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terministi optimal ontrol for this problem aptures, in many ases, the salient featuresof the optimal feedbak ontrol for the stohasti wind model, providing support forthe use of the former in the presene of light winds. On the other hand, the ontrollersantiipating the stohasti wind variation lead to more robust and more preditabletrajetories than the ones obtained using feedbak ontrollers for deterministi windmodels.
Nomenlature

(x, y) = Cartesian oordinates of the position vetor of the Dubins vehile, m
θ = heading angle of the Dubins vehile, rad
r = distane to target, m
δ = target set radius, m
ϕ = viewing angle to target, rad
γ = di�erene in Dubins vehile heading angle and wind diretion, rad
u = ontrol input, radm/s
v = Dubins vehile speed, m/s
ρmin = Dubins vehile minimum turning radius, m
dWx,y = inrements of Wiener proess in, respetively, the x and y diretion
dWθ = inrements of Wiener proess in the θ diretion
σW = noise intensity for �rst wind model, m
vw = speed of wind in seond wind model, m/s
σθ = noise intensity for seond wind model, rad
T = time-to-go until the target set is reahed, sI. IntrodutionThis paper deals with the problem of guiding an aerial vehile with a turning rate onstraintto a presribed terminal position in the presene of a stohasti wind in minimum expeted time.2



It is assumed that the motion of the vehile is desribed by a Dubins-like kinemati model [1�3℄,that is, it travels only forward with onstant speed, and suh that the rate of hange of its forwardveloity vetor diretion is bounded by a presribed upper bound. This kinemati model is referredto as the Dubins Vehile (DV for short). In the absene of the wind, the vehile traverses paths ofminimal length and bounded urvature, known in the literature as Dubins paths or optimal pathsof the Markov-Dubins (MD for short) problem [1, 4℄.The importane of designing trajetory traking ontrol shemes and path planning algorithmsthat aount for the e�ets of the loal wind in UAVs/MAVs appliations has been reognizedby many researhers. In partiular, Refs. [5�8℄ present path traking/following ontrollers forUAVs/MAVs in the presene of disturbanes indued by the wind based on nonlinear ontrol tools.The problem of haraterizing minimum-time paths of a DV in the presene of a onstant wind was�rst posed by MGee and Hedrik in [9℄. Numerial shemes for the omputation of the Dubins-likepaths proposed in [9℄ have been presented in [10, 11℄. The omplete haraterization of the optimalsolution of the same problem, that is, a mapping that returns the minimum-time ontrol input giventhe state vetor of the DV, is given in [11, 12℄. A numerial algorithm that omputes the minimum-time paths of the DV in the presene of a deterministi time-varying, yet spatially invariant, windis presented in [13℄.The analysis presented in the majority of the variations and extensions of the MD problemin the literature is based on a deterministi optimal ontrol framework (the reader interested ina thorough literature review on variations/extensions of the MD problem may refer to [14℄ andreferenes therein). The e�et of the wind, however, is intrinsially stohasti, and approahingthis problem from a stohasti point of view is more appropriate. Some reent attempts to addressoptimal ontrol problems related to the MD problem within a stohasti optimal ontrol frameworkan be found in [15, 16℄. In partiular, Refs. [15, 16℄ deal with the problem of a DV traking a targetwith an unertain future trajetory using numerial tehniques from stohasti optimal ontrol ofontinuous-time proesses [17℄.In this work, an optimal feedbak ontrol that minimizes the expeted time required to navigatethe DV to its presribed target set in the presene of a stohasti wind is developed. Two stohasti3



wind models are investigated. In the �rst model the x and y omponents of the wind are modeledas independent zero-mean Wiener proesses with a given intensity level. In the seond model, thewind is modeled as having a onstant magnitude, but its diretion is unknown and is allowed to varystohastially aording to a zero-mean Wiener proess. For both wind models, optimal feedbakontrol laws are omputed numerially using a Markov hain approximation sheme. In addition,for eah ontrol based on the stohasti wind models, feedbak ontrol laws based on deterministiwind models are developed and ompared against their stohasti model-based ounterparts in thepresene of stohastiity to determine the regions of validity of the former. The analysis and numer-ial simulations demonstrate, not surprisingly perhaps, that ontrol laws based on stohasti windmodels outperform � on the average � ontrol laws for the deterministi wind models implementedin a stohasti wind. On the other hand, the ontrol laws for the deterministi wind model ansuessfully apture the salient features of the struture of the orresponding stohasti optimalontrol solution.The ontributions of the paper an be summarized as follows: First, this paper o�ers, up tothe authors' best knowledge, for the �rst time, the solution of the optimal path generation of anaerial vehile with Dubins-like kinematis in the presene of stohasti wind. This is important forsmall UAV path-planning and oordination appliations. Seond, it shows the relationship of theoptimal ontrol solution, whih antiipates the stohasti wind, with its deterministi ounterpart,and it ompares the two. This allows one to draw insights as to what level a stohasti wind-basedsolution is bene�ial ompared to its less informed deterministi ounterpart, and when it makessense (from a pratial point of view) to use the former over the latter. The question of the use ofa feedbak ontrol law antiipating stohasti proesses versus a ontrol law based on deterministimodel assumptions is a question of a more general interest and one that is a reurrent theme inthe ommunity, espeially in terms of appliations. This paper o�ers a rare example where a head-to-head omparison is possible. In general, the omputation of a deterministi optimal feedbakontrol is not an easy task, as it requires the solution of a Hamilton-Jaobi-Bellman (HJB) partialdi�erential equation. However, the Dubins vehile problem in this paper serendipitously allows fora omplete solution, via a synthesis of open-loop strategies, without resorting to the HJB equation.4



