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SUMMARY

In this work, we propose a feedback control law that enfocageure of a moving target by a slower pursuer
in finite time. It is well-known that if this problem is cast agpursuit-evasion differential game, then the
moving target can always avoid capture by taking advant&gs speed superiority, provided that both the
target and the pursuer are employing feedback strategiggisense of Isaacs. Thus, in order to have a
well-posed pursuit problem, additional assumptions ageired so that the pursuer can enforce capture of
the faster target in finite time provided that it emanatesfi set of “favorable” initial positions, which
constitute itswinning set. In particular, we assume that the target’s velocity eite@onstant and perfectly
known to the pursuer (perfect information case) or can bemeosed into a dominant component, which
is constant and known to the pursuer, and a second compdraiig uncertain and unknown to the pursuer
(imperfect information case). It turns out that in both cafiee winning sets of the pursuer are pointed
convex cones which have a common apex and a common axis of syynbut different opening angles.
We subsequently propose continuous feedback laws thatoenfiaite-time capture while the pursuer never

exits its winning set before capture takes place, for botlesaCopyright © 2015 John Wiley & Sons, Ltd.
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2 E. BAKOLAS

1. INTRODUCTION

In this work, we design feedback control laws that enforce captura ofoving target by a
slower pursuer in finite time provided that the pursuer emanates from d atarable” initial
conditions, which constitute itsinning set. It is well-known that a pursuit-evasion game involving
two antagonistic players with simple motioh2-14] can never be concluded in favor of a slower
pursuer provided that both players employ optimal feedback strategies setise of Isaac9]

In this work, in order to allow for the possibility of capture of the target bylaver pursuer,
we will assume that the pursuer has an informational advantage. In pertice assume that the
velocity of the target can be decomposed into two components, namely oneasidrmdmponent,
which is constant and known to the pursuer, and one uncertain, whiglutkeer cannot infer. We
will refer to the case when the uncertain component of the target's velodgrsas the perfect
information case and as the imperfect information case otherwise. The exdpioiprmational
pattern is similar with thetroboscopic informational pattern for differential pursuit-evasion games,
which was originally suggested by Haje®][For a detailed discussion on the differences between

the informational patterns suggested%hdnd [8], the reader is referred td.§].

First, we examine the simplest case when the pursuer knows perfectlyrtbimebvelocity of the
faster target (perfect information case). We show that in this case taipproblem is inherently
related to the Zermelo navigation probled®f], that is, the problem of navigating or steering a
vehicle with simple motion in the presence of a drift field in minimum time; this corredgroce
allows us to characterize the winning set of the pursuer explicitly. In péaticewe show that the
winning set of the pursuer corresponds to a pointed convex coneevetpes is the current position
of the target, its axis of symmetry is determined by the target's velocity and itsrgpangle is a

function of the ratio of the speed of the pursuer and the speed of the;targesult that mirrors
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ON THE FINITE-TIME CAPTURE OF A MOVING TARGET 3

that of the Zermelo navigation problem when the drift is constant and ffastan the traveling
vehicle [L, 6]. We characterize a feedback control law which enforces captuiieedairget in finite
time while the pursuer, which emanates from its winning set, never leaves thistdecapture
takes place. It should be emphasized at this point that after the puegteres the target, it won't
be able to enforce capture again in the future or achieve capture withriggldiven that the target

is moving faster and the pursuer won't be able to “keep up.”

Subsequently, we consider the more interesting and challenging case tivhesncertain
component of the target’s velocity is non-zero. To address this problermaedify the feedback
control law designed for the perfect information case to account farrtbertainty over the target’s
velocity. It turns out that the modified feedback control law enjoys the day@roperties as in
the perfect information case provided that the pursuer emanates fraw aimning set, which
we explicitly characterize. In particular, in the imperfect information casewtimning set of the
pursuer turns out to be again a pointed convex cone with the same axisofesgy and the same
apex with its winning set in the perfect information case; the opening angleeafiew winning
set is, however, smaller and the difference between the two anglesddepethe magnitude of the
uncertain velocity component. It is important to highlight at this point that theifepeinformation
case requires a careful analysis given that intuitive arguments ateowfithing set of the pursuer,
which are based on the analysis of the problem in the perfect informatsen can easily lead one to
erroneous conclusions. This is mainly due to the fact that even a smattaintgover the target’s
velocity can force the pursuer to exit its winning set when the latter is loc&isd t the boundary
of this set. Finally, we derive a continuous feedback control law thatree$ capture of the moving
target in finite time and does not allow the pursuer to exit its new winning sétglthie whole

pursuit phase in the presence of uncertainty over the target'’s totaityeloc

The remaining of the paper is organized as follows. In Secfiowe formulate the pursuit
problem. The solution to this problem for the perfect information case iepted in Sectiors,

whereas the same problem for the imperfect information case is addiesSection4. Numerical
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4 E. BAKOLAS

simulations are presented in SectiarFinally, Section6 concludes the paper with a summary of

remarks and directions for future work.

2. THE PROBLEM OF PURSUIT OF A MOVING TARGET BY A SLOWER PURSBE

2.1. Notation

We denote byR™ the set ofn-dimensional real vectors. The sets of non-negative real numbérs an
(strictly) positive real numbers are denotedlby, andR., respectively. We writ¢a| to denote

the 2-norm of a vectorr € R™. Given two vectorgx and3 € R™, we denote their inner product by
(e, B) and the angle between them hya, 3), thatis,<t(ex, 3) := arccos({ax, B) /||| 3|), provided
that both vectors are non-zero (note thdtx, 3) € [0, ). The open ball, the closed ball, and the
unit sphere inR™ of radiusp > 0 centered at the origin are denoted, respectivelyBpys, and
Syithatis, B, :=={x e R": |z| < p}, B, :={x e R": |z| < p}andS, := {x e R": |z| = p}.

In addition,bd A andint A denote, respectively, the boundary and the interior of adsetRR".
Finally, we denote b¥(z, 6), whered € [0, /2], the pointed convex cone whose apex is the origin,
its axis of symmetry is parallel to the vectoand its opening anglés equal ta26, or alternatively,

the half-apex angle of the cone is equabtthat is,C(z,6) := {x € R" : <(z,x) < 0}.

