
Evasion with Terminal Constraints from a Group of Pursuers using a
Matrix Game Formulation

Jhanani Selvakumar Efstathios Bakolas

Abstract— We consider a class of planar pursuit-evasion
games with multiple pursuers and a single evader. The evader
must reach a target set while avoiding the pursuers which
relay the pursuit among themselves. We model this multi-player
dynamic game as a two-player multi-stage game. In particular,
all the pursuers are modeled as one entity, which we refer to
as the super-pursuer, which can deploy only one pursuer of
choice at each instant of time. We discretize the decision space
of the players and formulate a zero-sum matrix game between
the super-pursuer and the evader. In the construction of the
matrix game, we explore a myopic solution approach to the
game against one that is more far-sighted. In particular, the
stage payoffs are constructed in two different ways, namely,
with a planning horizon of one stage, and with a planning
horizon which is taken to be the remaining stages of the game.
We compare the performance of the evasion policies that are
obtained in these two cases, against pursuers who engage in
relay pursuit. Finally, we compare the pursuit policies obtained
from the multi-stage matrix games using extensive numerical
simulations.

I. INTRODUCTION

Multi-player game theory is applicable to many real-
world problems, for instance, autonomous collision avoid-
ance, modeling biological behaviour and trading in markets.
Multi-player pursuit-evasion games (PEGs) are rich in the
number of parameters that govern the progress of the game.
In this paper, we address an evasion problem in which a
single evader tries to reach a specified target (goal) set,
while avoiding a group of pursuers. The pursuers engage
in a semi-cooperative pursuit strategy called relay pursuit.
We formulate the continuous dynamic game as a multi-act
matrix game. At each stage, we consider the pursuers as
being one entity, which is engaged in a zero-sum game
with the single evader. At any stage, all players have perfect
information while the fixed target set is known only to the
evader. To illustrate our modeling, we present a specific
scenario where all the players have simple dynamics. We
compare the pursuit strategy derived by solving the matrix
game to the strategy of relay pursuit based on the minimum
time of capture. Subsequently, we analyze the effectiveness
of using the metric of minimum time of capture to decide
the active pursuer.

Literature survey: Game theory with multiple players has
received a lot of attention in the past and continues to interest
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many researchers. The framework of multi-player games can
simulate many scenarios in economics, competitive envi-
ronments, and defense [1]–[3]. Multi-agent problems have
many aspects to them (static or dynamic, information and
cooperation patterns, etc.) which dictate the solution method
for the game. A team of players with a single objective
could act cooperatively [3], [4] or non-cooperatively. The
Nash equilibrium solutions for a non-cooperative group of
players, in particular, matrix games, are discussed in detail
by Basar and Olsder in [5] and Zaccour et. al in [6]. Static
games [5] are played once and have fixed payoffs for discrete
actions of the players, while dynamic games are repeated
static games or governed by continuous time equations [7].
The folk theorem is a popular result regarding the individual
game equilibria of infinitely repeated static games [8].

Multi-player pursuit evasion games with a single evader and
multiple pursuers have been dealt with by several approaches
such as using Voronoi partitions, switching pursuit strategies
and sequential pursuit [9]–[12]. A roadmap derived from a
generalized Voronoi partition of the given domain to guide
the evader was first proposed in [13] and further developed in
our previous work [14]. Discrete multi-player games played
on a grid have also received considerable attention. A greedy
pursuit policy based on the probability of finding the evader
at a specific location in the domain is presented in [15]. A
pursuit evasion game between a team of evaders and a team
of heterogeneous pursuers using greedy policies is presented
in [16]. A multi-agent pursuit evasion game in an uncertain
environment is formulated as a Markov game in [17], where
a receding horizon approach is used with a matrix game to
obtain optimal policies for the players.

Contributions: In this paper, we have multiple pursuers
engaging in relay pursuit with a single evader who has a
target point to reach in the state space while avoiding capture.
Hence, this is a multi-objective game for the evader. The
main contributions of this paper are as follows:
1) Novel formulation of a dynamic multi-player non-zero
sum PEG as a multi-act two-person zero sum game,
2) Development of a payoff function which reflects the two-
fold goal of the evader,
3) Comparison and analysis of the effectiveness of different
pursuit and evasion strategies.

