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Abstract— In this work, we study a fundamental controlla-
bility problem for discrete-time linear systems driven by sparse
control sequences, that is, sequences comprised of a significant
number of null elements, by utilizing an ℓ1 optimal control
problem formulation. It is well known that the solution to
the latter problem, which we refer to as the minimum ℓ1-
norm controllability problem, enjoys, in general, nice sparsity
properties in sharp contradistinction to the solution to the
minimum ℓ2-norm controllability problem for discrete-time
linear systems. On the other hand, it is well known that
the latter problem can be reduced to a convex quadratic
program subject to linear equality constraints, whose solution
can be characterized in closed form, in contrast with the
minimum ℓ1-norm controllability problem which lacks this
analytic tractability. In this work, we propose an iterative
approach that furnishes an approximate solution to the latter
problem in closed form via the solution of a corresponding
sequence of convex quadratic programs. Finally, we present
numerical simulations from the application of the proposed
approach to a space proximity operation problem.

I. I NTRODUCTION

This work deals with the characterization of asparse
control sequence that will steer a discrete-time linear system
to the origin (or any other prescribed terminal state) in
finite time. In this context, a sparse control sequence can
be thought of as a sequence comprised of a small number
of “large” inputs and many null inputs. The motivation
for this problem stems from a number of applications in
which the use of a small number of corrective / regulating
control actions is more economical than the use of control
sequences that result from the solution of, for instance,ℓ2
optimal control problems, which are known to favor control
sequences comprised primarily of non-null inputs of rather
small magnitude.

The problem of finding the most sparse control sequence,
that is, the control sequence with the minimumℓ0-norm, that
will steer a discrete-time linear system to a prescribed state
can be associated with the problem of finding the minimum
0-norm solution of a system of linear equations. In this
context, theℓ0-norm of a finite-length sequence of vectors
corresponds to the0-norm of the vector that is formed by the
concatenation of the vectors of this sequence. (The0-norm
of a vector, which is not a norm in the strict mathematical
sense, is defined as the number of non-zero elements of the
vector). Because theℓ0-norm minimization problem is not
convex, it is not computationally tractable, in general. In
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addition, theℓ0-norm does not reflect an intuitive perfor-
mance index for a dynamical system in contrast with other
ℓp-norms. In this work, we will address the controllability
problem for discrete-time linear systems in the class of sparse
control sequences indirectly by associating it with anℓ1-
norm minimization problem (thus, relaxing the requirement
for sequences of minimumℓ0-norm). The motivation behind
this approach stems from the fact thatℓ1-norm minimization
problems admit solutions that typically exhibit, under some
technical assumptions, sparsity properties. It should be also
highlighted that in contrast with theℓ0-norm, theℓ1-norm is
used as the performance index of practical optimal control
problems such as theminimum-fuel problem.

Literature Review: Control problems with sparsity con-
straints, have recently started to receive some attention in
the controls’ literature. The proposed approaches can be
decomposed to direct approaches that seek for solutions
of non-convexℓ0-norm minimization problems and indirect
approaches that seek for sparse solutions of convexℓ1-norm
minimization problems. The reader may refer to [1]–[6]. It is
well known thatℓ1-norm minimization problems are neither
analytically nor computationally tractable. Consequently, the
solution to such problems cannot be used in applications
which require real-time computations of rather low complex-
ity (such as problems on autonomous on-board guidance and
navigation of spacecraft). On the other hand, the literature
of compressive sensing is rich in iterative techniques, such
as the so-callediteratively reweighted least squares (IRLS)
algorithm as well as homotopy-based algorithms, which can
characterize an approximation to the solution of anℓ1-norm
minimization problem [7]–[11]. In particular, the main idea
behind the IRLS algorithm is that a sparse approximation
of the minimum ℓ1-norm solution to a system of linear
equations can be obtained as the limit of a sequence whose
elements are the minimizers of a corresponding sequence
of appropriately weightedℓ2-norm minimization problems,
which are analytically tractable.

