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SUMMARY

In this work, we propose a feedback control law that enforcescapture of a moving target by a slower pursuer

in finite time. It is well-known that if this problem is cast asa pursuit-evasion differential game, then the

moving target can always avoid capture by taking advantage of its speed superiority, provided that both the

target and the pursuer are employing feedback strategies inthe sense of Isaacs. Thus, in order to have a

well-posed pursuit problem, additional assumptions are required so that the pursuer can enforce capture of

the faster target in finite time provided that it emanates from a set of “favorable” initial positions, which

constitute itswinning set. In particular, we assume that the target’s velocity eitheris constant and perfectly

known to the pursuer (perfect information case) or can be decomposed into a dominant component, which

is constant and known to the pursuer, and a second component that is uncertain and unknown to the pursuer

(imperfect information case). It turns out that in both cases the winning sets of the pursuer are pointed

convex cones which have a common apex and a common axis of symmetry but different opening angles.

We subsequently propose continuous feedback laws that enforce finite-time capture while the pursuer never

exits its winning set before capture takes place, for both cases. Copyright © 2015 John Wiley & Sons, Ltd.
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2 E. BAKOLAS

1. INTRODUCTION

In this work, we design feedback control laws that enforce capture ofa moving target by a

slower pursuer in finite time provided that the pursuer emanates from a set of “favorable” initial

conditions, which constitute itswinning set. It is well-known that a pursuit-evasion game involving

two antagonistic players with simple motion [12–14] can never be concluded in favor of a slower

pursuer provided that both players employ optimal feedback strategies in the sense of Isaacs [9].

In this work, in order to allow for the possibility of capture of the target by a slower pursuer,

we will assume that the pursuer has an informational advantage. In particular, we assume that the

velocity of the target can be decomposed into two components, namely one dominant component,

which is constant and known to the pursuer, and one uncertain, which thepursuer cannot infer. We

will refer to the case when the uncertain component of the target’s velocity iszero as the perfect

information case and as the imperfect information case otherwise. The employed informational

pattern is similar with thestroboscopic informational pattern for differential pursuit-evasion games,

which was originally suggested by Hajek [8]. For a detailed discussion on the differences between

the informational patterns suggested in [9] and [8], the reader is referred to [13].

First, we examine the simplest case when the pursuer knows perfectly the constant velocity of the

faster target (perfect information case). We show that in this case the pursuit problem is inherently

related to the Zermelo navigation problem [16], that is, the problem of navigating or steering a

vehicle with simple motion in the presence of a drift field in minimum time; this correspondence

allows us to characterize the winning set of the pursuer explicitly. In particular, we show that the

winning set of the pursuer corresponds to a pointed convex cone whose apex is the current position

of the target, its axis of symmetry is determined by the target’s velocity and its opening angle is a

function of the ratio of the speed of the pursuer and the speed of the target; a result that mirrors
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ON THE FINITE-TIME CAPTURE OF A MOVING TARGET 3

that of the Zermelo navigation problem when the drift is constant and “faster” than the traveling

vehicle [1,6]. We characterize a feedback control law which enforces capture ofthe target in finite

time while the pursuer, which emanates from its winning set, never leaves this set until capture

takes place. It should be emphasized at this point that after the pursuer captures the target, it won’t

be able to enforce capture again in the future or achieve capture with “holding,” given that the target

is moving faster and the pursuer won’t be able to “keep up.”

Subsequently, we consider the more interesting and challenging case whenthe uncertain

component of the target’s velocity is non-zero. To address this problem, we modify the feedback

control law designed for the perfect information case to account for theuncertainty over the target’s

velocity. It turns out that the modified feedback control law enjoys the samekey properties as in

the perfect information case provided that the pursuer emanates from a new winning set, which

we explicitly characterize. In particular, in the imperfect information case, the winning set of the

pursuer turns out to be again a pointed convex cone with the same axis of symmetry and the same

apex with its winning set in the perfect information case; the opening angle ofthe new winning

set is, however, smaller and the difference between the two angles depends on the magnitude of the

uncertain velocity component. It is important to highlight at this point that the imperfect information

case requires a careful analysis given that intuitive arguments about the winning set of the pursuer,

which are based on the analysis of the problem in the perfect information case, can easily lead one to

erroneous conclusions. This is mainly due to the fact that even a small uncertainty over the target’s

velocity can force the pursuer to exit its winning set when the latter is located close to the boundary

of this set. Finally, we derive a continuous feedback control law that enforces capture of the moving

target in finite time and does not allow the pursuer to exit its new winning set during the whole

pursuit phase in the presence of uncertainty over the target’s total velocity.

The remaining of the paper is organized as follows. In Section2, we formulate the pursuit

problem. The solution to this problem for the perfect information case is presented in Section3,

whereas the same problem for the imperfect information case is addressedin Section4. Numerical
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4 E. BAKOLAS

simulations are presented in Section5. Finally, Section6 concludes the paper with a summary of

remarks and directions for future work.

2. THE PROBLEM OF PURSUIT OF A MOVING TARGET BY A SLOWER PURSUER

2.1. Notation

We denote byRn the set ofn-dimensional real vectors. The sets of non-negative real numbers and

(strictly) positive real numbers are denoted byR≥0 andR>0, respectively. We write|α| to denote

the 2-norm of a vectorα ∈ R
n. Given two vectorsα andβ ∈ R

n, we denote their inner product by

〈α,β〉 and the angle between them by∢(α,β), that is,∢(α,β) := arccos(〈α,β〉/|α||β|), provided

that both vectors are non-zero (note that∢(α,β) ∈ [0, π]). The open ball, the closed ball, and the

unit sphere inRn of radiusρ > 0 centered at the origin are denoted, respectively, byBρ, Bρ and

Sρ; that is,Bρ := {x ∈ R
n : |x| < ρ}, Bρ := {x ∈ R

n : |x| ≤ ρ} andSρ := {x ∈ R
n : |x| = ρ}.

In addition,bdA and intA denote, respectively, the boundary and the interior of a setA ⊆ R
n.

Finally, we denote byC(z, θ), whereθ ∈ [0, π/2[, the pointed convex cone whose apex is the origin,

its axis of symmetry is parallel to the vectorz and its opening angle† is equal to2θ, or alternatively,

the half-apex angle of the cone is equal toθ, that is,C(z, θ) := {x ∈ R
n : ∢(z,x) ≤ θ}.

2.2. Equations of Motion and Problem Formulation

We consider a pursuer whose motion is described by the following equation:

ẋp = vp, xp(0) = x0
p, (1)

wherexp ∈ R
3 andx0

p ∈ R
3 denote, respectively, the pursuer’s position vector at timet andt = 0,

and vp denotes its control input at timet, which is assumed to attain values in the closed ball

†The opening angle of a pointed convex cone is the angle between any pair of rays emanating from the cone’s apex that

correspond to the intersection of the boundary of the cone witha plane that contains its apex and its axis of symmetry.
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ON THE FINITE-TIME CAPTURE OF A MOVING TARGET 5

Bν̄ ⊂ R
3, that is,|vp| ≤ ν̄ for all t ≥ 0‡. The motion of the moving target, on the other hand, is

described by the following equation:

ẋe = v̂e +∆v̂e(t), xe(0) = x0
e, (2)

wherexe ∈ R
3 andx0

e ∈ R
3 are the position vectors of the moving target at timet and t = 0,

respectively, and̂ve +∆v̂e(t) is its effective or total velocity at timet. In particular,̂ve ∈ R
3 denotes

the (dominant) component of the target’s velocity that is assumed to be constant and known to

the pursuer (via, say, measurements obtained by the pursuer prior to the beginning of the pursuit

phase), whereas∆v̂e(t) denotes the component of the target’s velocity at timet that is unknown

to the pursuer and is not necessarily constant. Furthermore, we assume that the function∆v̂e(·) is

piecewise continuous and

|∆v̂e(t)| ≤ w̄, for all t ≥ 0, (3)

for some0 ≤ w̄ < ν̄ < |v̂e| (the assumption that̄w < |v̂e| reflects the fact that̂ve is the dominant

component of the target’s velocity). One should notice here that a target that can travel faster than

the pursuer can always avoid capture provided that both of the two players are employing feedback

strategies in the sense of Isaacs (see the discussion onK-feedback strategies in [9]). To see this,

let us consider the case when the target’s velocity is parallel to the so-calledline-of-sight (LOS)

direction, that is, the direction or the unit vector determined by the relative position vector of the

target from the pursuer, that is, the vectorx := xe − xp. Given that the target is faster than the

pursuer, we immediately conclude that their relative distance|x| = |xe − xp| will be increasing

with time regardless of the actions of the slower pursuer. If, however, thetarget’s velocity itself,

in the perfect information case, or its dominant component, in the imperfect information case, is

constant and known to the pursuer, then there are initial conditions from which the pursuer can

actually capture the target in finite time. Here, we assume that capture takes place if there is a time

t ∈ R≥0 such thatx(t) = 0 (exact capture). It is important to highlight at this point that capture

‡We will be working in the three-dimensional Euclidean space throughout the paper. The results for the case whenn > 3

can be derived mutatis mutandis.
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6 E. BAKOLAS

is possible because the pursuer has an informational advantage that canexploit by employing a

“predictive” strategy. In simple words, the pursuer can “overshoot” inorder to intercept the target

at one of its future positions along its projected future trajectory instead of trying to go after the

current position of the target by employing, for example, the so-called pure-pursuit strategy [11].

Next, we present a state space model for the pursuit problem whose dimension is half of that of

the combined state spaces of the pursuer and the target. In particular, we have, in light of (1) and (2),

that

ẋ = u+ v̂e +∆v̂e(t), x(0) = x0, (4)

wherex0 := x0
e − x0

p, andu = −vp is the new control input, which also attains values inBν̄ .

Henceforth, we will say that (4) describes the motion of the pursuer in thereduced state space.

We will also refer to the set of initial conditionsx0 from which the system described by (4) can

reach the origin,x = 0, in finite time with the application of a control inputu which is a piecewise

continuous function of time and attains values in the setBν̄ , as the winning set of the pursuer in

the reduced space. Note that when the system (4) reaches the origin in the reduced space at some

time t ∈ R≥0, then (exact) capture takes place in the actual state space, that is,xe(t) = xp(t). Our

objective is to design a feedback control lawu⋆(·; v̂e, ν̄) : R
3 7→ Bν̄ that will enforce capture of the

target in finite time, under the assumption that the dominant component of the target’s velocity,v̂e,

is constant and known to the pursuer with|v̂e| > ν̄, whereas its unknown component,∆v̂e, satisfies

(3).

Problem 1

Suppose that|v̂e| > ν̄ and let∆v̂e(·) satisfy (3). Find a feedback control lawu⋆(·; v̂e, ν̄) : R
3 7→ Bν̄

that will drive the system described by (4) to the origin,x = 0, in some finite timetf ∈ R≥0.

The requirement that the pursuer must capture the moving target in finite time can also be

interpreted as follows: There exists a positive numbert̄f such that, for anyǫ > 0, the pursuer driven

by the feedback control lawu⋆ will be able to reach a ball of radiusǫ centered at the current

position of the evader aftertf(ǫ) units of time, wheretf(ǫ) ≤ t̄f , that is,tf(ǫ) is upper bounded by a

Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)

Prepared using ocaauth.cls DOI: 10.1002/oca



ON THE FINITE-TIME CAPTURE OF A MOVING TARGET 7

positive real number,̄tf , which is independent ofǫ. This is in contrast with what would occur with

the utilization of a control law which can enforce capture of the evader onlyasymptotically, that

is, ast → ∞, in which case,tf(ǫ) → ∞ asǫ ↓ 0. This interpretation of the requirement of capture

in finite time is important in order to avoid having to deal with situations in which, for example, a

feedback control law that solves Problem1 becomes singular when the pursuer reaches exactly the

target. This type of singularity should be expected given that the unit vector e1(x) := x/|x| which

determines the LOS direction (and thus is expected to play a key role in the subsequent analysis) is

not well-defined whenx = 0.

3. THE PURSUIT PROBLEM FOR THE PERFECT INFORMATION CASE

Next, we address Problem1 for the perfect information case, that is, when∆v̂e ≡ 0. The solution

to this problem, which is, as we have already mentioned, equivalent to the Zermelo navigation

problem, will provide us with useful insights that will allow us to address the pursuit problem in the

more challenging case when it is not true, in general, that∆v̂e(t) = 0, for all t ≥ 0. The approach

we adopt is based on characterizing a feedback control law that will maximize the rate of decrease of

an appropriate “metric” or Lyapunov function along the trajectories of the system described by (4),

that is, the trajectories of the pursuer in the reduced state space. Specifically, the “metric” we use

is the minimum time-to-go function, that is, the minimum time required for the system described

by (4) and emanating from a pointx at timet = 0 to reach the origin. Next, we obtain an analytic

expression for the minimum time-to-go function by employing an approach similar tothat proposed

in [15]. To this aim, we first observe that (4) implies that

|ẋ− v̂e|2 = ν̄2,

from which it follows

ν̄2 = |ẋ|2 − 2〈ẋ, v̂e〉+ |v̂e|2

= |τ̇x′|2 − 2〈τ̇x′, v̂e〉+ |v̂e|2, (5)

Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)
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8 E. BAKOLAS

where prime denotes differentiation with respect to a new independent variable τ with τ ∈ [0, 1]

such thatx(0) = x andx(1) = 0. Note that in the previous derivation, we have tacitly assumed that

|u⋆| ≡ ν̄, that is, the time-optimal control attains values on the boundary ofBν̄ exclusively, which

is true for the Zermelo navigation problem [3,10]. By multiplying both sides of the last equation in

(5) with (t′(τ))2 = (dt/dτ)2, it follows that

(t′(τ))2ν̄2 = |x′|2 − 2t′(τ)〈x′, v̂e〉+ (t′(τ))2|v̂e|2, (6)

which implies that

t′(τ) =
〈v̂e,x

′〉 ±
√

〈v̂e,x′〉2 − (|v̂e|2 − ν̄2)|x′|2
|v̂e|2 − ν̄2

, (7)

for all x′ for which the quantity under the radical, which is denoted byq(x′; v̂e, ν̄), where

q(x′; v̂e, ν̄) := 〈v̂e,x
′〉2 − (|v̂e|2 − ν̄2)|x′|2, attains non-negative values. Note that in this case, the

quantity at the right hand side of (7) is well-defined given that|v̂e| > ν̄. Furthermore, we write

Σ(x′; v̂e, ν̄) :=
√

q(x′; v̂e, ν̄) =
√

〈v̂e,x′〉2 − (|v̂e|2 − ν̄2)|x′|2,

for all x′ for which q(x′; v̂e, ν̄) ≥ 0. Let nowT (x; v̂e, ν̄) denote the value of the minimum time-to-

go function atx, that is, the minimum time required for the system described by (4) and emanating

from the pointx (whereτ = 0) at timet = 0 to reach the origin (whereτ = 1). By integrating both

sides of (7) from τ = 0 to τ = 1, we get

T (x; v̂e, ν̄)− 0 =

∫ 1

0

〈v̂e,x
′
⋆(τ)〉 ± Σ(x′

⋆(τ); v̂e, ν̄)

|v̂e|2 − ν̄2
dτ, (8)

wherex⋆(·) : R≥0 7→ R
3 denotes the minimum-time trajectory parameterized byτ with x⋆(0) = x

andx⋆(1) = 0. It is a well-known fact that, when the drift is constant, the minimum-time trajectory

of the Zermelo navigation problem from the pointx to the origin,x = 0, is a straight line segment

connecting these two points [1]. Thus, we can parameterize this minimum-time trajectory as follows:

x⋆(τ) = (1− τ)x, τ ∈ [0, 1].

