| — 1}. Given a unit vectok in

dimensional partitioning problem by stacking appropliatee 55 " o yirite ¢ e S (note the vectoe is written in bold

former solutions next to each other and along the parameter . .
axis. In this way, we characterize the three-dimensiondl a pnt). If 9 is (tqf;)e anSgluI(?r parameter Eg?t c?rre%ponds 1;]?)"" unit
' ' : o vectore = e(¥9) in or instance,e(9) = [cos ¥, sin ,
non-convex cells that comprise the partition of the (not)—ﬂaWe will write 0 € S' instead of9 € [2k, (2k 4 1)x], for

terminal manifold, which are hard to compute directly, b¥ . . )
; L : ~Somek € Z, with a slight abuse of notation (note that the
repeatedly applying efficient algorithms for the computat ggular parametef is v?/ritten in normal font).(ln addition

of the convex polygonal cells that comprise each parametﬁ L= ;
affine partition. We wish to emphasize at this point that sonjee. WWrite B(a;n) to denote the closed ball of radius> 0

: . o aroundz € R", that is, B(z;7) := {z € R" : |z —z| < n}.
of the key ideas and techniques of the propdsdte stepsand Given two (column) vectoray € R™, 3 € R™, we denote

It is important to highlight that the partitioning algonitts
proposed herein allow the agents of the network to compute
their own cells independently from their teammates based on
local information only (distributed partitioning algdrins). To

Il. PROBLEM FORMULATION

bWe denote byR" the set ofn-dimensional real vectors
and by R, the set of non-negative real numbers. The set
integers and the set of non-negative integers are detgted
andZsx, respectively. We writéa| to denote the 2-norm of

a vectora € R™. The unit circle inR? will be denoted bys!,



by col(ax, B) the (n1 + ng)-dimensional real (column) vectorwhere g; := col(z;,6;) € @ andv; := col(v;,w;) € R?

that corresponds to their concatenation. The notation @n denote, respectively, its configuration (whose componargs
extended in the natural way for the concatenation of three measured with respect to an inertial reference frame) and it
more vectors. In addition, given a vectere Q@ C R™ "z velocity vector (whose components are measured with réspec
wherec = col(e,8), « € A C R™ and B € B C R, to a body-fixed reference frame) at timie Note that for a
we write « = m4(c) and 83 = 7g(c) (note thatm4(-) givend € S!, the rotation matrixT'(d9) € SO(3), where
andrgz(-) are projection operators). Furthermotel(.A) and — b ._ [cos® —sind

int(A) denote, respectively, the boundary and the interior of T(0) = bdlag,(Tl_w)’ b, Tl(?) o [Sinhﬂ a1 , 2)

a setA. The relative boundary and the relative interior of &CtS uponw;, which is the VelQCIty of thei-th agent in tr’me
set A will be denoted byrbd(.A) andrint(.4), respectively. body-fixed frame, to generatg;, which is thei-th agent's
Given two pointsa, 8 € R", we denote by, 3] the line veIOC|_ty in the inertial frame_. Note that in thg kinematic ded
segment connecting them (including the two endpoints), tHéescribed by (1), the heading angleof the i-th agent does

is, [a,8] = {x €eR": z=ta+(1-1)3, 0<t<1}.In NO necessarily match with the direction of its linear véloc
addition, we denote bye, 3] and [a, 3[ the set[a, B]\{a} Next, we express the dynamics of thth agent in the body-
and the setla, B]\{3}, iespectively. Furthermore, given afixed frame as follows:

symmetric matrixP = P' € R™*", we denote by\,;, (P . _ 0

and Apay (P) its minimum and maximum (real) eigen\(/al)ues, Mo; + C(vi)vi +g(a:) = 7, vi(0) =vi,  (3)
respectively. Similarly, the minimum and the maximum sinwith M := diag(m,m,J) € P3, wherem > 0 is the
gular values of a matriA € R™*™ are denoted by,,;,(A) mass of each agent antl > 0 is its moment of inertia, and
and o,,ax(A), respectively. Given two matrices andB, we C(v;) € Kg, for all v; € R®. In addition, the termsC(v;)v;
denote bybdiag(A,B) their corresponding block diagonalandg(g;) correspond, respectively, to the resultant centripetal-
matrix. Moreover, we write?,, andK,, to denote the convex Coriolis and gravitational forces / moments applied to ke
(open) cone ofn x n positive definite (symmetric) matricesagent [33], [34]. Furthermorer; denotes the control input of
and the set ofi x n skew symmetric matrices, respectively_the i-th agent. Finally, we will denote the joint state vector of
Finally, we will denote bySQ(3) the rotation group for three- the i-th agent at time by z;, wherez; := col(q;, v;) € Z.
dimensional spaces.

C. Communication Among the Agents

B. Equations of Motion It is assumed that theth agent can only communicate with

the agents from the same network that lie within its “communi
cation range,” which is denoted by. Givenn; > 0, we denote
by N.(i,m;) the index-set of all the agents of the network that
. lie within the communication range of theth agent, that is
x = mx(q) € X andd € S!. We assume that théth ) _ = L :
agent from the team, whetiec Z,, :— {1,...,n}, is initially Ve(@:7:) = {€ € Z\{i} : @p € B(a7;mi)}. In particular, we
located atq? = col(z?,6°), where z c X and@® ¢ 1 assume that theth agent sends a message omni-directionally,
LA Lo j ! ’_}‘Ench can reach any point within its communication range
t

We consider a team of. agents distributed in the con-
figuration spaceQ := X x S', where X C R?; we write
q = col(x,v) to denote a configuration vector i@, where

denote, respectively, its position and heading angle ag ti o . .
¢ = 0 measured with respect to an inertial reference frame.(groadcastommunication), requesting any agent that received
is assumed that? £ 0, for all i,j € T, with i # j. The UlIS message to send back a confirmation message. From
3 Rl ) mn . . . . .
joint vector of the initial positions of the agents is denoted that point onwards, the-th agent can establish o(l)lrect com-
munication channels with any agents lying B\(x;;7;) so

by X9, that is, X% := col(z?,...,z0). The set comprised . . ; : . .
of the initial positions of then agents will be denoted by that it can directly exchange information with thepoint-to-

(X0}, that is, {X°} := {a¥ € X, i € Z,}. Note that point communication). We will assume that each agent can

X0 € x" whereas{X°} C X. The joint vectors of the determine the relative configurations of the agents lying in
initial configurations and initial heading angles are dedot 'S communication range with respect to itself via exchange

f relevant information. In addition, we will assume thaisth
by Q°, whereQ® := col(¢?, ..., q°), and®°, where®@® .= © . : , WE WITL €
col(69,...,60), respectiS/elly. The s)et of initial configurationsemhange of information can take place infinitely fast. lnest

i 0 01 . [0 . words, we won't explicitly account for any communication
V,\\,Igltg eag:?nottehc;%%cge },Qvghvevrheé{gai {'Qogqlcegg_ ’ |tZ E;Ianlio delays although, we will briefly present ways that wouldwllo

assumed that each agent has a prescribed initial veloditghw US T account for such delays in practice.

is denoted byw? € R3. In particular,v! := col(v?,w?) € R3, It is interesting to note that ift is a compact subset of

where v € R? and w? € R correspond, respectively, toR?, then there exists a closed b#!(x°; 1), centered at some

the (initial) linear velocity and angular velocity of the point x° € X with radiusy > 0, such thatX C B(x°;pu),

th agent expressed in a body-fixed frame. In addition, Weom which it is easy to show that C B(x!;2u), for alli €

denote the initial state vector of theth agent byz{, where Z,. The situation is illustrated in Fig. 1. Therefore, by takin

z{ := col(q!,v)). The state space of theth agent will be 1, = 24, it is guaranteed tha\/.(i,n;) = Z,\{i}. As we will

denoted byZ, where Z := X x R3. Again, the joint vector see later on, requiring that > 2. for all i € Z,, may be an

of initial states and the corresponding set are denote@ty unnecessarily strong assumption. This is because in ooder f

whereZ? € 2", and{Z"}, where{Z"} C Z, respectively. an agent to be able to compute its own cell from a Voronoi-

The kinematics of the-th agent are described in an inertialik€ Partition, it may not be necessary to communicate with

frame by the following vector equation: every other agent fr(_)m the same netwo_rk. It is important to
) 0 note that by maintaining a large communication range that ca
q; = T(0:)vi, q;(0) = q;, (1) cover the whole position spac,, at each time, an agent may



In the last equationA is a known diagonal matrix if®; and

e is a known positive constant. The choice of the proximity
metric is motivated by the fact that in Lyapunov-based asialy

for steering problems i8E(2) or SE(3) [33]-[35], functions
similar to 6 are used as generalized energy metrics or Lya-
punov candidate functions. Specifically, the quantity; z?)

can be interpreted as the decrease of a relevant generalized
energy that the-th agent will incur for the transition from its
initial state z? to the statez(q) € T, for a givenq € Q.

