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_Abstract— In this work, we study a fundamental controlla-  addition, thefy-norm does not reflect an intuitive perfor-
bility problem for discrete-time linear systems driven by sparse  mance index for a dynamical system in contrast with other
control sequences, that is, sequences comprised of a S|gn|f|cant€p_norms_ In this work, we will address the controllability

number of null elements, by utilizing an ¢; optimal control . . . .
problem formulation. It is well known that the solution to problem for discrete-time linear systems in the class ofsgpa

the latter problem, which we refer to as the minimum ¢,- control sequences indirectly by associating it with @n
norm controllability problem, enjoys, in general, nice sparsity norm minimization problem (thus, relaxing the requirement
properties in sharp contradistinction to the solution to the  for sequences of minimurfy-norm). The motivation behind
minimum ¢>-norm controllability problem for discrete-time this approach stems from the fact tiiatnorm minimization

linear systems. On the other hand, it is well known that - . . I
the latter problem can be reduced to a convex quadratic problems admit solutions that typically exhibit, under som

program subject to linear equality constraints, whose solution ~technical assumptions, sparsity properties. It shouldibe a
can be characterized in closed form, in contrast with the highlighted that in contrast with th&-norm, the/;-norm is

minimum £;-norm  controllability problem which lacks this  ysed as the performance index of practical optimal control

analytic tractability. In this work, we propose an iterative problems such as theinimum-fuel problem.
approach that furnishes an approximate solution to the latter

problem in closed form via the solution of a corresponding Literature Review: Control problems with sparsity con-
sequence of convex quadratic programs. Finally, we present straints, have recently started to receive some attention i
numerical simulations from the application of the proposed o controls’ literature. The proposed approaches can be
approach to a space proximity operation problem. decomposed to direct approaches that seek for solutions
of non-convex¢y-norm minimization problems and indirect
I. INTRODUCTION approaches that seek for sparse solutions of cofyaorm
minimization problems. The reader may refer to [1]-[6]slt i
This work deals with the characterization ofsparse  ell known that¢;-norm minimization problems are neither
control sequence that will steer a discrete-time lineatesys analytically nor computationally tractable. Consequertie
to the origin (or any other prescribed terminal state) iRpjution to such problems cannot be used in applications
finite time. In this context, a sparse control sequence caghich require real-time computations of rather low complex
be thought of as a sequence comprised of a small numbgf (such as problems on autonomous on-board guidance and
of “large” inputs and many null inputs. The motivation navigation of spacecraft). On the other hand, the litegatur
for this problem stems from a number of applications it compressive sensing is rich in iterative techniqueshsuc
which the use of a small number of corrective / regulatings the so-calledteratively reweighted least sguares (IRLS)
control actions is more economical than the use of contrghgorithm as well as homotopy-based algorithms, which can
sequences that result from the solution of, for instarige, characterize an approximation to the solution of¢amorm
optimal control problems, which are known to favor controlninimization problem [7]-[11]. In particular, the main &le
sequences comprised primarily of non-null inputs of rathegehind the IRLS algorithm is that a sparse approximation
small magnitude. of the minimum ¢;-norm solution to a system of linear

The problem of finding the most sparse control sequencgguations can be obtained as the limit of a sequence whose
that is, the control sequence with the miniméganorm, that €lements are the minimizers of a corresponding sequence
will steer a discrete-time linear system to a prescribetestaof appropriately weighted>-norm minimization problems,
can be associated with the problem of finding the minimuri¥hich are analytically tractable.

0-norm solution of a system of linear equations. In this Main Contribution: In this work, we address a fundamen-

context, the/o-norm of a finite-length sequence of vectorsg| controllability problem for discrete-time linear sgats,
corresponds to the-norm of the vector that is formed by the which is formulated as arf; optimal control problem.

