
Optimal Feedba
k Guidan
e of a Small AerialVehi
le in the Presen
e of Sto
hasti
 WindRoss P. Anderson1University of California, Santa Cruz, CAEfstathios Bakolas2University of Texas at Austin, Austin, TXDejan Milutinovi¢3University of California, Santa Cruz, CAPanagiotis Tsiotras4Georgia Institute of Te
hnology, Atlanta, GAThe navigation of a small unmanned aerial vehi
le is 
hallenging due to a largein�uen
e of wind to its kinemati
s. When the kinemati
 model is redu
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terministi
 optimal 
ontrol for this problem 
aptures, in many 
ases, the salient featuresof the optimal feedba
k 
ontrol for the sto
hasti
 wind model, providing support forthe use of the former in the presen
e of light winds. On the other hand, the 
ontrollersanti
ipating the sto
hasti
 wind variation lead to more robust and more predi
tabletraje
tories than the ones obtained using feedba
k 
ontrollers for deterministi
 windmodels.
Nomen
lature

(x, y) = Cartesian 
oordinates of the position ve
tor of the Dubins vehi
le, m
θ = heading angle of the Dubins vehi
le, rad
r = distan
e to target, m
δ = target set radius, m
ϕ = viewing angle to target, rad
γ = di�eren
e in Dubins vehi
le heading angle and wind dire
tion, rad
u = 
ontrol input, radm/s
v = Dubins vehi
le speed, m/s
ρmin = Dubins vehi
le minimum turning radius, m
dWx,y = in
rements of Wiener pro
ess in, respe
tively, the x and y dire
tion
dWθ = in
rements of Wiener pro
ess in the θ dire
tion
σW = noise intensity for �rst wind model, m
vw = speed of wind in se
ond wind model, m/s
σθ = noise intensity for se
ond wind model, rad
T = time-to-go until the target set is rea
hed, sI. Introdu
tionThis paper deals with the problem of guiding an aerial vehi
le with a turning rate 
onstraintto a pres
ribed terminal position in the presen
e of a sto
hasti
 wind in minimum expe
ted time.2



It is assumed that the motion of the vehi
le is des
ribed by a Dubins-like kinemati
 model [1�3℄,that is, it travels only forward with 
onstant speed, and su
h that the rate of 
hange of its forwardvelo
ity ve
tor dire
tion is bounded by a pres
ribed upper bound. This kinemati
 model is referredto as the Dubins Vehi
le (DV for short). In the absen
e of the wind, the vehi
le traverses paths ofminimal length and bounded 
urvature, known in the literature as Dubins paths or optimal pathsof the Markov-Dubins (MD for short) problem [1, 4℄.The importan
e of designing traje
tory tra
king 
ontrol s
hemes and path planning algorithmsthat a

ount for the e�e
ts of the lo
al wind in UAVs/MAVs appli
ations has been re
ognizedby many resear
hers. In parti
ular, Refs. [5�8℄ present path tra
king/following 
ontrollers forUAVs/MAVs in the presen
e of disturban
es indu
ed by the wind based on nonlinear 
ontrol tools.The problem of 
hara
terizing minimum-time paths of a DV in the presen
e of a 
onstant wind was�rst posed by M
Gee and Hedri
k in [9℄. Numeri
al s
hemes for the 
omputation of the Dubins-likepaths proposed in [9℄ have been presented in [10, 11℄. The 
omplete 
hara
terization of the optimalsolution of the same problem, that is, a mapping that returns the minimum-time 
ontrol input giventhe state ve
tor of the DV, is given in [11, 12℄. A numeri
al algorithm that 
omputes the minimum-time paths of the DV in the presen
e of a deterministi
 time-varying, yet spatially invariant, windis presented in [13℄.The analysis presented in the majority of the variations and extensions of the MD problemin the literature is based on a deterministi
 optimal 
ontrol framework (the reader interested ina thorough literature review on variations/extensions of the MD problem may refer to [14℄ andreferen
es therein). The e�e
t of the wind, however, is intrinsi
ally sto
hasti
, and approa
hingthis problem from a sto
hasti
 point of view is more appropriate. Some re
ent attempts to addressoptimal 
ontrol problems related to the MD problem within a sto
hasti
 optimal 
ontrol framework
an be found in [15, 16℄. In parti
ular, Refs. [15, 16℄ deal with the problem of a DV tra
king a targetwith an un
ertain future traje
tory using numeri
al te
hniques from sto
hasti
 optimal 
ontrol of
ontinuous-time pro
esses [17℄.In this work, an optimal feedba
k 
ontrol that minimizes the expe
ted time required to navigatethe DV to its pres
ribed target set in the presen
e of a sto
hasti
 wind is developed. Two sto
hasti
3



wind models are investigated. In the �rst model the x and y 
omponents of the wind are modeledas independent zero-mean Wiener pro
esses with a given intensity level. In the se
ond model, thewind is modeled as having a 
onstant magnitude, but its dire
tion is unknown and is allowed to varysto
hasti
ally a

ording to a zero-mean Wiener pro
ess. For both wind models, optimal feedba
k
ontrol laws are 
omputed numeri
ally using a Markov 
hain approximation s
heme. In addition,for ea
h 
ontrol based on the sto
hasti
 wind models, feedba
k 
ontrol laws based on deterministi
wind models are developed and 
ompared against their sto
hasti
 model-based 
ounterparts in thepresen
e of sto
hasti
ity to determine the regions of validity of the former. The analysis and numer-i
al simulations demonstrate, not surprisingly perhaps, that 
ontrol laws based on sto
hasti
 windmodels outperform � on the average � 
ontrol laws for the deterministi
 wind models implementedin a sto
hasti
 wind. On the other hand, the 
ontrol laws for the deterministi
 wind model 
ansu