The rest of the paper is organized as follows. Setion II formulates the optimal ontrol problem.Setion III presents feedbak ontrol laws based on minimal deterministi and stohasti wind modelassumptions. These ontrol laws are extended in Setion IV for the ase when the wind has a knownspeed but stohastially-varying diretion. Simulation results for the ontrollers based on the twotypes of deterministi and stohasti wind models are presented in Setion V. Finally, Setion VIonludes the paper with a summary of remarks.II. Problem FormulationHere the problem of ontrolling the turning rate of a �xed-speed Dubins vehile (DV) in orderto reah a stationary target in the presene of wind is formulated. The target is �xed at the origin,while the Cartesian omponents of DV position are x(t) and y(t) (see Fig. 1).[Fig. 1 about here.℄The DV moves in the diretion of its heading angle θ at �xed speed v relative to the wind andobeys the equations:
dx(t) = v cos (θ) dt+ dwx(t, x, y), (1)
dy(t) = v sin (θ) dt+ dwy(t, x, y), (2)
dθ(t) =

u

ρmin

dt, |u| ≤ 1, (3)where ρmin > 0 is the minimum turning radius onstraint (in the absene of wind) and u is theontrol variable, u ∈ [−1, 1]. The motion of the DV is a�eted by the spatially and/or temporallyvarying wind w(t, x, y) = [wx(t, x, y), wy(t, x, y)]
T, whose inrements have been inorporated intothe model (1)-(2). In this problem formulation, the model for the wind is unknown. Therefore, itis assumed that the wind is desribed by a stohasti proess. Subsequently, a stohasti ontrolproblem for reahing a target set T =

{

(x, y) : x2 + y2 ≤ δ2
}, whih is a ball of radius δ > 0around the target, is formulated.In order to minimize the time required to reah the target set, one de�nes a ost-to-go funtion

J(x) = min
|u|≤1

E





T
∫

0

dt



 , x := [x(0), y(0), θ(0)]T, (4)5



and assumes that upon reahing the target set T at time T , all motion eases. In (4) the expetedtime to reah the target set is minimized over the turning rate u, |u| ≤ 1, whih is the ontrolvariable. Control problems with a ost-to-go funtion of the form (4) are sometimes referred to as�ontrol until a target set is reahed� [17℄ or stohasti shortest-path problems [18℄.Two stohasti proess wind models that are haraterized by the amount of information knownabout the wind are onsidered. In eah ase, it is assumed that the wind is a ontinuous-timestohasti proess with respet to the DV position. In other words, there is no expliit relationbetween a realization of the wind and the DV position, i.e., wx(t, x, y) = wx(t), and wy(t, x, y) =

wy(t), although impliitly this relation may exist.First, a feedbak ontrol when a model desribing the wind is not given is developed. Drawingfrom the �eld of estimation, the simplest model to desribe an unknown 2D signal suggests thatthe wind should be modeled as Brownian motion [19℄. It is further assumed that the Cartesianomponents of the wind evolve independently. Then from (1)-(3), the kinematis of the DV in thepresene of this wind, denoted model (W1), is
dx(t) = v cos(θ)dt+ σWdWx,

dy(t) = v sin(θ)dt+ σWdWy ,

dθ(t) =
u

ρmin

dt, |u| ≤ 1, (W1)where dWx and dWy are mutually independent inrements of a zero mean Wiener proess, andwhere the level of noise intensity σW quanti�es the unertainty in the evolution of the wind. Notethat this kinemati model also arises when examining the problem of traking a target with unknownfuture trajetory [15, 16℄. In the limiting ase where σW = 0, the problem is redued to the asewithout the wind. A feedbak ontrol that assumes σW = 0, therefore, would ignore the preseneof the wind, while a feedbak ontrol that assumes σW > 0 will aount for the stohasti windvariation. Along these lines, Setion III develops feedbak ontrol laws that drive the DV to thetarget in minimum time in both the deterministi ase (σW = 0) and the stohasti ase (σW > 0).Note that in the deterministi ase, the ost-to-go funtion is the same as (4), but without theexpetation operator. 6



