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Abstract

We consider the optimal synthesis of the Zermelo–Markov–Dubins problem, that is, the
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for the special case of a constant field. Furthermore, we present a semi-analytic scheme for
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1 Introduction

We consider the problem of guiding an aerial or marine vehicle with turning constraints to a pre-

scribed terminal state in the presence of a constant drift field in minimum time. In particular, we

assume that the vehicle travels in the plane with constant forward speed such that the direction of its

forward velocity (heading) cannot be changed faster than a prescribed upper bound. Therefore, the

kinematics of the vehicle in the absence of the drift field coincides with the kinematic model of the

Isaacs-Dubins (ID for short) car [1–3]. The steering problem considered in this work is essentially

a combination of two classical optimization problems, namely a problem posed by A. A. Markov

in the late 1880’s, dealing with the characterization of planar curves of minimal length of bounded

curvature, and a problem posed by E. Zermelo in the early 1930’s, dealing with the characterization

of the planar minimum-time paths for a vehicle with single integrator kinematics traveling in a flow-

field induced by local currents/winds [4]. Zermelo solved this problem for the general case of a both

temporally and spatially varying drift field using “an extraordinary ingenious method” according

to Carathéodory [5]. The problem posed by Markov was solved by Dubins [1]; henceforth, we shall

refer to this problem as the Markov–Dubins (MD for short) problem as suggested by Sussmann [6].

For a discussion on the history of the MD problem, the reader is referred to [3, 7]. In addition,

some interesting variations of the MD problem can be found in [8–16]. In this work, we refer to

the combination of the Zermelo’s navigation and the MD problems as the Zermelo–Markov–Dubins

(ZMD for short) problem.

The ZMD problem for the special case of a constant drift field was first posed by McGee and

Hedrick in [13]. The authors of [13] examined this special case of the ZMD indirectly, by interpreting

the ZMD problem as a minimum-time intercept problem of a non-maneuvering target. They conjec-

tured that, under some mild modifications, the family of extremals that is sufficient for optimality

for the standard MD problem is sufficiently rich to provide feasible paths to the ZMD problem for

an arbitrarily pair of boundary states. A numerical scheme for the computation of the Dubins-like
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paths proposed in [13], which may involve the solution of a set of coupled transcendental equations,

has been proposed in [17]. A set of equations in triangular form that solves the same problem was

presented in our previous work [18]. It is worth-mentioning that the equivalent formulation of the

ZMD problem as a minimum-time intercept problem of a non-maneuvering target, as discussed in

[13], is closely related to the intercept problem addressed by Glizer in [19, 20]. In particular, the

author of [19, 20] considered an optimization problem where the hard input constraints were relaxed

with the addition of a cost term penalizing the control effort, for which he characterized both exact

and simpler approximate solutions in [19] and [20], respectively.

The objectives of this work are twofold. First, we revisit the ZMD problem for the special case

of a constant drift field, and we rigorously characterize the structure of its extremals. Moreover,

we highlight the existence of extremals of the ZMD problem that do not appear in the solution

of the standard MD problem. The end result of our analysis is a family of control sequences that

drive the vehicle from a given initial to an arbitrary (prescribed) terminal state in (nearly) minimum

time. Second, we present a (nearly) optimal synthesis of the ZMD problem based on the proposed

family of extremals. Furthermore, we establish the direct correspondence between the syntheses of

the MD and the ZMD problems by means of a discontinuous mapping; something that significantly

simplifies the characterization of the optimal synthesis of the ZMD problem. The detailed analysis

and presentation of the optimal synthesis of the ZMD problem, which, to the best of the authors’

knowledge, has never been addressed in the literature, along with its comparison with the synthesis

of the standard MD problem presented in [21–23], are the main contributions of this work.

The rest of the paper is organized as follows. In Section 2, we formulate the ZMD problem as an

optimal control problem and establish the existence of its solutions. In Section 3, we characterize

the family of extremals for the ZMD problem that is sufficient for controllability and necessary for

optimality. A nearly optimal synthesis of the ZMD problem is presented in Section 4. Finally,

Section 5 provides some concluding remarks.
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2 Kinematic Model and Problem Formulation

In this section, we introduce the kinematic model of the vehicle and examine its controllability.

Subsequently, we formulate the minimum-time problem and examine its feasibility.

2.1 Kinematic Model and Problem Formulation

We consider an aerial/marine vehicle whose motion is described by the following set of equations

ẋ = cos θ + wx, ẏ = sin θ + wy, θ̇ =
u

ρ
, t ≥ 0, (1)

where (x, y) ∈ R2 are the Cartesian coordinates of a reference point of the vehicle, θ ∈ S1 is

the direction (heading) of the vehicle’s forward velocity, u is the control input, w := (wx, wy) is

the constant drift field induced by local winds/currents, and ρ is a positive constant. We write

w := ν(cosφ, sinφ), where ν = |w| and φ ∈ S1 is the direction of the drift. We assume that the set of

admissible control inputs, denoted by U , consists of all measurable functions defined on [0, T ], where

T ≥ 0, taking values in U := [−1, 1]. Next, we formulate the ZMD problem as a minimum-time

problem for the system (1).

Problem 2.1 (ZMD Minimum-Time Problem). Given the system described by Eq. (1) and a state

(xf , yf , θf) ∈ R2 × S1, determine a control input u∗ ∈ U such that

(i) The trajectory x∗ : [0, Tf ] 7→ R2×S1 generated by the control u∗ satisfies the boundary conditions

x∗(0) = (0, 0, 0), x∗(Tf) = (xf , yf , θf). (2)

(ii) The control u∗ minimizes along the trajectory x∗ the cost functional J(u) := Tf , where Tf is

the free final time.

Note that if we assume, in addition, that the input value set is unbounded, that is, the input

u can contain impulses and that both θ(0) and θ(Tf) are free, (in which case, θ acts as a control

input), then Problem 2.1 reduces to the Zermelo’s navigation problem.
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Next, we present an intercept problem of a non-maneuvering target with a prescribed intercept

angle, which yields an alternative formulation of Problem 2.1. In particular, the equations of motion

of the interceptor are given by

ẋP = cos θP , ẏP = sin θP , θ̇P =
u

ρ
, t ≥ 0, (3)

where (xP , yP) ∈ R2 are the Cartesian coordinates of the interceptor with respect to an inertial

frame attached to its initial position, and θP ∈ S1 is the direction of the interceptor’s velocity. Note

that the kinematics of the interceptor coincide with those of the ID car. Furthermore, the target

motion is described by the following set of equations

ẋT = −wx, ẏT = −wy, t ≥ 0, (4)

where (xT , yT ) ∈ R2 are the Cartesian coordinates of the non-maneuvering target measured with

respect to an inertial frame attached to the initial position of the interceptor and (−wx,−wy) are

the components of the (constant) velocity of the target expressed in the same frame.

Problem 2.2. Consider an interceptor and a non-maneuvering target, whose kinematics are de-

scribed by Eq. (3), and Eq. (4), respectively, and let (xf , yf , θf) ∈ R2 × S1 be given. Determine an

intercept control law u∗ ∈ U such that

(i) The trajectory of the interceptor x∗P : [0, Tf ] 7→ R2×S1, where x∗P := (x∗P , y
∗
P , θ

∗
P), generated by

the control u∗ and the (control-free) trajectory of the non-maneuvering target x∗T : [0, Tf ] 7→ R2,

where x∗T := (x∗T , y
∗
T ), satisfy the boundary conditions

x∗P(0) = (0, 0, 0), xT (0) = (xf , yf), (5)

x∗P(Tf) = x∗T (Tf), y∗P(Tf) = y∗T (Tf), θ∗P(Tf) = θf . (6)

(ii) The intercept control law u∗ minimizes the intercept time.