essfully 
apture the salient features of the stru
ture of the 
orresponding sto
hasti
 optimal
ontrol solution.The 
ontributions of the paper 
an be summarized as follows: First, this paper o�ers, up tothe authors' best knowledge, for the �rst time, the solution of the optimal path generation of anaerial vehi
le with Dubins-like kinemati
s in the presen
e of sto
hasti
 wind. This is important forsmall UAV path-planning and 
oordination appli
ations. Se
ond, it shows the relationship of theoptimal 
ontrol solution, whi
h anti
ipates the sto
hasti
 wind, with its deterministi
 
ounterpart,and it 
ompares the two. This allows one to draw insights as to what level a sto
hasti
 wind-basedsolution is bene�
ial 
ompared to its less informed deterministi
 
ounterpart, and when it makessense (from a pra
ti
al point of view) to use the former over the latter. The question of the use ofa feedba
k 
ontrol law anti
ipating sto
hasti
 pro
esses versus a 
ontrol law based on deterministi
model assumptions is a question of a more general interest and one that is a re
urrent theme inthe 
ommunity, espe
ially in terms of appli
ations. This paper o�ers a rare example where a head-to-head 
omparison is possible. In general, the 
omputation of a deterministi
 optimal feedba
k
ontrol is not an easy task, as it requires the solution of a Hamilton-Ja
obi-Bellman (HJB) partialdi�erential equation. However, the Dubins vehi
le problem in this paper serendipitously allows fora 
omplete solution, via a synthesis of open-loop strategies, without resorting to the HJB equation.4



The rest of the paper is organized as follows. Se
tion II formulates the optimal 
ontrol problem.Se
tion III presents feedba
k 
ontrol laws based on minimal deterministi
 and sto
hasti
 wind modelassumptions. These 
ontrol laws are extended in Se
tion IV for the 
ase when the wind has a knownspeed but sto
hasti
ally-varying dire
tion. Simulation results for the 
ontrollers based on the twotypes of deterministi
 and sto
hasti
 wind models are presented in Se
tion V. Finally, Se
tion VI
on
ludes the paper with a summary of remarks.II. Problem FormulationHere the problem of 
ontrolling the turning rate of a �xed-speed Dubins vehi
le (DV) in orderto rea
h a stationary target in the presen
e of wind is formulated. The target is �xed at the origin,while the Cartesian 
omponents of DV position are x(t) and y(t) (see Fig. 1).[Fig. 1 about here.℄The DV moves in the dire
tion of its heading angle θ at �xed speed v relative to the wind andobeys the equations:
dx(t) = v cos (θ) dt+ dwx(t, x, y), (1)
dy(t) = v sin (θ) dt+ dwy(t, x, y), (2)
dθ(t) =

u

ρmin

dt, |u| ≤ 1, (3)where ρmin > 0 is the minimum turning radius 
onstraint (in the absen
e of wind) and u is the
ontrol variable, u ∈ [−1, 1]. The motion of the DV is a�e
ted by the spatially and/or temporallyvarying wind w(t, x, y) = [wx(t, x, y), wy(t, x, y)]
T, whose in
rements have been in
orporated intothe model (1)-(2). In this problem formulation, the model for the wind is unknown. Therefore, itis assumed that the wind is des
ribed by a sto
hasti
 pro
ess. Subsequently, a sto
hasti
 
ontrolproblem for rea
hing a target set T =

{

(x, y) : x2 + y2 ≤ δ2
}, whi
h is a ball of radius δ > 0around the target, is formulated.In order to minimize the time required to rea
h the target set, one de�nes a 
ost-to-go fun
tion

J(x) = min
|u|≤1

E





T
∫

0

dt



 , x := [x(0), y(0), θ(0)]T, (4)5



and assumes that upon rea
hing the target set T at time T , all motion 
eases. In (4) the expe
tedtime to rea
h the target set is minimized over the turning rate u, |u| ≤ 1, whi
h is the 
ontrolvariable. Control problems with a 
ost-to-go fun
tion of the form (4) are sometimes referred to as�
ontrol until a target set is rea
hed� [17℄ or sto
hasti
 shortest-path problems [18℄.Two sto
hasti
 pro
ess wind models that are 
hara
terized by the amount of information knownabout the wind are 
onsidered. In ea
h 
ase, it is assumed that the wind is a 
ontinuous-timesto
hasti
 pro
ess with respe
t to the DV position. In other words, there is no expli
it relationbetween a realization of the wind and the DV position, i.e., wx(t, x, y) = wx(t), and wy(t, x, y) =

wy(t), although impli
itly this relation may exist.First, a feedba
k 
ontrol when a model des
ribing the wind is not given is developed. Drawingfrom the �eld of estimation, the simplest model to des
ribe an unknown 2D signal suggests thatthe wind should be modeled as Brownian motion [19℄. It is further assumed that the Cartesian
omponents of the wind evolve independently. Then from (1)-(3), the kinemati
s of the DV in thepresen
e of this wind, denoted model (W1), is
dx(t) = v cos(θ)dt+ σWdWx,

dy(t) = v sin(θ)dt+ σWdWy ,

dθ(t) =
u

ρmin

dt, |u| ≤ 1, (W1)where dWx and dWy are mutually independent in
rements of a zero mean Wiener pro
ess, andwhere the level of noise intensity σW quanti�es the un
ertainty in the evolution of the wind. Notethat this kinemati
 model also arises when examining the problem of tra
king a target with unknownfuture traje
tory [15, 16℄. In the limiting 
ase where σW = 0, the problem is redu
ed to the 
asewithout the wind. A feedba
k 
ontrol that assumes σW = 0, therefore, would ignore the presen
eof the wind, while a feedba
k 
ontrol that assumes σW > 0 will a

ount for the sto
hasti
 windvariation. Along these lines, Se
tion III develops feedba
k 
ontrol laws that drive the DV to thetarget in minimum time in both the deterministi
 
ase (σW = 0) and the sto
hasti
 
ase (σW > 0).Note that in the deterministi
 
ase, the 
ost-to-go fun
tion is the same as (4), but without theexpe
tation operator. 6