Structure of the paper: Section II presents the formulation of
the target-seeking evasion problem. This problem is framed
as a multi-act two-person game and subsequently solved in
Section III. In Section IV, we describe a game scenario where



the players have simple dynamics with equal or unequal
speeds, along with results from numerical simulations. In
Section V, we present concluding remarks.

II. FORMULATION OF TARGET-SEEKING EVASION
PROBLEM

We consider a pursuit evasion game in an unconstrained
domain in R4, with N pursuers and one evader. The upper
bound for the duration of the game is known apriori and
denoted by T̄f > 0. At any given time t ∈ [0, T̄f ], the state
of the ith pursuer, where i ∈ I := {1, 2, ..., N}, is denoted
as ξi := [xi vi]

T ∈ R4, where xi ∈ R2 and vi ∈ R2

are its position and velocity, respectively. In general, let the
pursuers have the following equations of motion:

ξ̇i = fP (ξi,ui), ξi(0) = ξ̄i, (1)

where fP is a known function that satisfies regularity as-
sumptions for existence of a solution to (1) and ui denotes
the input. We impose the following constraint on the mag-
nitude of the control input: ‖ui(t)‖ ∈ {0, 1},∀i ∈ I,∀t ∈
[0, T̄f ]. The position and velocity of the single evader at time
t is denoted by xe ∈ R2 and ve ∈ R2 respectively, and its
state is denoted by η := [xe ve]

T. The evader’s dynamics is
in general described by

η̇ = fE(η,ue), η(0) = η̄, (2)

where fE is known and satisfies similar regularity assump-
tions as fP , and ue is the evader’s input vector, with
‖ue(t)‖ ∈ {0, 1},∀t ∈ [0, T̄f ]. Capture is defined as
positional proximity of atleast one of the pursuers with the
evader within a pre-specified tolerance l > 0. More precisely,
the evader will be considered captured, if ∃i ∈ I : ‖xi(t)−
xe(t)‖ ≤ l for some t ∈ [0, T̄f ]. The target set, which is a
single point, is denoted by xG ∈ R2. The tolerance criterion
for goal-reaching is represented by ε, which taken to be a
positive number.

A. The Problem

The target-seeking evasion problem is a dynamic multi-
player non-zero sum game. It is stated as follows: Given a
set of initial conditions for all the players in the plane, find
a time-history of input vectors for the evader to reach the
target location within a desired tolerance, while the evader
avoids capture by any pursuer. Formally,
Given ξ̄i ∀i ∈ I, η̄, xG, l, ε, and T̄f ,
Find Tf ∈

[
0, T̄f

]
and ue(t), ∀t ∈ [0, Tf ]

such that ‖xe(Tf ) − xG‖ ≤ ε and ‖xe(t) − xi(t)‖ >
l, ∀i ∈ I,∀t ∈ [0, Tf ].

Each player has perfect information about the states of all
players of the game at all times. The pursuers relay the
pursuit amongst themselves, such that at each instant of time,
the pursuer who can capture the evader in the least amount
of time is the active pursuer. In this case, we say that the
minimum time of capture is the relay metric. The relay metric
could also be a different parameter of the game. The location

of xG is known only to the evader. In the next section, we
describe the conversion of our problem into a multi-act two
person zero-sum game.

III. CONVERSION TO A MULTI-ACT TWO-PERSON GAME

Let the game be played in K finite stages, with a constant
time step ∆t > 0. We perform a zero-order hold discretiza-
tion of the dynamics in equations (1) and (2) with ∆t as the
sampling time. Let k ∈ {0, 1, ..,K} denote the current stage
of the game, ξi(k) be the state vector of the ith pursuer at
that stage and η(k) be the state vector of the evader. Then
the new equations of motion in discrete-time are