By plugging (5) in (4), it follows that

8(a; 20) = mlA(af — ) + [MP o0
+e2J(1 — cos(#Y — 0))?
+ 2m(x? — x)TAT(0)v)

Fig. 1. Consider a square position spaag that is contained in a + 2eJw? (1 — cos(6) — 9)). (6)

closed ballB(x°; 1). We observe that all the agents of the networlin i I o
can communicate with each other by maintaining a communication IS _important to note that the proximity metri¢ is a

range that is greater than or equal 2p. (note that this lower NON-quadratic function ofy. The exact formulation of the
bound is attained when, for instance, two different agents are locatpaytitioning problem ovef7” is given next.

respectively, at the vertices andB, whereAB is a diagonal of the L .

squ%re dor%ain). In most cases, however, the requireg communicatio Problem 1: Partitioning Problem ove7~ Subject to Com-

range can be significantly smaller thap. munication ConstraintsSuppose that¥ is a compact and
convex polygonal subset dk? which is contained in the
closed ball B(x°; ) of radiuspu > 0 tf})at is cgzntered at

be incurring an unnecessarily high communication cost (e.§OMe Pointx° € &, and letZ° = col(2y,...,z,), where

battery usage). This is clearly illustrated in Fig. 1 in whtoe =i — ¢0l(@;,v7), i € Iy, be the initial joint state of the multi-

communication range; of thei-th agent is sufficiently large to agent networkfwni '|Ln add|t|onr,]_lert1n? >0 bg. the (l.::)(lnmmum-.

contain all of its neighbors in the topology of the Voronisiel cation range o the-t age”t’ which Is an adjustable quantity

partition illustrated in the same figure (in this topologyot ©F @ll 7 € Zy, and letH o col(m, - ’in"())' Then, determine

agents are neighbors if their polygonal cells share a commfollection of setst(Z% H) := {h"(z};m:), i € In} of

edge) and at the same time it is significantly smaller than 1€ términal manifold7™ such that:

In this work, we will assume that all the agents can adjust

their communication ranges so that the latter are suffilgient

but not unnecessarily, large to allow them to collect all the A

(local) information required for the computation of theiwo () 7 = Uz, T (205m),

cells from the Voronoi-like partition. This perspective iis (i) rint(2°(z9;n;)) ﬁrint(%j(z?;nj)) =g, foralli,j €

agreement with the paradigm for distributed computation of 7, i # j,

standard Voronoi partitions that was proposed in [2], [Thle  (iii) A state zy(q) € T, wherezy(q) := col(q,0) and

approach that we will employ in this work is, however, very q € Q, belongs toW*(2Y;n;) for somei € Z,, if, and

different from the one adopted in these references. only if, §(q; z{) < d(q; 29), for all j € N.(i,m;), where

§(q; 2?) is defined in Eq. (6).

D. The Partitioning Problem over the Terminal Manifofd ~ Reémark 1 Note that the purpose of condition) @nd (i)
is to ensure that the collection of se®(Z% H) :=

In this section, we will provide the exact formulation of the{B"(zY;7;), i € Z,} forms a partition of 7 in the strict
partitioning problem over the terminal manifofdl. In simple mathematical sense; in particular, conditiah €nsures that
words, our objective is to subdivide the terminal manifol@3(Z°; H) achieves complete covering 6f whereas con-
T into n non-overlapping regions, which we will refer todition (i) guarantees that the cells comprisifg(Z"; H)
as Voronoi cells or simply cells. In addition, each cell wilwill not overlap with each other. It should also be noted that
be uniquely associated with an agent of the network atite presence of the communication constraints described in
in particular, it will exclusively consist of points iff” that Section 1I-B are reflected in conditiofiii) of Problem 1. By
are “closer” to its corresponding agent than to any otheirtue of this condition, the-th agent is confined to compare
agent of the network. Here, the closeness between the agéistgroximity to a statezy(q) € 7 with the agents that lie
and an arbitrary point in7~ will be measured in terms of within its communication range only.
an appropriateproximity metric. In particular, for a given
20 e {Z"}, we take the proximity (generalized) metric toRemark 2 Besides the existence of communication con-

i

be the functions(-; 29) : T — R with straints, the facts that the proximity metric in Problem 1 is
0 T 0 non-quadratic and its domain is non-flat make this problem
d(a: z7) := s(q; 2;7) Ms(q; 27), ) challenging (for instance, the cells that compriséZ°; H)
whereq := col(x, ) and may be non-convex, in general). In particular, Problem 1
s(q; 20) := col(A(z? — x), (1 — cos(6? — ) cannot be directly associated with any well-studied farofly

0n 0 partitioning problems and it is not clear how it can be solved
+ T(0;)v; - ®) in a distributed way.



[1l. THE ONE-PARAMETER FAMILY OF PARTITIONING vex and compact polygonal subsetRf which is contained

PROBLEMS in the closed ballB(x°; 1) of radiusy > 0 that is centered
at some pointk® € X, and letd € S' be given. In addition,
In this section, we will address the original threelet Z° := col(2?,...,2%), wherez? = col(q?, v?), i € Z,,

dimensional partitioning problem over the terminal maliifo be the initial joint state of the multi-agent network &".
T (Problem 1) by embedding it into a one-parameter familyurthermore, let;; > 0 be the communication range of the
of two-dimensional partitioning problems. Specificalljyet i-th agent, which is an adjustable quantity for a# Z,,, and
domain of each parametric problem is a two-dimensional sulet also H := col(ni,...,n,). Then, determine a collection
manifold 7y of T, which consists of all states € 7" whose of setsW,(Z°; H) = {8y (z%;n;), i € Z,,} of the sub-
heading angle components are equal to a gi#en S!, that manifold 7"y of 7~ such that:

is, Ty ={z €T C 2 :2z = 2zy(x), x € X}, where . i o

z9(x) 1= col(x,9,0). Note that for a given) € S', the two- () To=Uiez, Vp(zism),

dimensional manifoldy is homeomorphic, in the topological (ii) rint(2;(2;7:)) N rint (W} (295 7;)) = @, for all 4, j €
sense, to the manifol@y := {q = col(x,9) € Q: x € X}, Lo, i # Js

which is in turn homeomorphic tet; we write Ty ~ Q,  (ili) A statezy(x) € Ty, Wherezy(x) := col(x,¥,0) and
andQy ~ X. To address the parametric partitioning problem  x € X, belongs to the celdy(z);7;) for somei
in T, for a giveny € S!, we will need a (generalized) 7, if, and only if, 6y(x; 2)) < dy(x;29) for all j €
proximity metric that, in contrast with, reflects the fact that N.(i,m;), wheredy(x; 2?) is defined in Eq. (10).

the heading angle component of an arbitrary terminal state

in 7Ty is constant. In particular, givet € S! andi € Z,,

we define the generalized distance of th agent, which is A. Analysis of the Partitioning Problem ovefy in the
emanating from the state) € {Z°} to a statezy(x) € Ty, Absence of Communication Constraints

to be the functionyy(-; 2?) : X — R where worith I . f
B Next, we propose an algorithmic solution technique for
N 0
09 (x; 2;) = d(col(x, 9); 27). (?) " problem 2 in the absence of communication constraints, that
In light of (6) and (7), we can writé,(x; z?) more compactly is, for the special case whep > 2y, for all i € Z,,, wherep
as follows: is defined as in the formulation of Problem 2. For this special
S9(x;2%) = |H%(a:? — )2+ 20 —x)Tr + 0%, (8) case, we will sim_plify the notationoused inZ_ProobIe’m 2 by de-
noting the collection of sets &8, (Z°) = {0} (=}), i € 7, }.

wherell := mA? and In the absence of communication constraints, conditioi)
rh = mAT(0))v), (9a) of Problem 2 will have to change accordingly. In particular,
' 1 for a givend € S!, a statez = 2zy(x) € Ty, Where
) _ 0 9))\2 502 /
0y =" J (1= cos(6 —9))” + [M*v;| z9(x) := col(x,9,0) andx € X, will belong to B (z?)
+ 2eJw; (1 — cos(#) — V). (9b) if, and only if, 6y(x;2%) < dy(x;20), for all j € Z,\{i}.

By completing the square in (8), we take This means that, in the absence of communication constraint
0 N - ONTaxd 1 ; the i-th agent will have to compare its transition cost to a
p(x32;) = [II* (x — a)|” — 2(x — ;) TI*II"* 15 + 0 statezy(x) € Ty with all the agents of the network always

— |H%(x 20 T2 - |H’%rf9|2 + b, (compare with the formulation o_f P_roblem 2). We will say
i , that, in the presence of communication constraints, anptage
We immediately conclude that has a smaller set of competitors than it has in the absence of
S9(x;20) = |H%(x — &)+ 1, (10) communication constraints.
. . . 1. . . 0y — 1 0 ;
5719 — ZE? + 1—[71,,,129, Mi? — 7|H_2T119|2 +0,719' (11) Lemma 1:Let %ﬂ(Z ) = {%ﬂ(zi), 1€ In} denote the

o solution to Problem 2, when; > 2u for all ¢ € Z,,. Then,
Note that, becauséy(x;z)) > 0 for all x € RQ, it s a3 (29) C 2 (22;m:), for all n; € [0,2u] and W) (2?) =
necessarily true that, € R> for all i € Z,, given that 23 (29 ;) for all m; > 2.

wh = 89(&%;2?). In view of (10), we conclude that the . _ ) i
proximity metric, 8y, for the parametric partitioning prob- It IS interesting to note that Lemma 1 brings to light an
lem over the (two-dimensional and flat) sub-manifafd, important issue regarding the wel!—pqsedness of Problem 2.
of the (three-dimensional and non-flat) terminal manifol@onsider, for instance, the scenario in which no other agent
T is a (parametric) quadratic function of, for any given €S within Fhe commu.nlcatlon range of thig¢h agent beS|des_

9 € S'. Based on the previous observation and the fact tH&€lf: In this case, the-th agent has no cognpetltors_ and will
To ~ Qy ~ X, it is expected (and will be proven laterconclude incorrectly that its own celJ(z;’;7;), coincides
on) that the solution to the resulting partitioning problenyith the Wlhd% sub—man;foltgrﬁ. Along the same lines, the
will be a so-calledaffine partition [36]. Affine partitions of fact that®y(z7;m;) 2 Wy (27) for all n; € [0, 2u[, which in
convex polygonal domains are comprised of convex polygorifn implies thatUiez, 0y (25 1m:) 2 Uiez, By (2]), for all
cells and their combinatorial complexity is similar to thaft 7: € [0, 2u[, suggests the existence of two possibilities:
standard Voronoi partitions [36] Case 1 Some of the cells Omﬂ(ZO,H) have Overlapplng

. . ... . (relative) interiors, which is a violation of conditiofii) of
Next, we formulate precisely the parametric partltlonlné,romem 2
problem over a su?—manifold'ﬁ of the terminal manifold ~,ce 2 The collection of set€,(Z°) has “coverage holes”
T, for a giveny € §°. in the sense that;cz, W% (zY) C Ty, which is a violation
Problem 2: Parametric Partitioning Problem ovéFy Sub- of condition (i) of Problem 2.
ject to Communication ConstraintSuppose tha®’ is a con-



However, as we will see later in this sectidi,y (Z°) is an
affine partition, where the word partition should be undedt
in the strict mathematical sense, and as such it does not
have any coverage holes. In other words, in the absence of
communication constraints, that is, when > 2u for all
1 € T, Problem 2 will always be well-posed. Therefore, Case
2 will never occur. By contrast, Case 1 is likely to occur,ttha
is, the cells that compris®3,,(Z°; H) may overlap with each
other (in which case, the collection of s&(Z"; H) does
not form a partition of 7y in the strict mathematical sense).