Next, motivated by problems involving a wind that varies slowly in time and/or spa
e, a se
ondwind model (W2) is 
onsidered. The se
ond wind model 
onsiders a wind that �ows in the dire
tion
θw at 
onstant speed vw < v, but where the evolution of the dire
tion of this wind is unknown.Then from (1)-(3), the model of the relative motion of the DV and the target in the wind (W2) is

dx(t) = v cos(θ) dt+ vw cos(θw) dt

dy(t) = v sin(θ) dt + vw sin(θw) dt

dθ(t) =
u

ρmin

dt, |u| ≤ 1

dθw(t) = σθ dWθ, (W2)where dWθ is an in
rement of a Wiener pro
ess, and where σθ is its 
orresponding intensity. When
σθ = 0, one obtains a model of 
onstant wind in the dire
tion θw. Se
tion IV des
ribes optimalfeedba
k 
ontrols for the deterministi
 
ase (σθ = 0) and the sto
hasti
 
ase (σθ > 0).The proposed 
ontrol s
hemes for the deterministi
 wind, whi
h are based on analyti
 arguments,will give signi�
ant insights for the subsequent analysis and will illustrate some interesting patternsof the solution of the sto
hasti
 optimal 
ontrol problem. It will be shown later on that the 
ontrolstrategies for ea
h deterministi
 wind model, when applied to the DV in the presen
e of the sto
hasti
wind, will 
apture the salient features of the solution of the sto
hasti
 optimal 
ontrol problem.III. Feedba
k Laws with No Wind InformationIn this se
tion, feedba
k 
ontrol laws are developed that drive the DV to its target in the presen
eof an unknown wind (W1). First, a method for designing a feedba
k 
ontrol for the deterministi
problem, that 
ompletely ignores the presen
e of a wind, is brie�y dis
ussed. Next, an optimalfeedba
k 
ontrol will be 
omputed for the 
ase where the Cartesian 
omponents of the wind varysto
hasti
ally. In all 
ases, the target set is a ball of radius with δ = 0.1, and the velo
ity of thevehi
le is 
onstant v = 1.A. Deterministi
 CaseFirst, a 
ontrol law that is 
ompletely independent of any information about the distribution ofthe wind is proposed. In other words, a feedba
k 
ontrol law is designed under the assumption that7



the wind is modeled by (W1) with σW = 0. Therefore, this 
ontrol law is �blind� to the presen
eand the statisti
s of the a
tual wind. This approa
h will give two navigation laws that are similarto the pure pursuit strategy from missile guidan
e [20℄, whi
h is a 
ontrol strategy that for
es thevelo
ity ve
tor of the 
ontrolled obje
t (the DV in this 
ase) to point towards its destination atevery instant of time.Note that in the presen
e of a wind and with the appli
ation of a feedba
k law that imitates thepure pursuit strategy, the DV will not be able to instantaneously 
hange its motion in order to pointits velo
ity ve
tor toward the target. This happens for two reasons. The �rst reason is be
ausethe rate at whi
h the DV 
an rotate its velo
ity ve
tor is bounded by the turning rate 
onstraint(3). The se
ond reason has to do with the fa
t that, by hypothesis, the pure pursuit law does nota

ount for the wind, and, 
onsequently, even if the DV were able to rotate its forward velo
ityve
tor arbitrarily fast, it would be this forward velo
ity ve
tor that points toward the target ratherthan the inertial velo
ity.Let ϕ be the angle between the vehi
le's forward velo
ity ve
tor and the line-of-sight to thetarget, given by ϕ = θ − atan2 (y, x) + π and mapped to lie in ϕ ∈ (−π, π] (see Fig. 1). Theproposed (suboptimal) pure pursuit-like navigation law takes the following state-feedba
k form
u(ϕ) =







































−1 if ϕ ∈ (0, π],

0 if ϕ = 0,

+1 if ϕ ∈ (−π, 0).

(5)One important observation is that the 
ontrol law (5) does not depend on the distan
e r(t) =

√

(x(t))2 + (y(t))2 of the DV from the target but only on the angle ϕ. The state feedba
k 
ontrollaw given in (5) will be referred to as the geometri
 pure pursuit (GPP for short) law. Note thatthe GPP law drives the DV to the line S0 := {(r, ϕ) : ϕ = 0}, whi
h is a �swit
hing surfa
e.� Inthe absen
e of wind, on
e the DV rea
hes S0, it travels along S0 until it rea
hes the target (su
hthat r = 0 at the �nal time T ) with the appli
ation of the 
ontrol input u = 0. Therefore, the GPPlaw is a bang-o� 
ontrol law with one swit
hing at most, that is, a 
ontrol law whi
h is ne
essarilya 
ontrol sequen
e {±1, 0}.It is important to highlight that the GPP law turns out to be the time-optimal 
ontrol law of8



the MD problem for the majority (but not all) of the initial 
on�gurations [x(0), y(0), θ(0)]T (seeFig. 2), when there is no wind [21, 22℄. However, there are still initial 
on�gurations from whi
hthe DV driven by the navigation law (5) either 
annot rea
h the target set at all or 
an rea
h thetarget only suboptimally. The previous two 
ases are observed, for example, when the DV is 
loseto the target with a relatively large |ϕ|. [Fig. 2 about here.℄In parti
ular, it 
an be shown [21, 22℄ that if the DV starts, at time t = 0, from any point thatbelongs to one of the two regions, C+ and C−, de�ned by (see Fig. 2)
C− = {(r, ϕ) : r ≤ 2ρmin sin(−ϕ), ϕ < 0} (6)
C+ = {(r, ϕ) : r ≤ 2ρmin sin(ϕ), ϕ > 0} , (7)then the target 
annot be rea
hed by means of the GPP law in the absen
e of a sto
hasti
 wind(s
enarios where the sto
hasti
 wind helps the DV to rea
h its target even by means of a GPP lawwill be shown later on). Therefore, in order to 
omplete the design of a feedba
k 
ontrol law for anypossible state of the DV, one needs to 
onsider the optimal solution of the MD problem in the 
asewhen the terminal heading is free [21, 22℄. It turns out that the boundaries of C+ and C−, denoted,respe
tively, by S− and S+ (the 
hoi
e of the subs
ript notation will be
ome apparent shortly later),
orrespond to two new �swit
hing surfa
es� along whi
h the DV travels all the way to the target.In parti
ular, when the DV starts in the interior of C+ (respe
tively, C−), then the minimum-time
ontrol a
tion is u = +1 (respe
tively, u = −1), whi
h may appear to be 
ounterintuitive, sin
e itse�e
t is to in
rease |ϕ| rather to de
rease it. The 
ontrol input remains 
onstant until the DV rea
hesthe �swit
hing surfa
e� S− (respe
tively, S+), where the 
ontrol swit
hes to u = −1 (respe
tively,