2.2. Equations of Motion and Problem Formulation

We consider a pursuer whose motion is described by the following equation:

Tp = vy, ,(0) = aj, 1)

wherezx,, € R® andz) < R® denote, respectively, the pursuer’s position vector at timedt = 0,

andwv, denotes its control input at timg which is assumed to attain values in the closed ball

fThe opening angle of a pointed convex cone is the angle batamepair of rays emanating from the cone’s apex that

correspond to the intersection of the boundary of the coneayitfane that contains its apex and its axis of symmetry.
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ON THE FINITE-TIME CAPTURE OF A MOVING TARGET 5

B, C R, that is, |v,| < © for all t > 0*. The motion of the moving target, on the other hand, is

described by the following equation:

Te = Ve + AD(), x.(0) = 2, 2

wherez, € R? and ¥ € R? are the position vectors of the moving target at titmand ¢ = 0,
respectively, and. + A, (t) is its effective or total velocity at time In particular;s. € R? denotes
the (dominant) component of the target's velocity that is assumed to be coasthlknown to
the pursuer (via, say, measurements obtained by the pursuer prior tedgimning of the pursuit
phase), whereaAv.(t) denotes the component of the target’s velocity at tintleat is unknown
to the pursuer and is not necessarily constant. Furthermore, we assirtteetfunctionAo. () is
piecewise continuous and

|Av(t)| <w, forall t>0, 3

for some0 < w < 7 < |v.| (the assumption that < |v.| reflects the fact that,. is the dominant
component of the target’s velocity). One should notice here that a tametdh travel faster than
the pursuer can always avoid capture provided that both of the tworplaye employing feedback
strategies in the sense of Isaacs (see the discussidt-ieedback strategies i®]). To see this,
let us consider the case when the target’s velocity is parallel to the so-tiakedf-sight (LOS)
direction, that is, the direction or the unit vector determined by the relatisdéigo vector of the
target from the pursuer, that is, the vector= x. — x,. Given that the target is faster than the
pursuer, we immediately conclude that their relative distdate= |z. — x,| will be increasing
with time regardless of the actions of the slower pursuer. If, howeveltatiget’s velocity itself,
in the perfect information case, or its dominant component, in the imperfeoniation case, is
constant and known to the pursuer, then there are initial conditions froichvthe pursuer can
actually capture the target in finite time. Here, we assume that capture takesfyleere is a time

t € R> such thatz(t) = 0 (exact capture). It is important to highlight at this point that capture

fWe will be working in the three-dimensional Euclidean spaceughout the paper. The results for the case when3

can be derived mutatis mutandis.
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6 E. BAKOLAS

is possible because the pursuer has an informational advantage thextpdait by employing a
“predictive” strategy. In simple words, the pursuer can “overshootrifer to intercept the target
at one of its future positions along its projected future trajectory instead/iofgtto go after the

current position of the target by employing, for example, the so-callegtpursuit strategyl[l].

Next, we present a state space model for the pursuit problem whosesitimés half of that of
the combined state spaces of the pursuer and the target. In particulayeyétlight of () and @),

that
T =u+ Ve + Av(1), x(0) = z°, 4)

wherez® := x) — ), andu = —v, is the new control input, which also attains valuesBp
Henceforth, we will say that4] describes the motion of the pursuer in tfeeluced state space.
We will also refer to the set of initial conditions” from which the system described b$) (can
reach the origing = 0, in finite time with the application of a control inputwhich is a piecewise
continuous function of time and attains values in thegtas the winning set of the pursuer in
the reduced space. Note that when the syst®mefaches the origin in the reduced space at some
time ¢ € R>(, then (exact) capture takes place in the actual state space, thaftis= x,(t). Our
objective is to design a feedback control law(-; v, 7) : R ~ B, that will enforce capture of the
target in finite time, under the assumption that the dominant component of te€dagjocity,v..,

is constant and known to the pursuer with| > 7, whereas its unknown componendy. , satisfies
(3).

Problem 1

Suppose thdt.| > 7 and letA, (-) satisfy @). Find a feedback control law, (-; ., 7) : R? — B,

that will drive the system described b4) to the origin,z = 0, in some finite timé&; € Rx.

The requirement that the pursuer must capture the moving target in finite timalsa be
interpreted as follows: There exists a positive nuntbsuch that, for any > 0, the pursuer driven
by the feedback control laws, will be able to reach a ball of radiuscentered at the current
position of the evader aftef(e) units of time, wheres(¢) < i, that is,i¢(¢) is upper bounded by a

Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)
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ON THE FINITE-TIME CAPTURE OF A MOVING TARGET 7

positive real numbety, which is independent af This is in contrast with what would occur with
the utilization of a control law which can enforce capture of the evader asyynptotically, that

is, ast — oo, in which casefs(e) — oo ase | 0. This interpretation of the requirement of capture
in finite time is important in order to avoid having to deal with situations in which, xangple, a
feedback control law that solves Problérbecomes singular when the pursuer reaches exactly the
target. This type of singularity should be expected given that the unitivect®) := x/|x| which
determines the LOS direction (and thus is expected to play a key role in thegsidrg analysis) is

not well-defined wheri: = 0.

3. THE PURSUIT PROBLEM FOR THE PERFECT INFORMATION CASE

Next, we address Problefnfor the perfect information case, that is, whamw, = 0. The solution
to this problem, which is, as we have already mentioned, equivalent to tmeeKenavigation
problem, will provide us with useful insights that will allow us to address theyitiproblem in the
more challenging case when it is not true, in general, fét(¢) = 0, for all ¢ > 0. The approach
we adopt is based on characterizing a feedback control law that will maxiimézrate of decrease of
an appropriate “metric” or Lyapunov function along the trajectories of yiséesn described by,
that is, the trajectories of the pursuer in the reduced state space. Splgcifiee “metric” we use
is the minimum time-to-go function, that is, the minimum time required for the systemiledc
by (4) and emanating from a poiat at timet = 0 to reach the origin. Next, we obtain an analytic
expression for the minimum time-to-go function by employing an approach similaat@roposed

in [15]. To this aim, we first observe that)(implies that

& — .|* = D2,

from which it follows
7 =|&|* — 2(x, D) + | 0|
= |7/ |> — 2(7x’, D) + |c|?, 5)

Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)
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8 E. BAKOLAS

where prime denotes differentiation with respect to a new independeablear with 7 € [0, 1]

such thate(0) = = andx(1) = 0. Note that in the previous derivation, we have tacitly assumed that
lu,| = v, that is, the time-optimal control attains values on the boundaBy, agxclusively, which

is true for the Zermelo navigation proble® 1L0]. By multiplying both sides of the last equation in