Next, motivated by problems involving a wind that varies slowly in time and/or spae, a seondwind model (W2) is onsidered. The seond wind model onsiders a wind that �ows in the diretion
θw at onstant speed vw < v, but where the evolution of the diretion of this wind is unknown.Then from (1)-(3), the model of the relative motion of the DV and the target in the wind (W2) is

dx(t) = v cos(θ) dt+ vw cos(θw) dt

dy(t) = v sin(θ) dt + vw sin(θw) dt

dθ(t) =
u

ρmin

dt, |u| ≤ 1

dθw(t) = σθ dWθ, (W2)where dWθ is an inrement of a Wiener proess, and where σθ is its orresponding intensity. When
σθ = 0, one obtains a model of onstant wind in the diretion θw. Setion IV desribes optimalfeedbak ontrols for the deterministi ase (σθ = 0) and the stohasti ase (σθ > 0).The proposed ontrol shemes for the deterministi wind, whih are based on analyti arguments,will give signi�ant insights for the subsequent analysis and will illustrate some interesting patternsof the solution of the stohasti optimal ontrol problem. It will be shown later on that the ontrolstrategies for eah deterministi wind model, when applied to the DV in the presene of the stohastiwind, will apture the salient features of the solution of the stohasti optimal ontrol problem.III. Feedbak Laws with No Wind InformationIn this setion, feedbak ontrol laws are developed that drive the DV to its target in the preseneof an unknown wind (W1). First, a method for designing a feedbak ontrol for the deterministiproblem, that ompletely ignores the presene of a wind, is brie�y disussed. Next, an optimalfeedbak ontrol will be omputed for the ase where the Cartesian omponents of the wind varystohastially. In all ases, the target set is a ball of radius with δ = 0.1, and the veloity of thevehile is onstant v = 1.A. Deterministi CaseFirst, a ontrol law that is ompletely independent of any information about the distribution ofthe wind is proposed. In other words, a feedbak ontrol law is designed under the assumption that7



the wind is modeled by (W1) with σW = 0. Therefore, this ontrol law is �blind� to the preseneand the statistis of the atual wind. This approah will give two navigation laws that are similarto the pure pursuit strategy from missile guidane [20℄, whih is a ontrol strategy that fores theveloity vetor of the ontrolled objet (the DV in this ase) to point towards its destination atevery instant of time.Note that in the presene of a wind and with the appliation of a feedbak law that imitates thepure pursuit strategy, the DV will not be able to instantaneously hange its motion in order to pointits veloity vetor toward the target. This happens for two reasons. The �rst reason is beausethe rate at whih the DV an rotate its veloity vetor is bounded by the turning rate onstraint(3). The seond reason has to do with the fat that, by hypothesis, the pure pursuit law does notaount for the wind, and, onsequently, even if the DV were able to rotate its forward veloityvetor arbitrarily fast, it would be this forward veloity vetor that points toward the target ratherthan the inertial veloity.Let ϕ be the angle between the vehile's forward veloity vetor and the line-of-sight to thetarget, given by ϕ = θ − atan2 (y, x) + π and mapped to lie in ϕ ∈ (−π, π] (see Fig. 1). Theproposed (suboptimal) pure pursuit-like navigation law takes the following state-feedbak form
u(ϕ) =







































−1 if ϕ ∈ (0, π],

0 if ϕ = 0,

+1 if ϕ ∈ (−π, 0).

(5)One important observation is that the ontrol law (5) does not depend on the distane r(t) =

√

(x(t))2 + (y(t))2 of the DV from the target but only on the angle ϕ. The state feedbak ontrollaw given in (5) will be referred to as the geometri pure pursuit (GPP for short) law. Note thatthe GPP law drives the DV to the line S0 := {(r, ϕ) : ϕ = 0}, whih is a �swithing surfae.� Inthe absene of wind, one the DV reahes S0, it travels along S0 until it reahes the target (suhthat r = 0 at the �nal time T ) with the appliation of the ontrol input u = 0. Therefore, the GPPlaw is a bang-o� ontrol law with one swithing at most, that is, a ontrol law whih is neessarilya ontrol sequene {±1, 0}.It is important to highlight that the GPP law turns out to be the time-optimal ontrol law of8



the MD problem for the majority (but not all) of the initial on�gurations [x(0), y(0), θ(0)]T (seeFig. 2), when there is no wind [21, 22℄. However, there are still initial on�gurations from whihthe DV driven by the navigation law (5) either annot reah the target set at all or an reah thetarget only suboptimally. The previous two ases are observed, for example, when the DV is loseto the target with a relatively large |ϕ|. [Fig. 2 about here.℄In partiular, it an be shown [21, 22℄ that if the DV starts, at time t = 0, from any point thatbelongs to one of the two regions, C+ and C−, de�ned by (see Fig. 2)
C− = {(r, ϕ) : r ≤ 2ρmin sin(−ϕ), ϕ < 0} (6)
C+ = {(r, ϕ) : r ≤ 2ρmin sin(ϕ), ϕ > 0} , (7)then the target annot be reahed by means of the GPP law in the absene of a stohasti wind(senarios where the stohasti wind helps the DV to reah its target even by means of a GPP lawwill be shown later on). Therefore, in order to omplete the design of a feedbak ontrol law for anypossible state of the DV, one needs to onsider the optimal solution of the MD problem in the asewhen the terminal heading is free [21, 22℄. It turns out that the boundaries of C+ and C−, denoted,respetively, by S− and S+ (the hoie of the subsript notation will beome apparent shortly later),orrespond to two new �swithing surfaes� along whih the DV travels all the way to the target.In partiular, when the DV starts in the interior of C+ (respetively, C−), then the minimum-timeontrol ation is u = +1 (respetively, u = −1), whih may appear to be ounterintuitive, sine itse�et is to inrease |ϕ| rather to derease it. The ontrol input remains onstant until the DV reahesthe �swithing surfae� S− (respetively, S+), where the ontrol swithes to u = −1 (respetively,

u = +1), and subsequently, the DV travels along S− (respetively, S+) all the way to the targetdriven by u = −1 (respetively, u = +1). The net e�et is that when the DV starts inside theregions C±, the DV must �rst distane itself from the target so that its minimum turning radius
ρmin is su�ient to turn towards the target. Note that in this ase the ontrol law is bang-bangwith one swithing at most, that is, a ontrol sequene {±1,∓1}. The situation is illustrated inFig. 2 for ρmin = 1. 9