u = +1), and subsequently, the DV travels along S− (respe
tively, S+) all the way to the targetdriven by u = −1 (respe
tively, u = +1). The net e�e
t is that when the DV starts inside theregions C±, the DV must �rst distan
e itself from the target so that its minimum turning radius
ρmin is su�
ient to turn towards the target. Note that in this 
ase the 
ontrol law is bang-bangwith one swit
hing at most, that is, a 
ontrol sequen
e {±1,∓1}. The situation is illustrated inFig. 2 for ρmin = 1. 9



The GPP law given in (5), therefore, needs to be updated appropriately to a

ount for theprevious remarks. In parti
ular, the new feedba
k 
ontrol law is given by
u(r, ϕ) =







































−1 if (r, φ) ∈ Σ−,

0 if (r, φ) ∈ Σ0,

+1 if (r, φ) ∈ Σ+,

(8)where,
Σ− := {(r, ϕ) : ϕ ∈ (0, π]} ∩ (intC+)

c ∪ intC−

Σ+ := {(r, ϕ) : ϕ ∈ (−π, 0)} ∩ (intC−)
c ∪ intC+

Σ0 := {(r, ϕ) : ϕ = 0}.The state feedba
k law (8) will be hen
eforth referred to as the optimal pure pursuit (OPP forshort) law, be
ause, at every instant of time, it steers the DV to the target based on the optimalstrategy that 
orresponds to its 
urrent position. Note that in the absen
e of wind, the OPP law isthe optimal 
ontrol law of the MD problem with free �nal heading [21, 22℄. One important remarkabout the OPP law is that the 
ontrol variable u may attain the value zero, whi
h is in the interior ofits admissible set [−1, 1]. Thus, the 
ontrol u = 0 is singular, and the part of the optimal traje
toryit generates is referred to as the singular ar
 of the optimal solution. As explained in detail inRef. [14℄, singular ar
s may be part of the optimal solution of the MD problem in the absen
e ofwind, only when the so-
alled swit
hing fun
tion of the 
onstrained optimal 
ontrol problem, alongwith its �rst time derivative, vanish simultaneously (for a non-trivial time interval). Note that while
u = ±1 
orresponds to turning left/right, the 
ontrol u = 0 
orresponds to straight paths.Figure 3 illustrates the level sets of the minimum time-to-go fun
tion, whi
h 
an be 
omputedanalyti
ally by using standard optimal 
ontrol te
hniques and geometri
 tools, as shown in [14℄.[Fig. 3 about here.℄B. Sto
hasti
 CaseIn this se
tion, an optimal feedba
k 
ontrol law for the sto
hasti
 kinemati
 model (W1) and 
ostfun
tional (4) is developed. The optimal 
ontrol is 
omputed using the Markov 
hain approximation10



method [17℄, whi
h ensures that when dis
retizing a state spa
e for value iteration in sto
hasti
optimal 
ontrol problems, the 
hosen spatial and temporal step sizes a

urately s
ale in the sameway as in the original sto
hasti
 pro
ess. The method 
onstru
ts a dis
rete-time and dis
rete-state approximation to the 
ost fun
tion in the form of a 
ontrolled Markov 
hain that is �lo
ally-
onsistent� with the pro
ess under 
ontrol.Sin
e the method involves dis
retization of the state spa
e, one �rst redu
es the number ofdimensions in the model (W1). Applying It�'s di�erentiation rule to the DV-target distan
e r(t)and the viewing angle ϕ(t) where ϕ ∈ (−π, π], as before (see Fig. 1), it 
an be shown that therelative DV-target system 
oordinates obey (see the Appendix)
dr(t) =

(

−v cos(ϕ) +
σ2
W

2r

)

dt+ σWdW‖, (9)
dϕ(t) =

(

v

r
sin(ϕ) +

u

ρmin

)

dt+
σW
r

dW⊥, (10)where |u| ≤ 1, and where dW‖ and dW⊥ are mutually independent in
rements of unit intensityWiener pro
esses aligned with the dire
tion of DV motion. Note the presen
e of a positive bias
σ2
W /2r in the relation for r(t), whi
h is a 
onsequen
e of the random pro
ess in
luded in the analysis.In the proposed parametrization, only distan
es r ≥ δ outside the target set are 
onsidered, and so(9)-(10) is well de�ned.In the Appendix the equations for value iterations on the 
ost-to-go fun
tion using the MarkovChain approximation method are derived. From this, the optimal angular velo
ity of the DV may beobtained for any relative distan
e r ≥ δ and viewing angle ϕ. The stru
ture of the optimal 
ontrollaw (W1) is seen in Fig. 4(a) for σW = 0.1 and dis
retization steps ∆r = 0.02 and ∆φ = 0.025.As in the deterministi
 model (σW = 0) 
ase (Fig. 2), the value iteration stationary 
ontrol law is
omposed of bang-bang regions instru
ting the DV to turn left or right and singular ar
s. Withsmaller noise, the optimal 
ontrol is 
omprised of four regions, two dire
ting the target to turn left,and others instru
ting a turn to the right. The reader should note the similarity between Fig. 4(a)and the OPP 
ontrol illustrated in Fig. 2. In parti
ular, the stru
ture of the regions C− and C+have 
hanged somewhat, as a 
onsequen
e of the sto
hasti
 variation of the wind. In Fig. 4(b), ahigher noise intensity of σW = 0.5 
auses the 
ontrol to return to GPP 
ontrol (5). In other words,11