Main Contribution: In this work, we address a fundamen-
tal controllability problem for discrete-time linear systems,
which is formulated as anℓ1 optimal control problem.
We will refer to the latter problem as the minimumℓ1-
norm controllability problem. In the proposed approach, the
optimal control problem is first reduced to an1-norm (vector
norm) minimization problem subject to linear constraints,
and subsequently, an approximation to the solution to the
latter problem is found by means of the IRLS algorithm.
The latter algorithm will in turn generate a sequence of
vectors that are the minimizers of a corresponding sequence



of convex QPs subject to linear equality constraints. Each
of these QPs can be interpreted as a weighted minimum
ℓ2-norm controllability problem, whose solution can be
characterized in closed form. In this way, the IRLS will
serve as a “bridge” that will allow one to pass from the
solution to an appropriately weighted minimumℓ2-norm
controllability problem to (an approximation of) the solution
to the minimumℓ1-norm controllability problem.

Structure of the paper: The rest of the paper is organized
as follows. In Section II, we introduce some useful notation
and briefly review some basic results from the theory of
discrete-time linear systems. In Section III, we formulate
the minimumℓ1-norm controllability problem and in Section
IV, we present an iterative scheme for the characterization
of an approximation of the solution to the latter problem
that is based on the IRLS algorithm. Illustrative numerical
simulations are presented in Section V. Finally, Section VI
concludes the paper with a summary of remarks.

II. PRELIMINARIES

A. Notation

We writeRn
≥0 andRn

>0 to denote the set ofn-dimensional
vectors that have, respectively, non-negative and positive
elements. We writeZ+ andZ

++ to denote the set of non-
negative integers and strictly positive integers, respectively.
Given zα, zβ ∈ Z

+ with zα ≤ zβ , we denote thediscrete
interval from zα to zβ as [zα, zβ ]d; note that[zα, zβ ]d =
[zα, zβ ]∩Z

+. Given a vectora ∈ R
n, we denote bya(i) (or

(a)(i) in cases in which we want to avoid the use of a double
subscript notation) itsi-th entry, that is,a(i) = eT

i a, where
ei denotes the unit vector whose only non-zero element
is the i-th one, which is equal to one. We writeπ−(a)
to denote the non-increasing arrangement ofa, that is, if
v = π−(a), then v(1) ≥ · · · ≥ v(n) ≥ 0, where v(j) is
the j-th largest element of the set{|a(i)|, i ∈ [1, n]d}. In
addition, we denote by|a|1 and |a|2 the 1-norm and the
2-norm of a, respectively; that is,|a|1 :=

∑n
i=1 |a(i)| and

|a|2 := (
∑n

i=1 |a(i)|
2)1/2. Given a finite-length (truncated)

sequence of vectorsAN := {a(t) ∈ R
n : t ∈ [0, N ]d},

we denote by‖AN‖ℓ1 and ‖AN‖ℓ2 the ℓ1 and ℓ2 norms
of AN , respectively; that is,‖AN‖ℓ1 :=

∑N
t=0 |a(t)|1 =

∑N
t=0

∑n
k=1 |a(k)(t)| and ‖AN‖ℓ2 :=

(
∑N

t=0 |a(t)|
2
2

)1/2
=

(
∑N

t=0

∑n
k=1 |a(k)(t)|

2
)1/2

. Furthermore, we denote by
diag(a) the diagonaln×n matrix whose diagonal elements
are the elements ofa. We will write 1 to denote the
vector whose elements are equal to one. Given a non-empty,
discrete, finite point-setS, we will denote bycard(S) the
number of points that comprise it. Finally, we write0m×p

(or simply, 0) and Im (or simply, I) to denote them × p
zero matrix and them×m identity matrix, respectively.

B. State Space Model

We consider a discrete-time linear system that is described
by the following recursive equation:

x(t+ 1) = Ax(t) +Bu(t), t ∈ [0, N − 1]d, (1)

with x(0) = x0, wherex(t) ∈ R
n denotes that state of the

system at timet, for t ∈ [0, N ]d, u(t) ∈ R
m denotes the

input applied to the system at timet, for t ∈ [0, N −1]d and
A ∈ R

n×n, B ∈ R
n×m andx0 ∈ R

n are given quantities.