The GPP law given in (5), therefore, needs to be updated appropriately to aount for theprevious remarks. In partiular, the new feedbak ontrol law is given by
u(r, ϕ) =







































−1 if (r, φ) ∈ Σ−,

0 if (r, φ) ∈ Σ0,

+1 if (r, φ) ∈ Σ+,

(8)where,
Σ− := {(r, ϕ) : ϕ ∈ (0, π]} ∩ (intC+)

c ∪ intC−

Σ+ := {(r, ϕ) : ϕ ∈ (−π, 0)} ∩ (intC−)
c ∪ intC+

Σ0 := {(r, ϕ) : ϕ = 0}.The state feedbak law (8) will be heneforth referred to as the optimal pure pursuit (OPP forshort) law, beause, at every instant of time, it steers the DV to the target based on the optimalstrategy that orresponds to its urrent position. Note that in the absene of wind, the OPP law isthe optimal ontrol law of the MD problem with free �nal heading [21, 22℄. One important remarkabout the OPP law is that the ontrol variable u may attain the value zero, whih is in the interior ofits admissible set [−1, 1]. Thus, the ontrol u = 0 is singular, and the part of the optimal trajetoryit generates is referred to as the singular ar of the optimal solution. As explained in detail inRef. [14℄, singular ars may be part of the optimal solution of the MD problem in the absene ofwind, only when the so-alled swithing funtion of the onstrained optimal ontrol problem, alongwith its �rst time derivative, vanish simultaneously (for a non-trivial time interval). Note that while
u = ±1 orresponds to turning left/right, the ontrol u = 0 orresponds to straight paths.Figure 3 illustrates the level sets of the minimum time-to-go funtion, whih an be omputedanalytially by using standard optimal ontrol tehniques and geometri tools, as shown in [14℄.[Fig. 3 about here.℄B. Stohasti CaseIn this setion, an optimal feedbak ontrol law for the stohasti kinemati model (W1) and ostfuntional (4) is developed. The optimal ontrol is omputed using the Markov hain approximation10



method [17℄, whih ensures that when disretizing a state spae for value iteration in stohastioptimal ontrol problems, the hosen spatial and temporal step sizes aurately sale in the sameway as in the original stohasti proess. The method onstruts a disrete-time and disrete-state approximation to the ost funtion in the form of a ontrolled Markov hain that is �loally-onsistent� with the proess under ontrol.Sine the method involves disretization of the state spae, one �rst redues the number ofdimensions in the model (W1). Applying It�'s di�erentiation rule to the DV-target distane r(t)and the viewing angle ϕ(t) where ϕ ∈ (−π, π], as before (see Fig. 1), it an be shown that therelative DV-target system oordinates obey (see the Appendix)
dr(t) =

(

−v cos(ϕ) +
σ2
W

2r

)

dt+ σWdW‖, (9)
dϕ(t) =

(

v

r
sin(ϕ) +

u

ρmin

)

dt+
σW
r

dW⊥, (10)where |u| ≤ 1, and where dW‖ and dW⊥ are mutually independent inrements of unit intensityWiener proesses aligned with the diretion of DV motion. Note the presene of a positive bias
σ2
W /2r in the relation for r(t), whih is a onsequene of the random proess inluded in the analysis.In the proposed parametrization, only distanes r ≥ δ outside the target set are onsidered, and so(9)-(10) is well de�ned.In the Appendix the equations for value iterations on the ost-to-go funtion using the MarkovChain approximation method are derived. From this, the optimal angular veloity of the DV may beobtained for any relative distane r ≥ δ and viewing angle ϕ. The struture of the optimal ontrollaw (W1) is seen in Fig. 4(a) for σW = 0.1 and disretization steps ∆r = 0.02 and ∆φ = 0.025.As in the deterministi model (σW = 0) ase (Fig. 2), the value iteration stationary ontrol law isomposed of bang-bang regions instruting the DV to turn left or right and singular ars. Withsmaller noise, the optimal ontrol is omprised of four regions, two direting the target to turn left,and others instruting a turn to the right. The reader should note the similarity between Fig. 4(a)and the OPP ontrol illustrated in Fig. 2. In partiular, the struture of the regions C− and C+have hanged somewhat, as a onsequene of the stohasti variation of the wind. In Fig. 4(b), ahigher noise intensity of σW = 0.5 auses the ontrol to return to GPP ontrol (5). In other words,11