(5) with (¢(r))? = (dt/dr)?, it follows that

(t'(1)?*7? = [a']? = 2t/ (r) (', De) + (¢'(7))?|0c |, (6)

which implies that

v57 :l: \/ v87 ‘US‘Q B V2)|IB/|2

I\
t'(r) = \’Ue|2 —

; (7
for all &’ for which the quantity under the radical, which is denoted ¢§y’; v., ), where
q(x';0e,7) = (Do, 2')? — (|0.|? — 7?)|x'|?, attains non-negative values. Note that in this case, the

quantity at the right hand side of)(is well-defined given thaw.| > . Furthermore, we write

S(@'30e,7) 1= V(@' 0e,7) = /(b @) — (|0c]? — 72)[a 2,

for all ' for which¢(z’; ©.,7) > 0. Let nowT'(z; v., 7) denote the value of the minimum time-to-
go function ate, that is, the minimum time required for the system describedipgrid emanating
from the pointz (wherer = 0) at timet¢ = 0 to reach the origin (where = 1). By integrating both

sides of {) fromr =0tor = 1, we get

T(il: ,067 ) 0_/0 <v87 ( )>:|:Z( ( );{7675)(:17_7 (8)

|ve|2 — 2

wherez, (-) : R>o — R? denotes the minimum-time trajectory parameterized lth x, (0) = =
andx, (1) = 0. Itis a well-known fact that, when the drift is constant, the minimum-time trajectory
of the Zermelo navigation problem from the paointo the origin,z = 0, is a straight line segment

connecting these two point$][ Thus, we can parameterize this minimum-time trajectory as follows:
z. (1) = (1 -7, T €[0,1].

Becauser’ (1) = —, (8) yields

T(ws,, ) = o8 S X 0GT) ©

|'Ue|2 — 2
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ON THE FINITE-TIME CAPTURE OF A MOVING TARGET 9
providedX(x; 0., 7) is well-defined, that is¢(x; 0., 7) > 0. We write

—(Ve, ) — X(x; Ve, 1) —(Ve, ) + X(x; Ve, 1)

|ﬁe|2 -2

Ti(.’I};'lA;e,D): ’ T+(CL'7’6€7D):

(10)

6. =72

Next we show that, for ali: that belong to the coné(—wv., ), wheref := arcsin(v/|v.|), the
functionT~ (+; o., 7) is non-negative; something that, as we will see next, will allow us to conclude

thatT~ (x;v., ) corresponds to the correct expression for the minimum time-to-go function.

Proposition 1

Suppose thato.| > 7. We have thay(x; v.,7) > 0 if, and only if,  belongs to the union of
the coneC(—v.,0) and the con€&(v,,0), € C(—v.,0) U C(0,0), whered := arcsin(v/|0.|),
or equivalently,X(x; 0., 7) is well-defined. In additionI~ (z; v.,7) > 0, if, and only if, z €

C(—%.,0).

Proof

We observe thaj(x; v., 7) can be written, using matrix notation, as follows:

g, 0., 0) = a'

e e

80Tz — (|02 — )2 e = 2T (@E@T (|9.]? — 52)13) =2 Az, (11)

where A := 6,0 — (]0.]2 — 7*)I3 is a symmetric3 x 3 matrix. Note that the eigenvalues of
the matrix A correspond to the eigenvalues of the rank-one mairix' shifted by 2 — |o,|2.
However, the symmetric and rank-one matfixs] has only one non-zero eigenvalue, namely
|0.|%, with associated eigenvector the unit vectpt= v, /|o.|. Let us also consider two mutually
perpendicular unit vectoris andis that are both perpendicular ¢p. Note that the tripléi, , 2, i3)
corresponds to a set of orthonormal eigenvectord afhich is in turn associated with the following
set of eigenvaluesii?, 7% — |9, |2, 7% — |9.|?}. We denote byZ the frame determined by the triple
(41,142,%3) and the origin. Furthermore, I&§,, y2, y3) denote the components of the vecioin the

frameZ, that is,y, := (z, 4,), for £ € {1,2,3}. Then, in view of (1) and the Schur decomposition

theorem from matrix analysi$], we have that

q(@; ., 7) = & SAS T = 027 — ([0]* — ) (43 +13), (12)

Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)
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10 E. BAKOLAS

wheresS is an orthogonad x 3 matrix whose columns are the eigenvectorsiof i, i2, 45}, andA
is a3 x 3 diagonal matrix whose diagonal elements are the eigenvaluds of?, 7> — |o.|?, v? —
|0.|?}. First, we show that(z; o.,7) > 0, for all z € C(—v.,0). To this aim, it suffices to note
that the equation of the conical surface, which determines the boundefy—v., 0), of the cone

C(—wv.,0) in the frameZ is given by the following equation (see Fitfa)):

0 < —y1 =cotby/y3 + y3. (13)

Therefore, we have

0 <~y = \/(8e[2 = 72) (43 + 13). (14)
for all x € bdC(—wv,, #), where we have used the fact that
cotf = /(1 —sin?0)/sin0 = /(0|2 — #2) /v, 6 €[0,7/2].
Thus, in view of (4) and the fact thaw.| > 7, we have that
72yt > (Joc]* = ) (3 + v3), (15)

for all pointsx € C(—., 6), which in turn implies, in view of 12), thatq(x; v., 7) is non-negative
over C(—v.,d). The proofs for the case when e C(v.,0) together with the converse, that is,

x € C(—0.,0) orx € C(v.,0) Wheng(x; v.,7) > 0, are similar and thus omitted.

Next, we show thal’~ (x; 0., ) > 0if, and only if, z € C(—wv., 0). To this aim, we bringg) into

the following form:

-1

e
e

(Vo = Qo =m0+ ) o ). a9)

The condition thaf'~ (x; v, 7) > 0 is equivalent to

0> /r2y7 — (10 — 72)(u3 + 93) + [oc . (17)

Note that the quantity under the radical itv), which is equal te(x; v., 7), is non-negative if, and
only if, z € C(—v.,8) U C(v,0), as we have already shown. Thus, we can confine our analysis to
the seC(—v.,0) UC(v.,0). Now forx € C(—wv., §), we have thay; < 0and thus{7)is equivalent

Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)
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ON THE FINITE-TIME CAPTURE OF A MOVING TARGET 11

to
(l'f)elQ—ljz)y% >0> —(|1}e|2—172)(y3+y§)7 (18)

which is trivially true whenv < |v.|. Whenx € C(v., 6), we havey; > 0 and thus {7) holds true
if, and only if, x = 0 given that its right hand side is the sum of two non-negative terms. This

completes the proof. O

In view of Propositionl, we have thatl’~ (z; v.,7) > 0 and (0., ) = |v.|y1 <0, for all x €