Becausex′
⋆(τ) = −x, (8) yields

T (x; v̂e, ν̄) =
−〈v̂e,x〉 ± Σ(x; v̂e, ν̄)

|v̂e|2 − ν̄2
, (9)

Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)
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ON THE FINITE-TIME CAPTURE OF A MOVING TARGET 9

providedΣ(x; v̂e, ν̄) is well-defined, that is,q(x; v̂e, ν̄) ≥ 0. We write

T−(x; v̂e, ν̄) =
−〈v̂e,x〉 − Σ(x; v̂e, ν̄)

|v̂e|2 − ν̄2
, T+(x; v̂e, ν̄) =

−〈v̂e,x〉+Σ(x; v̂e, ν̄)

|v̂e|2 − ν̄2
. (10)

Next we show that, for allx that belong to the coneC(−v̂e, θ), whereθ := arcsin(ν̄/|v̂e|), the

functionT−(·; v̂e, ν̄) is non-negative; something that, as we will see next, will allow us to conclude

thatT−(x; v̂e, ν̄) corresponds to the correct expression for the minimum time-to-go function.

Proposition 1

Suppose that|v̂e| > ν̄. We have thatq(x; v̂e, ν̄) ≥ 0 if, and only if, x belongs to the union of

the coneC(−v̂e, θ) and the coneC(v̂e, θ), x ∈ C(−v̂e, θ) ∪ C(v̂e, θ), whereθ := arcsin(ν̄/|v̂e|),

or equivalently,Σ(x; v̂e, ν̄) is well-defined. In addition,T−(x; v̂e, ν̄) ≥ 0, if, and only if, x ∈

C(−v̂e, θ).

Proof

We observe thatq(x; v̂e, ν̄) can be written, using matrix notation, as follows:

q(x, v̂e, ν̄) = xTv̂ev̂
T
e x− (|v̂e|2 − ν̄2)xTx = xT

(
v̂ev̂

T
e − (|v̂e|2 − ν̄2)I3

)
x = xTAx, (11)

where A := v̂ev̂
T
e − (|v̂e|2 − ν̄2)I3 is a symmetric3× 3 matrix. Note that the eigenvalues of

the matrixA correspond to the eigenvalues of the rank-one matrixv̂ev̂
T
e shifted by ν̄2 − |v̂e|2.

However, the symmetric and rank-one matrixv̂ev̂
T
e has only one non-zero eigenvalue, namely

|v̂e|2, with associated eigenvector the unit vectori1 := v̂e/|v̂e|. Let us also consider two mutually

perpendicular unit vectorsi2 andi3 that are both perpendicular toi1. Note that the triple(i1, i2, i3)

corresponds to a set of orthonormal eigenvectors ofA which is in turn associated with the following

set of eigenvalues:{ν̄2, ν̄2 − |v̂e|2, ν̄2 − |v̂e|2}. We denote byI the frame determined by the triple

(i1, i2, i3) and the origin. Furthermore, let(y1, y2, y3) denote the components of the vectorx in the

frameI, that is,yℓ := 〈x, iℓ〉, for ℓ ∈ {1, 2, 3}. Then, in view of (11) and the Schur decomposition

theorem from matrix analysis [5], we have that

q(x; v̂e, ν̄) = xTSΛSTx = ν̄2y21 − (|v̂e|2 − ν̄2)(y22 + y23), (12)

Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)
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10 E. BAKOLAS

whereS is an orthogonal3× 3 matrix whose columns are the eigenvectors ofA, {i1, i2, i3}, andΛ

is a3× 3 diagonal matrix whose diagonal elements are the eigenvalues ofA, {ν̄2, ν̄2 − |v̂e|2, ν̄2 −

|v̂e|2}. First, we show thatq(x; v̂e, ν̄) ≥ 0, for all x ∈ C(−v̂e, θ). To this aim, it suffices to note

that the equation of the conical surface, which determines the boundary,bd C(−v̂e, θ), of the cone

C(−v̂e, θ) in the frameI is given by the following equation (see Fig.1(a)):

0 ≤ −y1 = cot θ
√

y22 + y23 . (13)

Therefore, we have

0 ≤ −y1ν̄ =
√

(|v̂e|2 − ν̄2)(y22 + y23), (14)

for all x ∈ bd C(−v̂e, θ), where we have used the fact that

cot θ =

√
(1− sin2 θ)/ sin θ =

√
(|v̂e|2 − ν̄2)/ν̄, θ ∈ [0, π/2[.

Thus, in view of (14) and the fact that|v̂e| > ν̄, we have that

ν̄2y21 ≥ (|v̂e|2 − ν̄2)(y22 + y23), (15)

for all pointsx ∈ C(−v̂e, θ), which in turn implies, in view of (12), thatq(x; v̂e, ν̄) is non-negative

over C(−v̂e, θ). The proofs for the case whenx ∈ C(v̂e, θ) together with the converse, that is,

x ∈ C(−v̂e, θ) or x ∈ C(v̂e, θ) whenq(x; v̂e, ν̄) ≥ 0, are similar and thus omitted.

Next, we show thatT−(x; v̂e, ν̄) ≥ 0 if, and only if,x ∈ C(−v̂e, θ). To this aim, we bring (9) into

the following form:

T−(x; v̂e, ν̄) =
−1

|v̂e|2 − ν̄2

(√
ν̄2y21 − (|v̂e|2 − ν̄2)(y22 + y23) + |v̂e|y1

)
. (16)

The condition thatT−(x; v̂e, ν̄) ≥ 0 is equivalent to

0 ≥
√

ν̄2y21 − (|v̂e|2 − ν̄2)(y22 + y23) + |v̂e|y1. (17)

Note that the quantity under the radical in (17), which is equal toq(x; v̂e, ν̄), is non-negative if, and

only if, x ∈ C(−v̂e, θ) ∪ C(v̂e, θ), as we have already shown. Thus, we can confine our analysis to

the setC(−v̂e, θ) ∪ C(v̂e, θ). Now forx ∈ C(−v̂e, θ), we have thaty1 ≤ 0 and thus (17) is equivalent

Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)
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ON THE FINITE-TIME CAPTURE OF A MOVING TARGET 11

to

(|v̂e|2 − ν̄2)y21 ≥ 0 ≥ −(|v̂e|2 − ν̄2)(y22 + y23), (18)

which is trivially true when̄ν < |v̂e|. Whenx ∈ C(v̂e, θ), we havey1 ≥ 0 and thus (17) holds true

if, and only if, x = 0 given that its right hand side is the sum of two non-negative terms. This

completes the proof.