For a given (finite-length) control input sequenceUN−1 :=
{u(t) ∈ R

m : t ∈ [0, N−1]d}, the solution to (1) will satisfy
the following equation:

x(t) = A
tx0 +

t−1
∑

τ=0

A
t−1−τ

Bu(τ), (2)

for all t ∈ [1, N ]d. Equation (2), which can be written more
compactly as follows:

x = Hu+ Γx0, (3)

where x := [x(0)T, . . . , x(N)T]T ∈ R
(N+1)n, u :=

[u(0)T, . . . , u(N−1)T]T ∈ R
Nm. Finally,H ∈ R

(N+1)n×Nm

andΓ ∈ R
(N+1)n×n and in particular,H corresponds to a

block lower triangular matrix of dimension(N + 1) × N
whose blocks, which are denoted byHi,j , are defined as
follows:

Hi,j :=

{

A
i−1−j

B, if i ≥ j + 1,

0, if i < j + 1,

for (i, j) ∈ [1, N + 1]d × [1, N ]d, whereas Γ :=
[

In,A
T, . . . , (AN−1)T, (AN )T

]T
.

III. PROBLEM FORMULATION

A. A Quick Review of the Minimum ℓ2-norm Controllability
Problem and its Formulation as a Quadratic Program

In this section, we quickly review the process of reducing
the minimumℓ2-norm controllability problem for discrete-
time linear systems into an equivalent convex quadratic pro-
gram subject to a set of linear equality constraints. First,we
give the precise formulation of this controllability problem
as anℓ2 optimal control problem.

Problem 1: Let x0 ∈ R
n andN ∈ Z

++ be given. Find
an input sequenceU⋆

N−1 := {u⋆(t) ∈ R
m : t ∈ [0, N−1]d}

that will steer the system described by (1) from statex = x0

at staget = 0 to the originx = 0 at staget = N while
minimizing the performance indexJ2(UN−1) := ‖UN−1‖

2
ℓ2

.

Next we reduce the minimumℓ2-norm controllability
problem (Problem 1) to a linearly constrained convex
quadratic program (QP) in terms ofu (for more details on the
reduction of quadratic optimal control problems for discrete-
time linear systems to QPs, the reader may refer to [12,
Chapter 5]). To this aim, we first note that

J2(UN−1) = ‖UN−1‖
2
ℓ2 =

N−1
∑

t=0

u(t)Tu(t)

=

N−1
∑

t=0

m
∑

k=1

|u(k)(t)|
2 = |u|22 =: J2(u). (4)

Next, we express the terminal constraint,x(N) = 0, as an
equality constraint in terms ofu. In particular, we have that



x(N) = ΠNx, whereΠN is a block row vector comprised
of N + 1 blocks from which the firstN ones are equal to
0n×n and the last one is equal toIn. In view of (3), we have
that x(N) = ΠN (Hu+ Γx0) or, equivalently,

CNu = β, (5)

whereCN ∈ R
n×Nm andβ ∈ R

n are defined as follows:

CN := ΠNH =
[

A
N−1

B, . . . ,B
]

, (6a)

β := −ΠNΓx0 = −A
Nx0. (6b)

Problem 2: Find a vectoru⋆ ∈ R
Nm that minimizes the

convex quadratic performance indexJ2(u) := uTu = |u|2

subject to the equality constraintCNu = β, whereCN and
β are defined, respectively, in (6a)-(6b).

Proposition 1: Suppose that the matrixCN ∈ R
n×Nm,

which is defined in (6a) is full row rank, that is,rank(CN ) =
n. Then, Problem 2 admits a unique solution for allx0 ∈ R

n,
which is denoted byu⋆ and satisfies the following equation:

u⋆ = C
T
N (CNC

T
N )−1β, (7)

whereβ ∈ R
n is defined in (6b). Consequently, the control

sequenceU⋆
N−1 := {u⋆(t) ∈ R

m : t ∈ [0, N − 1]d}, where

u⋆(t) = PtC
T
N (CNC

T
N )−1β, t ∈ [0, N − 1]d, (8)

wherePt ∈ R
m×Nm is a block row vector comprised ofN

blocks from which the(t+1)-th block is equal toIm whereas
all the other ones are equal to0m×m, solves Problem 1.

Proof: Problem 2 seeks for the minimum 2-norm
solution of the system of linear equations given in (5). By
hypothesis, the matrixCN ∈ R

n×Nm is full row rank and
thus the latter system of equations will admit at least one
solution for anyβ ∈ R

n, and thus for anyx0 ∈ R
n, in view

of (6b). In addition, among all the solutionsu ∈ R
Nm of

(5), the one that has the minimum 2-norm is given by (7)
(see, for instance, Proposition 6.3 in [13]).