C(—ve, 0), which in turn implies that"* (x; v, ) > 0, when|v.| > . Furthermore,
0< T (x;0,0) < TT (29, 0),

forallx € C(—v.,0), when|v.| > ©. As was shown in the proof of Propositiongl; ©., ) is non-
negative for allz € C(—v., ), which means thal'~ (x; v., 7) is non-negative and well-defined if
and onlyz € C(—v., 6). Specifically, in this cas€,~ (-; ., ) is the minimum time-to-go function,
wheread * (-; v., ) is the maximum time-to-go functio®]. From now on, we will writel'(-; v, )

to denote the minimum time-to-go function, that1¥;; v.,v) = T~ (-; v., 7), with a slight abuse
of notation. Finally, we would like to highlight at this point an interesting propenjoyed by
T(-; Ve, ), namely thal’(A\x; v.,7) = AXT'(x; v, 1), for any A € R., and for alle € C(—v,0). In
other words, the functiof(x; ., 7) is positively homogeneous of first-degre&his observation
will facilitate the derivation of a simple, analytic expression for the compoogéttie gradient of

T(-;v.,7) alonge; via application of the so-called Euler's homogeneous function theorem.

The next step is to derive the corresponding time-optimal control law asdbdek control law.
In light of the principle of optimality 4, 7], this feedback control law maximizes point-wisely in
time the rate of decrease of the minimum time-to-go function along the ensuingdrgjet the

system described byi). In particular, the dynamic programming equation implies that
Uy (; Ve, V) = argmin,, .z (VT (x;0e,0), 0 + u), (29)

SA function f: D C R™ — R™ is positively homogeneous of degrée wherek is a positive integer, iff (\x) =

MF f(z), for all z € D and for any\ € Rsq.

Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)
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12 E. BAKOLAS

from which we can formally derive that

_ VT (250, 7)

NI (@ 00,7)] (20)

Uy (X5 Ve, V) =

provided that the right hand side di() is well-defined. The expression &,7(x; v., 7) along
with the details of its derivation are given in the Appendix. In particular, intlafh(399-(39b), it

follows thatu, (x; v., 7) is well-defined for alle € C(—v.,6)\{0}.

Furthermore, as shown in the Appendix, the componenta: ofwith respect to the basis

(e1(x), ex(x), es(x)), forx € C(v.;0)\{0}, satisfy the following equations:

ul(x; 00, 0) = (uy(x; 00, 0), €1(x)) = —W (21a)
ub (x; 00, 0) = (uy(x; 0, 0), ex(x)) = — (0, er(x)), k=23 (21b)

It is interesting to note that the component of the time-optimal feedback cdaival, along the

e; direction can be written as follows:

- E(x; v, V) q(; Oc, V)
U*(CE;U671/)—— |.’B| - |$|
V(e x)? — (o] - 722
||

= —\/D2 — <1A)6,62(CB)>2 - <ﬁe7e3(m)>2a

where the quantity under the radical;; v., 7), is non-negative for alk € C(—v.,6) in light of

Propositionl. Consequentlyu!(z; o., ) is well-defined for allz € C(—.,0)\{0} (we exclude
the origin = 0 because the triade;, ez, e3) is not well-defined forz = 0). An interesting
observation is that!(x; o.,7) < 0 for all x € C(—v.,0)\{0}. In addition, we have that for all

Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)
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ON THE FINITE-TIME CAPTURE OF A MOVING TARGET 13

x € bdC(—b.,0)\{0} it holds that

q(@; Ve, 7) = D° — (bc, €2(x))” — (e, e3(x))?
=72 — |9 + (0, e1(2))?
= 0% — |0e|* + |Dc|? cos? 0
= 7~ foul? + (foel? — )

:0,

where in the derivation of the third equation in the previous expressiohawe used the fact that

(Do, €1(2))| = [9¢] cos b, for all z € bd C(—v.,0)\{0}, with cos 0 = /T — 72/[0. |2 (see Fig.1).

In view of (219, it follows that the fact thag(x; v., 7) = 0 onbd C(—v,, 0)\{0} implies that
ul(x;v.,0) =0, forall x & bdC(—v.,0)\{0}. (22)

Eq. (22) suggests, in view ofX19-(21b), that when the pursuer is located on the boundary of the
coneC(—wv., ), then it has to use all of its control authority to cancel out the componeritstbat

are perpendicular to the LOS directiere; and consequently, it will reach the origin by traveling
along the boundary of the codé—., 6) with a velocity that corresponds to the projectiorsgon

—e; (the pursuer in this case will not be able to contribute anything to the latteriyebonponent).

The closed-loop dynamics of the system driven by the feedback céatrgliven in 19-(21h),

in the absence of uncertainty, are described by the following equation:

T = Uy (x50, V) + Ve
3
= uli(a; e, v)ex(x) + b
k=1

= u, (30, D)er (x) — (De, e2(x))ex(x) — (0c, e3(x))es(x) + ve

= (uy (@30, 7) + (Ve €1(x)) Jes (), (23)

with x(0) = z°. Before we demonstrate that the closed-loop system describetBpseaiches the
origin in finite time when emanating from any pointine C(—., 0), we show that it cannot escape
the setC(—v,, #) before reaching the origin in the reduced space (that is, before eapkes place
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14 E. BAKOLAS

(a) The winning set of the pursuer in the reduced space for the (b) Motion of the pursuer in the reduced space

perfect information case. when driven by the feedback contral .

Figure 1. In the perfect information case, the winning sethef pursuer is a pointed convex cone whose
axis of symmetry is parallel te v. and whose opening angle is determined by the mtjo.|. The pursuer
cannot exit its winning set in the reduced space before negcthe origin (that is, before capture occurs in

the actual space).

in the actual space). To this aim, we examine the vector field described bghhbaand side ofZ3)
at the boundary of the cort¥ —v., #) excluding the originc = 0, where the feedback law, is not
well-defined. In particular, given a poiat € bd C(—v., 0)\{0}, then @3) implies that the vector
field of the closed-loop system at this point is parallel to the unit veetar(x). Therefore, there is
no component of the vector field that is pointing outward the pointed corvesd —v.., 6) for all
x € bdC(—2.,0)\{0}. Now, for any pointz € bd C(—o.,0)\{0} we have thatu!(z;v.,7) = 0in
view of Eqg. £2), which practically means that the inpui (z; v., ) is orthogonal tae;(x), as is

illustrated in Fig.1(b). Therefore, it follows that

uL(; e, 0) + (D, €1(x)) = —|De| cos O = —/|0.|2 — 72 < 0. (24)

In view of (24), (23) implies that when the closed-loop system emanates from a pdimt
bd C(—.,0) \{0}, it will actually travel along the direction-e; () with a non-zero and non-

vanishing speed and will thus reach the origin in finite time without leaving the €ond., 9).