In view of Proposition1, we have thatT−(x; v̂e, ν̄) ≥ 0 and 〈v̂e,x〉 = |v̂e|y1 ≤ 0, for all x ∈

C(−v̂e, θ), which in turn implies thatT+(x; v̂e, ν̄) ≥ 0, when|v̂e| > ν̄. Furthermore,

0 ≤ T−(x; v̂e, ν̄) ≤ T+(x; v̂e, ν̄),

for all x ∈ C(−v̂e, θ), when|v̂e| > ν̄. As was shown in the proof of Proposition 1,q(x; v̂e, ν̄) is non-

negative for allx ∈ C(−v̂e, θ), which means thatT−(x; v̂e, ν̄) is non-negative and well-defined if

and onlyx ∈ C(−v̂e, θ). Specifically, in this case,T−(·; v̂e, ν̄) is the minimum time-to-go function,

whereasT+(·; v̂e, ν̄) is the maximum time-to-go function [6]. From now on, we will writeT (·; v̂e, ν̄)

to denote the minimum time-to-go function, that is,T (·; v̂e, ν̄) ≡ T−(·; v̂e, ν̄), with a slight abuse

of notation. Finally, we would like to highlight at this point an interesting property enjoyed by

T (·; v̂e, ν̄), namely thatT (λx; v̂e, ν̄) = λT (x; v̂e, ν̄), for anyλ ∈ R>0 and for allx ∈ C(−v̂e, θ). In

other words, the functionT (x; v̂e, ν̄) is positively homogeneous of first-degree§. This observation

will facilitate the derivation of a simple, analytic expression for the componentof the gradient of

T (·; v̂e, ν̄) alonge1 via application of the so-called Euler’s homogeneous function theorem.

The next step is to derive the corresponding time-optimal control law as a feedback control law.

In light of the principle of optimality [4, 7], this feedback control law maximizes point-wisely in

time the rate of decrease of the minimum time-to-go function along the ensuing trajectory of the

system described by (4). In particular, the dynamic programming equation implies that

u⋆(x; v̂e, ν̄) = argmin
u∈Bν̄

〈∇xT (x; v̂e, ν̄), v̂e + u〉, (19)

§A function f : D ⊆ Rn 7→ Rm is positively homogeneous of degreek, wherek is a positive integer, iff(λx) =

λkf(x), for all x ∈ D and for anyλ ∈ R>0.

Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)
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12 E. BAKOLAS

from which we can formally derive that

u⋆(x; v̂e, ν̄) = −ν̄
∇xT (x; v̂e, ν̄)

|∇xT (x; v̂e, ν̄)|
, (20)

provided that the right hand side of (20) is well-defined. The expression of∇xT (x; v̂e, ν̄) along

with the details of its derivation are given in the Appendix. In particular, in light of (39a)-(39b), it

follows thatu⋆(x; v̂e, ν̄) is well-defined for allx ∈ C(−v̂e, θ)\{0}.

Furthermore, as shown in the Appendix, the components ofu⋆ with respect to the basis

(e1(x), e2(x), e3(x)), for x ∈ C(v̂e; θ)\{0}, satisfy the following equations:

u1
⋆(x; v̂e, ν̄) = 〈u⋆(x; v̂e, ν̄), e1(x)〉 = −Σ(x; v̂e, ν̄)

|x| (21a)

uk
⋆(x; v̂e, ν̄) = 〈u⋆(x; v̂e, ν̄), ek(x)〉 = −〈v̂e, ek(x)〉, k = 2, 3. (21b)

It is interesting to note that the component of the time-optimal feedback controllaw u⋆ along the

e1 direction can be written as follows:

u1
⋆(x; v̂e, ν̄) = −Σ(x; v̂e, ν̄)

|x| = −
√

q(x; v̂e, ν̄)

|x|

= −
√

〈v̂e,x〉2 − (|v̂e|2 − ν̄2)|x|2
|x|

= −
√

〈v̂e, e1(x)〉2 − |v̂e|2 + ν̄2

= −
√

ν̄2 − 〈v̂e, e2(x)〉2 − 〈v̂e, e3(x)〉2,

where the quantity under the radical,q(x; v̂e, ν̄), is non-negative for allx ∈ C(−v̄e, θ) in light of

Proposition1. Consequently,u1
⋆(x; v̂e, ν̄) is well-defined for allx ∈ C(−v̂e, θ)\{0} (we exclude

the origin x = 0 because the triad(e1, e2, e3) is not well-defined forx = 0). An interesting

observation is thatu1
⋆(x; v̂e, ν̄) ≤ 0 for all x ∈ C(−v̂e, θ)\{0}. In addition, we have that for all

Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)
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ON THE FINITE-TIME CAPTURE OF A MOVING TARGET 13

x ∈ bd C(−v̂e, θ)\{0} it holds that

q(x; v̂e, ν̄) = ν̄2 − 〈v̂e, e2(x)〉2 − 〈v̂e, e3(x)〉2

= ν̄2 − |v̂e|2 + 〈v̂e, e1(x)〉2

= ν̄2 − |v̂e|2 + |v̂e|2 cos2 θ

= ν̄2 − |v̂e|2 + (|v̂e|2 − ν̄2)

= 0,

where in the derivation of the third equation in the previous expression, wehave used the fact that

|〈v̂e, e1(x)〉| = |v̂e| cos θ, for all x ∈ bd C(−v̂e, θ)\{0}, with cos θ =
√

1− ν̄2/|v̂e|2 (see Fig.1).

In view of (21a), it follows that the fact thatq(x; v̂e, ν̄) = 0 onbd C(−v̂e, θ)\{0} implies that

u1
⋆(x; v̂e, ν̄) = 0, for all x ∈ bd C(−v̂e, θ)\{0}. (22)

Eq. (22) suggests, in view of (21a)-(21b), that when the pursuer is located on the boundary of the

coneC(−v̂e, θ), then it has to use all of its control authority to cancel out the components ofv̂e that

are perpendicular to the LOS direction−e1 and consequently, it will reach the origin by traveling

along the boundary of the coneC(−v̂e, θ) with a velocity that corresponds to the projection ofv̂e on

−e1 (the pursuer in this case will not be able to contribute anything to the latter velocity component).

The closed-loop dynamics of the system driven by the feedback controllaw given in (21a)-(21b),

in the absence of uncertainty, are described by the following equation:

ẋ := u⋆(x; v̂e, ν̄) + v̂e

=

3∑

k=1

uk
⋆(x; v̂e, ν̄)ek(x) + v̂e

= u1
⋆(x; v̂e, ν̄)e1(x)− 〈v̂e, e2(x)〉e2(x)− 〈v̂e, e3(x)〉e3(x) + v̂e

= (u1
⋆(x; v̂e, ν̄) + 〈v̂e, e1(x)〉)e1(x), (23)

with x(0) = x0. Before we demonstrate that the closed-loop system described by (23) reaches the

origin in finite time when emanating from any point inx ∈ C(−v̂e, θ), we show that it cannot escape

the setC(−v̂e, θ) before reaching the origin in the reduced space (that is, before capture takes place

Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)
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x

C(−v̂e, θ)

v̂e

−v̂e

ν̄

0

θ

θi1

i2

−y1

y2

(a) The winning set of the pursuer in the reduced space for the

perfect information case.

x

x

C(−v̂e, θ)

e1(x)

e1(x)
u⋆

u⋆

− u⋆

∢(x,−v̂e)

ẋ

ẋ

v̂e

v̂e

ν̄
0

2θ

θ

(b) Motion of the pursuer in the reduced space

when driven by the feedback controlu⋆.