On the other hand, as we have mentioned before, requiring
that n; > 2u for all ¢ € Z, can be a very conservative
condition in many cases. This is because in order forithe
th agent to be able to compute its own cell, (Z°; H),
which is the solution of Problem 2 in the general caseig. 2. The projection of the bisectoB(z{, z;dy) into X is a
when communication constraints come into play (that is, tfige segment, which is neither (by default) perpendicular to the line
condition n; > 24 does not necessarily hold true for alSégmenta,, ;] (note that the pointe:, anda; are the projections
i € T,), it suffices to have a communication range that wiff zi andz; into X, respectively) nor it passes thr%u_gh the midpoint
cover all of its neighbors “in the topology” & (Z°), which of the same segment, as does the bisectar)ondz) in a standard

is th uti f Probl 2in the ab f ... Voronoi partition, which is shown in dashed line. It also corresponds
IS the solution of Problem 2 in the absence of communicatighY ihe collection of all points it that belong to the intersections
constraints (that is, wher; > 24 for all i € Z,,). Recall that of the c-level sets ofsy(-; ) and 89(+; 29), for all ¢ > 0.

thei-th and thej-th agents of the network are neighbors in the

topology of 3,4 (Z°), if, and only if, the boundaries of their

corresponding cells have a non-trivial intersection. Figta ha¢ the collection of all pointsc that satisfy this equation
lower bound on the communication range of each agent sgresponds to a straight line i&’. This straight line is

that Problem 2 is well-posed without requiring > 24 for  ghogonal to the vector, (22, 20) and its distance from the
all + € Z,,, will be the topic of Section IlI-C. In this section, figin x — 0 (point O in Fig ‘72) is equal to|¢y(z?, 20)]
we will focus on the computation of the solution to Problemgg n ’ vi=in <51

. - s .
with no communication constraints; this problem, as we ha ternlat_lvely, the projection of5(z],z;dy), for a given
already mentioned, is always well-posed. ¥ € S, into X corresponds to the collection of all points that

o belong to the intersection of thelevel sets ofdy(-; 2?) and

Before we proceed to the description of the propos (120), that is, the set$x € X : dg(x;2%) = ¢} and{x €
. . . [iad DA/ 1 . i ad'}

algorithm, we will present and examine the key features of .

. § TeS X . 6y(x;27) = c}, respectively, for alt > 0. Note that these
the solution to Problem 2 in the absence of communication | set J lipsoid tered &it and &/ ivel
constraints. To this aim, let us consider a pair of genesata’f\{e S€ts are efipsolds (;]en er:e & and &, resope%.l\(/se Y-
(29,29) € {Z2°) x {Z°}, i # j. Their corresponding bisector . '> mte_rgstmghtolnote that the projection Bi(z;, 2;; d9) h
with respect to the generalized metidg, which is denoted into X’ divides the latter into two compact sets (assuming that
as B(z0, 2% 6,), will consist of all states in7 that are X is also compact), namelg;; and C;;, which have non-

o uidistanjt fromz® and 20 with respect tos.,. that is. the ovgrlappmg interiors. In particular, the s€f; consists of all

q Zi Zj P v ’ pointsx € X for which dy(x; 2?) < dy(x;2!) whereasC;;

consists of all points € X for which dy(x; 2;7) > 09(x; z?).

stateszy(x) € Ty, wherex € X satisfies the following
Fig. 2 illustrates the key points of the previous discussion

equation:
. 0 = N 0
09(x; 2) _619(x’_z3)' (_12)_ In light of the previous discussion, we will now associate
It turns out thatB(z{, 2;dy) is a line segment that lies in the solution to the parametric partitioning problem (Penbl2)
Ty with an affine partition of X C R2.

Proposition 1: For a given ¥ € S!', the bisector Proposition 2:Let ¥ € S' be given, and letZ? :=
B(z),29;69) corresponding to the pair of generatorgol(z?,...,29), where 20 = col(¢?,v?) and ¢ =

(29, 27) € {Z2°}x{Z°},i # j, with respect to the generalizedcol(x?, 69). In addition, letB,(Z°) := {W}(2?), i € Z,,}
metric dy is the loci of all statesy(x) € Ty, wherex € X  denote the solution to Problem 2, when> 2. for all i € Z,,.

satisfies the following equation: Then,2,(Z°) is an affine partition with combinatorial com-
i 1
xTyo(20, 7)) = G20, 2)), (13) Plexity &(n)"
with Proof: In light of Eq. (13), the bisectoBB(z, z; dy),
0 ,0y._ i i which is the image of the sefix € X : xTyy(20,2)) =
otz 2)) = 200E ~ &) (14a) Co(z7,2)} under the functionzy(-), is a straight line that

Co(2),2)) = g2 - |H%§§\2 + b — iy, (14b) lies in Ty, for all the pairs of distinct generatotg!, z0) €
i i i i enfi {Z%) x {Z°}, i # j. In addition, for any state,(x) € Ty
wheregy, &, py anduy satisfy (11). that does not belong to the bisector of any pair of dis-

The derivation of (13) follows readily after substitutioh(@0) tinct generators, there is a unique indéxc Z,, such that
in (12). Note that the left hand side of Eq. (13) defines a linea

func_tlolnal IOVG{X' Tr}erelf_ore, t?e same quuﬁtlﬁn deﬁcrlbes aiWe denote bYO(f(n)) the set of functiond” : Z~q — [0, co) for which
particular level set of a linear functional, which imp IéS?l there existc1, ¢ > 0 andng € Zg such thate; f(n) < F(n) < caf(n),
for all n > ng.



So(x;20) < d9(x;2Y), for all k& € Z,\{¢(}. We conclude where

that 20(Z°) is an affine partition in7y. The result on ie.T.) — inf e T. 16a

the combinatorial complexity 083 (Z°) follows immediately %9(2.’ ¢In) :=in %ﬁ(zﬁe’ n); (162)

from Theorem 18.2.3 in [36, p. 439]. n 29(ise,Iy) = sup Ry (s €, 1), (16b)
Note that the partitiorf3y(Z°) = {0, (z?), i € Z,} Ro(i e, Zn) :={020: & +ce € X and

of T is homeomorphic, in the topological sense, to a 59(&5 + oe; 2) gjngizn 5§(£Zg+ge;zg)}. (16¢)

partition X y(Z°) = {X}(2?), i € Z,} of X (recall that

X ~ Ty), where Xy(2f) := mx(Wj(2])). Practically, |n view of (15a)-(16c), it follows thatz}(i;e) (resp.,

this means that instead of computifgy(Z°), we should 27(;: e)) enjoys the following two properties: 1) it is the point

computeX'y(Z°), which is the affine partition generated byin the segment of (¢!, e) contained inX that is the furthest

the point-set{Z,} := {£, € R?, i € Z,} with respect to (resp., nearest) tgj, in terms of the Euclidean distance, and

the (generallged) proximity metriéy. Despite the_fact that 2) it is closer to thei-th agent, in terms of the proximity

the set{Z,} is the new set of generators, we will continugnetric §,, than to any other agent from the same network.

writing X'»(Z°) instead of X'y(Zy) in order to emphasize The characterization of4 (i;e) andz}(i; e) is based on the

the correspondence between the cellstdf and the agents gpservation that at these two points, thentinuousfunction

of the network, which are originally located at the pointpi (. 7,) : X — R, where

set {Z°} € Z. In our previous work [28], [29], we have ; 0 ) 0

proposed partitioning algorithms that allow the agents of a o(X: Ln) = 09 (x; 27) A 99 (x; 25), @)

network to compute approximations of the boundaries of thei . " , .

own cells independently from their teammates. The approaghtuld change sign as one traverses theltid, e) without

proposed in these references suggests that the charatiteriz XIting &' (eéxcept from some special cases). In particular,

of the boundarybd (X% (2?)) of the cell X%(z9) of the i- W€ have thatDj(x;Z,,) > 0 fg)r.all x € 1€, 5 (i )], and

th agent can be achieved with the application of a bisecti%\g(xizn) < 0 for all x €|z (Z;e.)’f’ﬂ,(“e)[' The sign of

search algorithm over a family of rayd'(¢},,e), e € S'} Dy Will change one more time, ifj(ise) # @y (ise, X),
where ), (i;e, X) is the point of intersection of'(&},e)

that emanate from poirg}, and coverX. In particular, the " . - x p 4
goal of the line search algorithm is to find the intersection §ith bd(X), that is, {z} (ise, X)} = I'(&),e) N bd(X);

the rayl'(€}), e) and the (unknown) boundaiyl(x(20)) of N this last case, V/f’\f have tha®j(x;Z,) > 0 for all
Xy (2?). In this way, one obtains a convenient parametrizatich €la;s(i; e), xy (i; €, X)].
of bd(X(2?)) in terms of the unit vectoe € S!.