the variane of the proess is so large that it beomes exeedingly di�ult to predit the relativeDV-target state, and the optimal ontrol for the stohasti model mathes a simpler, analytially-derived ontrol for the deterministi model that, as desribed in the previous setion, is not optimalfor some initial onditions lose to the target. This suggests that, for our problem, a deterministiontrol may su�e for the optimal feedbak ontrol when the variane of the stohasti wind issu�iently large. [Fig. 4 about here.℄This ontrol strategy remains optimal for even larger σW , but due to the bias in r(t) (see Eq. (9)),this ontrol poliy may not be suessful in guiding the DV to the target in a reasonable amount oftime for high values of σW . Although a solution to the bakward Kolmogorov equation [19℄ indiatesthat the DV will eventually hit the target with probability one as t → ∞, the expeted value ofthe hitting time beomes exeedingly large with inreasing σW . Similarly, one an also onsider theprobability that the DV, initially loated at (r, ϕ), will hit the target set by a spei�ed time τ as afuntion of the noise intensity σW . Figure 5 shows this distribution as omputed for (r, ϕ) = (1, 0)and τ = 10 s using 1000 simulations for eah σW .[Fig. 5 about here.℄IV. Feedbak Laws for Wind at an AngleNext, the seond model (W2), in whih the wind is now assumed to take on a diretion θw withknown speed 0 < vw < 1, where vw is onstant by hypothesis, is assumed and the feedbak ontrollaws for steering the DV in the presene of this wind are disussed.A. Deterministi CaseFirst, the ase when σθ = 0 and 0 < vw < 1 is onsidered. Note that the fat that σθ = 0implies that the diretion of the wind beomes onstant, and onsequently, the wind w = [wx, wy]
T,where wx := vw cos θw and wy := vw sin θw, is a onstant vetor. Therefore, in this setion, it is

12



assumed that the onstant wind w is known a priori. The equations of motion of the DV beome
dx = v cos(θ)dt + wxdt,

dy = v sin(θ)dt+ wydt,

dθ =
u

ρmin

dt, |u| ≤ 1. (11)First, a feedbak law that is similar in spirit to the GPP law given in Eq. (5), whih exploitsthe fat that the wind is known a priori, is designed. In partiular, the proposed ontrol law triesto rotate the veloity vetor of the DV to point at the target. It is easy to show that the ontrollaw (5) beomes
u(ϕ) =







































−1 if ψ(ϕ) ∈ (0, π],

0 if ψ(ϕ) = 0,

+1 if ψ(ϕ) ∈ (−π, 0).

(12)and
ψ(ϕ) := atan2(ẏ, ẋ)− θ + ϕ. (13)where ψ, is the angle between the inertial veloity of the DV and the line-of-sight (LOS) as isillustrated in Fig. 1 (the angle χ in this �gure is equal to atan2(ẏ, ẋ)). As it is shown in [20℄,the navigation law (12) is dual to the so-alled parallel navigation law from missile guidane. Theontrol law (12) is heneforth referred to as the Geometri Parallel Navigation (GPN for short) law.As mentioned in Setion IIIA, the GPP law that fores the forward veloity of the vehile topoint towards the target may not always be well de�ned, espeially in the viinity of the target. Thesame type of argument applies to the GPN law modulo the replaement of the forward veloity withthe inertial veloity. Next, a ontrol law that steers the DV to the target using the optimal ontrolthat orrespond to the urrent position of the DV and assuming a onstant (e.g., average) windis presented. This ontrol law is referred to as the Optimal Parallel Navigation (OPN for short)law. Note that similarly to the GPN law, the OPN law does not onsider the variations of both thespeed and the diretion of the wind. By ombining the type of arguments used in [21, 22℄, whihdeal with the standard MD problem with free terminal heading, along with the analysis presented13



in [11, 12℄, one an easily show that the andidate optimal ontrol of the Markov-Dubins problem inthe presene of a onstant wind orresponds to the four ontrol sequenes presented in Setion IIIA,namely, {±1, 0} and {±1,∓1}. The main di�erene between the solutions of the Markov-Dubinsproblem in the absene of a wind, whih was brie�y presented in Setion IIIA, and the Markov-Dubins problem in the presene of a onstant wind, is the swithing onditions and, onsequently,the swithing times of their ommon ontrol sequenes.[Fig. 6 about here.℄Figure 6 illustrates the struture of the OPN law in the (r, ϕ) plane in the presene of a onstanttailwind, that is, θw = θ(0), and a onstant headwind, that is, θw = π + θ(0), respetively. Oneobserves that the GPN law oinides with the OPN law for the majority of the boundary onditionsespeially for the ase of a tailwind, whereas in the presene of the headwind the points in the (r, ϕ)plane where the optimal strategy is bang-bang orrespond to a signi�antly large set. An interestingobservation is that the new swithing surfaes of the OPN law are assoiated with those of the OPPlaw by means of a partiular oordinate transformationH : (x, y, θ) 7→ (x′, y′, θ), as desribed in [12℄.In partiular, a on�guration with oordinates (x, y, θ) that belongs to the swithing surfae S+, S0or S− of the OPP law orresponds to a point with oordinates (x′, y′, θ) that belongs respetivelyto the swithing surfae S+, S0 and S− of the OPN law, where
x′ = x+ wxTDV(x, y, θ), (14)
y′ = y + wyTDV(x, y, θ), (15)where TDV(x, y, θ) is the minimum time required to drive the DV from (x, y, θ) to the origin with free�nal heading θ. It is easy to show that for a state (x, y, θ) ∈ S+ (S−), it holds that TDV(x, y, θ) =