Next, we show that the closed-loop systeb8)(emanating from any point € C(—v.,6)\{0}
will reach the origin in finite time. In the subsequent analysis, we will noticenghe trivial case
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ON THE FINITE-TIME CAPTURE OF A MOVING TARGET 15

when the system emanates from the origin (in this case, capture takestpiaoeta= 0 trivially).

Along the trajectorye(-) of the closed-loop system described B) we have that

—lz®)] = (@, e1(x)) = uy(x;0c,7) + (e, €1 ()

dt
—|Ve| cos = —/|0e|? — P2 <0, (25)

IN

for all x € C(—v.,0)\{0}, where we have used the facts tRat|z| = z/|x| = ei(x),
(B, e1(@)) = [0] cos(<(er (), —6..)) = 6] cos(<(m, —.)) > [6.] cosb,
andcos 6 = /1 — 2/|%.[2. It follows immediately from 25) that
()] — 2] < —ty/]6. — 7.

Thus, for any > 0, the first time at which the closed-loop system reaches the close hathich

is denoted by;/(¢), satisfies
0] — ¢ ||

fle) < < =
( ) \/|ﬁe|2 —_p2 \/|@e|2 )

t

o~
iy

We conclude thaf(¢) is upper bounded by a positive real number, namglthat is independent of
e > 0. Therefore, the pursuer will eventually capture the target in finite time inghsesdescribed

in Section2.2.

Before we proceed to the imperfect information case, it is important to highligtt if the
dominant component of the target’s velocity, was not taken to be a constant but a known function
of time, the analysis of the problem would be more complex (see, for instRate[2]) and one
would have to rely, in general, on numerical computations. However, ttgesigssue with the
assumption ob,. being a known function of time would be its practical value given that typically,

the time-evolution of the target’s velocity can be neither known a priori ianaged with accuracy.

4. THE PURSUIT PROBLEM FOR THE IMPERFECT INFORMATION CASE

Next, we consider the more realistic case when the velocity of the target perfectly known to
the pursuer, that is, when it is not necessarily true that(¢) = 0, for all ¢ > 0, and the pursuer
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16 E. BAKOLAS

is only aware of the dominant component of the target’s velocity. Our obgeiito modify the
feedback control law given in2(Lg-(21b) so that it can handle the presence of the uncertain and
non-zero component of the target’s velocityp., while it enjoys the two key properties of the
feedback control law that solves Probldnin the perfect information case. Specifically, we wish
to develop a feedback control law that enforces capture of the tar§jeitentime provided that the
pursuer emanates from its new winning set, which does not leave beifpiering the target. Note
that the winning set of the pursuer in the reduced space is expected iifelbend than that in the

perfect information case.

A natural question that arises is whether the feedback control law givéa1a-(21b) can
actually handle by itself the presence of uncertainty when the pursueraggsainom the cone
C(—v,,0) in the reduced state space. To answer the previous question, we Viestohiavestigate
how the uncertainty affects the winning set of the pursuer. To this aim, lebnsider the special
case whemAv,.(t) = wi; with ¢; := v./|0.|. In this case, the effective or total velocity of the
target, which is denoted by, satisfieso = . + wi;. Therefore, if we were aware that the
uncertainty has this specific structure, we would be able to conclude, ity sisnilar arguments
with those in Sectior8, that the corresponding winning set of the pursuer in the reducec spac
would be the con€(—v/,9) = C(—v., ), whered := arcsin(v/(|v.| + w)). On the other hand,
whenAv, = —wi,, the effective or total velocity of the target, which is denotedoby satisfies

v, = v, — wi; and thus the corresponding winning set of the pursuer in the redueed &pthe
coneC(—v, ,x) = C(—9., x), wherey := arcsin(7/(]v.| — w)). It is clear that the coné(—v., x)
and the con€(—wv., ) are respectively, the largest and the smallest possible winning sets for the

pursuer in the reduced space in the special case Whe(¥) = +|Av,(t)|i; with |Av.(t)] < w for

all ¢ > 0. In addition, we have

C(=be, ) C C(—be,0) C C(—be, X).

The situation is illustrated in Fig2(b). One can conjecture (erroneously, as we explain next) that
C(—wv.,v) corresponds to a “safe” approximation of the new winning set of theupurs

Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)
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ON THE FINITE-TIME CAPTURE OF A MOVING TARGET 17

Let us now pose the following question: Can the feedback control laengiv219-(21b) handle
by itself (without any modification) the presence of uncertainty when theyguemanates from the
coneC(—v., ) C C(—v., 0)? The answer to this question is negative. Before we explain the reasons
for this, let us consider the unit vectefx; v, ) that is orthogonal te; () (equivalently, the vector
r(x;v.) lies in the plane spanned ley(x) andes(x)) and points toward the axis of symmetry of
the coneC(—., 1), that is, the ray emanating from the origin that is parallet-#.. With the aid

of Fig. 2(a), it is easy to show that

o) = (Pere2(®))es(@) + (B, e5(x))es() 26
(i %) o @) + { (20

forall z € C(—v.,9)\{0}.

Let us now consider the case when the pursuer is located at a poart the boundary
bd C(—v., ") \{0}, and let us also assume that the uncertain component of the target’s velotity
be written as followsAv, (t) = —ur(x(t); v.), wherep € [0,w]. Again, the reason we consider
this particular form of uncertainty is because the latter has the effectabfipy the pursuer out
of its winning set/cone in the reduced space. In particular, the vec¢iars.) for « that lies on
bd C(—wv., ) is perpendicular to this boundary set and is pointing outwards the c6tev., ).

In this case, the vector field of the closed-loop dynamics of the pursuee irettuced space when
driven by the control law, has a component that points outward the adfreo. , ¢). Consequently,
the pursuer will exit the coné(—1v., ) and there is no guarantee that it will be able to somehow
return to it (see Fig2(a)). Note that in theory, the pursuer may be able to returé(ted., 9) if,

for example, the uncertain component of the target’s velocity becomepécative” at some point

in time, in the sense that it reduces the effective or total speed of the taoyetyer, there are no
guarantees whatsoever.
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18 E. BAKOLAS

(a) Even the smallest uncertain velocity component (b) The winning set of the pursuer in the imperfect
Av, that points outward the cor¥ —., ) can force information case can either shrink or expand
the pursuer to exit this set, when the latter is close to depending on whether the uncertainty is “adversarial”
the boundary of’(—w., #) and driven by the control (points away from the origin) or “cooperative” (points

Uy towards the origin).