ξi(k + 1) = fPd(ξi(k),ui(k)), ξi(0) = ξ̄i,

η(k + 1) = fEd(η(k),ue(k)), η(0) = η̄, (3)

where ui(k) and ue(k) denote the inputs of the ith pursuer
and the evader at stage k respectively. The time-discretization
of the functions fP (·) and fE(·) yields the new functions
fPd(·) and fEd(·) respectively. Since we assume that the
pursuers employ relay-pursuit, we can approximate the ac-
tions of the group of pursuers as the actions of a single entity
(the super-pursuer) which deploys one pursuer at a time.
This means that the multi-player game is essentially reduced
to a two-player game between the evader and the super-
pursuer. In addition, we consider that the game between
the evader and the super-pursuer is zero-sum at each stage,
and consequently, the entries in the payoff matrix for each
game represent the reward obtained by the evader or the cost
incurred by the super-pursuer (the team of pursuers).

A. Description of the payoff matrix of the game

At each stage k of the game, consider a matrix Mk ∈
RN×(N+1), whose entries are the payoffs to E at that stage.
Each row of Mk represents a pure strategy played by P
and each column, a pure strategy played by E. The decision
space available to the players (the choice of control inputs
for P and E) is infinite. We consider a restricted decision
space for P , including only the actions that appear “integral”
to the pursuers’ goal of capturing the evader. In particular,
P has exactly N pure strategies, where the ith pure strategy
corresponds to the case where only the ith pursuer goes after
the evader. Similarly, E’s restricted decision space consists
of N + 1 actions, where the first N correspond to evasion
from each pursuer in turn (the jth action is to avoid only the
jth pursuer), and the (N + 1)th action is the target-seeking
behavior, which means that the evader directly heads towards
the target.

Let i be the row index of Mk and j be the column index,
where i ∈ I and j ∈ J := {1, 2, .., N + 1}. If we consider
the first N columns of Mk, each entry Mk(i, i) is the payoff
for the two-player zero sum game between only the ith

pursuer and the evader. Every other entry Mk(i, j), i 6= j,
represents a case when E tries to evade from the jth pursuer,
when actually the ith pursuer is active. This situation can
happen because while the E knows the states of all the



TABLE I
ENTRIES IN THE PAYOFF MATRIX Mk , FOR A CASE OF N = 2.

(1,1) (1,2) (1,3)
P1 in pursuit P1 in pursuit P1 in pursuit
E evading P1 E evading P2 E seeks xG

(2,1) (2,2) (2,3)
P2 in pursuit P2 in pursuit P2 in pursuit
E evading P1 E evading P2 E seeks xG

pursuers, it does not know the action chosen by P at the same
stage. Finally, the last column of the matrix Mk represents
cases where the evader is directly headed towards the target
xG, and only one pursuer is active per row. A schematic
construction of the matrix Mk is shown in Table I.

B. Time of capture function

Let us consider the construction of each entry of Mk. The
min-max time of capture of the evader by a single pursuer
plays an important role in our formulation of the matrix game
payoffs. At any time, let φ(η, ξi) denote the min-max time
of capture of the evader (whose current state is η) by the ith

pursuer (whose current state is ξi). Depending on the dy-
namics in equations (1) and (2), we may be able to calculate
φ(η, ξi) even in closed form, though more often numerical
techniques must be employed. For instance, we can obtain
φ(η, ξi), by solving a simple quadratic (when all players are
single integrators) or quartic equation (pursuers with finite
acceleration), or by numerical root-solving techniques. The
min-max time of capture is our chosen metric to represent
the risk of capture for E.

C. Elements of the payoff matrix

Each element of the payoff matrix is a numerical value
that reflects the two-fold objective of the evader: (1) to avoid
capture and (2) to reach the target location xG. The two
components of each entry are the time that P would take to
capture E, and the extent to which E’s heading is towards
xG from its current location.The target-seeking component
of E’s velocity is measured by cosψ, where ψ is the angle
between the vectors ve and xG − xe.

We have to re-construct the payoff matrix at every stage since
at least two players move. Even with a discounting factor
γ = 1 (which means that the future is as important as the
present for consideration), it is difficult to estimate the payoff
that the evader will receive at the end of K stages, since the
payoffs at each stage are dependent on the players’ states in
the current stage. Thus, the history of moves in previous
play is reflected in the changing payoff values, although
this information is not available directly to the players as
a strategy recall.