the varian
e of the pro
ess is so large that it be
omes ex
eedingly di�
ult to predi
t the relativeDV-target state, and the optimal 
ontrol for the sto
hasti
 model mat
hes a simpler, analyti
ally-derived 
ontrol for the deterministi
 model that, as des
ribed in the previous se
tion, is not optimalfor some initial 
onditions 
lose to the target. This suggests that, for our problem, a deterministi

ontrol may su�
e for the optimal feedba
k 
ontrol when the varian
e of the sto
hasti
 wind issu�
iently large. [Fig. 4 about here.℄This 
ontrol strategy remains optimal for even larger σW , but due to the bias in r(t) (see Eq. (9)),this 
ontrol poli
y may not be su

essful in guiding the DV to the target in a reasonable amount oftime for high values of σW . Although a solution to the ba
kward Kolmogorov equation [19℄ indi
atesthat the DV will eventually hit the target with probability one as t → ∞, the expe
ted value ofthe hitting time be
omes ex
eedingly large with in
reasing σW . Similarly, one 
an also 
onsider theprobability that the DV, initially lo
ated at (r, ϕ), will hit the target set by a spe
i�ed time τ as afun
tion of the noise intensity σW . Figure 5 shows this distribution as 
omputed for (r, ϕ) = (1, 0)and τ = 10 s using 1000 simulations for ea
h σW .[Fig. 5 about here.℄IV. Feedba
k Laws for Wind at an AngleNext, the se
ond model (W2), in whi
h the wind is now assumed to take on a dire
tion θw withknown speed 0 < vw < 1, where vw is 
onstant by hypothesis, is assumed and the feedba
k 
ontrollaws for steering the DV in the presen
e of this wind are dis
ussed.A. Deterministi
 CaseFirst, the 
ase when σθ = 0 and 0 < vw < 1 is 
onsidered. Note that the fa
t that σθ = 0implies that the dire
tion of the wind be
omes 
onstant, and 
onsequently, the wind w = [wx, wy]
T,where wx := vw cos θw and wy := vw sin θw, is a 
onstant ve
tor. Therefore, in this se
tion, it is

12



assumed that the 
onstant wind w is known a priori. The equations of motion of the DV be
ome
dx = v cos(θ)dt + wxdt,

dy = v sin(θ)dt+ wydt,

dθ =
u

ρmin

dt, |u| ≤ 1. (11)First, a feedba
k law that is similar in spirit to the GPP law given in Eq. (5), whi
h exploitsthe fa
t that the wind is known a priori, is designed. In parti
ular, the proposed 
ontrol law triesto rotate the velo
ity ve
tor of the DV to point at the target. It is easy to show that the 
ontrollaw (5) be
omes
u(ϕ) =







































−1 if ψ(ϕ) ∈ (0, π],

0 if ψ(ϕ) = 0,

+1 if ψ(ϕ) ∈ (−π, 0).

(12)and
ψ(ϕ) := atan2(ẏ, ẋ)− θ + ϕ. (13)where ψ, is the angle between the inertial velo
ity of the DV and the line-of-sight (LOS) as isillustrated in Fig. 1 (the angle χ in this �gure is equal to atan2(ẏ, ẋ)). As it is shown in [20℄,the navigation law (12) is dual to the so-
alled parallel navigation law from missile guidan
e. The
ontrol law (12) is hen
eforth referred to as the Geometri
 Parallel Navigation (GPN for short) law.As mentioned in Se
tion IIIA, the GPP law that for
es the forward velo
ity of the vehi
le topoint towards the target may not always be well de�ned, espe
ially in the vi
inity of the target. Thesame type of argument applies to the GPN law modulo the repla
ement of the forward velo
ity withthe inertial velo
ity. Next, a 
ontrol law that steers the DV to the target using the optimal 
ontrolthat 
orrespond to the 
urrent position of the DV and assuming a 
onstant (e.g., average) windis presented. This 
ontrol law is referred to as the Optimal Parallel Navigation (OPN for short)law. Note that similarly to the GPN law, the OPN law does not 
onsider the variations of both thespeed and the dire
tion of the wind. By 
ombining the type of arguments used in [21, 22℄, whi
hdeal with the standard MD problem with free terminal heading, along with the analysis presented13



in [11, 12℄, one 
an easily show that the 
andidate optimal 
ontrol of the Markov-Dubins problem inthe presen
e of a 
onstant wind 
orresponds to the four 
ontrol sequen
es presented in Se
tion IIIA,namely, {±1, 0} and {±1,∓1}. The main di�eren
e between the solutions of the Markov-Dubinsproblem in the absen
e of a wind, whi
h was brie�y presented in Se
tion IIIA, and the Markov-Dubins problem in the presen
e of a 
onstant wind, is the swit
hing 
onditions and, 
onsequently,the swit
hing times of their 
ommon 
ontrol sequen
es.[Fig. 6 about here.℄Figure 6 illustrates the stru
ture of the OPN law in the (r, ϕ) plane in the presen
e of a 
onstanttailwind, that is, θw = θ(0), and a 
onstant headwind, that is, θw = π + θ(0), respe
tively. Oneobserves that the GPN law 
oin
ides with the OPN law for the majority of the boundary 
onditionsespe
ially for the 
ase of a tailwind, whereas in the presen
e of the headwind the points in the (r, ϕ)plane where the optimal strategy is bang-bang 
orrespond to a signi�
antly large set. An interestingobservation is that the new swit
hing surfa
es of the OPN law are asso
iated with those of the OPPlaw by means of a parti
ular 
oordinate transformationH : (x, y, θ) 7→ (x′, y′, θ), as des
ribed in [12℄.In parti
ular, a 
on�guration with 
oordinates (x, y, θ) that belongs to the swit
hing surfa
e S+, S0or S− of the OPP law 
orresponds to a point with 
oordinates (x′, y′, θ) that belongs respe
tivelyto the swit
hing surfa
e S+, S0 and S− of the OPN law, where
x′ = x+ wxTDV(x, y, θ), (14)
y′ = y + wyTDV(x, y, θ), (15)where TDV(x, y, θ) is the minimum time required to drive the DV from (x, y, θ) to the origin with free�nal heading θ. It is easy to show that for a state (x, y, θ) ∈ S+ (S−), it holds that TDV(x, y, θ) =