Next, we will present the key ideas of the approach pr M ?n ghe .other hand, the mtersechon Bi¢,, e) and
sented in [28], [29] by adopting, however, an optimizatioR4(X#(%7)) is empty, thenR,(i;e,Z,,) = & and we set
point of view in lieu of the geometric perspective utilized?s % € Zn) = oo anduy (i; e, Z,) := —oo; in addition, both
therein. This more abstract perspective will help us set the (i;€) @ndz; (i; e) will be assigned null values. Intuitively,
scene for the development of a noelactpartitioning algo- When the intersection df (£, e) andbd(X(27)) is empty,
rithm, which will be presented in Section I1I-B. First, welwi We have thatDy;(x;Z,) > 0 for all x € T'(£};,e) N X, that
make the mild assumptidrthat {5} C int(X). Next, we IS, the cost that thé-th agent will incur to reach any state

consider the following two (mutually exclusive) cases: zp(x) € Ty with x € [}, (i; e, X)] is strictly greater than
o i i i 0 the cost that will be incurred by at least one different agent

Case 1Pointg; does not belong to the interior d’ﬁ(zi )-IN" from the same network to reach the same state.

this case, it is not guaranteed that the intersection of &lye r

I'(¢%,e) and the boundarpd (X% (z0)) will be non-empty Case 2 Point £ is an interior point of X (27). In this
for all e € SL. If, for somee € S!, this intersection is non- case, the intersection df(&},e) and bd(X(27)) will be
empty, then it will either be comprised of two (unknownp Singleton, namely{zj(i;e)}, for all e € S*; we also
points, which are denoted by} (i;e) and x5 (i;e), or will Setzj(ie) := &. In this case,D;(x;Z,) < 0 for al
correspond to a whole edge of the convex polygbf(z?), X € [y, ;(i;e)[ and, if in add'go_”wﬁ(%/e)_ # wy(ise, X),
denoted agzj (i;e), x4 (i; )] (a singular case occurs whenfhe€nD;(x;Z,) > 0 for all x ela (i; e), 2 (i; e, X)].
xy(i;e) = x(i;e), which implies that the intersection The two cases that we previously described are illustrated
bd(Xy(27))NI(&), e) is a singleton and in particular, a vertexn Fig. 3. We observe therein tha’, ¢ int(X%(2?)),
of the convex polygor’);(2?)). In both of these two subcasesand consequently, for differené € S!, the intersection
we have that bd(X}(2))) N T(&,,e) will either be empty or consist of
(15a) two points (except from the singular cases in which the ray
) . I'(&5,e) passes through verteX or vertexB). By contrast,
(i) =& +0y(is e, 10 )e, (15b) ¢ € int(AY)(22)), which means thabd(X7(20)) NT(&, e)

will be a singleton for alle € S*.

As shown in [27]-[29], in which similar classes of partition
ing problems were considered, one can utilize simple bimect
search algorithms to characterizg (i; e) andx (i; e). Such
algorithms generate sequences of “query” points that will

2Note that by removing this rather mild assumption, our analysils eve”“‘a?”y converge Wlthm the. prescribed error t0|e.ram:e
change only but slightly, yet the presentation will become encomplex the desired, unknown points of interest. Because, as isssire

since we will have to discuss separately a list of singulaesahat are of jn [16], there are many practical problems in which a Vorenoi
low interest in practice.
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T(¢)e) e, setRy(i; e, Z,), which is defined in Eq. (16c), is non-empty,

x5(i; e) D) >0/ theno (i;e,7,) ando,(i; e, Z,,), which are defined in (16a)
v and (16b), respectively, will be (finite) non-negative nuarsh

/ that belong necessarily to the $&4 (i; e, Z,, ) U{ |z} (i; €, X' ) —
€51}, where|x) (i; e, X) - &} | is equal to the length of the line
segment that corresponds to the restrictiofl @, e) in X (as
we have already mentionea(i; e, X') denotes the point of
intersection of'(£}, e) andbd (X)) andRy(i; e,Z,,) denotes
the set of non-negative numbers that satisfy the following
equation (iny):

50(&y + o€; 2)) = by(&) + ce; 27), (18)
o o 4 - for all j € Z,\{i}; we denote each of these solutions by
Fig. 3. Point£;, belongs to the interior oft’;, which implies that ,(;. ; e) and thus;Ry(i; e, Z,,) := {oo(isk,e) € Rsq, k €
the intersection of the ray(£;, e) with the boundanbd(X7) of 7 \ ;11 Note that, in view of (18), all pointy € X with

the cell X7, will be a singleton for alle € S'. On the other hand, ,, _ £+ ge, wherep € Ry(ise, I,,), will also belong to the
point £} does not belong 16ty and in this case, the intersection Ofbisect%rB(zé, 20 5,) that co;regpoﬁds to the paiz?, 20) €
T'(£y,e) with bd(Xy) can 1) be empty, 2) consist of two points or 70 ZOl é i 18 Iso b i v fJ I .
3) be a single point (vertex of a cell), namely poiktor point B. {Z"} x {Z"}. Equation (18) can also be written as follows:

1 ] % b1 j
PT% ef? + iy = ?|T1% e + [T1 (& — &)

like partition of a given set have to be known with high ac- +20(&y — fé)Tﬂe + 5y, 19)
curacy, the tolerance error for the bisection search dlgos from which it follows that o = 0y(i;j,e) satisfies the
that seek forx} (i; e) andxj(i;e) should be very small or, following linear equation:

equivalently, a large number of “query” points have to be aglisj,e)o+ Boli ) =0, j€T\{i} (20)

generated during the iterative process. It is also postitae _ , ,
the bisection search may end up performing vacuous searchéere aq(i;j,e) = 2(&) — &))" e and By (i, j) = uj —
along rays that do not intersect with the boundary of the cgj% + |T1Z (& — 5§)|2_ Therefore,

of interest, in which cases}(i;e) and x4 (i;e) should be
assigned null values, as we have already explained. Note tha
during a vacuous search, the bisection search algorithrichwh 2(& — gf;)THe
is an exhaustive and consistent algorithm, will generate th . i i
maximum number of query points (maximum number of stepRjovided that the vectarI(¢;, — £,) is not orthogonal to the
that the prescribed error tolerance dictates before irmsta  VECIOr e; otherwise, in the definition of the s&y(i; e, Z,)
null output. As we will see next, a careful analysis basechen t"W€ ShOUIdj replacé,,\{i} with Z,,\{i, j}. Note that the vector
interpretation of the problems of findingjj (i; €) andx} (i; e) H(%O—O ») is orthogonal toe if, and only if, the vector
as optimization problems, which we discussed before, witl(%7,2;), which is defined in (14a), is orthogonal @
reveal that it is possible to characterize these pointstigxat Since the vectoryy(z(,2?) is orthogonal to the bisector
a finite number of steps, which is in sharp contradistinctiolﬁ(z?,z?;éﬂ) (refer to the discussion following Proposition 1),

with the bisection-based algorithm, which can charaatettie we conclude (assumingf, # éf;) that TI(&7 — 5{5,) is orthogo-

D=

iy — iy — T2 (€5 — &))[?

0v(i;j,€) = ) (21)

same points only asymptotically. nal to the vectok if, and only if, e is parallel to the bisector
B(z), z};65). Obviously, in the latter case the intersection of

he rayI'(¢}), e) and the bisectoB(z}, z; 6s) will be empty,

B. An Exact and Finite-Steps Algorithm for the Partitionin nd consequently, Eq. (18) will have o solution.

Problem over7Ty in the Absence of Communication Con<

straints In addition, we should remove fronT,, each index;
) . ) , ) for which either oy (i; j,e) < 0 or the corresponding point
Motivated by the previous discussion, we will next proposg _ ¢ + 09(i;j,e)e does not belong to the interior of

a partitioning algorithm that characterizes exactly andain y that is, 09 (i3 j, €) > |/, (i;e, X) — €1 |. Finally, if there
finite number of steps the boundary points of tHl cell of eyists a non-empty sef, where 7 C Ii\{i,j}, such that
the Voronoi-like partitionX'y(Z°) of X, for anyi € L. (5. 7,) = o4(i: £, Z,) for all ¢ € 7, then all the indices in
This allgogthm aims at finding the boundary points of the; should be removed fror,, to avoid any duplicates. After
cell X(z;) by solving the two optimization problems thatemoving all these indices, which we refer toinadmissible
are described in terms of Egs. (16a)-(16c). The main idga optain an index sef! = I/(i;e,¥) (henceforth, we
of the proposed approach lies in the fact that the solutiof simply write Z/ to avoid the notational clutter), which
to the previous optimization problems correspond to twg 5 sybset ofZ,\{i}. Let us assume thaf/ contains
points, namelymg_(i;e) and mf)(z‘;e), at which, as we have  — N(ise,d) elements withl < N < n — 1 (later on,
mentioned, the sign of a certain continuous function changge il separately discuss the special case in whi¢h= @
as one traverses the ray(£y, e) without exiting X' (except o, equivalently, N = 0 when necessary). We subsequently
from some special cases); in other words, the pairfii;e) associate the index s@y — In(i,e,d) = {1,...,N} to

describe the process for finding these two points by levetagipermutation ofz, with

the previous remarks.

. . . 0 < o9(i;j1,€) < -+ < 0o(is jn, €) < |zy(ise, X) — &5,
First we observe that if, for a givem € S! andi € Z,, the (i51,€) ( ) <l ) ol



whereindex(-; i) is a bijective mapping fronfy to Z; such case we sef“(i;e) := jy and x§ := xy(i;5(ise), e).
that j, := index(k;), for k € Zy. Furthermore, to each Finally, if Al(x;e) < 0 for any x €J&}, x}[, we set
09(1; ji, €) with k € Z, we associate the following point: x5 := .

x9(i; jr, €) := €5 + 09(is ju, e)e, k€ Iy. (22) In the special case whely, = &, we consider again two
In addition, for a givene € S', we define the function cases. Specifically, if it holds true that -
Aj(ie): T, e)N X — R, where o = 0(€h; 27) < ) 11111&,}5(£%;Z?),
. €Ln\12
Al(x;e) :== ;2)) — mi P 2p). 2 ; ,
o(x;€) := 0y (i 27) hex; 99(x: 21) (23) thenz) := &, andz) = z,. Otherwise, bothr and

A key observation that our algorithm will exploit is thatWill be assigned null values.