Note that for the evaluation of the right hand side of (7),
one needs to multiplyCN with C

T
N , which costsO(n2Nm)

flops (here,O denotes the big-O Landau symbol). Instead of
directly performing the multiplication betweenCN andCT

N ,
we observe that

CNC
T
N =

N−1
∑

t=0

A
t
BB

T(AT)t. (9)

Using (9) can significantly reduce the cost for the compu-
tation of CNC

T
N given that the latter is now expressed as

the sum ofN matrix products of the formCtC
T
t , where

Ct := A
t
B ∈ R

n×m, for t ∈ [0, N − 1]d; the computation
of each of these products requiresO(n2m) flops. A more
significant reduction over the cost of computingCNC

T
N can

be achieved, if one computes the productCNC
T
N recursively.

This is possible becauseCNC
T
N is actually equal to the so-

called reachability Grammian [14] of the discrete-time linear
system given in (1) evaluated at staget = N − 1, which
is denoted byR(N − 1), where R(t), t ∈ [0, N − 1]d

corresponds to the solution of the following recursive (or
difference) Lyapunov equation:

R(t+ 1) = AR(t)AT +BB
T, t ∈ [0, N − 2]d, (10)

with R(0) = BB
T.

Finally, we note that the number of required flops for the
inversion ofCNC

T
N is O(n3), which is independent of the

number of stages,N + 1.

B. The Minimum ℓ1-norm Controllability Problem

The minimum ℓ1-norm controllability problem can be
formulated similarly to the minimumℓ2-norm controllability
problem (Problem 1), after the necessary modifications have
been carried out, as follows:

Problem 3: Let x0 ∈ R
n andN ∈ Z

++ be given. Find
a control input sequenceU⋆

N−1 := {u⋆(t) ∈ R
m : t ∈

[0, N −1]d} that will steer the system described by (1) from
statex = x0 at staget = 0 to the originx = 0 at staget =
N while minimizing the performance indexJ1(UN−1) :=
‖UN−1‖ℓ1 .

Next, we convert Problem 3 into an equivalent convex
optimization problem. To this aim, we note thatJ1(UN−1)
can be written as follows:

J1(UN−1) = ‖UN−1‖ℓ1 =

N−1
∑

t=0

|u(t)|1

=
N−1
∑

t=0

m
∑

k=1

|u(k)(t)| = |u|1 =: J1(u). (11)

Furthermore, the terminal constraintx(N) = 0 yields an
equality constraint in terms ofu, which is given in (5).

Problem 4: Find a vectoru⋆ ∈ R
Nm that minimizes the

convex quadratic performance indexJ1(u) := |u|1 subject
to the equality constraintCNu = β, whereCN andβ are
defined, respectively, in (6a)-(6b).

One way to characterize the solution to Problem 4 is
to employ the so-called modified Least Angle Regression
(LARS) algorithm (also known as thehomotopy method
for ℓ1-norm minimization problems). The LARS algorithm
will generate a sequence of control input vectors{uk}k∈Z+

that will eventually converge to the solution to Problem 4.
In particular, for eachk ∈ Z

+, uk is equal to a (global)
minimizer of the following convex functionJk(·) : RNm →
R with

Jk(u) := (1/2)|CNu− β|22 + λk|u|1, k ∈ Z
+, (12)

where {λk}k∈Z+ is a non-decreasing sequence of non-
negative numbers that converges to zero (from above).

Proposition 2: Let {λk}k∈Z+ be a non-decreasing se-
quence of non-negative numbers withlimk→∞ λk = 0.
Furthermore, letuk ∈ R

Nm denote the minimizer of the
function Jk(·) : R

Nm → R, where Jk(u) is defined in
(12), for everyk ∈ Z

+. Then, the sequence{uk}k∈Z+ will
converge to a point̄u that is a solution to Problem 4. If



in addition, Problem 4 admits a unique solution,u⋆, then
limk→∞ uk = ū = u⋆.

Proof: The reader may refer to [15].