Next we show that Problems 2.1 and 2.2 are equivalent, in the sense that a control u∗ ∈ U is a

solution of Problem 2.1 if and only if is a solution of Problem 2.2, and vice versa. To this aim, let
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assume that the control input u∗ ∈ U drives the system (1) from x = (0, 0, 0) to (xf , yf , θf) ∈ R2×S1,

in minimum time Tf . Next, let us apply the same control to the interceptor (3), which consequently

reaches a state (xP(Tf), yP(Tf), θ(Tf)) at time t = Tf . At the same time, the target reaches the point

(xT (Tf), y(Tf)) = (xf − wxTf , yf − wyTf). Let us consider the state transformation χ := x − xP ,

ψ := y − yP , ϑ := θ − θP . It follows readily that

χ̇ = cos θ + wx − cos θP , ψ̇ = sin θ + wy − sin θP , ϑ̇ := u∗ − uP , (7)

where χ(0) = 0, ψ(0) = 0, and θ(0) = θP(0) = 0. Thus for uP = u∗, it follows that ϑ = ϑ(0) = 0,

and thus θ = θP , which implies that θP(Tf) = θf and, in addition, χ(Tf) = wxTf , ψ(Tf) = wyTf .

Therefore, xP(Tf) = x(Tf) − wxTf = xf − wxTf , and yP(Tf) = y(Tf) − wyTf = yf − wyTf . It follows

that xP(Tf) = xT (Tf) and yP(Tf) = yT (Tf) and θP(Tf) = θf . Thus at t = Tf , the target is intercepted

with the desired intercept angle θf . Now, let assume that there exists a control law u′P different than

uP = u∗ that steers the interceptor to the target at time t = T ′
f
< Tf . It is easy to show, by using

a similar line of argument as before, that the control u′P would steer the system (1) to (xf , yf , θf)

at time t = T ′
f
< Tf , that is, faster than the minimum-time control u∗. Thus we have reached a

contradiction and the equivalence of Problems 2.1 and 2.2 has been established.

At this point, it is worth mentioning that the ZMD problem was indirectly examined in [13],

where the authors have analyzed the equivalent formulation of the ZMD problem as a minimum-

time intercept problem of a non-maneuvering target (Problem 2.2). In this work, we will address the

original formulation of the ZMD problem (Problem 2.1) directly, although in the subsequent analysis,

we shall also employ the equivalent formulation of the ZMD problem as an intercept problem of a

non-maneuvering target (Problem 2.2).

2.2 Controllability in the Case of a Constant Drift Field

Before proceeding to the solution of Problem 2.1, we examine its feasibility by studying the con-

trollability of the system described by Eq. (1). The following proposition provides necessary and
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sufficient conditions for the complete controllability of the system described by Eq. (1).

Proposition 2.1. Let w = ν(cosφ, sinφ) be a constant drift field. Then the system described by

Eq. (1) is completely controllable if and only if ν < 1.

Proof. We show that for every (xf , yf , θf) ∈ R2 × S1, there exists an admissible control u ∈ U

that will drive the system described by Eq. (1) from (0, 0, 0), at time t = 0, to (xf , yf , θf), at

time t = tf < ∞. First, we show sufficiency by using the interpretation of the ZMD problem

as the minimum-time intercept Problem 2.2, as illustrated in Fig. 1. In particular, let σ be the

ray emanating from the initial position (xf , yf) (point B in Fig. 1) of the target that is parallel to

e := −w/|w| = −(cosφ, sinφ). Note that the target travels along σ with constant speed ν < 1. Since

the interceptor is a completely controllable system, there exists an admissible intercept strategy u

that steers the interceptor, starting from the origin (point O in Fig. 1) to point B with θP = θσ,

where θσ = π + φ mod 2π, at time t = t1 > 0. Subsequently, the interceptor follows the target

along σ. Since the interceptor is faster than the target, given that ν < 1, then, at some time

t = t2 > t1, it will reach a point (x′
f
, y′

f
) on σ sufficiently ahead of the target, say, at a distance

d ≥ 0. In addition, there exists an admissible control ud ∈ U to drive the interceptor from (x, y, θσ)

to (x, y, θf), for any (x, y) ∈ R2, after td units of time, where td is a function of φ and θf only. In

particular, (xP(tf), yP(tf)) = (xP(t2), yP(t2)) = (xT (tf), yT (tf)), and θP(tf) = θf , provided d = νtd.

To show necessity, it suffices to observe that if ν ≥ 1, the target will travel at least as fast as the

interceptor, and thus there exist boundary states for which no intercept will take place.

2.3 Existence of Optimal Solutions

To show existence of an optimal solution to Problem 1, we apply Filippov’s Theorem for minimum-

time problems with prescribed initial and terminal states [24]. In particular, we observe that the

right hand side of Eq. (1) defines a vector field f : R3 × U 7→ R2 × S1 ⊂ R3, where f(θ, u) :=
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O

θf

−w/|w|

d = νtd

B

Figure 1: The system described by Eq. (1) is completely controllable if and only if ν < 1.

(cos θ + wx, sin θ + wy, u/ρ), which is continuous in u and continuously differentiable in θ, and the

input value set U = [−1, 1] is convex and compact. Furthermore, given that the vector field is affine

in the control, and the input value set U = [−1, 1] is convex, it follows that for a given θ ∈ S1, the

set f(θ, U) is convex. To prove the existence of optimal solutions for the ZMD problem it suffices,

in light of Filippov’s Theorem, to show that there exists a constant c > 0 such that

|〈x, f(x, u)〉| ≤ c(1 + |x|2), for all (x, u) ∈ R2 × S1 × U, (8)

where x := (x, y, θ), and the inner product and the norm that appear in Eq. (8) are the standard

scalar product and the Euclidean norm in R3, respectively. Furthermore, in light of the triangle

inequality, the Cauchy-Schwartz inequality, and the inequalities
√
x2 + y2 + |θ| ≤

√
2|x| and 2|x| ≤

1 + |x|2, it follows that

|〈x, f(x, u)〉| ≤ |x(cos θ + wx) + y(sin θ + wy)|+
|uθ|
ρ

≤
√
x2 + y2

√
(cos θ + wx)2 + (sin θ + wy)2 +

|θ|
ρ

≤
√
2

2
max

{
1 + ν,

1

ρ

}(
1 + |x|2

)
. (9)

Thus, all conditions of Filippov’s Theorem are satisfied, leading us to the following two propositions.
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Proposition 2.2. Let (xf , yf , θf) ∈ R2 × S1 be given, and let assume that there exists an admissible

control u ∈ U that drives the system described by Eq. (1) from (0, 0, 0), at time t = 0, to (xf , yf , θf)

after 0 ≤ T <∞ units of time. Then, the minimum-time Problem 2.1 always has a solution.

Proposition 2.3. Let the drift field w = ν(cosφ, sinφ). If ν < 1, then the minimum-time Prob-

lem 2.1 has a solution, for all (xf , yf , θf) ∈ R2 × S1.