Aj(-;e) is a continuous function whose sign is preserved The pseudo-code of the algorithm that we just described
over each of the following line segmenti),, =4 (i;j1,€)[ is given in Algorithm 1. The outputs of Algorithm 1 are the
and]xy(i; j, e), xy(i; jrr1,€)|, forall k € Zy N [1, N — 1],

and Jxy(i; jn, e),x}(i;e, X)[. Note that the endpoints of Algorithm 1 Exact Line Search Algorithm

the previous intervals correspond to candidate roots of the: procedure EXLSEARCH

equationAj, = 0. For this reason together with the continuity . Input data Z°, 9

of A}, it follows that the sign ofA}; does not change over each ;. Input variables i, e, Z,,

of these intervals (sign changes can occur only at the entfpoi ,. Output variables z¥ (i; e), 4 (i; )

of the previous intervals that are roots of the equatign=0). 5. 7/ . 7,\ (4} EA EA

Let us now consider the following two cases 6 for je1! do

Case 1 If Ai(x;e) > 0 for any x €]&), xy(isj1,e)] 7 if j is inadmissiblethen
(and thus, as we have already explained, for all ¢ & T, Z\{j}
1€), xy(i; 41, €)[, in view of the continuity ofA}), theng, o:  Zy :={1,...,length(Z/)}
will not belong to the interior ofX’y. Thus, it is possible that 10: if Iy = @ then
the intersection of andbd (X)) will be empty in which case 11: if pf < mingez \ (53 0v(€); 2¢) then
bothz} andx§ will be assigned null values. Note that in this12: xy(ise) + & zh(ise) + xl(i5e, X)
last case Al (x;e) > 0 for all x €]&}), ). 13: else

If the intersection of” andbd(X%) is non-empty, or equiv- % retuﬁ%(“ e) + null; (i €) « null
alently, it is not true thatA) (x;e) > 0 for all x €]&}, =], 15: for ¢ € Tn do
then this intersection will either consist of two pointsymely 16 jo + index(¢; 1)

x§ and x4, or it will correspond to a whole edge ot .. mout R via (22
that is denoted byzj,x5]. (Whenz] = z§, we have a g ﬁcog ﬁuﬁﬁgg’”’e) a(22)
singular case in which the previous edge is condensed g x < (x(is j1,€) + €5)/2
a single vertex ofX’y). Next, we describe how to charac—zoj else EAEES 9

terize xy and x§. In particular, ifk € Zy N [1,N — 1] . -

: : b ’ ’ - ; ;o 2
is the smallest index for whichA(x;e) < 0 for any _ iX N(wﬁ.(z’je’e)—s_wﬁ(l’ﬂ 1e))/
x €l@y(i; ji, €), 29 (i; jri1, €)], then we sef” := j;. If there 2% Dy + Ay(x;e)

is no such index, the only possibility is that\’) (x; e) < 0for 23 Dy, « Ah((zo(is )N, €) + (s e, X)) /25 €)

anyx €lxy(i;jn, e), x|, in which case we sgt’ (i;e) := jy 24 if ©7 <0 then
andzxy = xy(i;5" (i €), €). 25: S_C&Z (i3€) < & '

‘We continue with the characterization af§. To this 26: Jf e mm%ﬁ iIN UN +1}: D> 04 —1
aim, we seek for the smallest indéxe Zy N [k, N — 1] 2" i j* # null then Ny
such thatAj(x;e) > 0 for any (and thus for allx € 22: elsg;ﬁ(z’e) « (i index(j%;7), )
];cﬂ(z;jg,e),:cﬁ(z;jgﬂ,e)[. If such index ¢ exists, we set 302 5 (ise) — ) (ise, X)

j4(ise) == j, andx§ = xy(i; j*(i; ), e). Otherwise, there
are two possibilities. The first one is thaf,(x; e) > 0 forany 3L else

x €|xy(i;jn, €), [, in which case we set* (i; e) := jy and 32 J7 < min{f € U{N +1}: D) <0} -1

x’ = xy(i; j* (ise), ). The second one is that) (x;e) <0 33 if j7 # null then o

for any x €]x, /[, in which case we set} := x/,. 34: g (i;e) + x(i; index(575 1), €)

Case 2 If, on the other handAj(x;e) < 0 for any (and 22: ij jf;n;ﬁftiezév NU" N1 iy >0
thus for all) x € [£), zo(4;j1,€)], then & will belong to . 25 (i €) « a(i; index(j;1), €)

the interior of ;. In this case, we setj := &, and in 4. alse ’ Y

order to findx5, we need to find first the smallest index.
k € In N [1,N — 1] such thatA}(x;e) > 0 for any
x €lxy(i;jk, e), xo(i; ju+1,€)[. If such k exists, we set
Jj4(i;e) == jr andx§ = xy(i;j°(i; €), e). Otherwise, we
check if Al (x; e) > 0 for anyx €|xy(i; jn, €), [, in which

x5 (i e) « (e, X)
40: else
: xy (i;e) < null; x5 (i; e) + null

two points,x} (i;e) and x4 (i; e), for a giveni € Z,, and a
3In the discussion of these two cases and in order to avoid dkegional given unit vectore. To obtain a polygonal approximation of

clutter, we will remove the arguments from the following vates: ), =5, th? bound_ar)bd(Xfy(Z?)) of the cell Xy (2?), we will utilize
x/y, X% andT, given that bothi, &%, ande will be fixed. a finite gridE over S, whereE := {ey, k € Z>o N [1,k]}
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andk is a positive integer (design parameter). The idea is &we the agents whose cells share a common edgeijiiz?),
characterizer) (i; e) andxj (i; e) for eache € E and remove which is a convex polygonal cell.

all points; (i; e) that coincide with¢;,. The implementation  patore we proceed any further, it is important to stress that
details of this idea are given in A'g,-o“tg‘m 2. Note that theye oytcome of Algorithm 2 would remain the same, even if
polyg_onal approx;mfa.ltlon of thi 9?3’49],(%:) obrt1a|ned in th('js we have replaced? (input data) with the joint state vector
way IS exa<(:jt atr)) (]E_’e_) and wg (Z’e% or eache € E and hat corresponds to the concatenation of the initial staitéise

Is computed In a finite number of steps, In contrast Withy, 4qent and its neighbors in the topology of the partition
our previous work [27]-{29], in which these boundary pointg; /70y 'As we have previously explained, the neighbors of
were_only characterized asymptotically via a bisectiorrdea the i-th agent are the only agents involved in the necessary
algorithm. computations for the characterization of its c&fi},(z?). Be-

i i . cause of this fact, one can claim that Algorithm 2 can be gasil
Algorithm 2 Independent Computation of a Cell by it§mplemented in a distributed way. The important nuance here

Associated Agent is that thei-th agent is in no position to know its neighbors
1: procedure CELLCOMP without having computed its own cell first; however, an agent
2: Input data Z°, ¢ cannot compute its own cell in a distributed way without
3: Input variables 4, E, 7,, knowing its neighbors, which leads us to a cyclic argument.
4: Output variablesbd(X7) Therefore, in the presence of communication constraimts (i
5: So @ _ which case it is not necessarily true that > 2u), the i-th
6: for eachk € {1,...,k} do agent will have to adjust its communication rangg,so that
7 e+ e it includes at least the agents that correspond to its neighb
8: {xj(ie),z5(ise)} = EXLSEARCH(i,ex,Z,; in the topology ofX,y(Z°) (which is the partition that solves

VAR Problem 2, whem; > 2u for all ¢ € Z,,). The objective of the
9: Sk Sk-1 i-th agent is to use a communication rangec [0,2u] that

10: if x5 (i;e) # null then strikes a balance between being sufficiently large to altdw i
11 Si — S U{x5(ize)} communicate with its neighbors and being as small as passibl
12: if x}(i;e) # & then in order to keep the incurred communication cost low. In pthe
13: S+ SpU{xy(i;e)} words, thei-th agent is seeking for a communication range
14:  bd(X}) « S n; € [0,2u] such thatV.(i,n;) 2 N (i;0(Z°)), which in

turn implies thatly (z;7;) = By (2?), as we show next.

Proposition 3: Let 4 (Z°) := {2V} (2?), i € Z,,} denote
If"le Voronoi-like partition that solves Problem 2, whgrn> 24
or all i € Z,, (absence of communication constraints). If, for
a giveni € 7, there exists)’ €]0, 2] such that\V.(i,n;) 2
Next, we present a distributed algorithm that solves ProBL(i; Uy (Z")), theny (20 1;) = Wy(2Y), for all n; > 7.
lem 2 in the presence of communication constraints, trat iS,  Proof: It suffices to show that
when it is not necessarily true that > 2u, for all i € Z,,°. i i i i
In this case, the-th agent of the network may not be ableXo (23 mi) = ma (B (2] 1m1)) = 72 (W (27)) = Xp(27),
to correctly characterize the minimum or the maximum dbr anyn; > n*. By its definition, every cell of the affine parti-
Ry (i; e,Z,) given that it may not be in position to exchanggion X y(Z") can be written as the intersection/of- 1 closed
information with all the other agents. This in turn would imp half-spaces confined i&’, which is by hypothesis a compact
that thei-th agent may not be able to correctly compute thend convex polygonal set. In particular, the c&l},(2?), i €
boundary points of its own cell. We will henceforth denote,,, can be written as follows [36J&% (2!) = ﬂjezn\){i}cij,
by Xg(ZO;H), whereXl_g(ZO;H) = {X%(z?;m),i €Z,} where Cij = {x € X : dy(x; 2)) < Sy(x; z;)} for
and X (271 m;) == 72 (Wy(2)1m;)) for i € I,,, the partition ; < 7 \{i}. We conclude thatt’,(z?) is a convex polygon

K2

of X for a givend € S' in the presence of communicationyhich may only share its edges with its neighboring cells,
constraints. As before, the cells ofy(Z° H) are homeo- \yhich implies that X’ (20) = Njexix,(20)Cijy Where
morphic, in the topological sense, to the cells¥§(Z°; H). N (5 X9(2°)) = N (i;89(2°)). Therefore
It should be noted that thieth agent is now confined to search ' ’ ’
for the minimum and the maximum of the following set: Njez (it Cij = NjegCij = Njen(ix,(29))Cijs
Mo (ise, No(i,n;)) = {0 €Rsg: €5+ 0e € X and for any index-set7 with /(i; Xy(Z°)) C j*g Z,\{i}. The
5o(E) + 0e:29) < min (€] + oes 29)) result follows readily by taking7 := N.(i,n}). [ ]
VSO TOEE) = Ny T S0 TS EID In view of Proposition 3, the inclusionV,(i,n;) 2
in lieu of My (ise,T,,), which is defined in (16c). Now, let N'(i;B(Z°)) implies that
us henceforth denote by (i;2,(Z°)) the index set of the 0y(ise, Ne(i,mi)) = 0y(is €, ), (24a)
neighbors of thei-th agent in the topology of the partition (ise, No(i,m:)) = 0. (ise,T,,) (24b)
Wy (Z°) whenn; > 2, (no communication constraints). Note Q%5 € Nells T Qy\b: € En )
that the neighbors of theth agent in the topology 63 y(Z°) It should be stressed here that th¢h agent needs to be
in position to determine whether the inclusiow.(i,n;) 2
“The reader interested in applications in which the condlitio> 24 holds N/ (i; 0 »(Z°)) holds true or not, via a relevant stopping crite-
true for alli € Z,, (in such applications, the communication constraints willjon whose verification is solely relied on (Iocal) infornoat

t play a significant role in the partitioni | kiis secti . > SOEy Tell ) n
and go directly to Section in the partitioning problem) maypskiis section 1 ained from agents lying within its communication range.