Alternatively, instead of considering discrete states on a
continuous space for each player, we could characterize
the states in a different classification based on safety or
proximity to the goal. Then, a choice of different set of pure
strategies (actions) would yield a game with a fixed payoff
matrix, and we can solve for the subgame perfect equilibria
by starting from the last stage of play. This approach,

however, has the disadvantage that some information is lost
when translating the Cartesian state space into a different
representation, since we need to heuristically classify the
states.

We have evaluated the performance of the evader when γ = 1
as well as when γ = 0. The exact steps in computing the
payoff matrix Mk at stage k are detailed in the next section,
for γ = 0 (the present stage is all that is taken into account).

D. Planning horizon: one stage

Let us first consider the case with a planning horizon of
one stage (γ = 0). Each entry of the matrix Mk is associated
with two components: one representing evasion and the other
representing the target-seeking behavior, and is constructed
as follows. For each pair of pure strategies, we calculate the
new positions of the players after playing those strategies
for one stage (execution horizon is a single stage). Then, if
the time of capture for the evader using the new positions is
smaller than the old positions, that component of the payoff
will be set to −1, since it is favorable to the pursuer. If the
new positions are favorable to the evader, the payoff will be
set to +1. If there is no change, the payoff will be zero.
Similarly, if the evader’s new position is closer to the goal
than previously, the goal component of the payoff will be set
to +1, and if the evader has moved away from the goal, the
payoff will be set to −1. Maintaining the same distance from
the goal merits zero payoff. The sum of these two quantities
yields a single entry of the matrix Mk.

All entries of Mk belong to the set {−2,−1, 0, 1, 2}. Let
the input corresponding to the realization of the ith pure
strategy of P be the n-tuplet qi, whose only non-zero entry is
equal to one and is at the ith position (that is, the ith pursuer
is active and all other pursuers have zero input). Similarly,
let pj be the input corresponding to the realization of the
jth pure strategy of E. The Algorithm (1) shows the main
steps for the assignment of payoffs to Mk:

input : η, xG, ξi ∀i ∈ I, k
output: Mk

for i← 1 to N do
for j ← 1 to N + 1 do

ξ′i = fPd(ξi, qi)
η′ = fEd(ηi,pj)
Tc = sgn(φ(η′, ξ′i)− φ(η, ξi))
Gc = sgn(‖xe − xG‖ − ‖x′e − xG‖)
Mk(i, j) = Tc +Gc

end
end

Algorithm 1: Payoff Assignment to Mk

E. Planning horizon: Remaining stages of the game

When γ = 1, the payoffs are designed to reflect the long-
term effects of each action. In this case, since we have an



upper bound T̄f on the duration of the game, the time-
of-capture component is bounded. For each pair of pure
strategies (i, j), we calculate the minimum time-of-capture of
E by the pursuing agent i. Note that E will play the strategy
corresponding to evasion from the pursuer j. If capture is
not possible, we set the value to T̄f . The target-seeking
component is given by cos(ψ), as described in Section III-C.
The Algorithm (2) shows the main steps for the assignment
of payoffs to Mk:

input : η, xG, ξi ∀i ∈ I, k, T̄f
output: Mk

for i← 1 to N do
for j ← 1 to N + 1 do

Tc = min(φ(η, ξi), T̄f )

Gc = 〈ve,xG−xe〉
‖ve‖‖xG−xe‖

Mk1(i, j) = Tc
Mk2(i, j) = Gc

end
end
M̂k1 = Mk1

maxi,j Mk1

Mk = M̂k1 +Mk2

Algorithm 2: Payoff Assignment to Mk

Note that we normalize the evasion component which is
given by the matrix Mk1 using the maximum entry of
the matrix. This ensures that all evasion components have
values between zero and unity, similar to the target-seeking
component. The summation of the two components in this
manner is a standard practice in multi-objective optimization
where the objectives are combined into one global criterion
[18].