Proof. If ν < 1, then it follows from Proposition 2.1 that the system (1) is completely controllable.

Thus, there always exists a feasible path from (0, 0, 0) to any (xf , yf , θf) ∈ R2×S1, which furthermore

implies, in light of Proposition 2.2, the existence of a minimum-time path between these two states.

3 Analysis of the ZMD Minimum-Time Problem

In this Section, we revisit the ZMD problem posed in [13] and provide an in-depth examination of

the structure of its solution.

3.1 Variational Analysis

To characterize the extremals of Problem 2.1, we consider its Hamiltonian

H : R2 × S1 × R3 × U 7→ R, H(x, p, u) := p0 + p1 cos θ + p2 sin θ +
p3u

ρ
, (10)

where p := (p1, p2, p3) and p0 ∈ {0, 1}. By virtue of the Maximum Principle, if x∗ := (x∗, y∗, θ∗) is a

minimum-time trajectory of the ZMD problem generated by the control u∗ ∈ U , then there exists a

scalar p∗0 ∈ {0, 1} and an absolutely continuous function p∗ : [0, Tf ] 7→ R3, where p∗ := (p∗1, p
∗
2, p

∗
3),

known as the costate, such that

(i) ‖p∗(t)‖+ |p∗0| 6= 0, a.e. on [0, Tf ],
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(ii) p∗(t) satisfies, a.e. on [0, Tf ], the canonical equation ṗ∗ = −∂H(x∗, p∗, u∗)

∂x
, that is,

ṗ∗1 = 0, ṗ∗2 = 0, ṗ∗3 = p∗1 sin θ
∗ − p∗2 cos θ

∗, (11)

(iii) p∗(Tf) satisfies the transversality condition

H(x∗(Tf), p
∗(Tf), u

∗(Tf)) = 0. (12)

Because the Hamiltonian does not depend explicitly on time, it follows from (12) that

H(x∗(t), p∗(t), u∗(t)) = 0, a.e. on [0, Tf ]. (13)

It follows, by virtue of (11), that p∗1(t) = p∗1(0) and p
∗
2(t) = p∗2(0), a.e. on [0, Tf ], which furthermore

implies, in light of (13), that

−p∗0 = p∗1(0)(wx + cos θ∗(t)) + p∗2(0)(wy + sin θ∗(t)) +
p∗3(t)u

∗(t)

ρ
, a.e. on [0, Tf ]. (14)

Furthermore, the optimal control u∗ necessarily minimizes the Hamiltonian evaluated along the

optimal trajectory x∗ and the corresponding costate vector p∗. Thus,

H(x∗, p∗, u∗) = min
v∈[−1,1]

H(x∗, p∗, v), a.e. on [0, Tf ]. (15)

It follows from (15) that

u∗(t) =





+1, if p∗3(t) < 0,

ū ∈ [−1, 1], if p∗3(t) = 0,

−1, if p∗3(t) > 0.

(16)

The following proposition follows similarly to [25].

Proposition 3.1. The only singular control of Problem 2.1 is u = 0.

Thus, a minimum-time trajectory of Problem 2.1 corresponds necessarily to concatenations of

singular arcs, when u = 0, and bang arcs, when u = ±1. Henceforth, we denote a bang and a
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singular arc by b and s, respectively; furthermore, we write bα and sα to denote, respectively, a

bang and a singular arc traversed in α units of time. In addition, we write b+α (resp., b−α ) to denote

the fact that the bang arc is generated with the application of the control input u = +1 (resp.,

u = −1) for α units of time. We denote by b±α b
∓
β the concatenation of either a b+α arc followed by a

b−β arc or a b−α arc followed by a b+β arc. Finally, we denote by Σn
α a chain of n bang arcs, that is,

a concatenation of n consecutive bang arcs, traversed in α total units of time. We shall refer to the

first and the last arc of a chain Σn
α as the boundary arcs, and to the rest of them as the intermediate

arcs in the chain.

3.2 Structure of Candidate Optimal Paths

Next, we investigate the behavior of the switching function p∗3. Subsequently, we examine the

structure of the extremals of the ZMD problem. To this aim, let us consider an open interval

I ⊂ [0, Tf ] such that p∗3(t) 6= 0, for all t ∈ I. The restriction of the optimal control u∗ on I is a

piecewise constant function, which may undergo a number of discontinuous jumps, and furthermore,

u∗(t) ∈ {−1,+1}, for all t ∈ I. By virtue of Eqs. (11) and (14), for any subinterval Ib of I, where

u∗(t) is constant, p∗3 satisfies the following differential equation

p̈∗3(t) = −p
∗
3(t)

ρ2
−
(
u∗(t)p∗0

ρ
+ p∗1(0)wx + p∗2(0)wy

)
, a.e. on Ib. (17)

The general solution of Eq. (17) restricted to the internal Ib and its time derivative are given by

p∗3(t) = C1 cos
tu∗(t)

ρ
+ C2 sin

tu∗(t)

ρ
− ρ2

(
p∗1(0)wx + p∗2(0)wy +

u∗(t)p∗0
ρ

)
, (18)

ṗ∗3(t) =
u∗(t)C2

ρ
cos

tu∗(t)

ρ
− u∗(t)C1

ρ
sin

tu∗(t)

ρ
, (19)

where C1, C2 are real constants and u∗(t) ≡ ±1. It follows readily that

(ρṗ∗3(t))
2
+ (p∗3(t) + u∗(t)p∗0ρ+ ̺)

2
= C2

1 + C2
2 , a.e. on Ib, (20)

where ̺ = ρ2(p∗1(0)wx + p∗2(0)wy).
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Figures 2-3 illustrate the phase portrait (p∗3, ρṗ
∗
3) of a chain of abnormal (when p0 = 0) and

normal (when p0 = 1) bang arcs, respectively. In particular, as observed in Figs. 2(a)-2(b), the

phase portrait of (p∗3, ρṗ
∗
3) of a chain of abnormal bang arcs consists of a family of circles centered

at a point K with coordinates (±̺, 0) and radius r, where r =
√
C2

1 + C2
2 , with parameterizations

that trace them out clockwise at constant angular velocity 1/ρ. Note that the control switches from

u∗ = +1 to u∗ = −1 only if |̺| ≤ r. Furthermore, as illustrated in Figs 2(a)-2(b), the time of motion

along an abnormal bang arc of the ZMD problem is upper bounded by either πρ or 2πρ. This is

in contrast to the standard MD problem, where the time of motion along an abnormal bang arc is

always upper bounded by πρ [25]. On the other hand, the phase portrait of (p∗3, ρṗ
∗
3) of a chain of

normal bang arcs consists of two families of circles centered at points A and B, with coordinates

(̺ − ρ, 0) and (ρ + ̺, 0), and radii r+ (for u∗ = +1) and r− (for u∗ = −1), respectively, with

parameterizations that trace them out clockwise at constant angular velocity 1/ρ; we denote these

circles by C(A; r+) and C(B; r−), respectively. Note that a jump from u∗ = −1 to u∗ = +1, and vice

versa, occurs only if C(B, r−) intersects C(A, r+) along the axis p∗3 = 0, that is, when r+ ≥ |̺− ρ|,

r− ≥ |̺ + ρ|, and r2− = r2+ + 4̺ρ, as illustrated in Fig. 3. It is interesting to note that the phase

portrait of (p∗3, ρṗ
∗
3) is asymmetric with respect to the axis p∗3 = 0, in contrast to the symmetric

phase portrait of the standard MD problem [26].