concatenation of the vectors of this sequence. (I4m®rm e will refer to the latter problem as the minimufi-

of a VeCtOI’, which is not a norm in the strict mathematicahorm Controuabi”ty problem. In the proposed approacle, th
sense, is defined as the number of non-zero elements of Uﬂﬁimal control problem is first reduced to amorm (vector
vector). Because thé-norm minimization problem is not norm) minimization problem subject to linear constraints,
convex, it is not computationally tractable, in general. Iland subsequently, an approximation to the solution to the
latter problem is found by means of the IRLS algorithm.
E. Bakolas is an Assistant Professor in the Department of shaite  The |atter algorithm will in turn generate a sequence of
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of convex QPs subject to linear equality constraints. Eachith 2(0) = z¢, wherexz(t) € R™ denotes that state of the
of these QPs can be interpreted as a weighted minimusystem at timet, for ¢ € [0, N]q4, u(t) € R™ denotes the
l5-norm  controllability problem, whose solution can beinput applied to the system at timefor ¢ € [0, N —1]; and
characterized in closed form. In this way, the IRLS willA € R"*", B € R™*™ andz, € R™ are given gquantities.

serve as a ‘bridge” that will allow one to pass from the gq 5 given (finite-length) control input sequerice_; :—
solution to an appropriately welgh_ted _mlnlmufa-nc_)rm {u(t) e R™: t € [0, N—1]4}, the solution to (1) will satisfy
controllability problem to (an approximation of) the sadurt the following equation:

to the minimum¢;-norm controllability problem.

t—1
Sructure of the paper: The rest of the paper is organized 2(t) = Alzg + ZAt—1—TBu(T) @)
as follows. In Section Il, we introduce some useful notation = ’

and briefly review some basic results from the theory of ) ) ]
discrete-time linear systems. In Section Ill, we formulatdor @l ¢ € [1, N]a. Equation (2), which can be written more

the minimum¢;-norm controllability problem and in Section compactly as follows:

IV, we present an iterative scheme for the characterization @ = Hu + Tzp, 3)

of an approximation of the solution to the latter problem

that is based on the IRLS algorithm. lllustrative numericahere z = [z(0)7,...,2(N)T]T € RWV+Ln 4 .=

simulations are presented in Section V. Finally, Section Vju(0)",...,u(N—1)T]T € R¥™, Finally, H ¢ RIW+1nxN

concludes the paper with a summary of remarks. andT' € RWV+Dnxn gnd in particularH corresponds to a

block lower triangular matrix of dimension(N + 1) x N
Il. PRELIMINARIES whose blocks, which are denoted i¥; ;, are defined as
) follows:
A. Notation

We write RZ , andRRZ, to denote the set of-dimensional
vectors that have, respectively, non-negative and pesitiv
elements. We write2* andZ** to denote the set of non- for (i,j) € [I,N + 1]g x [I,N]s, whereasT :=
negative integers and strictly positive integers, respelgt [ImATMH’(AN—l)T’ (AN)T]T,

Given z,, 23 € Z* with z, < z3, we denote theliscrete

interval from Za to z3 @s [za, 23]a; NOte that[z,, zsla = I1l. PROBLEM FORMULATION

[za, 28] NZT. Given a vecton € R", we denote by, (or

(a)() in cases in which we want to avoid the use of a doubl@. A Quick Review of the Minimum £,-norm Controllability
subscript notation) its-th entry, that is.a(;) = e]a, where Problem and its Formulation as a Quadratic Program

e; denotes the unit vector whose only non-zero element

is the i-th one, which is equal to one. We write™ (a)
to denote the non-increasing arrangementapthat is, if
v = 7 (a), thenvyy > --- > v,y > 0, wherev;) is
the j-th largest element of the sgta(;)|, i € [1,n]q}. In
addition, we denote bya|; and |a|2 the 1-norm and the
2-norm of a, respectively; that isja|, := >, |a(;| and
laly == (37, lag)[*)/2. Given a finite-length (truncated) Problem 1: Let zp € R” and N € Z** be given. Find
sequence of vectordy = {a(t) € R" : t € [0,N]y}, aninputsequenclEy_, :={u*(t) e R™: t € [0,N—-1]q}
we denote by||Ax|l¢, and | Ax]e, the ¢, and /5 norms that will steer the system described by (1) from state xg
of Ay, respectively; that is|]|An|l¢, = Zf;o la(t)], = at staget = 0 to the origina? = 0 at staget = N while
S ito Sic lag (1) and [l = (S0, la()f3)""* = Minimizing the performance indek(U 1) = [Ux -1z