C. Analysis of the Partitioning Problem in the Presence é
Communication Constraints
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The following proposition stresses an importambnotonicity agent should increase its communication ranggto' > nF,
property enjoyed by Voronoi-like partitions, which willgre if it is not true that all the points in the relative boundary
useful in the subsequent analysis. of its own cell, which was computed at stage are closer
Proposition 4: Let A (i: 79)) denote the index-set of ©© it than to any other agent that would. lie within the closed
the ngighbors of the‘j-\t/rs é?eﬁrft in>1he topology ofd,(Z9), ball B(x;7*"). The previous observation leads naturally to
for a givend € S', and letA” C N7 C N(i;By(Z°)). the fo!lowmg update law for theé-th agent’s communication
In addition, let{Z'} = {20 € {Z°}, j € N"}U {20} [aN9& bl
and {Z"} = {2? € {2°, j € N”} U {20}, and let n; o =min{yn;,2u}, k€ Zxo, (26)
Z' and Z" denote the corresponding joint vectors 8" wherey > 1 (typically, v = 2). Note that otherwise, that is, if
and 2", respectively, wheren; := card(N") + 1 and §,(x; 20) > 6,5(x; 20) for everyx € bd(X}(2%;7F)) and for
ny = card(N") + 1. Moreover, letB,(Z") and By (Z")  any/ e N (i, 5 )\N.(i,n), we will not be able to conclude
denote the partitions that solve Problem 2 whetr 2u for all - ith certainty that\/, (i, k) D N(i;2,4(Z°)). Thei-th agent
i € Z,, with Z" andZ" in lieu of Z°, respectively. In addition, \yi|| have to keep increasing its communication range umtil i
let (27| Z") andWy(z;|Z") denote, respectively, the cellsgyccesstully discovers all of its neighbors in the topolady
from the partition,y(Z’) and 2,y(Z") that are associatedgg (70). The occurrence of this event should be checked at
with the agent emanating from the stai¢ Then, each step via a relevant stopping criterion.

By(20|2") 2 Wy(27|Z2") 2 Wy(2)). (25)  Unfortunately, the techniques and the stopping critergdus
in [1], [15] for the discovery of the neighbors of an agent

Remark 3 Proposition 4 implies that the cell associated with, e topology of the standard Voronoi partition cannot be
a particular agent will either remain the same or expand, lkeq in our case. This is because the index-8ét&, 7;)

any agents are removed from its network. This result is quitg,q N (i;%0,(Z°)) are not induced by the same métric; in
intuitive given that the more agents the network has, theerar payticylar, the first one is induced by the Euclidean distanc
would be for any of its agents to “claim” that a particulantsta \yhereas the second one by the (generalized) proximity enetri
in Ty is closer to them than to any of their teammates (Singe Next, we show how one can account for this “metric

there are more _“competitors”). It is interesti_n_g to notetthgnismatch” To this aim, ledi (n;) denote the maximum value
Lemma 1 is a direct consequence of Proposition 4. of 0y (-; 20) over X', (2%;7;), that is
(iad? i) y

Next, we propose an algorithm that will allow tf¢h agent Sy(ns) :=max{dy(x; 2{) : x € Xy(2)imi)}. (27)
to discover all of its neighboring agents in the topology decause in the formulation of the partitioning problem over
2,(Z°) by adjusting appropriately its communication rangey; the position space¥ is assumed to be a convex and
To this aim, letn; = » > 0 be the initial communication compact polygonal set, all the cells af,(Z°; H) will also
range of the-th agent and 123, (27; ?) be its corresponding be compact and convex polygons. Therefore, the restriction
cell. Now letn; > n? be its communication range at stagef the convex quadratic functiofiy in the cell X% (20; ;)
k = 1 which is such thatNo(i,n;) 2 Ne(i,n?). Let will always attain its maximum value ihd(X(2%;7;)), and
¢ € N(i,n})\Ne(i,n7). Then theé-th agent, which was not specifically, at one (or more) of its vertices [38], for alt Z,.
within the communication range of thieth agent at stage Now let x,(7;) be the corresponding maximizer, which is not
k =0, can directly exchange information with the lattepecessarily unique. Unless)(n;) belongs to the boundary of
via a (.:(.)mmunlcatlon channel established at. St&g& 1 X, there exists at least onec Nc(%nz) such that the latter
In addition, let us assume that tifeth agent is closer, in point is equidistant from theth and thej-th agents in terms of
terms of the metricy, to at least one of the points in thes, that is,dg(fc,g(m);z?) = 09(Xg(m:); 29) = 8% (m;). In this

relative boundary of%’(z9;7?). Then, we claim that the L - —i
communication rangeg? is not sufficiently large to allow the 35€: ILIS also true thaty (n;) € bd(€,(1:)) N bA(Ey(m:)),

—¢ —.
i-th agent to exchange information with all of its neighbars iwhere €,(n;) = {x € X : dy(x;2)) = oy(mi)} EOV
the topology of3y(Z°), that is,N.(i,7n0) C N (i;By(Z2°)). £ =1,J, are thej, (n;)-sub-level sets ofy(-; z;’) anddy (+; z7),
Next, we prove this claim. respectively, which are (closed) ellipsoids &i centered at

i j N ) Yopi _
Proposition 5: Let **! > 7% > 0 and suppose that £, and &. Note that&,(m;) = {x € X : [H*(&

No(i,nf YY) D N, (i,nF) for somek € Zso. If there is¢ € X)|* < 5%(%‘_) — )}, which impIiesih{at?@(m) c {x ¢

Nc(i7nzc+1)\Nc(¢,nf) such thatdy(x; 20) < dg(x;20) for X : |II2(€&, — x)[> < &%(n:)} = Ey(n;) (the previous

somex € bd (X (205 nk)), thenN.(i,n¥) C N (i;B9(Z°)). inclusion follows readily in view ofu}, > 0). In the light of
Proof: By hypothesis, there is a statey(x) e the Rayleigh quotient inequality together with the defomiti

rbd(W (20 7F)) 2, (20:nF) such thatéy(x;z0) < Of Ey(n:), we have that

0o(x;20). Therefore,zy(x) ‘¢ )(={). and we conclude 5i() > [T (&) — ) > A (1))

immediately that2y(z7;n7) 2 By(z7). This in turn im- —j o o

plies that N, (i,nF) € N(i;0(Z%)) in light of Proposi- for all x € Ey(n;), which in turn implies that

tion 4. We claim that actuallyV, (i, nf) C N(i;4(2°)) : = ;
for if N.(i,nf) = N(i;0,(Z°)), then we would have 165 — x| < /05 (1) / Amin (T) =2 ¥ (ma), (28)
Wy(z);nf) = Wy(z)), which contradicts the fact thatey, o c Ej( _ , .

v\Zi 57 p i)V n;). It follows immediately that
04 (25 nk) 2 %ﬂ(z}g), which we have already proved. We§<€i () 2 Ej? ). Now, let us consider the strips
conclude thatV.(i, nf) C N (i;84(Z°)). [ ] 9 Yo\Ni)) = Zo\lhi)- :

N _ ‘ that is formed by the collection of all balls of radiug,(7;)
The upshot of Proposition 5 is that, at stagethe i-th which are translations oB(&; ¢ (n;)) and are tangent to
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the boundary of¥’,(2?;7,), as is illustrated in Fig. 4 (in this /A2, (A) = Anax(A), given thatA is a diagonal matrix
figure, the balls of the strip§ are depicted with dashed lines)in P, and |T1(6%)v?| = [v?|, given thatT(¢?) is an
Note that any generatq, € {E,} that does not belong to orthogonal matrix. ]
9(2Y;m;) and whose distance frobad (X (22;7;)), in terms
of §y(+; 27), is less than or equal t&,(n;) will belong to S.
In addition, the stripeS will be contained itself in the closed

ball B(x?;v%(n;)), which is centered at the initial location

Next, we present a condition that will serve as sepping
criterion of the iterative process for the discovery of the
neighbors of the-th agent.

of the i-th agent and has radius Proposition 7: Let7, w, andr be positive constants defined
— o 7 29 as in Lemma 2 and lef € S' be given. In addition, suppose
B by () = vy (i) + dy (i), (29)  that for a givenn; > 0, we have thaty; > crlb(n;) (crlb:
where d}(n;) denotes the maximum (Euclidean) distanceommunication range lower bound), where
0 P00, ; i 7 -~
betweenz; and the boundary oft’y(z/;7;), that is, crlbl) (1) := min{e% (0;) + 7/ Anin (T1), 202}, (30)

dj(n;) = max{|a] — x|, x € bd(X}(2];m))}- where 9, (;) is defined as in (29). Then, the closed ball
Again, the maximum in the previous expression will b&(x{;n;) contains all the neighbors of theth agent in
attained at one (or more) of the vertices of the convex atige topology of the partitio®34(Z"), which corresponds to
compact polygonX’(29;n;) [38]. the solution of Problem 2 when;, > 2u, for all i € Z,,

Proposition 6: The closed ballB(z?;7;) will contain the hat is, Ne(ini) 2 (i:%9(2°)), which also implies that
point-set{Z}} := {&5, ¢ € N(i;Wy(Z°))}, provided that B2 mi) = Wy (=7)-
n; > min{}(n;), 21}, wherey) (n;) is defined in (29). Proof: In view of Proposition 6 and its proof, it follows