Next, we consider the optimality properties of a chain of bang arcs.

Proposition 3.2. Let Σn
α be a chain of n bang arcs that is part of an optimal path of the ZMD

problem from (0, 0, 0) to some (xf , yf , θf) ∈ R2 × S1. If n ≥ 4, then the total time along two

consecutive, intermediate bang arcs b±αi
b∓αi+1

of Σn
α satisfies the lower bound

αi + αi+1 ≥ 2πρ, for all i ∈ {2, . . . , n− 2}. (21)

Proof. Let b+αi
b−αi+1

∈ Σn
α. The case of a sub-path b−αi

b+αi+1
can be treated similarly. If the two

bang arcs are abnormal, then αi + αi+1 equals the time required for a particle with coordinates

(p∗3, ρp
∗
3) to travel from point D to C, and subsequently, from C to D along the circle of radius r
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centered at K, as illustrated in Fig. 2. We immediately conclude that αi + αi+1 = 2πρ, for all

i ∈ {2, . . . , n − 2}. If the two bang arcs are normal, then αi + αi+1 equals the time required for

a particle with coordinates (p∗3, ρp
∗
3) to travel from point D to C along C(A, r+), and subsequently,

from C to D along C(B, r−) with angular velocity 1/ρ, as illustrated in Fig. 3. There are two cases to

consider. First, if αi ≥ πρ, for all i ∈ {2, . . . , n−2}, then it follows that αi+αi+1 ≥ 2πρ (Fig. 3(a)).

Second, if 0 < αi ≤ πρ, for some i ∈ {2, . . . , n − 2}, then we observe that the time of motion from

D to C along the circle C(A, r+) is greater than the time of motion from D to C along the circle

C(B, r−) given that D̂AC > D̂BC (Fig. 3(b)). Thus, it follows readily that αi + αi+1 ≥ 2πρ, for all

i ∈ {2, . . . , n− 2}. Therefore, in all cases, αi + αi+1 ≥ 2πρ, for all i ∈ {2, . . . , n− 2}.

Next, we shall employ Proposition 3.2 to establish a basic property enjoyed by the min-time paths

of the ZMD problem, namely, that infinite chattering (something known as the Füller phenomenon

in optimal control theory [27]) cannot take place along them, that is, the number of bang arcs in

every chain of bang arcs is necessarily finite.

Proposition 3.3. Let the constant drift field w = ν(cosφ, sinφ), where ν < 1. A chain of bang arcs

Σn
α can be part of an optimal path of the ZMD problem only if it is finite.

Proof. In light of Proposition 2.3, for all (xf , yf , θf) ∈ R2 × S1, there exists a minimum-time path of

the ZMD problem from (0, 0, 0) to (xf , yf , θf), and thus Tf < ∞. Let assume, on the contrary, that

a chain Σn
α, where n → ∞, is part of a min-time path. By virtue of Proposition 3.2, the time of

motion along the first i + 2 bang arcs of Σn
α, where i ∈ {2, . . . , n − 2}, is lower bounded by 2iπρ.

Then by taking i → ∞, it follows that α grows unbounded. Consequently, Tf = ∞, leading to a

contradiction.

The following proposition highlights the existence of a type of extremals of the ZMD that does

not belong to the sufficient for optimality family of extremals of the standard MD problem.

Proposition 3.4. A bα arc, where α = 2πρ, may be part of a minimum-time path of Problem 2.1.
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Figure 2: Phase portrait (p∗3, ρṗ
∗

3) of a chain of bang arcs composed of abnormal extremals (p∗0 = 0).
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u∗ = +1 u∗ = −1

(a) αi ≥ πρ, for all i.
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ρṗ∗3

r−r+

̺− ρ
ρ+ ̺

u∗ = +1 u∗ = −1

(b) αi ≥ πρ, for some i.

Figure 3: Phase portrait (p∗3, ρṗ
∗

3) of a chain of bang arcs composed of normal extremals (p∗0 = 1).

Proof. Let us consider the equivalent formulation of the ZMD problem as a min-time intercept

problem (Problem 2.2). Let assume, without loss of generality, that w = (ν, 0) and let us consider

the intercept problem with θf = 0, when the non-maneuvering target is located, at time t = 0, at

a point T with coordinates (−2πρν, 0), as illustrated in Fig. 4. By driving the interceptor with the

control input u = +1 or u = −1, for all 0 ≤ t ≤ 2πρ, intercept will take place at O with θP = 0. We

claim that the moving target cannot be intercepted faster than 2πρ units of time. Let assume on

the contrary that the target can be intercepted with θP = θf , at time t = t1 < 2πρ; which implies

that intercept should take place in the interior of TO. Since O is aft T, it follows that the direction
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of the interceptor’s velocity necessarily changes from θ = 0 to θf = 0, within the time interval [0, t1],

while the interceptor is traversing a full loop. It follows readily that t1 ≥ 2πρ, which is absurd.

Remark 3.1 Note that a b2πρ arc can be part of an optimal path of the ZMD problem but not

of the standard MD problem [25]. As we shall see shortly later, the previous fact will explain the

existence of new types of extremals of the ZMD problem that do not appear in the solution of the

MD problem.

OT
−w/|w|

ρ

θ0 = θf = 0

d = 2πρν

Figure 4: In contrast to the MD problem, a bα arc, where α = 2πρ, may be part of an optimal solution of

the ZMD problem. Consequently, there might exist candidate solutions of the ZMD that cannot be part of

a solution of the standard MD problem.

The next proposition provides lower and upper bounds on the time of motion along a bang arc

of a chain of bang arcs.

Proposition 3.5. Let the constant drift w = ν(cosφ, sinφ), where ν < 1, and let assume that

a chain of n bang arcs Σn
α is part of a minimum-time path of the ZMD problem. If bαi

, where

i ∈ {1, . . . , n}, is part of Σn
α, then

(i) αi ∈ [0, πρ] or αi ∈ [πρ, 2πρ], for all i ∈ {1, . . . n},
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(ii) αi + αi+1 ≥ 2πρ, for all i ∈ {2, . . . n− 2}.

Proof. It suffices to observe that, if bαi
is an abnormal bang arc (̺ = 0), then αi corresponds to the

travel time of a particle with coordinates (p∗3, ρṗ
∗
3) from point D (resp., C) to C (resp., D) along a

circle centered at K with constant angular velocity 1/ρ, as illustrated in Fig. 2. It follows αi ∈ [0, πρ]

(resp., αi ∈ [πρ, 2πρ]), αi+1 ∈ [πρ, 2πρ] (resp., αi ∈ [0, πρ]). If bαi
is a normal bang arc, then αi

corresponds to the travel time of a particle with coordinates (p∗3, ρṗ
∗
3) from point D (resp., C) to

C (resp., D) along the circle C(A; r+) (resp., C(B; r−)) with constant angular velocity 1/ρ. The

situation is illustrated in Figs. 3(a)-3(b). In particular, if ̺ > 0 and ̺ < ρ, then, as illustrated in

Fig. 3(a), αi ∈ [πρ, 2πρ]. In Fig. 3(b), we observe that, given two consecutive, intermediate bang

arcs b±αi
b∓αi+1

, for i ∈ {2, . . . , n − 2}, if ̺ > 0 and ̺ > ρ (the case when ̺ < 0 and ̺ < ρ can be

treated similarly), then either αi ∈ [0, πρ] and αi+1 ∈ [πρ, 2πρ] or both αi and αi+1 ∈ [πρ, 2πρ].