Figure 1. In the perfect information case, the winning set ofthe pursuer is a pointed convex cone whose

axis of symmetry is parallel to−v̂e and whose opening angle is determined by the ratioν̄/|v̂e|. The pursuer

cannot exit its winning set in the reduced space before reaching the origin (that is, before capture occurs in

the actual space).

in the actual space). To this aim, we examine the vector field described by the right hand side of (23)

at the boundary of the coneC(−v̂e, θ) excluding the originx = 0, where the feedback lawu⋆ is not

well-defined. In particular, given a pointx ∈ bd C(−v̂e, θ)\{0}, then (23) implies that the vector

field of the closed-loop system at this point is parallel to the unit vector−e1(x). Therefore, there is

no component of the vector field that is pointing outward the pointed convex coneC(−v̂e, θ) for all

x ∈ bd C(−v̂e, θ)\{0}. Now, for any pointx ∈ bd C(−v̂e, θ)\{0} we have thatu1
⋆(x; v̂e, ν̄) = 0 in

view of Eq. (22), which practically means that the inputu⋆(x; v̂e, ν̄) is orthogonal toe1(x), as is

illustrated in Fig.1(b). Therefore, it follows that

u1
⋆(x; v̂e, ν̄) + 〈v̂e, e1(x)〉 = −|v̂e| cos θ = −

√
|v̂e|2 − ν̄2 < 0. (24)

In view of (24), (23) implies that when the closed-loop system emanates from a pointx0 ∈

bd C(−v̂e, θ) \{0}, it will actually travel along the direction−e1(x
0) with a non-zero and non-

vanishing speed and will thus reach the origin in finite time without leaving the coneC(−v̂e, θ).

Next, we show that the closed-loop system (23) emanating from any pointx ∈ C(−v̂e, θ)\{0}

will reach the origin in finite time. In the subsequent analysis, we will not consider the trivial case

Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)
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ON THE FINITE-TIME CAPTURE OF A MOVING TARGET 15

when the system emanates from the origin (in this case, capture takes place at time t = 0 trivially).

Along the trajectoryx(·) of the closed-loop system described by (23), we have that

d

dt
|x(t)| = 〈ẋ, e1(x)〉 = u1

⋆(x; v̂e, ν̄) + 〈v̂e, e1(x)〉

≤ −|v̂e| cos θ = −
√

|v̂e|2 − ν̄2 < 0, (25)

for all x ∈ C(−v̂e, θ)\{0}, where we have used the facts that∇x|x| = x/|x| = e1(x),

−〈v̂e, e1(x)〉 = |v̂e| cos(∢(e1(x),−v̂e)) = |v̂e| cos(∢(x,−v̂e)) ≥ |v̂e| cos θ,

andcos θ =
√

1− ν̄2/|v̂e|2. It follows immediately from (25) that

|x(t)| − |x0| ≤ −t
√

|v̂e|2 − ν̄2.

Thus, for anyǫ > 0, the first time at which the closed-loop system reaches the closed ballBǫ, which

is denoted bytf(ǫ), satisfies

tf(ǫ) ≤
|x0| − ǫ√
|v̂e|2 − ν̄2

≤ |x0|√
|v̂e|2 − ν̄2

=: t̄f .

We conclude thattf(ǫ) is upper bounded by a positive real number, namelyt̄f , that is independent of

ǫ > 0. Therefore, the pursuer will eventually capture the target in finite time in the sense described

in Section2.2.

Before we proceed to the imperfect information case, it is important to highlight that if the

dominant component of the target’s velocity,v̂e, was not taken to be a constant but a known function

of time, the analysis of the problem would be more complex (see, for instance,Ref. [2]) and one

would have to rely, in general, on numerical computations. However, the biggest issue with the

assumption of̂ve being a known function of time would be its practical value given that typically,

the time-evolution of the target’s velocity can be neither known a priori nor estimated with accuracy.

4. THE PURSUIT PROBLEM FOR THE IMPERFECT INFORMATION CASE

Next, we consider the more realistic case when the velocity of the target is notperfectly known to

the pursuer, that is, when it is not necessarily true that∆v̂e(t) = 0, for all t ≥ 0, and the pursuer

Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)
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16 E. BAKOLAS

is only aware of the dominant component of the target’s velocity. Our objective is to modify the

feedback control law given in (21a)-(21b) so that it can handle the presence of the uncertain and

non-zero component of the target’s velocity,∆v̂e, while it enjoys the two key properties of the

feedback control law that solves Problem1 in the perfect information case. Specifically, we wish

to develop a feedback control law that enforces capture of the target infinite time provided that the

pursuer emanates from its new winning set, which does not leave before capturing the target. Note

that the winning set of the pursuer in the reduced space is expected to be different than that in the

perfect information case.

A natural question that arises is whether the feedback control law givenin (21a)-(21b) can

actually handle by itself the presence of uncertainty when the pursuer emanates from the cone

C(−v̂e, θ) in the reduced state space. To answer the previous question, we first have to investigate

how the uncertainty affects the winning set of the pursuer. To this aim, let usconsider the special

case when∆v̂e(t) ≡ w̄i1 with i1 := v̂e/|v̂e|. In this case, the effective or total velocity of the

target, which is denoted bŷv+
e , satisfiesv̂+

e = v̂e + w̄i1. Therefore, if we were aware that the

uncertainty has this specific structure, we would be able to conclude, by using similar arguments

with those in Section3, that the corresponding winning set of the pursuer in the reduced space

would be the coneC(−v̂+
e , ϑ) = C(−v̂e, ϑ), whereϑ := arcsin(ν̄/(|v̂e|+ w̄)). On the other hand,

when∆v̂e = −w̄i1, the effective or total velocity of the target, which is denoted byv̂−
e , satisfies

v̂−
e = v̂e − w̄i1 and thus the corresponding winning set of the pursuer in the reduced space is the

coneC(−v̂−
e , χ) = C(−v̂e, χ), whereχ := arcsin(ν̄/(|v̂e| − w̄)). It is clear that the coneC(−v̂e, χ)

and the coneC(−v̂e, ϑ) are respectively, the largest and the smallest possible winning sets for the

pursuer in the reduced space in the special case when∆v̂e(t) = ±|∆v̂e(t)|i1 with |∆v̂e(t)| ≤ w̄ for

all t ≥ 0. In addition, we have

C(−v̂e, ϑ) ⊆ C(−v̂e, θ) ⊆ C(−v̂e, χ).

The situation is illustrated in Fig.2(b). One can conjecture (erroneously, as we explain next) that

C(−v̂e, ϑ) corresponds to a “safe” approximation of the new winning set of the pursuer.

Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)
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ON THE FINITE-TIME CAPTURE OF A MOVING TARGET 17

Let us now pose the following question: Can the feedback control law given in (21a)-(21b) handle

by itself (without any modification) the presence of uncertainty when the pursuer emanates from the

coneC(−v̂e, ϑ) ⊆ C(−v̂e, θ)? The answer to this question is negative. Before we explain the reasons

for this, let us consider the unit vectorr(x; v̂e) that is orthogonal toe1(x) (equivalently, the vector

r(x; v̂e) lies in the plane spanned bye2(x) ande3(x)) and points toward the axis of symmetry of

the coneC(−v̂e, ϑ), that is, the ray emanating from the origin that is parallel to−v̂e. With the aid

of Fig. 2(a), it is easy to show that

r(x; v̂e) = −〈v̂e, e2(x)〉e2(x) + 〈v̂e, e3(x)〉e3(x)√
〈v̂e, e2(x)〉2 + 〈v̂e, e3(x)〉2

, (26)

for all x ∈ C(−v̂e, ϑ)\{0}.

Let us now consider the case when the pursuer is located at a pointx on the boundary

bd C(−v̂e, ϑ) \{0}, and let us also assume that the uncertain component of the target’s velocitycan

be written as follows:∆v̂e(t) = −µr(x(t); v̂e), whereµ ∈ [0, w̄]. Again, the reason we consider

this particular form of uncertainty is because the latter has the effect of pushing the pursuer out

of its winning set/cone in the reduced space. In particular, the vectorr(x; v̂e) for x that lies on

bd C(−v̂e, ϑ) is perpendicular to this boundary set and is pointing outwards the coneC(−v̂e, ϑ).