F. Solution to the matrix game

Now that we have formulated the matrix game, we can
solve for the equilibrium strategies using standard tech-
niques. An equivalent non-zero sum formulation for our
problem would consider the whole N + 1 player game, with
cost assignments that are functions of the states of all players.
Subsequently, verifying the existence of an equilibrium set
of pure strategies is a hard problem, in the sense that it
would require an exhaustive search among all possibilities.
However, we know that a two-player zero sum multi-act
game which is finite admits a saddle point solution in mixed
strategies [5].

The mixed strategy for each player is a vector of proba-
bilities. At any stage k, for P , we have a mixed strategy
described by a vector y ∈ RN , with

∑
i yi = 1. Similarly for

E, we have a strategy described by z ∈ RN+1,
∑

j zj = 1.
The ith entry of the vector y (or z) represents the probability
of the ith pure strategy being employed by P (or E).
The computation of the vectors y∗ and z∗ which solve
for the saddle point (the min-max problem) of the game
is formulated as a Linear Programming (LP) problem [6],

which can be solved using readily available solvers. The
package cvx [19] was used for the simulations that will be
presented in Section IV. We recompute Mk for every stage
of the game as the players move in the state space. The
actions (pure strategies) for a particular stage of the game are
obtained as random samples from the discrete distributions
given by y∗ and z∗ for that stage of the game.

IV. SPECIFIC EXAMPLE

In this section, we apply our proposed method of game
construction and evasion solution to a specific scenario. Let
us consider a game where all players have simple dynamics
and all the pursuers have the same speed. In particular, the
equations of motion of the players are:

ẋi = vpui, xi(0) = x̄i ∀i ∈ I
ẋe = veue, xe(0) = x̄e

The active pursuer always follows the line of sight to the
evader, that is, the pursuer engages in what is referred to as
“pure pursuit” in literature. In general, the time of capture
of the evader by any pursuer in this case depends on the
relative velocity. If the pursuer cannot capture the evader,
resulting in infinite value for the capture time φ(η, ξi), or
if the time of capture calculated is greater than T̄f , we
assign φ(η, ξi) = T̄f to ensure that the payoff values remain
finite. The calculation of the off-diagonal values of the payoff
matrix requires the time of capture when the evader is
intercepted by a pursuer. A simple method to calculate this
can be found in [20].

We consider three different cases: when the evader’s speed
is equal to that of the pursuers (ve = vp), when the evader
is slower (ve < vp) and when the evader is faster (ve > vp).
For each of these cases, we consider three different pursuit
policies. The relay-pursuit strategy based on minimum time
of capture will be referred to as RP, and the stage-by stage
optimal policy using the matrix game for one planning
horizon (γ = 0) will be referred to as SH, and the long
planning horizon policy (γ = 1) will be referred to as LH.
The evader’s policies could be long horizon (LH) or short
horizon (SH). All players use only one type of policy for the
whole game. In this section, when we refer to a game, we
will refer to the pursuer’s strategy first and then the evader’s
strategy, for instance, an “RP vs LH” game indicates that
the pursuers played relay pursuit based on minimum time
of capture and the evader used the long planning horizon
policy at each stage. For the numerical simulations, we use
randomly generated target location and initial positions for
the players.

In our numerical simulations, we considered cases with
the number of pursuers N ∈ {2, 3, ..., 7}. All pursuers have
unit speed (vp = 1) and the other parameters are chosen to
have values as follows: l = 0.1, ε = 0.05, T̄f = 14.2 and
ve ∈ {0.9, 1, 1.1}. Each pair of policies was tested for ∼ 103

runs of random initial conditions, where the initial distance
between the evader and the goal was ensured to be always



greater than the minimum initial distance between a pursuer
and the evader. In Table II, we see the percentage of cases
where the evader reached the target successfully for different
combinations of pursuit and evasion policies. Similarly, in
Table III, we see the percentage of games that ended in the
evader being captured. The rest of the games not represented
in the tables above do not conclude within the fixed upper
bound for duration T̄f .