. = B(x0- i ; 2 0 i
Proof: Let ¢ € {2} }. By definition, the cellX’),(29) ¢ that &, € B(a;; ¢y (n:)) for eachj € N(i;y(2°)) given

X (Z°) that is associated with, will share a common edge that 7 = crlby (7;) > min{y; (1), 24}, which in turn holds
with the cell X% (2{) € Xy(Z°). Consequently, there existstrue in the light of (30)' Cpnsequently, } }

a pointx € bd(X%(2?)) that is “equidistant” with rgspect lz) — | = |&) — &) + &) —x)| < |z} — &) + &) — =]
go 0y fré)m the i-th :e:nd thel-th agents, that |§<5,0(x, zy) = < i (n;) + [T 19 |

0(x; 7). Now let 0 := maxyec i 20y 0u(y; 27). We claim i 1)

that 6%, = 6 (2u), whered’(-) is defined in (27). To prove - 1/_)1.9(7%) * Tmax (L) |

this, we first show that the non-negative (and thus lower < ¥y(ni) + 7/ Amin (II),

bounded) functiondy(-) is a non-increasing function of; where in the previous derivation we have also used the
over [0,2u]. To this aim, it suffices to note that given twotriangle inequality together with Lemma 2, and the fact that
communication ranges, namely and »n;, with n; > »n;, we Omax(TIT7Y) = 1/0min(II) = 1/Amin(IT), which holds true
have that\.(i,n;) C N.(i,n;), which in turn implies that given thatlI is a diagonal matrix ifP, (note that in this case,
Wy (275 7;) € Wy(z7;m:), in view of Proposition 4. We also g, (TT) = \/ Amin(I12) = /A2 (1) = A (D). We
know that NV.(i,2u) 2 N(i585(2°)) = N(i;X9(Z°)),  conclude that ify; > crlb(n;), wherecrlbi)(n;) is defined
which implies thatX’y(z7;2u) = X(z7). Then, in view as in (30), then the closed balB(x%;7;) will contain the

of the monotone convergence theorem from real analysis gt {29, ¢ € N(i;%4(2°))}, from which we immediately
follows readily thatmax,c x: .0y o (y; 2) = 0y = 05(21) =  conclude thatV,.(i, ;) D N (i; By (Z0)). n
limy,, o0 05 (nF), where {nf}iez., is a non-increasing se-

guence of positive numbers such thiat, .. 7" = 2u. Remark 4 It is important to note that (30) is an implicit
The fact thatd’,(n;) is a non-increasing function of; also inequality, given that); appears at both of its sides.

implies that for anyn; € [0,2u] and for the same point o o )

x € bd(X}(20)) C ‘X%(z?;m), which is not necessarily a The step-by-step description of the distributed algorifom

boundary poir;t ofx" (20;7;), it holds that the computation of the (boundary of) ce)t’j;(z?) is given
0 = o in Algorithm 3. This algorithm also provides a valug >
Gy(x;2¢) < 0y = 0y(2n) < 05(mi), forall m; €[0,2). o such that the inequality; > crlb’(n;) holds true for the

However, ifsy (x; 20) < 8% (n;), thenx belongs to the ellipsoid communication range; = ;.

=t ) — . % 0 2 < S0 i H H

Eﬂ(m_) ={xeX N ‘_H (él’i ;()‘ - 519(771)};"3'1":“ 'S Remark 5 In the proposed approach, thwh agent computes
conta|n?d r(:ecessanll 'SOU _)fﬁ(zi i) BecauseEﬁ(mZ) S its own cell independently from the other agents of the same
(S U Xy(z7im)) € B(xy;¢5(n)), we conclude thaky €  network while discoveringn parallel its neighbors in the

B(x;95(n;)). B topology of the Voronoi-like partition. In addition, we hav
Before we proceed any further, we will need the followingnade the assumption that tih¢h agent can essentially execute
lemma. Algorithm 3 “instantaneously.” It is actually not difficutb

explicitly account for the effect of the time period between

the execution of two consecutive while loops of Algorithm 3

on the required communication range of thié agent. To this

aim, let us denote by an upper bound on this time period.
Proof: In view of Eqg. (9a), we have thatThen, the update law for the communication range ofitte

lry| < m(|)AT1(9?)V?| < Mmomax(A)|T1(09)v?| = agent at stagé + 1 should be given by

MAmax(A) V7| < Amax(A)mw, for all ¢ € Z,, where kbl _ s k5o

we have used the facts that,..(A) = /Amax(A2) = i min{an; + 0, 2u}, (31)

Lemma 2:Let 7 > 0 andw > 0 be such thatv?| <7 and
|w?| < w, for all i € Z,,, respectively. Thenr}| <7, where
T = Amax(A)mp, for all i € Z,, and ally € St.
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Algorithm 3 Distributed Algorithm for the Independent Com- X S
putation of thei-th Cell of X »(2°; H) by thei-th Agent / :
1: procedure DISTRCELLCOMP
2: Input data Z°, ¥
3: Input variables i, E, n;, v
4: Output variablesbd(Xy), 75

5: k<0

6: nf =N

7 {Z)} {20 €{Z°): LeN.(i,nF) U {20}

8 bd(X}(Z))) = ceLLcOMP(i, E, N.(i,nF); ZD, 9)
9:  computecrlby(nF) via (30)

10:  while 7F < crlbl(n¥) do

11: it e
12: {20} + {20 € {2°} : (e N(iniT)}uU

{2}

. i _ i i k1. - . L

13 . bd(Xy(Z),,)) = CELLCOMP(i, E,Nc(i,m; " ); Fig. 4. The i-th agent will increase its communication range

Zy,1,9) until it discovers all of its neighbors in the topology &f,(Z°)
14: computecrlbfg(nHl) via (30) (or, equivalently, in the topology _OWﬁ(Z_O)). To simplify this
15: kek+1 ’ illustration, we have assumed thal, = p}, = 0, which implies
16:  bd(X}) < bd(X5(22)) that the ellipsoids (1:), £5(n:) and E%(n;) are all equal modulo

17 i néc a linear translation.

_ planar rigid body dynamics based on a “divide and conquer”
wheredn := 2u7 with v be defined as in Proposition 7. Noteapproach that leverages the proposed Voronoi-like pamsti
that the correction termgn, corresponds to the maximumof 7, and 7.
increase on the relative distance between itiile agent and
any other agent from the same network that can take place

within 7 units of time. A. Locational Optimization ove?

L . . In a nutshell, the locational optimization problem ovEp,
D. The Partitioning Problem over the Terminal Manifold for a givend € S', seeks for F:he joint pgsition vectoﬁr of

After having addressed the partitioning problems over thge network, X* := col(z?,...,z*), that minimizes the
terminal manifold 7y for eachy € S' (Problem 2), the performance indefty(-) : X" s Rey with
solution to the partitioning problem ovey” (Problem 1) =
will follow readily by stacking the solutions to the para- 7-[19()(0) = Z 519(x;z19(w?))¢1(x)dx7 (32)
metric problems next to each other as the paraméteuns ez, 1 X}
through S'. In particular, in the special case in which no i i _ : .
communication’ consiraints are enforced. thalis,> 2 e T Sior Gensity funcion . Note
s(i)rrnSIy Zthi gg,rti\tlzloenina(vgog ai t{%f’((;éj)“o? ;O IPrf vsrznere Fhat in the formulation of the locational optimization plein

4 ] = D), n by - . .
W (20) = Uges: [T (29) x {0}], i € Z,. In the presence overT g, the joint vectorX ™ corresponds to the concatenation

of communication constraints, there is one additional gtep °f (N€ initial positions of the agents of the network that are
needs to be made, namely to find a uniform lower boung;on optimal in the following *sense:_ if thé-th agent is located
that is independent of. In particular, Proposition 7 togetherat the configuratioreol(x, 9) with zero angular and linear

with Algorithm 3 allow us to characterize a positive numbeYellOC't'eS’ for eaclf]h € In, theﬂ Hy will attain its m|hn|n|1_ufr]n
7 Such thatds) (=0: i) — 231 (20) for all 7, > 7, and for value: Next, we characterize the minimizerst§. In the light
27 . =

a givend € S'. Then, the maximum ofj, over S!, which of (10), we have that

is always attained and is denoted gy, will be such that Ho(X0) = / Iz x — €0) 21 (x)dx

%%z?;m) = m’(z?) for all n; > n?. (X%) zezzn xi | ( I 61(x)

Remark 6 In order to simplify the presentation, it will be + Z/ oy (x)dx, (33)

henceforth assumed that the communication range of-the ez, Y X%

agent,;, satisfies the following inequalityy; > 77, for all  \ hereei and i) satisfy the respective equations in Eq. (11

i € I,, and consequently, there will be no need to distinguislyq, trféf folloxi%g subfgtitutionsﬂg — 9 ng_ 0. andw? _q'o( )
1+ 0 Y 0. o Y ¥ T W i

between the partitiof¥(Z") and the partitioni(Z™; H) and  yhese substitutions are made in order to account for the fac

their cells. that the states of all the agents of the network are confined to
the two-dimensional sub-manifol@y). It follows that&j, =
IV. COVERAGE-TYPE LOCATIONAL OPTIMIZATION IN Ty ¢ and u}, = 0. Therefore,
AND T .
. . 0y _ > 0y(2
In this section, we address a class of coverage-type loca- Hv(X%) = SR (x — ) Pdx. - (34)
tional optimization problems for multi-agent networks hwvit i€T, Y X
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The minimizer ofH,y(X"), which is denoted aX* satisfies ~ We will be seeking for the joint configuration of the

the first-order necessary condition for optimality [37]9]3  network, Q* := col(q7,...,q}) € Q", that minimizes the
(OHy(X0)/02%)d; > 0, i€y, (35) performance inde#(-) : @™ — Rx(, where

for any feasible directioa; € R? of X atz{. Because the set H(QO) = Z / 5(q; 21(¢2))o(q)dq, (39)

X is convex (and compact), according to the formulation of ez, ’ Q'

Problem 2, we can replaag in (35) with the vectorx — x?.