In this case, the vector field of the closed-loop dynamics of the pursuer in the reduced space when

driven by the control lawu⋆ has a component that points outward the coneC(−v̂e, ϑ). Consequently,

the pursuer will exit the coneC(−v̂e, ϑ) and there is no guarantee that it will be able to somehow

return to it (see Fig.2(a)). Note that in theory, the pursuer may be able to return toC(−v̂e, ϑ) if,

for example, the uncertain component of the target’s velocity becomes “cooperative” at some point

in time, in the sense that it reduces the effective or total speed of the target;however, there are no

guarantees whatsoever.
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x

x

C(−v̂e, ϑ)

|x|/ cosϑ

r(x)

e1(x)

e1(x)

u⋆
ẋ

v̂e

w̄r(x)

−w̄r(x)

r(x)

ν̄

ν̄

0
∢(x,−v̂e)2ϑ

ϑ

(a) Even the smallest uncertain velocity component

∆v̂e that points outward the coneC(−v̂e, θ) can force

the pursuer to exit this set, when the latter is close to

the boundary ofC(−v̂e, θ) and driven by the control

u⋆.

C(−v̂e, θ)

C(−v̂e, ϑ)

C(−v̂e, χ)

−v̂+
e−v̂e−v̂−

e

ν̄ ν̄ν̄

0 2θ 2ϑ2χ

(b) The winning set of the pursuer in the imperfect

information case can either shrink or expand

depending on whether the uncertainty is “adversarial”

(points away from the origin) or “cooperative” (points

towards the origin).

Figure 2. In the presence of uncertainty, the feedback control law designed for the perfect information case

may not be able to always guarantee that the pursuer will never exit the coneC(−v̂e, θ) before reaching the

origin.

One possible solution to address the pursuit problem in the presence of uncertainty is to use the

following discontinuous feedback control law

û⋆(x; v̂e, ν̄, w̄) =





u⋆(x; v̂e, ν̄), if x ∈ int C(−v̂e, ϑ),

ν̄r(x; v̂e), if x ∈ bd C(−v̂e, ϑ)\{0}.
(27)

The discontinuous, feedback laŵu⋆ is purported to prevent the pursuer from crossing the boundary

of its conjectured winning set in the reduced space, that is, the coneC(−v̂e, ϑ), until capture

occurs. In this context, the worst possible case is when, at some timet, x(t) ∈ bd C(−v̂e, ϑ)\{0}

and∆v̂e(t) = −w̄r(x(t); v̂e). This is because in this case, the uncertain component of the target’s

velocity points outward the coneC(−v̂e, ϑ) and perpendicularly to its boundary and its magnitude

attains the maximum possible value; consequently, the pursuer is forced to exit the coneC(−v̂e, ϑ).
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ON THE FINITE-TIME CAPTURE OF A MOVING TARGET 19

By applying the feedback control laŵu⋆(x; v̂e, ν̄, w̄), the “worst” possible effect of the uncertainty

will be compensated given that the uncertain term will be either canceled outexactly or dominated

by the termw̄r(x; v̂e) that appears in the expression ofû⋆ given in (27). However, one may think

that, by using the input term̄wr(x; v̂e) to cancel this “worst” possible uncertainty, it may be possible

that the remaining available control authority is not enough to also cancel out the projection of the

dominant component of the target’s velocity,v̂e, along−r(x; v̂e) and thus guarantee that the pursuer

will not exit the coneC(−v̂e, ϑ) in the reduced space. Next, we will look closer into this possibility.

In particular, we observe in Fig2(a) that the projection of̂ve on −r(x; v̂e) has magnitude

|v̂e| sinϑ = ν̄|v̂e|/(|v̂e|+ w̄). Note that the proposed controlû⋆ needs to be able to compensate

the component of the effective or total velocity of the target,v̂e +∆v̂e(t), along the unit vector

−r(x; v̂e) whenx ∈ bd C(−v̂e, ϑ). The magnitude of this component, in the worst possible case,

that is, when the component of∆v̂e(t) is parallel to−r(x; v̂e) and has the maximum possible

magnitude,w̄, is given by

|〈v̂e +∆v̂e(t),−r(x; v̂e)〉| = |v̂e| sinϑ+ w̄ =
ν̄|v̂e|

|v̂e|+ w̄
+ w̄ =

(ν̄ + w̄)|v̂e|+ w̄2

|v̂e|+ w̄
.

Unfortunately, it turns out that̄ν can never dominate the right hand side in the previous equation.

In other words, the pursuer is lacking the necessary control authority required to remain in its

conjectured winning set when|v̂e| > ν̄. This is because the opening angleϑ of the coneC(−v̂e, ϑ)

is larger than what the control authority of the pursuer can afford in termsof compensating the

maximum possible component of the effective or total velocity of the target along −r(x(t); v̂e),

which is forcing it to exitC(−v̂e, ϑ). So our initial conjecture that, in the imperfect information

case, the winning set of the pursuer in the reduced space is the coneC(−v̂e, ϑ) turns out to be

wrong. We need to find instead a coneC(−v̂e, ϕ), where the new half-apex angleϕ ∈ [0, π/2[ is

such that we have

|〈v̂e +∆v̂e(t), r(x; v̂e)〉| = |v̂e| sinϕ+ w̄ = ν̄,

when ∆v̂e(t) = −w̄r(x(t); v̂e) and x = x(t) ∈ bd C(−v̂e, ϕ). We immediately conclude that

sinϕ = (ν̄ − w̄)/|v̂e| orϕ = arcsin ((ν̄ − w̄)/|v̂e|) with ϕ ∈ [0, π/2[. Note thatϕ ≤ ϑ, whereϕ and
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ϑ ∈ [0, π/2[. Therefore, we have

C(−v̂e, ϕ) ⊆ C(−v̂e, ϑ).

The new conjectured winning set of the pursuer in the reduced space is the coneC(−v̂e, ϕ) and

the definition of the discontinuous control law that is purported to keep the pursuer in the cone

C(−v̂e, ϕ) before reaching the origin in the reduced space has to be refined as follows:

û⋆(x; v̂e, ν̄, w̄) =





u⋆(x; v̂e, ν̄), if x ∈ int C(−v̂e, ϕ),

ν̄r(x; v̂e), if x ∈ bd C(−v̂e, ϕ)\{0}.
(28)

Actually, as we show next, with the new discontinuous feedback lawû⋆ given in (28), it is true

that the pursuer will never exit the coneC(−v̂e, ϕ) in the reduced space. This is because, for all

x ∈ bd C(−v̂e, ϕ), we have

〈û⋆(x; v̂e, ν̄, w̄) + v̂e +∆v̂e(t), r(x; v̂e)〉 = ν̄ − |v̂e| sinϕ+ 〈∆v̂e(t), r(x; v̂e)〉

≥ ν̄ − |v̂e| sinϕ− |∆v̂e(t)||r(x; v̂e)|

≥ ν̄ − |v̂e| sinϕ− w̄

= 0,

where we have used the fact that, for allx ∈ bd C(−v̂e, ϕ)\{0}, we have 〈v̂e, r(x; v̂e)〉 =

−|v̂e| sinϕ, wheresinϕ = (ν̄ − w̄)/|v̂e| (see Fig.3), together with the Cauchy-Schwarz inequality.

Consequently, the vector field of the new closed-loop system that results with the application of̂u⋆

will always have a non-negative component along the unit vectorr (thus, it will not point outward

the coneC(−v̂e, ϕ)). Consequently, the pursuer cannot escape the coneC(−v̂e, ϕ) before reaching

the origin in the reduced space.