−2ρminϕ(x, y, θ)/v (2ρminϕ(x, y, θ)/v). In addition, if the state (x, y, θ) ∈ S0, then TDV(x, y, θ) =

√

x2 + y2/v.Figure 7 illustrates the 
orresponden
e of the swit
hing surfa
es of the OPN law with those ofthe OPP law for a tailwind (θw = θ(0) = 0) and a headwind (θw = π + θ(0) = π) via the previous
oordinate transformation. Note that the swit
hing surfa
e S0 of both the OPG and the OPP lawsare the same but the surfa
es S± are di�erent. 14



[Fig. 7 about here.℄Figure 8 illustrates the level sets of the minimum time-to-go fun
tion in the presen
e of a
onstant wind, whose 
omputation entails the solution of a de
oupled system of trans
endentalequations as shown in [11, 12℄. In parti
ular, Fig. 8(a) and Fig. 8(b) illustrate the level sets ofthe minimum time-to-go fun
tion in the presen
e of a 
onstant tailwind and a 
onstant headwind,respe
tively. [Fig. 8 about here.℄B. Sto
hasti
 CaseIt is now assumed that the dire
tion of the wind θw is no longer 
onstant, but is rather des
ribedby the sto
hasti
 pro
ess (W2) with σθ > 0. A similar derivation to that used for model (W1) yieldsfor (W2):
dr(t) = − (v cos(ϕ) + vw cos(ϕ+ γ)) dt,

dϕ(t) =

(

v

r
sin(ϕ) +

vw
r

sin(ϕ+ γ) +
u

ρmin

)

dt,

dγ(t) =
u

ρmin

dt− σθdWθ, (16)where the state γ(t) := θ(t) − θw(t) is introdu
ed to de�ne the di�eren
e between the DV headingangle and the dire
tion of the wind θw. In the numeri
al example, the following data are used:
vw = 0.5, and σθ = 0.1. The dis
retization steps were 
hosen as ∆r = 0.1, ∆φ = 0.08, and
∆γ = 0.12. As before, value iterations on the optimal 
ost-to-go were performed as des
ribed inthe Appendix. Two �sli
es� of this 
ontrol, 
orresponding to the 
ases where the DV travels in thedire
tion of the wind (tailwind, where γ = 0) and where it fa
es the wind (headwind, γ = π) areshown in Figs. 9(a) and 9(b), respe
tively. In ea
h �xed-γ poli
y, the optimal 
ontrol resembles thatshown in Fig. 6, although the lo
ation and shape of the swit
hing 
urves S± have 
hanged due tothe sto
hasti
 variation in the wind. In Fig. 9(a), only small vestiges of the swit
hing 
urves areseen, while in Fig. 9(b), the shape of these 
urves has 
hanged. Figure 10 shows the expe
ted valueof the time required to hit the target in the 
ase of a headwind and tailwind.[Fig. 9 about here.℄15



[Fig. 10 about here.℄V. Performan
e ComparisonIn the previous se
tions, it is seen that the 
ontrol laws for both deterministi
 wind models
losely resemble their respe
tive optimal feedba
k 
ontrol laws for the sto
hasti
 wind models. Inparti
ular, the 
ontrol poli
ies for the deterministi
 and sto
hasti
 wind models are identi
al whenfar from the target, but di�eren
es are seen when r is 
lose to δ. To see the e�e
t of these di�eren
es,this se
tion provides a 
omparison of performan
e of the proposed feedba
k 
ontrol laws against thesto
hasti
 wind models (W1) and (W2).[Fig. 11 about here.℄As an example, Fig. 11 shows a 
olle
tion of simulated DV traje
tories under the 
ontrolsfor the deterministi
 (red) and sto
hasti
 (blue or green) wind models, where the left and rightpanels 
orrespond to (W1) and (W2), respe
tively. In this �gure, the 
ontrol anti
ipating the windsto
hasti
ity assumes that there is a non-zero probability that the sto
hasti
 wind may push itbeyond its minimum turning radius ρmin and into the target, and hen
e the 
ontrol dire
ts it toperform a left turn. Some realizations (75.6%, shown in green) under this 
ontrol rea
h the target,but the remainder (blue) must 
ir
le around (see insert). The 
ontrol for the deterministi
 windmodel dire
ts the red DVs to �rst distan
e themselves before approa
hing the target. Consequently,the regions in the (r, ϕ) state spa
e 
orresponding to the traje
tories in this example lead to asmaller expe
ted time to hit the target for the sto
hasti
 model-based 
ontrol, as seen in Fig. 12.However, there is also a 
han
e that the sto
hasti
 model-based 
ontrol is unsu

essful in hittingthe target on its �rst pass, and so the DV must 
ir
le around again. In other words, the sto
hasti
model-based 
ontrol �risks� a turn toward the target for small r and small ϕ. Although the expe
tedvalue of the hitting time de
reases under the 
ontrol anti
ipating the sto
hasti
 winds, the standarddeviation of these times may simultaneously in
rease, as seen in Fig 12.[Fig. 12 about here.℄
16