From Table II, we observe that the LH evasion policy
performs better than SH evasion against RP pursuit policy in
terms of reaching the target successfully. Also, LH evasion
performs better against LH pursuit than SH evasion against
SH pursuit. Even if the inconclusive games are considered
in favor of SH evasion, LH evasion has an advantage in that
it is faster in reaching the target. Hence, as expected, the
evader benefits from keeping in mind a far-reaching effect
of its current actions rather than the short-sighted play of
choosing the best move at each stage. This holds for all
three different speeds of the evader.

The following figures (Fig.1 - Fig. 3) highlight the evader’s
play for a specific set of initial conditions with four pursuers.
The evader’s path is shown in green squares and the pursuers
are shown as red triangles. The initial position of evader is
solid green and those of the pursuers are solid red. The goal
position is shown as a solid black circle.
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Fig. 1. N = 4, Slower evader. LH evasion reaches the target
location in (b), while in (d), LH evasion brings the evader close to
the target.

In terms of pursuit policies, LH pursuit is observed to have
a slight advantage over RP pursuit against an LH evader. This
is expected since long-horizon planning takes into account
both the time to capture and the evader’s heading. Against an
SH evader, however, RP pursuit has the upper hand over SH
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Fig. 2. N = 4, Equal speeds for all players. LH evasion reaches
the target location in both (b) and (d), while in (c), SH evasion
brings the evader close to the target. In (b), the evader is close to
being captured though it has reached the target.

TABLE II
OUTCOME OF GAMES - SIMPLE DYNAMICS, TARGET REACHED

ve < vp ve = vp ve > vp
HH

HHP
E LH SH LH SH LH SH

RP 8.67% 2.67% 54.73% 5.07% 51.60% 3.10%
LH 7.13% - 51.67% - 62.60% -
SH - 2.60% - 5.80% - 1.90%

pursuit. Hence, the pursuers would benefit from using either
minimum time of capture or a long-term payoff as their relay
metric.

As the evader’s speed increases, we notice that more games
are inconclusive in the time limit chosen for simulations.
Of the concluded games, it is evident that LH evasion
outperforms SH evasion against RP pursuit in terms of
reaching the target and delaying capture. Considering the
inconclusive games, the evader using LH evasion was closer
to the goal than the nearest pursuer at the time T̄f in about
3% of games compared to an evader using SH evasion policy.

TABLE III
OUTCOME OF GAMES - SIMPLE DYNAMICS, EVADER CAPTURED

ve < vp ve = vp ve > vp
H

HHHP
E LH SH LH SH LH SH

RP 90.97% 96.70% 29.00% 87.00% 20.20% 90.00%
LH 92.63% - 36.67% - 22.00% -
SH - 96.97% - 26.93% - 29.10%



In Fig. 3 the faster evader’s play is shown for the same set
of initial conditions. The evader is shown in green squares
and the pursuers as red triangles and the goal in black.
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Fig. 3. N = 4, Faster evader. LH evasion reaches the target location
in (b) and (d), while in (c), SH evasion avoids capture for a long
time.

Finally, we see that in all the cases, the long planning horizon
policy (γ = 1) does perform better than a single-stage
planning policy against relay pursuit using minimum time
of capture as the relay metric. In terms of pursuit strategy,
the relay pursuit using long-horizon payoff as the metric
performs better than the relay pursuit using minimum-time
as the metric. Hence, the long-term payoff is an effective
alternative to minimum time of capture as a relay metric.

V. CONCLUSION

In this paper, we have addressed a problem of evasion from
multiple pursuers by reducing it to a multi-act, two player
zero-sum game. The proposed solution approach employs
the well-known framework of matrix games. In particular, at
each time step, we solve a relevant matrix game to account
for the dynamic nature of the game. It turns out that the
method presented in this paper can be easily extended to
games with more complex dynamics for the players, as long
as the payoff components are computationally inexpensive
to obtain. Further, based on extensive simulations, we argue
that in most cases, long-term planning is more effective
for evasion than a myopic strategy, in particular against the
pursuers playing relay pursuit.

We would like to extend this framework to more complex
games, such as games restricted to compact domains and/or
domains containing regions that must be avoided (i.e., ob-
stacles). Finally, we would like to explore the possibility of

providing guarantees on the performance of the evader, as
well as analyze and quantify the sensitivity of the evader’s
strategy to the discounting factor.
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