It is interesting to note at this point that the feedback control lawû⋆(·; v̂e, ν̄, w̄) consists of

two modes. With the first one,̂u⋆ does not account for the unknown component of the target’s

velocity, when the pursuer lies in the interior of the coneC(−v̂e, ϕ) in the reduced space. With the

second one,̂u⋆ compensates the effect of the uncertainty over the target’s velocity when the pursuer

reachesbd C(−v̂e, ϕ) in order to prevent it from exitingC(−v̂e, ϕ). The switching between these two
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modes is discontinuous. It is well-known that the use of a discontinuous control law usually comes

with serious implementation problems such as unwanted chattering that can excitehigh-frequency,

unmodelled dynamics of the actual pursuer, whose exact motion cannot beaccurately described

by the simple motion model we are utilizing herein. Next, we propose a continuousversion of

û⋆(·; v̂e, ν̄), which results by blending appropriately the two modes of this discontinuous feedback

control law. The proposed continuous feedback will enforce finite-time capture of the target while

the pursuer does not exit the coneC(−v̂e, ϕ) before reaching the origin in the reduced space. To this

aim, letλ(x; v̂e) : C(−v̂e, ϕ)\{0} 7→ [0, 1], whereλ(x; v̂e) = ∢(x,−v̂e)/ϕ. Note thatλ(·; v̂e) = 1,

whenx ∈ bd C(−v̂e, ϕ)\{0}, andλ(x; v̂e) ∈ [0, 1[, whenx ∈ int C(−v̂e, ϕ). Then, we propose the

following continuous feedback control law:

ũ⋆(x; v̂e, ν̄, w̄) :=
ν̄

η(x; v̂e, ν̄, w̄)

(
(1− λ(x; v̂e))u⋆(x; v̂e, ν̄) + λ(x; v̂e)w̄r(x; v̂e)

)
, (29)

where η(x; v̂e, ν̄, w̄) :=
∣∣(1− λ(x; v̂e))u⋆(x; v̂e, ν̄) + λ(x; v̂e)w̄r(x; v̂e)

∣∣. Note that

|ũ⋆(x; v̂e, ν̄, w̄)| = ν̄, for all x ∈ C(−v̂e, ϕ)\{0}. In addition, ũ⋆(x; v̂e, ν̄, w̄) = u⋆(x; v̂e, ν̄),

whenx belongs to the axis of symmetry of the coneC(−v̂e, ϕ), andũ⋆(x; v̂e, ν̄, w̄) = w̄r(x; v̂e),

when x ∈ bd C(−v̂e, ϕ)\{0}. We wish to highlight at this point that one may define the

function λ(·; v̂e) : C(−v̂e, ϕ)\{0} 7→ [0, 1] in many different ways as far asλ(x; v̂e) = 1, when

x ∈ bd C(−v̂e, ϕ)\{0}, andλ(x; v̂e) ∈ [0, 1], whenx ∈ int C(−v̂e, ϕ).

The continuous feedback control law given in (29) can be expressed in the orthonormal basis

(e1(x), e2(x), e3(x)) of R3 as follows:

ũ⋆(x; v̂e, ν̄, w̄) =

3∑

k=1

ũk
⋆(x; v̂e, ν̄, w̄)ek(x) (30)

with

ũ1
⋆(x; v̂e, ν̄, w̄) =

ν̄

η(x; v̂e, ν̄, w̄)
(1− λ(x; v̂e))u

1
⋆(x; v̂e, ν̄),

ũk
⋆(x; v̂e, ν̄, w̄) =

ν̄

η(x; v̂e, ν̄, w̄)

(
(1− λ(x; v̂e))u

k
⋆(x; v̂e, ν̄) + λ(x; v̂e)ν̄ 〈r(x; v̂e), ek(x)〉

)
,

for k = 2, 3, where we have used the fact that the unit vectorr(x; v̂e) is orthogonal to the unit

vectore1(x) to simplify the expression for̃u1
⋆. Note that since for allx ∈ bd C(−v̂e, ϕ)\{0}, we
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x

C(−v̂e, ϑ)

r(x)

e1(x)

u⋆
ẋ

−v̂e

v̂e

w̄r(x)

−w̄r(x)

C(−v̂e, ϕ)

ν̄

ν̄

v̂e − w̄r(x)

0 2ϑ 2ϕ

ϕ

Figure 3. It turns out that the characterization of a conservative approximation of the winning set of

the pursuer in the presence of uncertainty requires to consider both the cases when the largest possible

uncertainty is anti-parallel to the target’s dominant velocity, v̂e, and anti-parallel to the unit vectorr(x; v̂e).

This analysis will give a conservative estimate of the winning set that corresponds to the coneC(−v̂e, ϕ),

whereC(−v̂e, ϕ) ⊆ C(−v̂e, ϑ) ⊆ C(−v̂e, θ).

haveũ⋆(x; v̂e, ν̄, w̄) = û⋆(x; v̂e, ν̄, w̄), it follows that the pursuer driven by the continuous feedback

control lawũ⋆ cannot cross the boundary ofC(−v̂e, ϕ) before reaching the origin in the reduced

space.

Let us next examine whether the pursuer emanating from the coneC(−v̂e, ϕ), and driven by the

continuous feedback law̃u⋆ can also reach the origin in finite time. To this aim, we will need the

following lemma.

Lemma 1

Suppose that|v̂e| > ν̄ > 0 and0 ≤ w̄ ≤ min{|v̂e| − ν̄, ν̄}. Then, we have

|v̂e|2 − (ν̄ − w̄)2 − w̄2 > 0. (31)
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The closed-loop kinematics of the pursuer driven by the continuous feedback control law (30) are

given by

ẋ = ũ⋆(x; v̂e, ν̄, w̄) + v̂e +∆v̂e(t)

=

3∑

k=1

[ũk
⋆(x; v̂e, ν̄, w̄) + 〈v̂e +∆v̂e(t), ek(x)〉]ek(x). (32)

Along the trajectoryx(·) of the closed-loop system described by (32), we have that

d

dt
|x(t)| = 〈ẋ, e1(x)〉 = ũ1

⋆(x; v̂e, ν̄, w̄) + 〈v̂e +∆v̂e(t), e1(x)〉

≤ −|v̂e| cosϕ+ |∆v̂e(t)|

= −
√

|v̂e|2 − (ν̄ − w̄)2 + |∆v̂e(t)|

≤ −
√

|v̂e|2 − (ν̄ − w̄)2 + w̄, (33)

where we have used the facts that, for allx ∈ C(−v̂e, ϕ)\{0}, ũ1
⋆(x; v̂e, ν̄, w̄) ≤ 0 (given that

(1− λ)/η ≥ 0 and u1
⋆(x; v̂e, ν̄) ≤ 0, as we have already explained before) and−〈v̂e, e1(x)〉 =

|〈v̂e, e1(x)〉| ≥ |v̂e| cosϕ with cosϕ =
√

1− (ν̄ − w̄)2/|v̂e|2 (see Fig.3). Therefore, (33) implies

that
d

dt
|x(t)| is upper bounded byγ := −

√
|v̂e|2 − (ν̄ − w̄)2 + w̄, which is a strictly negative

number in view of Lemma1. In addition, (33) implies that

|x(t)| − |x0| ≤ −t(
√

|v̂e|2 − (ν̄ − w̄)2 − w̄).

It follows that, for anyǫ > 0, the first time at which the closed-loop system reaches the closed ball

Bǫ, which is denoted bytf(ǫ), satisfies

tf(ǫ) ≤
|x0| − ǫ√

|v̂e|2 − (ν̄ − w̄)2 − w̄
≤ |x0|√

|v̂e|2 − (ν̄ − w̄)2 − w̄
= −|x0|

γ
=: t̃f .