The rest of the proof follows readily from Proposition 3.2.

Remark 3.2 Note that the time of motion along an intermediate bαi
arc of an optimal chain of

bang arcs of the standard MD problem satisfies αi ∈]πρ, 2πρ[ (see for example [25]). We henceforth

denote a bαi
arc, where αi ∈ [0, πρ], of an optimal chain of bang arcs of the ZMD problem by b̃αi

.

Next, we investigate the structure of paths that consist of both singular and bang arcs. Because

along a singular arc p∗3 = 0, which furthermore implies that ṗ∗3 = 0, it follows that any s arc

corresponds to the origin of the phase portrait (p∗3, ρṗ
∗
3). First, we show that optimal paths that

consist of both singular and bang arcs do not involve infinite chattering.

Proposition 3.6. Let the constant drift filed w = ν(cosφ, sinφ), where ν < 1. An optimal path of

the ZMD is necessarily a concatenation of a finite number of bang and singular arcs.

Proof. In Proposition 3.3, we have shown that an optimal trajectory of the ZMD problem does not

involve infinite chattering between bang-bang control inputs. Next, we show that both the total

number of singular and bang arcs of an optimal path of the ZMD problem is necessarily finite, as
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well. In particular, we observe in Fig. 2-3 (note that now the points C and D coincide with the origin

O of the phase portrait (p∗3, ρṗ
∗
3)) that a transition from a sα arc to a different singular arc, say sγ ,

may occur only via a finite chain of bang arcs Σn
2nπρ. Thus, the time of motion along an optimal

path that contains two s arcs is necessarily lower bounded by 2nπρ. The rest of the proof follows

similarly to the proof of Proposition 3.3.

Proposition 3.7. Let w = ν(cosφ, sinφ), where ν < 1. Paths of type (i) b±sb±, (ii) b±sb∓,

(iii) b∓sb∓, (iv) sb∓s, (v) b±b∓s, and (vi) sb±b∓ may be part of a minimum-time path of the ZMD

problem.

Remark 3.3 The fact that paths of type (iv)-(vi) may be part of an optimal solution of the ZMD

problem is an immediate consequence of Proposition 3.4. However, as one of the reviewers pointed

out, if a path of type (iv)-(vi) solves the ZMD problem, then there exists a path of type (i)-(iii)

which is also a minimum-time path of the ZMD problem.

3.3 Sufficient for Controllability and Necessary for Optimality Family of

Extremals of the ZMD Minimum-Time Problem

Next, we propose a family of candidate optimal paths of the ZMD problem that consist of all

admissible concatenations of singular and bang arcs that steer the system described by Eq. (1) to an

arbitrary terminal state in (nearly) minimum time. Since the trajectory of the system described by

Eq. (1) uniquely determines the control that generates it, and vice versa, we can associate each of

the candidate optimal paths with their corresponding control sequence. For example, a path b±α sβb
±
γ

corresponds to the control sequence {±1, 0,±1}.

Theorem 3.1. Any minimum-time path of the ZMD problem contains at least one of the following

extremal paths

(i) b±α sβb
±
γ , b

±
α sβb

∓
γ , where α ∈ [0, 2πρ], β ∈ [0,∞[, and (±α/ρ±γ/ρ) mod 2π = θf , (±α/ρ∓γ/ρ)
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mod 2π = θf , respectively,

(ii) b±α b
∓
β b

±
γ , where α ∈ [0, 2πρ], β ∈ [π, 2πρ], and (±α/ρ∓ β/ρ± γ/ρ) mod 2π = θf ,

(iii) b±α b̃
∓
β b

±
γ , where α ∈ [0, 2πρ], β ∈ [0, πρ], and (±α/ρ∓ β/ρ± γ/ρ) mod 2π = θf .

We denote this family of paths by P∗
ZMD. Let, furthermore, U∗

ZMD be the corresponding family

of control sequences that generate the paths of P∗
ZMD. Then U∗

ZMD is sufficient for the complete

controllability of the system described by Eq. (1).

Proof. In [13] was shown that the extremal paths (i)-(iii) suffice to ensure complete controllability

of the system described by Eq. (1). In addition, the fact that P∗
ZMD is a subset of the sufficient for

optimality family of extremals of the ZMD problem follows readily from Propositions 3.1-3.7.

Remark 3.4 In [13], it is claimed, but not rigorously proved, that the paths types (i)-(iii) given in

Theorem 3.1 are sufficient for optimality. Based on the previous analysis, a more precise statement

would be that the paths types given in Theorem 3.1 form a subset of the sufficient for optimality

family of extremal paths of the ZMD problem. In addition, it can be conjectured, in light of

Propositions 3.2-3.7, that the optimal paths of the ZMD that consist of more than three arcs, if

such optimal paths can exist at all, correspond to a rather trivial set of boundary conditions. Thus,

for the analysis of the synthesis of the ZMD problem, one may only consider the path types (i)-(iii)

given in Theorem 3.1, which are sufficient for complete controllability, without a significant loss in

optimality, and thus, characterize a nearly optimal synthesis of the ZMD problem.

4 Time-Optimal Synthesis

In this section, we present in detail the steps for the characterization of a nearly optimal synthesis

of the ZMD problem.
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4.1 Reachability Analysis

First, we carry out the reachability analysis for the system described by Eq. (1), when the admissible

control is constrained to be an element in U∗
ZMD. To simplify the presentation, and with no loss in

generality, we henceforth consider the minimum-time trajectories of (1) from (0, 0, 0) to (xf , yf , θf) ∈

P (θf), where P (θf) := {(x, y, θ) ∈ R2 × S1 : θ = θf}, as suggested in [22]. Furthermore, we denote

the reachable set that corresponds to the control sequence u ∈ U∗
ZMD as RZMD(u; θf). Finally, we

denote the corresponding reachable set of the standard MD problem by RMD(u; θf).

Next, we demonstrate how to characterize the reachable setRZMD(u; θf), for u ∈ U∗
ZMD, by briefly

presenting the main steps for the construction ofRZMD(b
+sb+; θf). In particular, we observe that the

coordinates of any state in P (θf) that can be reached by means of the control sequence {+1, 0,+1},

or equivalently, a b+α sβb
+
γ path, can be expressed in terms of the time of motion along each of the

three arcs of the path, namely α, β, and γ. In particular, it follows readily that γ(α; θf) = ρθ̂f − α,

where θ̂f = θf if α ≤ ρθf and θ̂f = (2π + θf)ρ, otherwise. In addition, it follows after routine

calculations similarly to [7] that

xf(α, β) = ρ sin θf + β cos
α

ρ
+ wxTf(b

+sb+), (22)

yf(α, β) = ρ(1− cos θf) + β sin
α

ρ
+ wyTf(b

+sb+), (23)

where Tf(b
+sb+) = α+ β + γ(α; θf).