Figure 2. In the presence of uncertainty, the feedback ablativ designed for the perfect information case
may not be able to always guarantee that the pursuer willrrexiethe cone’(—o., 6) before reaching the

origin.

One possible solution to address the pursuit problem in the presenceestainty is to use the
following discontinuous feedback control law

uy(x;0.,7), if x€intC(—v,,1),
U (X5 Ve, U, W) = (27)

vr(x; ve), if e bdC(—v.,9)\{0}.
The discontinuous, feedback lawy is purported to prevent the pursuer from crossing the boundary
of its conjectured winning set in the reduced space, that is, the €oné., ), until capture
occurs. In this context, the worst possible case is when, at some tinfe) € bd C(—v.,9)\{0}
andAwv, (t) = —wr(x(t); v.). This is because in this case, the uncertain component of the target's
velocity points outward the cor& —v., ¥) and perpendicularly to its boundary and its magnitude
attains the maximum possible value; consequently, the pursuer is forceitl ttoessoneC (—v.., ).
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ON THE FINITE-TIME CAPTURE OF A MOVING TARGET 19

By applying the feedback control law, (x; 0., 7, w), the “worst” possible effect of the uncertainty
will be compensated given that the uncertain term will be either cancelezkaatly or dominated
by the termawr(x; 0.) that appears in the expressionf given in 7). However, one may think
that, by using the input termr (x; v, ) to cancel this “worst” possible uncertainty, it may be possible
that the remaining available control authority is not enough to also cantéi®@projection of the
dominant component of the target’s velocity, along—r(x; ¢.) and thus guarantee that the pursuer

will not exit the coneC(—v., ¥) in the reduced space. Next, we will look closer into this possibility.

In particular, we observe in Fig(a) that the projection ofo, on —r(x;v.) has magnitude
|| sind = p|0.|/(|0.] + w). Note that the proposed contral, needs to be able to compensate
the component of the effective or total velocity of the target} Av.(t), along the unit vector
—r(x;0.) whenz € bdC(—v., ). The magnitude of this component, in the worst possible case,
that is, when the component &v.(¢) is parallel to—r(x;v.) and has the maximum possible
magnitudeyo, is given by

X N . A _ v|v.| (4 w)|De| + w?
Ve + A0 (1), —r(x; D = |v.|sind == =
(B + 200(0), —r(ws )| = o] sind 40 = T p = RS

Unfortunately, it turns out that can never dominate the right hand side in the previous equation.
In other words, the pursuer is lacking the necessary control authedfyired to remain in its
conjectured winning set whew. | > . This is because the opening anglef the coneC(—v., )

is larger than what the control authority of the pursuer can afford in tefnt®@mpensating the
maximum possible component of the effective or total velocity of the targegala(x(t); v.),
which is forcing it to exitC(—v.,?). So our initial conjecture that, in the imperfect information
case, the winning set of the pursuer in the reduced space is theC¢efig, ¢) turns out to be
wrong. We need to find instead a cofie-v., ¢), where the new half-apex anglec [0, 7/2] is

such that we have

(Do + Db (1), r(@;9.))| = [bc|sin g +w = p,

when Av(t) = —wr(x(t);v.) and z = z(t) € bdC(—v., p). We immediately conclude that
singp = (7 — ) /|| Or p = arcsin ((7 — w)/|0.|) with ¢ € [0, 7/2[. Note thatp < o, wherep and
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20 E. BAKOLAS

¥ € [0,7/2[. Therefore, we have

C(=Pe, ) € C(—e, V).

The new conjectured winning set of the pursuer in the reduced space tieC(—v.,¢) and
the definition of the discontinuous control law that is purported to keep theupuin the cone

C(—,, ) before reaching the origin in the reduced space has to be refined assfollo

Uy (T; 0, ), if x€intC(—0.,¢),
Uy (T; Ve, U, W) = (28)
vr(x; 0.), if e bdC(—v.,p)\{0}.
Actually, as we show next, with the new discontinuous feedbackdawiven in 28), it is true

that the pursuer will never exit the cog¢—w., ¢) in the reduced space. This is because, for all

x € bdC(—2.,¢), we have

(Ui (@; e, 7, 0) + Do + A (t), 7(; D)) = 1 — [De| sin ¢ + (A (1), r(z; 0c))

Y

7 — [0 sin @ — | A ()] (2; 9c)|
> U — || sing — w

:O’

where we have used the fact that, for alle bdC(—v.,)\{0}, we have (0., r(x;v.)) =
—|v,| sin ¢, wheresin ¢ = (v — w)/|v.| (see Fig.3), together with the Cauchy-Schwarz inequality.
Consequently, the vector field of the new closed-loop system that resthitthe application ofu,
will always have a non-negative component along the unit vec{tnus, it will not point outward
the coneC(—7., ¢)). Consequently, the pursuer cannot escape the €one., ») before reaching

the origin in the reduced space.

It is interesting to note at this point that the feedback control aw:; ., 7, w) consists of
two modes. With the first oney, does not account for the unknown component of the target's
velocity, when the pursuer lies in the interior of the calie v., ) in the reduced space. With the
second oney, compensates the effect of the uncertainty over the target's velocity wagutbuer
reache$d C(—wv., ¢) in order to prevent it from exiting(—., ). The switching between these two
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ON THE FINITE-TIME CAPTURE OF A MOVING TARGET 21

modes is discontinuous. It is well-known that the use of a discontinuousottaw usually comes
with serious implementation problems such as unwanted chattering that canhégleifeequency,
unmodelled dynamics of the actual pursuer, whose exact motion canramicheately described
by the simple motion model we are utilizing herein. Next, we propose a contineeggn of
u,(+; 0., ), Which results by blending appropriately the two modes of this discontinemabick
control law. The proposed continuous feedback will enforce finite-tiapgure of the target while
the pursuer does not exit the cafie-v., ¢) before reaching the origin in the reduced space. To this
aim, letA(x; v.) : C(—., ¢)\{0} — [0,1], whereX(x; 0.) = <t(z, —0.)/p. Note that\(-; v.) = 1,
whenz € bd C(—v., ¢)\{0}, and\(x; v.) € [0, 1], whenx € int C(—v., ¢). Then, we propose the
following continuous feedback control law:

. L v
Uy (T; Ve, U, W) 1=

W((l — A5 D) (5 e, ) + A(@; 0 )or (@3 9:)),  (29)

where  n(x; 0, 7, w) = |(1 — M@; D) ) (@3 De, 7) + A(; D)0 (2; D). Note that
|y (z; Ve, v, w)| = v, for all x € C(—v.,)\{0}. In addition, u,(x; ., 7, w) = u,(x; Ve, V),
whenaz belongs to the axis of symmetry of the coie-v., ¢), anda, (x; 0., 7, w) = wr(x; v.),
when x € bdC(—v.,¢)\{0}. We wish to highlight at this point that one may define the
function A(+; 0. ) : C(—., ¢)\{0} — [0,1] in many different ways as far as(x;v.) = 1, when

x € bdC(—2., ¢)\{0}, andX(z; v.) € [0, 1], whenz € int C(—2., ¢).