−2ρminϕ(x, y, θ)/v (2ρminϕ(x, y, θ)/v). In addition, if the state (x, y, θ) ∈ S0, then TDV(x, y, θ) =

√

x2 + y2/v.Figure 7 illustrates the orrespondene of the swithing surfaes of the OPN law with those ofthe OPP law for a tailwind (θw = θ(0) = 0) and a headwind (θw = π + θ(0) = π) via the previousoordinate transformation. Note that the swithing surfae S0 of both the OPG and the OPP lawsare the same but the surfaes S± are di�erent. 14



[Fig. 7 about here.℄Figure 8 illustrates the level sets of the minimum time-to-go funtion in the presene of aonstant wind, whose omputation entails the solution of a deoupled system of transendentalequations as shown in [11, 12℄. In partiular, Fig. 8(a) and Fig. 8(b) illustrate the level sets ofthe minimum time-to-go funtion in the presene of a onstant tailwind and a onstant headwind,respetively. [Fig. 8 about here.℄B. Stohasti CaseIt is now assumed that the diretion of the wind θw is no longer onstant, but is rather desribedby the stohasti proess (W2) with σθ > 0. A similar derivation to that used for model (W1) yieldsfor (W2):
dr(t) = − (v cos(ϕ) + vw cos(ϕ+ γ)) dt,

dϕ(t) =

(

v

r
sin(ϕ) +

vw
r

sin(ϕ+ γ) +
u

ρmin

)

dt,

dγ(t) =
u

ρmin

dt− σθdWθ, (16)where the state γ(t) := θ(t) − θw(t) is introdued to de�ne the di�erene between the DV headingangle and the diretion of the wind θw. In the numerial example, the following data are used:
vw = 0.5, and σθ = 0.1. The disretization steps were hosen as ∆r = 0.1, ∆φ = 0.08, and
∆γ = 0.12. As before, value iterations on the optimal ost-to-go were performed as desribed inthe Appendix. Two �slies� of this ontrol, orresponding to the ases where the DV travels in thediretion of the wind (tailwind, where γ = 0) and where it faes the wind (headwind, γ = π) areshown in Figs. 9(a) and 9(b), respetively. In eah �xed-γ poliy, the optimal ontrol resembles thatshown in Fig. 6, although the loation and shape of the swithing urves S± have hanged due tothe stohasti variation in the wind. In Fig. 9(a), only small vestiges of the swithing urves areseen, while in Fig. 9(b), the shape of these urves has hanged. Figure 10 shows the expeted valueof the time required to hit the target in the ase of a headwind and tailwind.[Fig. 9 about here.℄15



[Fig. 10 about here.℄V. Performane ComparisonIn the previous setions, it is seen that the ontrol laws for both deterministi wind modelslosely resemble their respetive optimal feedbak ontrol laws for the stohasti wind models. Inpartiular, the ontrol poliies for the deterministi and stohasti wind models are idential whenfar from the target, but di�erenes are seen when r is lose to δ. To see the e�et of these di�erenes,this setion provides a omparison of performane of the proposed feedbak ontrol laws against thestohasti wind models (W1) and (W2).[Fig. 11 about here.℄As an example, Fig. 11 shows a olletion of simulated DV trajetories under the ontrolsfor the deterministi (red) and stohasti (blue or green) wind models, where the left and rightpanels orrespond to (W1) and (W2), respetively. In this �gure, the ontrol antiipating the windstohastiity assumes that there is a non-zero probability that the stohasti wind may push itbeyond its minimum turning radius ρmin and into the target, and hene the ontrol direts it toperform a left turn. Some realizations (75.6%, shown in green) under this ontrol reah the target,but the remainder (blue) must irle around (see insert). The ontrol for the deterministi windmodel direts the red DVs to �rst distane themselves before approahing the target. Consequently,the regions in the (r, ϕ) state spae orresponding to the trajetories in this example lead to asmaller expeted time to hit the target for the stohasti model-based ontrol, as seen in Fig. 12.However, there is also a hane that the stohasti model-based ontrol is unsuessful in hittingthe target on its �rst pass, and so the DV must irle around again. In other words, the stohastimodel-based ontrol �risks� a turn toward the target for small r and small ϕ. Although the expetedvalue of the hitting time dereases under the ontrol antiipating the stohasti winds, the standarddeviation of these times may simultaneously inrease, as seen in Fig 12.[Fig. 12 about here.℄
16