Conversely, given a point (xf , yf , θf) ∈ RZMD(b
+sb+; θf), we can determine the corresponding

pairs (α, β) ∈ [0, 2πρ]× [0,∞[. In particular, after some algebraic manipulation, it follows that

(1− ν2)β2 + 2(A(xf , θf)wx +B(yf , θf)wy)β −A(xf , θf)
2 −B(yf , θf)

2 = 0, (24)

where A(xf , θf) = xf−ρ sin θf−wxρθ̂f , B(yf , θf) = yf+ρ(cos θf−1)−wyρθ̂f . Note that Eq. (24), which

is decoupled from α, admits at most two solutions. Given a solution β of (24), then α is determined

with back substitution in Eqs. (22)-(23). In particular, after some algebraic manipulation, it follows

19



that α(xf , yf , θf) = α̂(xf , yf , θf)ρ, where α̂ ∈ [0, 2π] satisfies

cos α̂(xf , yf , θf) =
ρA(xf , θf)

β
− wx, sin α̂(xf , yf , θf) =

ρB(yf , θf)

β
+ wy, (25)

when β 6= 0, whereas α(xf , yf , θf) = ρθf , otherwise. In this way, for a given (xf , yf , θf) ∈ P (θf), we

obtain two pairs (α, β) and the corresponding final time Tf(b
+sb+) = α+β+γ(α; θf). Subsequently,

we associate the state (xf , yf , θf) ∈ P (θf) with the pair (α∗, β∗) that yields the minimum of the time

Tf(b
+sb+), denoted by T ∗

f
(b+sb+), where T ∗

f
(b+sb+) := α∗ + β∗ + γ(α∗; θf).

The previous procedure can be applied mutatis mutandis for the rest of the control sequences

of U∗
ZMD, thus obtaining equations that yield α and β as functions of xf and yf , and vice versa. A

system of equations which are either decoupled or in triangular form, which admit straightforward

numerical or, in some cases, analytical solutions, is presented in Appendix A.

Next, we proceed with the characterization of the reachable set RZMD(b
+sb+; θf) along with

the level sets of the minimum-time T ∗
f
(b+sb+). In particular, the reachable set RZMD(b

+sb+; θf)

consists of all points (xf , yf , θf) ∈ P (θf), where xf and yf are computed from Eqs. (22)-(23), by taking

α ∈ [0, 2πρ] and γ ∈ [0, 2πρ] such that (α/ρ + γ/ρ) mod 2π = θf and 0 ≤ α + γ(α) ≤ (4π − θf)ρ.

On the other hand, the minimum time T ∗
f
(b+sb+) is easily determined from Eqs. (24)-(25). The

reachable sets RZMD(b
+sb+; θf), along with the contours of the minimum time T ∗

f
(b+sb+), when

0 ≤ α+γ(α) ≤ (4π− θf)ρ, for the standard MD and the ZMD problems are illustrated, respectively,

in Figs. 5(a)-5(b). We observe that RMD(b
+sb+; θf) = P (θf), whereas RZMD(b

+sb+; θf) ⊂ P (θf). In

particular, the white region in Fig. 5(b) corresponds to the set of states (xf , yf , θf) ∈ P (θf) that cannot

be reached by means of a b+α sβb
+
γ path, when 0 ≤ α + γ(α) ≤ (4π − θf)ρ. It is worth-mentioning

that RMD(b
+sb+; θf) = P (θf), when 0 ≤ α+ γ(α) ≤ (4π − θf)ρ, but R

MD(b+sb+; θf) ⊂ P (θf), if we

consider instead the stricter condition 0 ≤ α+ γ(α) ≤ 2πρ, as illustrated in Fig. 6(a). It should be

highlighted that the last condition on α and γ is actually the condition that a b+α sβb
+
γ path should

satisfy in order to be a candidate optimal solution of the MD problem (Proposition 3.1 of [22]).

The reachable set RZMD(b
+sb+; θf), when 0 ≤ α + γ(α) ≤ 2πρ, is illustrated in Fig. 6(b). Note, in
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addition, that points in the white region of the P (θf) of the ZMD problem illustrated in Fig. 5(b)

will be reachable by means of b+sb+ paths only if α and/or γ is greater than 2πρ. Clearly these

paths are suboptimal solutions of the ZMD problem. The fact that, for a particular u′ ∈ U∗
ZMD,

RZMD(u
′; θf) is a proper subset of P (θf) has rather low significance for the analysis of the optimal

synthesis in so far the union of the reachable sets RZMD(u; θf), for all u ∈ U∗
ZMD, covers P (θf).

The reachability analysis for the remaining control sequences of U∗
ZMD can be carried out mutatis

mutandis. Due to space limitations, the details are left to the reader. Figure 7 illustrates the

reachable sets RMD(b
+sb−; θf) (Fig. 7(a)) and RZMD(b

+sb−; θf) (Fig. 7(b)), respectively, when α ∈

[0, 2πρ], β ∈ [0,∞[ and (±α/ρ∓ γ/ρ) mod 2π = θf .
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(a) Reachable set RMD(b+sb+; θf).
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Figure 5: Reachable sets of the standard MD and the ZMD problems, when 0 ≤ α + γ(α) ≤ (4π − θf)ρ,

θf = π/3, ν = 0.5, and φ = 7π/4.

4.2 The Direct Correspondence Between the Optimal Syntheses of the

MD and the ZMD Problems

In this section, we introduce a discontinuous mapping that establishes a direct correspondence

between the reachable sets of the MD and the ZMD problems. To this aim, let us consider, for a

given T ≥ 0, the mapping HT : RMD(b
+sb+; θf) 7→ RZMD(b

+sb+; θf), that maps a state (xf , yf , θf) ∈
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(a) Reachable set RMD(b+sb+; θf).
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(b) Reachable set RZMD(b+sb+; θf).

Figure 6: Reachable sets of the standard MD and the ZMD problems, when 0 ≤ α+γ(α) ≤ 2πρ, θf = π/3,

ν = 0.5, and φ = 7π/4.

RMD(b
+sb+; θf) to a state (Xf , Yf ,Θf) ∈ RZMD(b

+sb+; θf), where

Xf = xf + wxT, Yf = yf + wyT, Θf = θf . (26)

The transformation HT given in Eqs. (26) can be interpreted as follows: The system described by

Eq. (3) can be steered with the application of a control input u, which corresponds to a control

sequence {1, 0, 1}, from (0, 0, 0) to (xf , yf , θf) ∈ RMD(b
+sb+; θf) after T ≥ 0 units of time. Then,

in the presence of a constant drift field (wx, wy), the system described instead by Eq. (1), will be

steered by the same control input u to a state (Xf , Yf ,Θf) ∈ RZMD(b
+sb+; θf) after T units of

time. By taking T = T ∗
f
(b+sb+), it follows that each state (xf , yf , θf) ∈ RMD(b

+sb+; θf) is mapped

via the composite mapping HT∗

f
(b+sb+) to a state (Xf , Yf ,Θf) ∈ RZMD(b

+sb+; θf). An important

observation is that the time T ∗
f
(b+sb+) of the MD problem undergoes discontinuous jumps along

the rays ǫ1 and ǫ2 emanating from the point A with coordinates (xA, yA) = ρ(sin θf , 1 − cos θf),

where ǫ1 := {(x, y, θ) : y = yA, x ≥ xA, θ = θf}, and ǫ2 := {(x, y, θ) : y = yA + s sin θf , x =

xA + s cos θf , θ = θf , s ≥ 0}, as illustrated in Fig. 5(a).