% _— i(.,0 i i _—
In addition, ifz} is an interior point ofX’, then (35) becomes where Q' := mo(W'(z))) or, equivalently, Q" :=

Uges: [X x {9}], where X)) = 7x (W} (2?)). It follows

OHy(X°)/0x) =0, icI, (36)  immediately that
In the light of the discussion in [3, pp. 128-131], one carvgho 1 i
that @)=Y [ - &) o(ana
- i€Z, )
(OH9(X)/02)) = —/ 201 (x)TI(x — x)dx. (37) _
%, +3 [ mholada (40)
Thus, the solution of (36) is given by i€, ' '

N i where ¢, and p, are defined in the respective equations in
x; = (/X ¢1(x)xdx) /@1 (Xy) = e (38) (17, after substituting’? = 0 andw = 0 therein. It follows
_ ’ . , that &), = 29, and ui, = 2 J(1 — cos(6Y — 9))%. In addition,
for i € Z,, where ®(Xy) := [4. ¢1(x)dx and z,,, we have that(Q°) can be written as followsH(Q") =
denotes the centroid ¢€% with respect to the density function#1(X°) + H2(®©"), where
¢1(+). Note that by its definition, which is given in (38), the oy 1 0812
centroidz, , lies in the interior of the convex celt;. Hi(X) =) o ¢()[TT* (x — z7)["dq, (41a)
i€T,
Proposition 8: The function#y(-) : X" — R, where o 5 o )
1,(XO) satisfies (32) forX? € X", attains its minimum ~ H2(©°) :== ) o d(a)e”J(1 — cos(b; —VU))°dq. (41b)

value at the joint position vector of the netwolX* := i€T,
col(@ s - - Ty ), Wherez? |, is the centroid oft'y(27)  In view of (41a) and the discussion in [3, pp. 128-131], it
with respect tap, (-) that satisfies Eq. (38), for alle Z,. follows that

1 T T
Proof: The (strict) convexity of|II” (x — z?)|*> as a (OH(Q")/0x]) = (OH1(X®)/0])
function of =¥, implies thatH,(-) is a convex function of

—— — 0
X" (see, for instance, [40, p. 79]). The fact that the centroid o 2¢(q)IL(x — x7)dq
i i (0 ichi i it

., 9 Of the convex cellX’;(z7), which is by its definition an o
interior point of the latter cell and consequently of the dam = —2I1 /1 $2(0) | b1 (x)xdxdd + 2( [ ¢(a)dq) Max;
X, is the unique solution to the equatiofiy(X°)/0x? = 0, s it e

- : H * 1 n H . . .
for'aII 1 €1, |mpll'es.thatX = COl(wcmwa s By 19') isthe _ —21‘[/ ¢2(T9)‘I’1(st)wimwd19 +20(Q)II2Y, (42)
unique global minimizer of the convex functiify(-) in X™. st

Note tha_t the fact thatf:mw is an i_solated solution to (36) in_ where ®(Q?) := fgi p(q)dg = [, D1 (X5)po(9)dD (total
the interior of X precludes the existence of a boundary point,5ss” of Q'). Given that®(Q') > 0, when Q' C Q has a

of X that satisfies (35) and is also a minimizer#f () (the  on_empty interior, we immediately conclude that the sohut
set of minimizers oft,(-) is necessarily a convex, and thugg ihe equatiordH (Q°)/9z? = 0 is given by

connected, set [39]).

xf = (| ®1(X5)pa ()l 5dD) /(7). 43
Remark 7 The upshot of Proposition 8 is that the projection (/s1 H{5)2(9) i /() (*3)
of the minimizing state of each agent int¥ corresponds Furthermore, in view of (41), we have that

to the centroid of its associated cell in the affine partition 0 0_ 0 0

X y. This result mirrors the solution to popular coverage-type OH(Q) /00 = 0H>(87)/90;

locational optimization problems addressed in the litemt :/ G1(x) 2 (1) (Dpy /067 ) dxdd)
(see [3] and references therein). On the other hand, thé@olu stJay

to the locational optimization problem ov@r is much more ; Do
interesting, as we will see next. = /S1 D1 (Xy)d2(9)(Opy/067)dd.  (44)
Therefore,0H(Q°) /069 = 0 is equivalent to
B. Locational Optimization over the Terminal Manifoid B, (X)) ha(9)(1 — cos(69 — 9)) sin(6? — ¥)dv = 0. (45)
1

Next, we analyze and address the locational optimizati
problem over7. To this aim, we consider a continuous an
non-negative functios(-) : @ — R>(, which will play the
role of the density function ove@. To facilitate the presenta-
tion, we will assume that for any € Q, ¢(q) = ¢1(x)p=2(),
where ¢ () : X — R>o and ¢a(-) : S* — R are known
continuous, non-negative functions. In additign|-) is a2x-
periodic function.

S
?1’ applying standard trigonometric identities, Eq. (450 ¢e
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written as follow:
sin(6?) / D (X%)po(19) cos(9)dv)
Sl

— cos(69) /S1 1 (X5) P (1) sin(v9)d)

— 1ssin(260) /S @4 ()69 cos(20)9

+ 1/5.cos(26°) / By (X5)po(0) sin(20)d0 = 0. (46) L e e
_ st (a) PartitionX »(Z°), ¥ = Z. (b) PartitionXy(2°), 9 = 2.

By using the following identity:A cos 8+ B sin @ = C cos(0 —
X), whereC := /A2 4+ B? andtanxy = B/A, Eq. (46) can

be written as follows:
Cy cos(8Y — x1) — Cycos(260Y — x2) = 0, 47)

where the positive constants andC, and the angleg; and

Y2 can be computed accordingly. It is easy to see that (47) will
always have a solution if0, 2] given that the graphs of the
functions f;(-) : [0,27] — R, i = 1,2, with valuesf;(¢) :=
Cycos(9 — x1) and fo(9) := Cycos(29 — x2) will always
intersect. To see this, simply note thAt(-) and f»(-) are,
respectively2r-periodic andr-periodic functions, from which (c) Partition X y(Z°), ¥ = «. (d) Partiion X y(Z°), ¥ = 4.

it follows that both of them attain every single value in the

intervals[—C4, C1] and [-Cs, Co] as¥ runs through(0, 271].  Fig. 5. The partitionX3(Z°) of X, which is generated by a set
If C; > C, (the caseC;, < C, can be treated similarly), Of ten planar rigid bodies (their configurations @ correspond to

; : the red triangles), may change significantly for differentc S*.
then there will bed,, > € [0,27] with ¥, # 9> such that | 5 " figures, the magenta triangles correspond to the minimizing

fi(0h) € [=C1, =C5[, which implies thatfi(¥1) < f2(01),  configurations of#, in Q,, whereas the £ markers correspond
and f1(J2) €]Ca, C1], which implies thatf;(¥2) > f2(U2). to the centroids of the cells o5 (Z°) with respect to the density
Consequently, the sign of the expression on the left haral sfdnction ¢1(-), whose contours are also illustrated. Finally, the’*
of Eq. (47) will necessarily change from negativejat 19, to markers denote the points from the &j := {£}, i € Zio}.
positive atl = 95 (or vice versa). This implies the existence

of a root of Eq. (47) in[0,2x]. Finally, if C; = Cy, then
Eq. (47) becomest? — x; = +(209 — xo + 2k7), which
always has a solution if©), 27| for somek € Z.

0 2 4 6 8

Figure 5 illustrates the projection of the cells of the pigoti
. _ . Wy (Z°) of T into X, whend = /3 (Fig. 5(a)),9 = 27/3
Proposition 9: The function?(-) : Q" — Rxo, where (rig. 5(b)), ¥ = = (Fig. 5(c)) andy = 4x/3 (Fig. 5(d)).
H(Q") is given in (39), attains its minimum value at the joinfigure 6 shows the three-dimensional view of differentsell
configuration@* := col(qy, ..., q;) With g7 = col(x},97), of 23(Z°). As we can see in this figure, the three-dimensional
wherez} is defined in Eq. (43) and’} belongs necessarily (non-convex) cell of each agent corresponds to the outcome
to the non-empty subset of the compact intetféiabr] that is  of stacking together the two-dimensional (convex) cellshef
comprised of the roots of Eq. (45), for alk Z,,. same agent from the solutions to the one-parameter family

. o " of two-dimensional partitioning problems ovéFy, as the
Remark 8 Proposition 9 implies that the position Componer}ﬁarameterﬂ runs througls'.

of the minimizer ofH that is associated with theth agent

corresponds to the weighted average of the centroids of the

cells of this agent from the solution to each parametric

partitioning problem irf7y, for ¢ € S*. This result is intuitive. VI. CONCLUSION
On the other hand, one can find the optimal heading angle

of the i-th agent by solving a single trigonometric equation, |, this paper, we have developed distributed algorithms for
namely Eqg. (45), in the compact intervill, 2z, (the latter gnatia| partitioning and locational optimization probkerfor
equation always admits a solution, as we have already Showt), i.agent networks i E(2). Two of the distinctive features
of the problems considered herein is that 1) their domain is a
non-flat manifold embedded in a higher-dimensional ambient
space and 2) the proximity metric that measures the distance
For our simulations, we consider a network of ten agent®tween an agent and a state in the latter manifold is a non-
whose initial positions, heading angles, and linear andiang quadratic function. The key idea of our approach was to embed
velocities are chosen randomly. For these simulations,ave h the original partitioning problem into a one-parameter ifam
used the following dataJ = 0.1, m = 1, ¢ = 0.5, and of problems whose domains have the required linear streictur
A := 0.5I,. The density functior; () in X was taken to be and their proximity metrics are parametric quadratic fior.
1 (x,y) = exp(0.1((z — 4)? + (y — 5)2 — 0.15((z — 4)* + In our future work, we plan to extend the ideas and techniques
(y—5)%))), whereasp,(19) = 1 (no preference is attached to goroposed in this work to partitioning and deployment prob-
particular terminal heading angle). Finally, the Sétis taken lems involving heterogeneous multi-agent networks such as
to be the square domain, 8] x [0, 8]. networks whose agents have different dynamics.

V. NUMERICAL SIMULATIONS
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