Proposition 2 implies that the application of the LARS
algorithm will give the solution to Problem 4 as the limit
of a sequence of points formed by the global minimizers of
a sequence of unconstrained convex optimization problems.
Although, this approach can be implemented in practice
given the proliferation of convex optimization algorithms
and the relevant computational tools, it cannot furnish a
solution to Problem 4 in closed form. To see why this
is the case, it suffices to note that the convex function
Jk(·) is not differentiable everywhere due to the existence
of the term λ|u|1. Thus, the computation of the global
minimizers ofJk(·) requires the characterization of its sub-
differential, which is denoted by∂Jk(·) and defined as the
set-valued mappingu 7→ ∂Jk(u) with ∂Jk(u) := {z ∈
R

Nm : Jk(v) − Jk(u) ≥ zT(v − u), for all v ∈ R
Nm};

note that∂Jk(u) is a convex and compact set. It follows that

∂Jk(u) = {z ∈ R
Nm : z = C

T
N (CNu− β) + λkζ,

ζ ∈ ∂|u|1},

where ∂|u|1 = {ζ ∈ R
Nm : ζ(ℓ) ∈ ∂|u(ℓ)|, ℓ ∈

[1, Nm]d} with ∂|u(ℓ)| = {sign(u(ℓ))}, when u(ℓ) 6= 0,
and∂|u|1 = [−1, 1], otherwise, forℓ ∈ [1, Nm]d. We know
that a vectoruk is a (global) minimizer ofJk(·), if and only
if 0 ∈ ∂Jk(uk) [16] or equivalently,

(

C
T
N (CNuk−β)

)

(ℓ)
=

{

−λksign
(

(uk)(ℓ)
)

, if (uk)(ℓ) 6= 0,

ν ∈ [−λk, λk], otherwise,

for all ℓ ∈ [1, Nm]d. It should be clear from the previous
discussion that, in general, the characterization of the exact
solution to Problem 4 in closed form, based on the LARS
algorithm or any other direct solution approach, is practically
impossible.

IV. SEMI-ANALYTIC ITERATIVE APPROACH TO THE

M INIMUM ℓ1-NORM CONTROLLABILITY PROBLEM

On the basis of the previous discussion, it is more pru-
dent to look for a solution approach that will allow us to
characterize in closed-form an approximation of the solution
to Problem 4. The proposed approach will be based on
the so-callediteratively reweighted least squares (IRLS)
algorithm, which is a very popular tool forℓ1 optimization
problems (also known asbasis pursuit problems) and prob-
lems with sparsity constraints in the literature of compressive
sensing [15] to yield a “proxy” to the optimal solution to
Problem 4. The approximate solution to Problem 4 will
in turn furnish a control sequence that is a proxy to the
solution of the minimumℓ1-norm controllability problem
(Problem 3), which can be characterized in closed form.

Next, we present the main steps of the proposed iterative
approach for the characterization of a suboptimal solution
to Problem 4 in analytic form. To this aim, we consider the

following augmented performance index:

J̃1(u,w; ε) := uTdiag(w)u+ ε21Tw + 1
Tw†

=

N−1
∑

t=0

m
∑

k=1

w(k)(t)|u(k)(t)|
2

+

N−1
∑

t=0

m
∑

k=1

(

ε2w(k)(t) + 1/w(k)(t)
)

, (13)

where w :=
[

w(0)T, . . . , w(N − 1)T
]T

∈ R
Nm
>0 , that is,

wk(t) > 0 for all t ∈ [0, N − 1]d and k ∈ [1,m]d,
w† :=

[

w†(0)T, . . . , w†(N − 1)T
]T

∈ R
Nm
>0 with w†(t) =

[1/w(1)(t), . . . , 1/w(m)(t)]
T for all t ∈ [0, N − 1]d, and

finally, ε ≥ 0. We observe thatJ̃1(u;w, ε) can be also
expressed as follows:

J̃1(u,w; ε) = J̃ α
1 (u;w) + J̃ β

1 (w; ε), (14)

where J̃ α
1 (u;w) := uTdiag(w)u and J̃ β

1 (w; ε) :=
ε21Tw + 1

Tw†. The reason whyJ̃ α
1 is considered to be

a function ofu whereasw is treated as a known parameter
is because it will serve later on as the performance index
of an optimization problem whose decision variable isu.
Similarly, J̃ β

1 is considered to be a function ofw only, for
a given parameterε.

Next, we describe the main steps of IRLS algorithm
tailored to Problem 4. The discussion that will be given next
will follow the exposition presented in [15, Chapter 15]. We
will omit most proofs, which can be found in the relevant
literature of compressive sensing. For the execution of the
algorithm, we will assume that we are given the following
data:γ > 0, σ ∈ [1, Nm]d, ǫtol > 0 andε > 0.

Step 0: Setw[0] := 1, ε[0] := 1 and j := 0.