Let now K(θf) ⊂ P (θf) denote the cone with apex A defined by the rays ǫ1 and ǫ2, as illustrated

in Fig. 8. It can be shown [7] that every state (xf , yf , θf) ∈ K(θf) ⊂ RMD(b
+sb+; θf) = P (θf) can
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(a) Reachable set RMD(b+sb−; θf).
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(b) Reachable set RZMD(b+sb−; θf).

Figure 7: Reachable sets of the standard MD and the ZMD problems for θf = π/3, ν = 0.5, and φ = 7π/4.

be reached after T−(b+sb+) = T ∗
f
(b+sb+) = ρθf +

√
(xf − ρ sin θf)2 + (yf + ρ cos θf − ρ)2, whereas

the states in P (θf)\K(θf) can be reached in minimum time T+(b+sb+) = T ∗
f
(b+sb+) = ρ(2π+ θf) +

√
(xf − ρ sin θf)2 + (yf + ρ cos θf − ρ)2. Thus, the minimum time T ∗

f
(b+sb+) of the MD problem

undergoes a discontinuous jump from T−(b+sb+) to T+(b+sb+) = T−(b+sb+)+ 2πρ along the rays

ǫ1 and ǫ2. In Fig. 8, we observe that the rays ǫ1 and ǫ2 are mapped via HT−(b+sb+) to a new pair of

rays, namely, ǫ′1 and ǫ′2, emanating from a point A′ with coordinates (xA′ , yA′) = HT−(b+sb+)(xA, yA).

In addition, the rays ǫ1 and ǫ2 are mapped via HT+(b+sb+) to another pair of rays, namely, ǫ′′1 and ǫ′′2 ,

emanating from a point A′′ with coordinates (xA′′ , yA′′) = HT+(b+sb+)(xA, yA). We henceforth denote

by K′(θf) and K′′(θf) the cones defined by the apexes A′ and A′′ and the pairs of rays ǫ′1, ǫ
′
2 and ǫ′′1 ,

ǫ′′2 , respectively. The situation is illustrated in Fig. 8. Owing to the discontinuity of T ∗
f
(b+sb+) of

the MD problem along the rays ǫ1 and ǫ2, the composite mapping HT∗

f
(b+sb+) is also discontinuous

along the rays ǫ1 and ǫ2. It is worth mentioning that the previously made observation that, when

0 ≤ α + γ(α) ≤ (4π − θf)ρ, it holds that RZMD(b
+sb+; θf) ⊂ P (θf), whereas RMD(b

+sb+; θf) =

P (θf), can now be interpreted as a consequence of the discontinuity of the mapping HT∗

f
(b+sb+). In

particular, the mapping HT∗

f
(b+sb+) turns out to be a non-surjective mapping of RMD(b

+sb+; θf)

to RZMD(b
+sb+; θf). Another important remark is that the time T ∗

f
(b+sb+) of the ZMD problem

23



undergoes discontinuous jumps along the ray ǫ′2, the line segments A′B and BA′′, where B is the

intersection point of ǫ′1 and ǫ′′2 , and the ray ǫ′′1 . Furthermore, the set of states in P (θf) that cannot

be reached by means of a b+α sβb
+
γ path, when 0 ≤ α + γ(α) ≤ (4π − θf)ρ, corresponds to the set

K′′(θf)\(K′(θf) ∩ K′′(θf)). The situation is illustrated in Figs. 5(b) and 8.

−10 −5 0 5 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

A
B K′′(θf)

K(θf)
K′(θf)

HT−(b+sb+)

HT−(b+sb+)

HT+(b+sb+)

HT+(b+sb+)

A′

A′′

ǫ1

ǫ2

ǫ′1ǫ
′
1

ǫ′2

ǫ′′1

ǫ′′2

Figure 8: Owing to the discontinuity of the time-to-go, the rays ǫ1 and ǫ2 in RMD(b
+
sb

+; θf) are mapped

via HT
∗

f
(b+sb+) to two pairs of rays in RZMD(b

+
sb

+; θf).

4.3 The Optimal Control Partition

The next step involves the partitioning of P (θf) into a finite number of domains, which are henceforth

denoted by R
∗
ZMD(u; θf), where u ∈ U∗

ZMD. The criterion that assigns a state (xf , yf , θf) ∈ P (θf) to

a u ∈ U∗
ZMD is the following: If (xf , yf , θf) ∈ R

∗
ZMD(u; θf), then (xf , yf , θf) cannot be reached faster

with the application of any other control sequence of U∗
ZMD different than u, and vice versa. In

particular, consider a state (xf , yf , θf) ∈ RZMD(b
+sb+; θf), and let Uc(b+sb+) ⊂ U∗

ZMD denote the

set of control sequences u different from b+sb+ for which (xf , yf , θf) ∈ RZMD(u; θf). Then the state

(xf , yf , θf) ∈ R
∗
ZMD(b

+sb+; θf) if and only if T ∗
f
(b+sb+) ≤ minu∈Uc(b+sb+) T

∗
f
(u). We shall refer to

this partition of P (θf) as the optimal control partition.

Figure 9 illustrates the optimal control partitions of P (θf), for θf = π/3, φ = 7π/4, and different
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values of the magnitude of the drift field ν ∈]0, 1[. In particular, we observe in Fig. 9(a) that, for

ν = 0.2, the structure of the optimal control partition of P (θf) as well as the level sets of the minimum

time T ∗
f

= minT ∗
f
(u), where u ∈ U∗

ZMD
, do not significantly differ from those of the standard

MD problem presented in [21, 22]. The optimal control partition, as well as the level sets of the

minimum time of the ZMD and MD problems, for higher values of ν, become, however, significantly

different (Fig. 9(b)-9(d)). Furthermore, we observe that, as ν increases, the set R∗
ZMD(b

−b̃+b−; θf)

corresponds to a non-trivial portion of the optimal control partition (Figs. 9(c)-9(d)).

Figure 10 illustrates the optimal control partition of P (θf), for θf = π/3, ν = 0.5 and different

values of the drift direction φ. Figures 10(a)-10(d) illustrate how sensitive is the optimal control

partition of P (θf) to variations of the drift direction for the ZMD problem. It is interesting to note

that, for φ = 5π/4, the set R
∗
ZMD(b

−b̃+b−; θf) corresponds to a significant portion of the optimal

control partition of P (θf) (Fig. 10(a)). Furthermore, we observe that, as we change the value of

φ, some extremal paths of P∗
ZMD become more favorable than others, in terms of minimizing the

travel time. For example, when φ = 5π/4 (Fig. 10(a)) and φ = 3π/4 (Fig. 10(d)), then respectively,

the sets R∗
ZMD(b

−b+b−; θf) and R
∗
ZMD(b

−sb+; θf) correspond to significantly larger portions of the

optimal control partition of P (θf), when compared with the standard MD problem.