In the right panel of Fig. 11, a similar result is seen for the ase of wind at an angle (indiatedby a vw arrow). In this ase, a small number of the realizations for the DVs under the deterministimodel-based ontrol are a�eted by the hanging wind and must take a longer route to reah thetarget, whereas the DVs under the stohasti model-based ontrol antiipate the hanging winddiretion. Similarly, Fig. 13 shows the mean time-to-go under (W2) using both the ontrol for thedeterministi model shown in Fig. 6 and the ontrol law for the stohasti wind model in Fig. 9. Asbefore, the expeted time-to-go is larger for the deterministi model-based ontrol in regions wherethe ontrol laws di�er. However, unlike (W1), the standard deviation under the stohasti model-based ontrol was onsistently smaller sine the ontrol aounts for the stohasti wind withoutinstruting for a potentially �risky� approah to the target.[Fig. 13 about here.℄VI. Conlusions and Future WorkIn this paper, the problem of guiding a vehile with Dubins-type kinematis to a presribedtarget set with free �nal heading in the presene of a stohasti wind in minimum expeted timehas been addressed. Two approahes to this problem have been proposed. The �rst one, whih wasbased on analyti tehniques, was to employ feedbak ontrol laws, based on a deterministi model,that are similar to the well-studied pure pursuit and the parallel navigation laws from the �eld ofmissile guidane. The proposed feedbak ontrol laws are time-optimal in the absene of wind or inthe presene of a wind that is onstant and known a priori.The seond approah was to takle the problem omputationally by employing numerial toolsfrom stohasti optimal ontrol theory. Beause these ontrol laws are based expliitly on thestohasti wind models, they antiipate the wind stohastiity, and the time neessary to steer theDubins vehile to the target set in the presene of a stohasti wind is, on average, lower thanthat under the ontrol for the orresponding deterministi model. However, although the feedbakontrol laws for the deterministi model beome suboptimal in the presene of a stohasti wind,it turns out that they still manage to steer the Dubins vehile to its target set with an aeptablemiss target error. On the other hand, a stohasti framework leads to higher expeted preision in17



terms of target miss-distane and more preditable trajetories.The fat that the deterministi model-based ontrols perform so well for this problem even inthe presene of an unknown stohasti wind is mainly owing to the fat that they are in a feedbakform, thus providing a ertain degree of robustness against unertainties. Having that in mind,it may not be surprising that the presented deterministi model-based ontrol laws an work inthe presene of small stohasti disturbanes, although non-optimally. This may not be the asefor other problems in pratie where one is only able to generate reliable deterministi open-looptrajetories. Surprisingly perhaps, the omputation of optimal feedbak ontrols based on stohastimodels generally is no more di�ult (or even easier) than for their deterministi ounterparts asthe latter an be onsistently disretized and ast as a ontrolled Markov deision proess, as shownin this paper. On the other hand, the losed-form feedbak laws based on the deterministi modelpresented in this paper may be more appealing than their stohasti model-based ounterparts,owing to their ease of implementation.Thus, the similarity between ontrol poliies under di�erent levels of wind stohastiity seemsto support the use of the feedbak ontrols for deterministi wind models in lieu of stohasti model-based feedbak ontrols when the stohasti e�ets are small, or an be used as �seeds� that mayexpedite the omputation of the solution to the stohasti optimal ontrol problem, or aid in theveri�ation of numerial results. Moreover, sine the role of noise in designing feedbak ontrolpoliies is not fully understood, a side-by-side omparison of the feedbak laws for deterministi andstohasti models in other problems may provide useful insights toward a more general theory.Future work will inlude the extension of the tehniques presented herein to problems with amore realisti model of the wind, inluding wind models that depend expliitly on the position ofthe Dubins vehile. Another possible extension is to haraterize ontrol laws for stohasti windmodels that minimize a ost funtion taking into onsideration both the expeted value and thevariane of the time-to-go.
18



AppendixDerivation of Relative Stohasti Kinemati Model (9)-(10) for (W1)Given a stohasti di�erential equation for the state x ∈ R
n in the form

dx(t) = b(x)dt+ a(x)dW (t),the It� Lemma states that the total di�erential of a salar, time-independent funtion f(x) is
d [f(x)] (t) = (b(x)dt+ a(x)dW (t))

T
∇xf(x) +

1

2
(a(x)dW (t))

T
∇2

x
f(x) (a(x)dW (t)) ,where, if dW (t) is of dimension k, we also have by de�nition that dW T

dW = Ik×kdt. Applying thisrule to (W1), we may obtain the total di�erential for r(t) = √

(x(t))
2
+ (y(t))

2 as
dr(t) =

x

r
dx(t) +

y

r
dy(t) +

1

2

(

1

r
−
x2

r3

)

(dx(t))2 +
1

2

(

1

r
−
y2

r3

)

(dy(t))2 −
xy

r3
(dx(t))(dy(t))

=

(

−v cos(ϕ) +
σ2
W

2r

)

dt− σW cos(θ − ϕ)dWx − σW sin(θ − ϕ)dWy , (17)where we have used the fat that x/r = − cos(θ − ϕ) and y/r = − sin(θ − ϕ). Similarly, sine
tan−1(y/x) = θ − ϕ+ π, the total di�erential for ϕ is

dϕ(t) =
u

ρmin

dt+
y

r2
dx(t) −

x

r2
dy(t)−

xy

r4
(dx(t))2 +

xy

r4
(dy(t))2

=

(

v

r
sinϕ+

u

ρmin

)

dt+
σW
r

sin(θ − ϕ)dWx −
σW
r

cos(θ − ϕ)dWy . (18)Sine the omponents of the original 2D Brownian motion model are saled with the same parameter
σW , the noise is invariant under a rotation of the oordinate frame [19℄. De�ning dW‖(t) and dW⊥(t)as the inrements dWx and dWy when viewed in a oordinate frame aligned with the diretion ofDV motion, we obtain (9)-(10).Derivation of Value Iteration EquationsThe following derivation of the equations for value iteration is spei� to the wind model (W2).The disretization details for (W1) may be found in [15℄. Denote by Lu the di�erential operatorassoiated with the stohasti proess (16), whih, for the sake of brevity, one writes in terms of themean drift b(x, u) ∈ R