The continuous feedback control law given 28) can be expressed in the orthonormal basis

(e1(x), ex(x), e3(x)) of R3 as follows:

Mw

(x; Ve, v, w)ey(x) (30)

Uy (25 Ve, 7, W)

with

v

ﬂ‘i(w7 ﬁe’ 177’11}) = (1 - )\(w? ﬁe))ui(wa ﬁea 17)7

n(x; Ve, v, W)

v

(e o 0.0 — “Mz: v N ub(x: 0., v x; 00 (r(x;v,.), er(x
30, 9010) = o (1= M)l (s 0,) + A 907 (r (s ) ()

for k = 2,3, where we have used the fact that the unit veet@r; v.) is orthogonal to the unit
vectore; (z) to simplify the expression fo@.. Note that since for alke € bd C(—9., ¢)\{0}, we
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Figure 3. It turns out that the characterization of a core@re approximation of the winning set of
the pursuer in the presence of uncertainty requires to densioth the cases when the largest possible
uncertainty is anti-parallel to the target’s dominant eélg ., and anti-parallel to the unit vectefz; o).
This analysis will give a conservative estimate of the wiignset that corresponds to the cate-ve, ),

whereC(—e, @) C C(—be,9) C C(—be, ).

haveu, (x; 0., 7, w) = u.(x; 0., 7, w), it follows that the pursuer driven by the continuous feedback
control lawa, cannot cross the boundary 6—v., ¢) before reaching the origin in the reduced

space.

Let us next examine whether the pursuer emanating from the@®oné., ), and driven by the
continuous feedback law, can also reach the origin in finite time. To this aim, we will need the

following lemma.

Lemma 1l

Suppose thai.| > 7 > 0 and0 < @ < min{|v.| — 7, 7}. Then, we have

|De]? — (7 —w)? — w? > 0. (31)
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The closed-loop kinematics of the pursuer driven by the continuoubéedontrol law 80) are

given by
& = Uy (@5 Ve, 7, W) + O + AD(1)
3
= [k (@59, 7,0) + (b, + Abe(t), ex(x))]er (). (32)
k=1

Along the trajectoryz(-) of the closed-loop system described BY)( we have that

Clat)] = (&, e1(@) = 5 (w50, 7,19) + (b + 20.(0), 1)

< —|0e| cos  + |AD ()]

= V7w + |Ad (1)

< V-G +w, 33
where we have used the facts that, for alE C(—9.,¢)\{0}, @l(z;o.,7,w) <0 (given that

(1—X)/n >0 andul(x;9.,7) <0, as we have already explained before) angb.,e;(x)) =

(e, e1(x))| > || cos p With cosp = /1 — (7 — w)2/|9.|2 (see Fig.3). Therefore, 83) implies

that %\az(tﬂ is upper bounded by := —\/|v.|?> — (7 — @)% + @, which is a strictly negative

number in view of Lemma4.. In addition, 83) implies that
(1)) — |2°] < ~t(/[8.] — (7 — w)? — ).

It follows that, for anye > 0, the first time at which the closed-loop system reaches the closed ball

B., which is denoted by (¢), satisfies

0| — ¢ |=°] |z
= —— =t

-0l -0 Vel -G-of-5 1

We conclude that(¢) is upper bounded by a positive real number, namglshat is independent

te(e) < °l_

of e > 0, which implies finite-time convergence 1) to the origin, in the reduced space.

5. NUMERICAL SIMULATIONS

Figure 4 illustrates the trajectories of the pursuer driven by the feedback cdaikot: in the
reduced space for a particular scenario assuming that the uncetaipty) = —wr(x(t); o.), for
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0 0.5 1 15 2
1

Figure 4. Trajectories of the pursuer driven by the feedbamitrol law @ in the reduced space, in the

imperfect information case.

all z = x(t) in the coneC(—v., ¢). In our simulations, the pursuer is emanating from eight different
initial positions (black crosses); the data used for the numerical simulatieng & 0.25, v = 1,
e = 0.02 (the parameter corresponds to the value of the relative distance between the targeeand th

pursuer at which the pursuit phase terminates with the capture of the @ngeét) = —[v/2, 0, 0]T.

6. CONCLUSION

In this work, we have examined the problem of enforcing capture of a rgdeirget by a slower
pursuer in finite time. We have considered two cases regarding the infomeaitilable to the
pursuer. In the first case, the target’s velocity is constant and plgrkeown to the pursuer, whereas
in the second case, the velocity of the target can be decomposed into mireadb component,
which is constant and known to the pursuer, and an uncertain compevigoh is unknown to
the pursuer. We have shown that the pursuit problem admits a solution icdmek, provided that
the pursuer emanates from a certain pointed convex cone, which wetoeds its winning set
and we explicitly characterize for each case. Furthermore, we hapeged feedback control laws
that solve the pursuit problem when the pursuer emanates from its wirgtirgn@d we have given
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estimates for the time of arrival in both cases. Our detailed analysis hasa@vkat in the imperfect
information case, intuitive arguments about the winning set of the pursueeasily lead one to
erroneous conclusions. This is due to the fact that even a small untgdeén the target’s velocity
can force the pursuer to exit the cone that corresponds to its winnirg thet perfect information
case, when it is located close to the boundary of this set. Future work @stheé analysis of the
problem of capturing a faster target when the motion of both the target aqlitsuer is described

by higher order kinematic models.