5 Conclusions

In this article, we have addressed a variation of the Markov–Dubins problem regarding the char-

acterization of time-optimal trajectories for a vehicle with the kinematics of the Isaacs–Dubins car

operating in a constant drift field. We have studied the optimality properties of the solution of the

Zermelo–Markov–Dubins problem and subsequently characterized a nearly optimal synthesis of the

problem. Our analysis has revealed similarities as well as some significant differences between the

solutions of the Zermelo–Markov–Dubins and the standard Markov–Dubins problems.
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Figure 9: Optimal control partition of P (θf)and contours of T ∗

f , for θf = π/3, φ = 7π/4 and different values

of ν.
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A Appendix

A.1 b
+
α sβb

+
γ

[
b
−
α sβb

−
γ

]
Paths

The coordinates xf , yf of a state in RZMD(b
+sb+; θf)

[
RZMD(b

−sb−; θf)
]
, can be expressed as func-

tions of the parameters α and β as follows

xf = [−]ρ sin θf + β cos
α

ρ
+ wxTf , (27)

yf = [−]ρ(1− cos θf) + [−]β sin
α

ρ
+ wyTf , (28)

where Tf = α+ β + γ, and γ/ρ = (θf − α/ρ) mod 2π
[
γ/ρ = (2π − θf − α/ρ) mod 2π

]
.

Conversely, given a state (xf , yf , θf) ∈ RZMD(b
+sb+; θf)

[
RZMD(b

−sb−; θf)
]
, we can determine

(α, β) ∈ [0, 2πρ]× [0,∞[. In particular, after some algebraic manipulation, it follows that β satisfies

the following quadratic equation, which is decoupled from α,

(1− ν2)β2 + [−]2(A(xf , θf)wx +B(yf , θf)wy)β − (A2(xf , θf) +B2(yf , θf)wy)) = 0, (29)

where A(xf , θf) = xf − [+]ρ sin θf − wxρθ̂f , B(yf , θf) = [−]yf + ρ(cos θf − 1)− [+]wyρθ̂f , and

θ̂f =





θf [2π − θf ], if α ≤ ρθf [α ≤ (2π − θf)ρ],

(2π + θf)ρ [(4π − θf)ρ], if α > ρθf [α > (2π − θf)ρ].

(30)

Note that for each (xf , yf , θf) ∈ RZMD(b
+sb+; θf)

[
RZMD(b

−sb−; θf)
]
, there exist at most two

solutions of (29). If β is one solution of (29), then α is determined with back substitution in

Eqs. (27)-(28). In particular, after some algebraic manipulation, it follows that α = α̂ρ, where

α̂ ∈ [0, 2π] satisfies

cos α̂ =
A(xf , θf)

β
− wx, sin α̂ =

B(yf , θf)

β
− [+]wy, (31)

when β 6= 0, whereas α = ρθf [ρ(2π − θf)], otherwise. In this way, for a given (xf , yf , θf) ∈ P (θf),

we find pairs (α, β) and the corresponding final time Tf(b
+sb+)[Tf(b

−sb−)] = α + β + γ(α), and
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subsequently, we associate the state (xf , yf , θf) ∈ P (θf) with the pair (α∗, β∗) that gives the minimum

time Tf(b
+sb+)[Tf(b

−sb−)].

A.2 b
+
α sβb

−
γ

[
b
−
α sβb

+
γ

]
Paths

If (xf , yf , θf) ∈ RZMD(b
+sb−; θf)

[
RZMD(b

−sb+; θf)
]
, then

xf = 2ρ sin
α

ρ
+ β cos

α

ρ
− [+]ρ sin θf + wxTf , (32)

yf = [−]ρ(1 + cos θf)− [+]2ρ cos
α

ρ
+ [−]β sin

α

ρ
+ wyTf , (33)

where Tf = α+ β + γ, γ/ρ = (α/ρ− θf) mod 2π
[
γ/ρ = (α/ρ+ θf) mod 2π

]
.

Given a state (xf , yf , θf) ∈ RZMD(b
+sb−; θf)

[
RZMD(b

−sb+; θf)
]
, it can be shown that α satisfies

the following transcendental equation (decoupled from β)

D(α;xf , θf) sin
α

ρ
+ E(α; yf , θf) cos

α

ρ
= B(yf , θf)wx − [+]A(xf , θf)wy + 2ρ, (34)

where, A(xf , θf) = xf +[−]ρ sin θf +[−]wxρθ̂f , B(yf , θf) = [−]yf −ρ(cos θf +1)+wyρθ̂f , D(α;xf , θf) =

A(xf , θf)− [+]2ρ(wy + [−]wxα/ρ), E(α; yf , θf) = −B(yf , θf)− 2ρ(wx − [+]wyα/ρ), and where

θ̂f =





θf , if α ≥ ρθf
[
α ≤ ρ(2π − θf)

]
,

[−]2π + θf , if α < ρθf
[
α > ρ(2π − θf)

]
.

(35)

Furthermore, it can be shown that β satisfies the following equation

(1− ν2)β =

(
A(xf , θf)− 2ρ

(
sin

α

ρ
+ wxα

))(
cos

α

ρ
− [+]wx

)

+

(
B(yf , θf) + 2ρ

(
cos

α

ρ
− [+]wyα

))(
sin

α

ρ
− [+]wy

)
. (36)
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A.3 b
+
αb

−
β b

+
γ

[
b
−
αb

+
β b

−
γ

]
and b

+
α b̃

−
β b

+
γ

[
b
−
α b̃

+
β b

−
γ

]
Paths

The coordinates of a state (xf , yf , θf) inRZMD(b
+b−b+; θf)

[
RZMD(b

−b+b−; θf)
]
orRZMD(b

+b̃−b+; θf)

[
RZMD(b

−b̃+b−; θf)
]
are given by

xf = 2ρ

(
sin

α

ρ
+ sin

β − α

ρ

)
+ [−]ρ sin θf + wxTf , (37)

yf = [−]ρ(1− cos θf)− [+]2ρ

(
cos

α

ρ
− cos

β − α

ρ

)
+ wyTf , (38)

where, Tf = α+ β + γ, γ/ρ = (θf − α/ρ+ β/ρ) mod 2π
[
γ/ρ = (−θf − α/ρ+ β/ρ) mod 2π

]
.

Conversely, given (xf , yf , θf) in RZMD(b
+b−b+; θf)

[
RZMD(b

−b+b−; θf)
]
or RZMD(b

+b̃−b+; θf)

[
RZMD(b

−b̃+b−; θf)
]
, it follows after some algebra that β satisfies the following transcendental

equation, which is decoupled from α,

K(β;xf , yf , θf) + 8ρ2
(
cos

β

ρ
− 1

)
= 0, (39)

whereK(β;xf , yf , θf) = A2(xf , θf)+B
2(yf , θf)+4ν2β2+[−]4β(B(yf , θf)wy−[+]A(xf , θf)wx), A(xf , θf) =

xf − [+]ρ sin θf − [+]wxρθ̂f , B(yf , θf) = −[+]yf + ρ(1− cos θf) + wyρθ̂f , and

θ̂f =





[−]θf , if 0 ≤ [−]θf −
α

ρ
+
β

ρ
< 2π,

−2π[+4π] + [−]θf , if 2π[−4π] ≤ [−]θf −
α

ρ
+
β

ρ
< 4π[−2π],

2π + [−]θf , if − 2π ≤ [−]θf −
α

ρ
+
β

ρ
< 0.

Given β ∈ [0, 2πρ], it follows after some algebraic manipulation that α satisfies




M(β;xf , θf) N(β; yf , θf)

−[+]N(β; yf , θf) [−]M(β;xf , θf)






sin

α

ρ

cos
α

ρ


 = 2ρ



1− cos

β

ρ

[−] sin
β

ρ


 , (40)

where M(β;xf , θf) = A(xf , θf)− 2βwx, N(β; yf , θf) = B(yf , θf) + [−]2βwy.
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