3, the di�usion a(x) ∈ R
3×3 and the state vetor x = [r, ϕ, γ]T, as follows

dx = b(x, u)dt+ a(x)dW (t)19



with the assoiated di�erential operator
Lu =

3
∑

i=1

bi(x, u)
∂

∂xi
+

1

2

3
∑

i,j=1

aij(x)
∂2

∂xi∂xj
.The state x is in the domain X = {x | δ ≤ r < rmax,−π ≤ ϕ ≤ π,−π ≤ γ ≤ π}, whih issemi-periodi beause [r, π, γ]T = [r,−π, γ]T and [r, ϕ,−π]T = [r, ϕ, π]T. It follows that the domainboundary is omposed of two disjoint segments, i.e., ∂X = {x : r = δ} ∪ {x : r = rmax}.It an be shown [17℄ that a su�iently smooth J(x) given by (4) satis�es

LuJ(x) + 1 = 0, (19)so that the stohasti Hamilton-Jaobi-Bellman equation for the minimum ost V (x) over all ontrolsequenes is
inf

|u|≤1
[LuV (x) + 1] = 0. (20)This PDE has mixed boundary onditions on ∂X. At r = rmax, one an use re�eting boundaryonditions (∇V (x))

T
n̂ = 0 with the boundary normals n̂. For the part of boundary r = δ thatbelongs to the target set T , one has to use an absorbing boundary ondition with V (x) = g(x) ≡ 0.A disrete-time Markov hain {ξn, n <∞} with ontrolled transition probabilities from the state

x to the state y ∈ X denoted by p(y | x, u) is introdued. A ontinuous-time approximation ξ(t) tothe original proess x(t) is reated by way of a state- and ontrol-dependent interpolation interval
∆tu = ∆t(x, u) = tn+1 − tn via ξ(t) = ξn where t ∈ [tn, tn+1) [17℄. The transition probabilities
p(y | x, u) then appear as oe�ients in the �nite-di�erene approximations of the operator Lu in(19). Using the so-alled up-wind approximations for derivatives, the �nite-di�erene disretizationsfor J(·) with step sizes ∆r, ∆ϕ, and ∆γ are

Jh(r, ϕ, γ) = ∆tu +
∑

i=1,2

{

p
(

r − (−1)i∆r, ϕ, γ | r, ϕ, γ, u
)

Jh(r − (−1)i∆r, ϕ, γ)

+ p
(

r, ϕ− (−1)i∆ϕ, γ | r, ϕ, γ, u
)

Jh(r, ϕ− (−1)i∆ϕ, γ)

+ p
(

r, ϕ, γ − (−1)i∆γ, | r, ϕ, γ, u
)

Jh(r, ϕ, γ − (−1)i∆γ)
} (21)
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where the oe�ients multiplying Jh(·) are the respetive transition probabilities, given by
p (r ±∆r, ϕ, γ | r, ϕ, γ, u) = ∆tu

max [0, (∓v cos(ϕ)∓ vw cos (ϕ+ γ))]

∆r
,

p (r, ϕ±∆ϕ, γ | r, ϕ, γ, u) = ∆tu
max [0, (±(v/r) sin(ϕ)± (vw/r) sin (ϕ+ γ)± u/ρmin)]

∆ϕ
,

p (r, ϕ, γ ±∆γ | r, ϕ, γ, u) = ∆tu
(

max [(±u/ρmin)]

∆γ
+

σ2
θ

2(∆γ)2

)

, (22)where �max� is a result of the up-wind approximation, and where ∆tu, given by
∆tu(x) =
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|−v cos(ϕ)− vw cos (ϕ+ γ)|
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|(v/r) sin (ϕ+ γ) + (vw/r) sin (ϕ+ γ) + u/ρmin|

∆ϕ

+
|u/ρmin|

∆γ
+

σ2
θ

(∆γ)2

)−1

,ensures that all probabilities sum to unity.The Markov hain de�ned by these transition probabilities satis�es the requirement of �loalonsisteny,� in the sense that the drift and ovariane of the Markov proess ξ(t) are onsistent withthe drift and ovariane of the original proess, and the ost-to-go V h(·) for ξ(t), therefore, suitablyapproximates that assoiated with the original proess. The dynami programming equation forthe Markov hain used for value iteration, is given as follows [17℄:
V h(x) = min

|u|≤1

{

∆tu(x, u) +
∑

y

p(y | x, u)V h(y)

}

, (23)for all x ∈ X \ ∂X. For the re�etive part of the boundary, r = rmax (see Ref. [17, pp. 143℄) is usedinstead of (23):
V h(x) =

∑

y

p(y | x)V h(y), (24)where p(y | x) = 1 for y = [rmax −∆r, ϕ, γ]T and x = [rmax, ϕ, γ]
T; otherwise, p(y | x) = 0. Finally,for those states x ∈ T in the target set, it is imposed that

V h(x) = 0. (25)Equations (23)-(25) are used in the method of value iteration until the ost onverges. Fromthis, given the wind speed vw, one obtains the optimal angular veloity of the DV for any relativedistane r, viewing angle ϕ, and relative wind diretion γ.21
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