Step 1: Setu[j+1] := u⋆
IRLS, whereu⋆

IRLS corresponds to
the solution of the following convex QP problem:

min J̃ α
1 (u;wj), subject to CNu = β. (15)

In view of Proposition 1 together with the following change
of variablesũ = (W [j])1/2u, whereW [j] := diag(w[j]), it
follows readily that

u⋆
IRLS = (W [j])−1

C
T
N (CN (W [j])−1

C
T
N )−1β. (16)

Step 2: Set ε[j+1] := min{ε[j], γv(σ+1)}, where v :=
π−(u[j+1]).

Step 3: Setw[j+1] := w⋆
IRLS, wherew⋆

IRLS corresponds to
the solution of the following optimization problem:

min
(

J̃ β
1 (w; ε[j+1]) + J̄ α

1 (w)
)

, w ∈ R
Nm
>0 , (17)

where J̄ α
1 (w) := J̃ α

1 (u[j+1];w). It is not hard to show
that the components of the vector of weightsw⋆

IRLS can be
determined by the following equation:

(w⋆
IRLS)(ℓ) = 1/

√

(u
[j+1]
(ℓ) )2 + (ε[j+1])2, ℓ ∈ [1, Nm]d.

(18)

Step 4: Set j := j + 1. If j ≤ jmax and ε[j] ∈ [0, ε], then
report “success” and stop. Ifε[j] /∈ [0, ε], theni) if j < jmax,
go to Step 1, and ii) if j = jmax, report “failure.”



The following proposition illuminates an important prop-
erty that is enjoyed by the successive iterates of the previ-
ously described IRLS algorithm [15, Lemma 15.8]:

Proposition 3: Let u[j] denote the vector generated at the
j-th iteration of the IRLS algorithm. Then,limj→∞(u[j] −
u[j−1]) = 0.

It is very important to highlight that the fact that
limj→∞(u[j] − u[j−1]) = 0 does not necessarily imply
that the sequence{u[j]}j∈Z+ will also be Cauchy, and thus
convergent (in view of the completeness ofR

Nm). In order to
establish the convergence of the sequence{u[j]}j∈Z+ , which
is generated with the application of the IRLS algorithm, to
an s-sparse vector, that is, a vector with at mosts non-zero
elements, for a givens ∈ [1, Nm]d, then we will need the
following key assumption.

Assumption 1: There is a positive integers ∈ [1, Nm]d
such that matrixCN enjoys thenull space property of order
s, that is, for any subsetS of [1, Nm]d with card(S) ≤ s,
it holds true that|ρ(S)|1 < |ρ(Sc)|1, for all non-zero vectors
ρ in the null space ofCN , null(CN ), whereρ(S) (respec-
tively, ρ(Sc)) denotes thecard(S)-dimensional (respectively,
card(Sc)-dimensional) vector formed by the components
ρ(i) of ρ with i ∈ S (resp.,i ∈ Sc).

Next, we give the main convergence result for the IRLS
algorithm. The (rather lengthy) proof of this result can be
found in the relevant literature [8], [15].

Theorem 1: Suppose that Assumption 1 holds true. Then,
the sequence{u[j]}j∈Z+ will converge to a pointu◦, that is,
limj→∞ u[j] = u◦. In addition, if limj→∞ ε[j] = 0, thenu◦

is an s-sparse minimizer of Problem 4. Iflimj→∞ ε[j] =
ε◦ > 0, then u◦ is a global minimizer of the following
problem:

min Ĵ (u), subject to CNu = β,

whereĴ (u) :=
∑N−1

t=0

∑m
k=1

√

|u(k)(t)|2 + (ε◦)2.

Note that after the IRLS algorithm has converged to a
vector u◦ ∈ R

Nm for a given vectorβ ∈ R
n, which is

in turn determined by the given initial statex0 ∈ R
n in

accordance with Eq. (6b), then a control sequence that is
an approximation to the solution to the minimumℓ1-norm
controllability problem (Problem 3) fromx0 ∈ R

n at t = 0
to the originx = 0 at t = N can be characterized as follows:

Û⋆
N−1 := {û⋆(t) = Ptu

◦ : t ∈ [0, N − 1]d}, (19)

wherePt ∈ R
m×Nm is a block row vector comprised of

N blocks from which the(t + 1)-th block is equal toIm
whereas all the other ones are equal to0m×m. Note thatu◦

can be written as follows:

u◦ = (W [j◦])−1
C

T
N (CN (W [j◦])−1

C
T
N )−1β, (20)

where j◦ corresponds to the iteration at which the conver-
gence criterion of the IRLS algorithm, which is given in
Step 4, was met for the first time. In light of (20), we can
claim that the control input sequence that serves as proxy to
the solution to the minimumℓ1-norm controllability problem

(Problem 3), provided that Assumption 1 holds true, can be
characterized in closed form.