In the right panel of Fig. 11, a similar result is seen for the 
ase of wind at an angle (indi
atedby a vw arrow). In this 
ase, a small number of the realizations for the DVs under the deterministi
model-based 
ontrol are a�e
ted by the 
hanging wind and must take a longer route to rea
h thetarget, whereas the DVs under the sto
hasti
 model-based 
ontrol anti
ipate the 
hanging winddire
tion. Similarly, Fig. 13 shows the mean time-to-go under (W2) using both the 
ontrol for thedeterministi
 model shown in Fig. 6 and the 
ontrol law for the sto
hasti
 wind model in Fig. 9. Asbefore, the expe
ted time-to-go is larger for the deterministi
 model-based 
ontrol in regions wherethe 
ontrol laws di�er. However, unlike (W1), the standard deviation under the sto
hasti
 model-based 
ontrol was 
onsistently smaller sin
e the 
ontrol a

ounts for the sto
hasti
 wind withoutinstru
ting for a potentially �risky� approa
h to the target.[Fig. 13 about here.℄VI. Con
lusions and Future WorkIn this paper, the problem of guiding a vehi
le with Dubins-type kinemati
s to a pres
ribedtarget set with free �nal heading in the presen
e of a sto
hasti
 wind in minimum expe
ted timehas been addressed. Two approa
hes to this problem have been proposed. The �rst one, whi
h wasbased on analyti
 te
hniques, was to employ feedba
k 
ontrol laws, based on a deterministi
 model,that are similar to the well-studied pure pursuit and the parallel navigation laws from the �eld ofmissile guidan
e. The proposed feedba
k 
ontrol laws are time-optimal in the absen
e of wind or inthe presen
e of a wind that is 
onstant and known a priori.The se
ond approa
h was to ta
kle the problem 
omputationally by employing numeri
al toolsfrom sto
hasti
 optimal 
ontrol theory. Be
ause these 
ontrol laws are based expli
itly on thesto
hasti
 wind models, they anti
ipate the wind sto
hasti
ity, and the time ne
essary to steer theDubins vehi
le to the target set in the presen
e of a sto
hasti
 wind is, on average, lower thanthat under the 
ontrol for the 
orresponding deterministi
 model. However, although the feedba
k
ontrol laws for the deterministi
 model be
ome suboptimal in the presen
e of a sto
hasti
 wind,it turns out that they still manage to steer the Dubins vehi
le to its target set with an a

eptablemiss target error. On the other hand, a sto
hasti
 framework leads to higher expe
ted pre
ision in17



terms of target miss-distan
e and more predi
table traje
tories.The fa
t that the deterministi
 model-based 
ontrols perform so well for this problem even inthe presen
e of an unknown sto
hasti
 wind is mainly owing to the fa
t that they are in a feedba
kform, thus providing a 
ertain degree of robustness against un
ertainties. Having that in mind,it may not be surprising that the presented deterministi
 model-based 
ontrol laws 
an work inthe presen
e of small sto
hasti
 disturban
es, although non-optimally. This may not be the 
asefor other problems in pra
ti
e where one is only able to generate reliable deterministi
 open-looptraje
tories. Surprisingly perhaps, the 
omputation of optimal feedba
k 
ontrols based on sto
hasti
models generally is no more di�
ult (or even easier) than for their deterministi
 
ounterparts asthe latter 
an be 
onsistently dis
retized and 
ast as a 
ontrolled Markov de
ision pro
ess, as shownin this paper. On the other hand, the 
losed-form feedba
k laws based on the deterministi
 modelpresented in this paper may be more appealing than their sto
hasti
 model-based 
ounterparts,owing to their ease of implementation.Thus, the similarity between 
ontrol poli
ies under di�erent levels of wind sto
hasti
ity seemsto support the use of the feedba
k 
ontrols for deterministi
 wind models in lieu of sto
hasti
 model-based feedba
k 
ontrols when the sto
hasti
 e�e
ts are small, or 
an be used as �seeds� that mayexpedite the 
omputation of the solution to the sto
hasti
 optimal 
ontrol problem, or aid in theveri�
ation of numeri
al results. Moreover, sin
e the role of noise in designing feedba
k 
ontrolpoli
ies is not fully understood, a side-by-side 
omparison of the feedba
k laws for deterministi
 andsto
hasti
 models in other problems may provide useful insights toward a more general theory.Future work will in
lude the extension of the te
hniques presented herein to problems with amore realisti
 model of the wind, in
luding wind models that depend expli
itly on the position ofthe Dubins vehi
le. Another possible extension is to 
hara
terize 
ontrol laws for sto
hasti
 windmodels that minimize a 
ost fun
tion taking into 
onsideration both the expe
ted value and thevarian
e of the time-to-go.
18



AppendixDerivation of Relative Sto
hasti
 Kinemati
 Model (9)-(10) for (W1)Given a sto
hasti
 di�erential equation for the state x ∈ R
n in the form

dx(t) = b(x)dt+ a(x)dW (t),the It� Lemma states that the total di�erential of a s
alar, time-independent fun
tion f(x) is
d [f(x)] (t) = (b(x)dt+ a(x)dW (t))

T
∇xf(x) +

1

2
(a(x)dW (t))

T
∇2

x
f(x) (a(x)dW (t)) ,where, if dW (t) is of dimension k, we also have by de�nition that dW T

dW = Ik×kdt. Applying thisrule to (W1), we may obtain the total di�erential for r(t) = √

(x(t))
2
+ (y(t))

2 as
dr(t) =

x

r
dx(t) +

y

r
dy(t) +

1

2

(

1

r
−
x2

r3

)

(dx(t))2 +
1

2

(

1

r
−
y2

r3

)

(dy(t))2 −
xy

r3
(dx(t))(dy(t))

=

(

−v cos(ϕ) +
σ2
W

2r

)

dt− σW cos(θ − ϕ)dWx − σW sin(θ − ϕ)dWy , (17)where we have used the fa
t that x/r = − cos(θ − ϕ) and y/r = − sin(θ − ϕ). Similarly, sin
e
tan−1(y/x) = θ − ϕ+ π, the total di�erential for ϕ is

dϕ(t) =
u

ρmin

dt+
y

r2
dx(t) −

x

r2
dy(t)−

xy

r4
(dx(t))2 +

xy

r4
(dy(t))2

=

(

v

r
sinϕ+

u

ρmin

)

dt+
σW
r

sin(θ − ϕ)dWx −
σW
r

cos(θ − ϕ)dWy . (18)Sin
e the 
omponents of the original 2D Brownian motion model are s
aled with the same parameter
σW , the noise is invariant under a rotation of the 
oordinate frame [19℄. De�ning dW‖(t) and dW⊥(t)as the in
rements dWx and dWy when viewed in a 
oordinate frame aligned with the dire
tion ofDV motion, we obtain (9)-(10).Derivation of Value Iteration EquationsThe following derivation of the equations for value iteration is spe
i�
 to the wind model (W2).The dis
retization details for (W1) may be found in [15℄. Denote by Lu the di�erential operatorasso
iated with the sto
hasti
 pro
ess (16), whi
h, for the sake of brevity, one writes in terms of themean drift b(x, u) ∈ R