APPENDIX

In this appendix, we present the analytic expressionsMi'(x; v.,7) and |VT(x; 0., D)|,
for all « € C(—v.,0)\{0}, along with the main steps of their derivations. In particular, by

differentiating @), we get

A 1 . 1 o
VT (x;0e,0) = — R Ve — 5.2 = 5° Vae2(x; Ve, 1)

whereX(z; v, 7) == \/ (0, )2 — (|02 — 72)|z[2. We have that

1

VeX(x;ve,v) = S(@ 60,7

(<ﬁe,$>ﬁe - (‘,{)6‘2 - 52)‘73) )

where in the previous derivation, we have made use of the idevijity:| = «/|x| = e;(x), which

holds for allx # 0. It follows that

L —Y(m 0., D) — (B, T) 1
2T (5D, 1) = = — 6o ) ° e, ¥
Vol (@00 7) = (G (@ 50,0) T S 00r7)
T(z; 0, 7) 1
_ T, 34
E(w;@e,ﬁ)%_'—z(iv;fleaﬂ)m’ ( )

where we have used the fact that

(Ve @) + X(x; Ve, 1)
|1A’e|2 -2

T(x;0e,0) = —

Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)

Prepared using ocaauth.cls DOI: 10.1002/oca



26 E. BAKOLAS
Furthermore, we have

(O, )T (2; Ve, V) |z]

(VoT (@0, 7), €1(x)) = |2 (@ 00,0) | (w0, D)

Ve, ®)T (500, 0) + ||
|z|2(2; Ve, V)
— (e, @) ((De, ) + B (3 Ve, D)) + (|0]* — 7°) 2|
2@ 6, 7) (Be]? — )
—(Ve, )5 (2; Ve, 7)) — ((De, @)? — ([0 — 7%)|z|*)
|| 3 (; De, ) (|De|> — 72)
— (e, ) (T; D, 1)) — X2 (2; D, 1)
2560, ) (6. — 72)
(e, @) + X(x; e, V)
|| (O[> = 7?)
_ T(x; 0., ) (35)

|

and

(e, e (x))T(x; Ve, 1)

e . k=23 (36)

(VoT (@50, 7), ex(x)) =

It is interesting to note that a more elegant way to compwig? (x; v., ), e1(x)) is to use the so-
called Euler's homogeneous function theorem. In particular, it is easyotw 8rat7 (\x; v, 7) =
AT (x;v.,7), for any A € R, that is, the functionl'(x; v.,7) is positively homogeneous of

first-degree. Consequently, in view of Euler's homogeneous functieorém, we have that

(VT (x;0.,7),x) = T(x; 0., ), fromwhich @5) follows readily.

In addition, we have that

(VT (2; e, 0)|* = (Vo T (x; 00, 0), €1(x))? + (Vo T(2; 0, 7), ea(x))? + (Vo T(x; e, 1), €3(x))?

_ TZ(*’I” Ve, V) T2($;ﬁev 7)((Ve, 62(w)>2 + (2, 63(33))2)

|z |2 ¥2(x; v, D)

B T?(x; 0, 7)  T?(x;0e, 0)(|0e]? — (e, €1(x))?)
| |2 Y2 (x5 0, 1)

C TP(x50e,7) | TP (2500, 0) ([0 |2]* = (D, 2)?)
| |2 |z |232 (x; D, D)

T2 (x; 0c, 0) (5% (; O, ©) + [0 |2]? — (D, )?)
|x|2%2(x; 0., )

_2 2 A —
v () Ve, U
_ I EtaT) @37)
Y2 (x; Ve, )
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which gives
VT s 00,0 = ). @8)
It follows that
(Pt @) = = o
(Wt @) = 25, k=2s (390)
REFERENCES

10.

11.

12.

13.

Bakolas, E., Tsiotras, P.: Minimum-time paths for a light afitarethe presence of regionally-varying strong winds.

In: AIAA Infotech at Aerospace. Atlanta, GA (2010)

. Bakolas, E., Tsiotras, P.: The Zermelo-Voronoi diagram: amhynartition problem. Automaticd6(12), 2059—

2067 (2010)

. Bakolas, E., Tsiotras, P.: Optimal partitioning for spatioterapcoverage in a drift field. Automatie®(7), 2064—

2073 (2013)

. Bellman, R.E.: Dynamic Programming, reprint edn. Dover, NSA[2003)

. Bernstein, D.S.: Matrix Mathematics: Theory, Facts, and Fasyisecond edn. Princeton University Press,

Princeton, NJ (2009)

. Caratleodory, C.: Calculus of Variations and Partial Differehfguations of First Order, third edn. American

Mathematical Society, Washington DC (1999)

. Dreyfus, S.E.: Dynamic Programming and the Calculus of \iariat Academic Press, NYC, USA (1965)

. Hajek, O.: Pursuit Games: An Introduction to the Theory and Aggpions of Differential Games of Pursuit and

Evasion, second edn. Dover Publications, Mineola, New York&20

. Isaacs, R.: Differential Games. A Mathematical Theory with ligagions to Warfare and Pursuit, Control and

Optimization. Dover Publication, New York (1999)

Jurdjevic, V.: Geometric Control Theory. Cambridge UrsitgrPress, New York (1997)

Nahin, P.J.: Chases and Escapes: The Mathematics of Purs@vasion. Princeton University Press, Princeton,
NJ (2007)

Pachter, M.: Simple-motion pursuit-evasion in the half @plaGomputers & Mathematics with Applicatioh3(1-

3), 69-82 (1987)

Pachter, M., Yavin, Y.: Simple-motion pursuit-evasion atiintial games, Part 1: Stroboscopic strategies in
collision-course guidance and proportional navigation. daluof Optimization Theory and Applicatiorl(6),

95-127 (1986)

Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)

Prepared using ocaauth.cls DOI: 10.1002/oca



28 E. BAKOLAS

14. Pachter, M., Yavin, Y.: Simple-motion pursuit-evasioneatiéntial games, Part 2: Optimal evasion from proporional
navigation guidance in the deterministic and stochastic casesnalaf Optimization Theory and Applications
51(6), 129-159 (1986)

15. Sagan, H.: Introduction to the Calculus of Variations.v&dublications, New York (1992)

16. Zermelo, E.Uber das Navigationsproblem bei Ruhender oderaviderlicher Windverteilung. Zeitschriftif
Angewandte Mathematik und Mechariik(2), 114-124 (1931)

Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)

Prepared using ocaauth.cls

DOI: 10.1002/oca



	1 Introduction
	2 The Problem of Pursuit of a Moving Target by a Slower Pursuer
	2.1 Notation
	2.2 Equations of Motion and Problem Formulation

	3 The Pursuit Problem for the Perfect Information Case

	4 The Pursuit Problem for the Imperfect Information Case
	5 Numerical Simulations
	6 Conclusion