V. NUMERICAL SIMULATIONS

In this section, we will illustrate the applicability of the
results presented so far in the class of space proximity opera-
tions. In these operations, the continuous use of “corrective”
thrust maneuvers by a spacecraft can be too costly, in terms
of fuel usage. It is well known that optimal maneuvers, such
as minimum fuel maneuvers, may require the application of a
very small number of “impulsive” corrective maneuvers (see
for instance, [17]), which can be viewed as abstractions of
“large” control inputs similar to those that typically appear
in the solution of anℓ1 optimal control problem. We will
consider, in particular, the so-called spacecraft rendezvous
problem (a special class of space proximity operations) for
two spacecraft moving along a geosynchronous circular orbit
(of radiusα = 42164E+03[m]).

The linearized relative motion of the second vehicle with
respect to the first one (the “reference” vehicle) is described
in continuous time by the so-called Clohessy Wiltshire (CW)
equations:

ẋ(t) = Acx(t) +Bcu(t), x(0) = x0, (21)

wherex = [δx, δy, δvx, δvy]
T and Ac =

[

02×2 I2

A3 A4

]

,

A3 =
[

3n2T 2 0
0 0

]

, A4 =
[

0 2nT
−2nT 0

]

and Bc =

(FT 2)/(mS)
[

02×2 I2

]T
and u = [ux, uy]

T. In this
model, [δx, δy]T and [δvx, δvy]

T correspond to, respec-
tively, the relative position vector and the relative velocity
of the second spacecraft with respect to the first one at
time t. Furthermore,m corresponds to the mass of the
second vehicle andF , T , andS are normalization constants.
The corresponding discrete-time model is described by the
recursive equation given in (1) withA = exp(∆τAc), B =
∫∆τ

0
exp(sAc)dsBc, where ∆τ > 0 is the discretization

step. For our simulations, we have used the following initial
position and velocity vectors[200, 0]T in [m] and [0, 0]T

in [m/s], respectively, (which means that the second vehicle
is initially 200 m ahead of the reference vehicle while
both of them travel along the same circular orbit with the
same speed) and the following data:n = 7.2922E−05,
S = 100[m], T = 60[s], F = 0.1[N], m = 500[kg],
ǫtol = 0.0065|u[0]|1, ∆τ = 0.25[s], N = 2400. The total
duration of the proximity operation were taken to be 10
minutes. In addition, the values of the massm of the second
vehicle and the normalization constantsF , T , andS were
taken from [18]).

Figure 1 illustrates the evolution of the state components
of system (21) driven by the control sequence that solves
Problem 1 (minimumℓ2-norm controllability problem) and
the control sequence that approximates the solution to Prob-
lem 4 (minimumℓ1-norm controllability problem), which is
generated after ten iterations of the IRLS algorithm. Figure 2
illustrates the magnitude of the control input at each stage
for both of the two utilized control sequences. We observe
that the control sequence generated with the application of
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Fig. 1. Time-evolution of the components of the state vector ofthe system
driven by the control sequence that solves theℓ2 optimal control problem
versus the control sequence that results from the application of the IRLS
algorithm (approximate solution to theℓ1 optimal control problem).

the IRLS algorithm consists of a significant number of null
inputs and the magnitude of its control inputs is large only
during a brief period at the beginning of the proximity
operation and another one near its end. By contrast, the
control sequence that solves Problem 1 is comprised mainly
of non-zero control inputs of relatively small magnitude.

VI. CONCLUSION

In this work, we have presented an iterative scheme for the
computation of an approximate solution to the minimumℓ1-
norm controllability problem for discrete-time linear systems
by solving a sequence of convex quadratic programs subject
to linear constraints, each of which admits a closed form
solution. The proposed approach is based on a popular
algorithm from compressive sensing, namely the iteratively
reweighted least square algorithm tailored to the control
problem. In our future work, we will explore the minimum
ℓ1-norm controllability problem for continuous-time linear
systems.
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