We conclude thattf(ǫ) is upper bounded by a positive real number, namelyt̃f , that is independent

of ǫ > 0, which implies finite-time convergence of (32) to the origin, in the reduced space.

5. NUMERICAL SIMULATIONS

Figure 4 illustrates the trajectories of the pursuer driven by the feedback controllaw ũ in the

reduced space for a particular scenario assuming that the uncertainty∆ve(t) = −w̄r(x(t); v̂e), for
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Figure 4. Trajectories of the pursuer driven by the feedbackcontrol law ũ in the reduced space, in the

imperfect information case.

all x = x(t) in the coneC(−v̂e, ϕ). In our simulations, the pursuer is emanating from eight different

initial positions (black crosses); the data used for the numerical simulations are: w̄ = 0.25, ν̄ = 1,

ǫ = 0.02 (the parameterǫ corresponds to the value of the relative distance between the target and the

pursuer at which the pursuit phase terminates with the capture of the target)andv̂e = −[
√
2, 0, 0]T.

6. CONCLUSION

In this work, we have examined the problem of enforcing capture of a moving target by a slower

pursuer in finite time. We have considered two cases regarding the information available to the

pursuer. In the first case, the target’s velocity is constant and perfectly known to the pursuer, whereas

in the second case, the velocity of the target can be decomposed into one dominant component,

which is constant and known to the pursuer, and an uncertain component,which is unknown to

the pursuer. We have shown that the pursuit problem admits a solution in bothcases, provided that

the pursuer emanates from a certain pointed convex cone, which we refer to as its winning set

and we explicitly characterize for each case. Furthermore, we have proposed feedback control laws

that solve the pursuit problem when the pursuer emanates from its winning set and we have given
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estimates for the time of arrival in both cases. Our detailed analysis has revealed that in the imperfect

information case, intuitive arguments about the winning set of the pursuer can easily lead one to

erroneous conclusions. This is due to the fact that even a small uncertainty over the target’s velocity

can force the pursuer to exit the cone that corresponds to its winning setin the perfect information

case, when it is located close to the boundary of this set. Future work includes the analysis of the

problem of capturing a faster target when the motion of both the target and the pursuer is described

by higher order kinematic models.

APPENDIX

In this appendix, we present the analytic expressions for∇xT (x; v̂e, ν̄) and |∇xT (x; v̂e, ν̄)|,

for all x ∈ C(−v̂e, θ)\{0}, along with the main steps of their derivations. In particular, by

differentiating (9), we get

∇xT (x; v̂e, ν̄) = − 1

|v̂e|2 − ν̄2
v̂e −

1

|v̂e|2 − ν̄2
∇xΣ(x; v̂e, ν̄)

whereΣ(x; v̂e, ν̄) :=
√

〈v̂e,x〉2 − (|v̂e|2 − ν̄2)|x|2. We have that

∇xΣ(x; v̂e, ν̄) =
1

Σ(x; v̂e, ν̄)

(
〈v̂e,x〉v̂e − (|v̂e|2 − ν̄2)x

)
,

where in the previous derivation, we have made use of the identity∇x|x| = x/|x| = e1(x), which

holds for allx 6= 0. It follows that

∇xT (x; v̂e, ν̄) =
−Σ(x; v̂e, ν̄)− 〈v̂e,x〉
(|v̂e|2 − ν̄2)Σ(x; v̂e, ν̄)

v̂e +
1

Σ(x; v̂e, ν̄)
x

=
T (x; v̂e, ν̄)

Σ(x; v̂e, ν̄)
v̂e +

1

Σ(x; v̂e, ν̄)
x, (34)

where we have used the fact that

T (x; v̂e, ν̄) = −〈v̂e,x〉+Σ(x; v̂e, ν̄)

|v̂e|2 − ν̄2
.
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Furthermore, we have

〈∇xT (x; v̂e, ν̄), e1(x)〉 =
〈v̂e,x〉T (x; v̂e, ν̄)

|x|Σ(x; v̂e, ν̄)
+

|x|
Σ(x; v̂e, ν̄)

=
〈v̂e,x〉T (x; v̂e, ν̄) + |x|2

|x|Σ(x; v̂e, ν̄)

=
−〈v̂e,x〉(〈v̂e,x〉+Σ(x; v̂e, ν̄)) + (|v̂e|2 − ν̄2)|x|2

|x|Σ(x; v̂e, ν̄)(|v̂e|2 − ν̄2)

=
−〈v̂e,x〉Σ(x; v̂e, ν̄))− (〈v̂e,x〉2 − (|v̂e|2 − ν̄2)|x|2)

|x|Σ(x; v̂e, ν̄)(|v̂e|2 − ν̄2)

=
−〈v̂e,x〉Σ(x; v̂e, ν̄))− Σ2(x; v̂e, ν̄)

|x|Σ(x; v̂e, ν̄)(|v̂e|2 − ν̄2)

= −〈v̂e,x〉+Σ(x; v̂e, ν̄)

|x|(|v̂e|2 − ν̄2)

=
T (x; v̂e, ν̄)

|x| , (35)

and

〈∇xT (x; v̂e, ν̄), ek(x)〉 =
〈v̂e, ek(x)〉T (x; v̂e, ν̄)

Σ(x; v̂e, ν̄)
, k = 2, 3. (36)

It is interesting to note that a more elegant way to compute〈∇xT (x; v̂e, ν̄), e1(x)〉 is to use the so-

called Euler’s homogeneous function theorem. In particular, it is easy to show thatT (λx; v̂e, ν̄) =

λT (x; v̂e, ν̄), for any λ ∈ R>0, that is, the functionT (x; v̂e, ν̄) is positively homogeneous of

first-degree. Consequently, in view of Euler’s homogeneous function theorem, we have that

〈∇xT (x; v̂e, ν̄),x〉 = T (x; v̂e, ν̄), from which (35) follows readily.

In addition, we have that

|∇xT (x; v̂e, ν̄)|2 = 〈∇xT (x; v̂e, ν̄), e1(x)〉2 + 〈∇xT (x; v̂e, ν̄), e2(x)〉2 + 〈∇xT (x; v̂e, ν̄), e3(x)〉2

=
T 2(x; v̂e, ν̄)

|x|2 +
T 2(x; v̂e, ν̄)(〈v̂e, e2(x)〉2 + 〈v̂e, e3(x)〉2)

Σ2(x; v̂e, ν̄)

=
T 2(x; v̂e, ν̄)

|x|2 +
T 2(x; v̂e, ν̄)(|v̂e|2 − 〈v̂e, e1(x)〉2)

Σ2(x; v̂e, ν̄)

=
T 2(x; v̂e, ν̄)

|x|2 +
T 2(x; v̂e, ν̄)(|v̂e|2|x|2 − 〈v̂e,x〉2)

|x|2Σ2(x; v̂e, ν̄)

=
T 2(x; v̂e, ν̄)(Σ

2(x; v̂e, ν̄) + |v̂e|2|x|2 − 〈v̂e,x〉2)
|x|2Σ2(x; v̂e, ν̄)

=
ν̄2T 2(x; v̂e, ν̄)

Σ2(x; v̂e, ν̄)
, (37)
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which gives

|∇xT (x; v̂e, ν̄)| =
ν̄T (x; v̂e, ν̄)

Σ(x; v̂e, ν̄)
. (38)

It follows that

〈 ∇xT (x; v̂e, ν̄)

|∇xT (x; v̂e, ν̄)|
, e1(x)

〉
=

Σ(x; v̂e, ν̄)

ν̄|x| , (39a)

〈 ∇xT (x; v̂e, ν̄)

|∇xT (x; v̂e, ν̄)|
, ek(x)

〉
=

〈v̂e, ek(x)〉
ν̄

, k = 2, 3. (39b)
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