3, the di�usion a(x) ∈ R
3×3 and the state ve
tor x = [r, ϕ, γ]T, as follows

dx = b(x, u)dt+ a(x)dW (t)19



with the asso
iated di�erential operator
Lu =

3
∑

i=1

bi(x, u)
∂

∂xi
+

1

2

3
∑

i,j=1

aij(x)
∂2

∂xi∂xj
.The state x is in the domain X = {x | δ ≤ r < rmax,−π ≤ ϕ ≤ π,−π ≤ γ ≤ π}, whi
h issemi-periodi
 be
ause [r, π, γ]T = [r,−π, γ]T and [r, ϕ,−π]T = [r, ϕ, π]T. It follows that the domainboundary is 
omposed of two disjoint segments, i.e., ∂X = {x : r = δ} ∪ {x : r = rmax}.It 
an be shown [17℄ that a su�
iently smooth J(x) given by (4) satis�es

LuJ(x) + 1 = 0, (19)so that the sto
hasti
 Hamilton-Ja
obi-Bellman equation for the minimum 
ost V (x) over all 
ontrolsequen
es is
inf

|u|≤1
[LuV (x) + 1] = 0. (20)This PDE has mixed boundary 
onditions on ∂X. At r = rmax, one 
an use re�e
ting boundary
onditions (∇V (x))

T
n̂ = 0 with the boundary normals n̂. For the part of boundary r = δ thatbelongs to the target set T , one has to use an absorbing boundary 
ondition with V (x) = g(x) ≡ 0.A dis
rete-time Markov 
hain {ξn, n <∞} with 
ontrolled transition probabilities from the state

x to the state y ∈ X denoted by p(y | x, u) is introdu
ed. A 
ontinuous-time approximation ξ(t) tothe original pro
ess x(t) is 
reated by way of a state- and 
ontrol-dependent interpolation interval
∆tu = ∆t(x, u) = tn+1 − tn via ξ(t) = ξn where t ∈ [tn, tn+1) [17℄. The transition probabilities
p(y | x, u) then appear as 
oe�
ients in the �nite-di�eren
e approximations of the operator Lu in(19). Using the so-
alled up-wind approximations for derivatives, the �nite-di�eren
e dis
retizationsfor J(·) with step sizes ∆r, ∆ϕ, and ∆γ are

Jh(r, ϕ, γ) = ∆tu +
∑

i=1,2

{

p
(

r − (−1)i∆r, ϕ, γ | r, ϕ, γ, u
)

Jh(r − (−1)i∆r, ϕ, γ)

+ p
(

r, ϕ− (−1)i∆ϕ, γ | r, ϕ, γ, u
)

Jh(r, ϕ− (−1)i∆ϕ, γ)

+ p
(

r, ϕ, γ − (−1)i∆γ, | r, ϕ, γ, u
)

Jh(r, ϕ, γ − (−1)i∆γ)
} (21)

20



where the 
oe�
ients multiplying Jh(·) are the respe
tive transition probabilities, given by
p (r ±∆r, ϕ, γ | r, ϕ, γ, u) = ∆tu

max [0, (∓v cos(ϕ)∓ vw cos (ϕ+ γ))]

∆r
,

p (r, ϕ±∆ϕ, γ | r, ϕ, γ, u) = ∆tu
max [0, (±(v/r) sin(ϕ)± (vw/r) sin (ϕ+ γ)± u/ρmin)]

∆ϕ
,

p (r, ϕ, γ ±∆γ | r, ϕ, γ, u) = ∆tu
(

max [(±u/ρmin)]

∆γ
+

σ2
θ

2(∆γ)2

)

, (22)where �max� is a result of the up-wind approximation, and where ∆tu, given by
∆tu(x) =

(

|−v cos(ϕ)− vw cos (ϕ+ γ)|

∆r
+

|(v/r) sin (ϕ+ γ) + (vw/r) sin (ϕ+ γ) + u/ρmin|

∆ϕ

+
|u/ρmin|

∆γ
+

σ2
θ

(∆γ)2

)−1

,ensures that all probabilities sum to unity.The Markov 
hain de�ned by these transition probabilities satis�es the requirement of �lo
al
onsisten
y,� in the sense that the drift and 
ovarian
e of the Markov pro
ess ξ(t) are 
onsistent withthe drift and 
ovarian
e of the original pro
ess, and the 
ost-to-go V h(·) for ξ(t), therefore, suitablyapproximates that asso
iated with the original pro
ess. The dynami
 programming equation forthe Markov 
hain used for value iteration, is given as follows [17℄:
V h(x) = min

|u|≤1

{

∆tu(x, u) +
∑

y

p(y | x, u)V h(y)

}

, (23)for all x ∈ X \ ∂X. For the re�e
tive part of the boundary, r = rmax (see Ref. [17, pp. 143℄) is usedinstead of (23):
V h(x) =

∑

y

p(y | x)V h(y), (24)where p(y | x) = 1 for y = [rmax −∆r, ϕ, γ]T and x = [rmax, ϕ, γ]
T; otherwise, p(y | x) = 0. Finally,for those states x ∈ T in the target set, it is imposed that

V h(x) = 0. (25)Equations (23)-(25) are used in the method of value iteration until the 
ost 
onverges. Fromthis, given the wind speed vw, one obtains the optimal angular velo
ity of the DV for any relativedistan
e r, viewing angle ϕ, and relative wind dire
tion γ.21
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