(N, ZZ:1|a(k)(t)\2)l/2- Furthermore, we denote by Next we reduce the minimunt;-norm controllability
diag(a) the diagonak x n matrix whose diagonal elements Problem (Problem 1) to a linearly constrained convex
are the elements of. We will write 1 to denote the quadratic program (QP) in terms af(for more details on the
vector whose elements are equal to one. Given a non-empf§duction of quadratic optimal control problems for disere
discrete, finite point-sef, we will denote bycard(S) the time linear systems to QPs, the reader may refer to [12,
number of points that comprise it. Finally, we wrigg,,, ~Chapter 5]). To this aim, we first note that

Hoo JATTB i iz,
o, if i<j41,

In this section, we quickly review the process of reducing
the minimum ¢;-norm controllability problem for discrete-
time linear systems into an equivalent convex quadratie pro
gram subject to a set of linear equality constraints. Fist,
give the precise formulation of this controllability prei
as an/s optimal control problem.

(or simply, 0) andI,, (or simply, I) to denote then x p N—1
zero matrix and then x m identity matrix, respectively. Jo(Un_1) = ||UN71||%2 = Z u(®)Tu(t)
t=0
B. Sate Soace Model N—1 m
_ 2 _ a2 .
We consider a discrete-time linear system that is described o Z [uay (7 = lulz = Jo(u). (4)

by the following recursive equation: 0
Next, we express the terminal constrain{/N) = 0, as an

w(t+1) = Az(t) + Bu(t), t<[0,N—1Ja, (1) equality constraint in terms ai. In particular, we have that



z(N) = IIyx, whereIly is a block row vector comprised
of N + 1 blocks from which the firstV ones are equal to
0,.x» and the last one is equal 1I9. In view of (3), we have
that (V) = Iy (Hu + I'zg) or, equivalently,

CNu = ,@, (5)
whereCy € R™*¥™ and3 € R™ are defined as follows:

Cy:=TIIyH=[A""'B,...,B],
B:= —IyTzy = —ANz,.

(6a)
(6b)

Problem 2: Find a vectoru* € RY™ that minimizes the
convex quadratic performance indgk(u) == v u = |ul?
subject to the equality constrai@tyu = 3, whereCy and
3 are defined, respectively, in (6a)-(6b).

Proposition 1: Suppose that the matrigy € R™»*VN™,
which is defined in (6a) is full row rank, that isink(Cx) =
n. Then, Problem 2 admits a unique solution foralle R™,
which is denoted by.* and satisfies the following equation:

u* =CN(CNCN) B, )

where3 € R" is defined in (6b). Consequently, the control

sequencd/y_, = {u*(t) e R™: t € [0, N — 1]}, where

(8)

whereP, € R™*N™ is a block row vector comprised 6f
blocks from which thét+1)-th block is equal td,,, whereas
all the other ones are equal @, «,,, Solves Problem 1.

u*(t) = P,CN(CNCN)TIB,  te[0,N — 1],

Proof:

Problem 2 seeks for the minimum 2-norm

corresponds to the solution of the following recursive (or
difference) Lyapunov equation:

R(t+1)=AR(H)AT +BB'", tc[0,N —2];, (10)

with R(0) = BBT.
Finally, we note that the number of required flops for the

inversion of CxC}, is O(n?), which is independent of the
number of stagesy + 1.

B. The Minimum ¢;-norm Controllability Problem

The minimum ¢;-norm controllability problem can be
formulated similarly to the minimuny-norm controllability
problem (Problem 1), after the necessary modifications have
been carried out, as follows:

Problem 3: Let zg € R® and N € Z*™" be given. Find
a control input sequenc&}_, = {u*(t) € R™ : t €
[0, N —1]4} that will steer the system described by (1) from
statex = xz( at staget = 0 to the originz = 0 at staget =
N while minimizing the performance indeX; (Uy—_1) :=
NUN-1lle,-

Next, we convert Problem 3 into an equivalent convex
optimization problem. To this aim, we note that(Un_1)
can be written as follows:

N-1
J1(Un-1) = [Un-1lle, = Z lu(t)]x

t=0

D luy )] = |ul = Fi(w).  (11)

k=1

-1

t=0

solution of the system of linear equations given in (5). By

hypothesis, the matri€y € R**N™ is full row rank and

Furthermore, the terminal constraim{/N) = 0 yields an

thus the latter system of equations will admit at least ongduality constraint in terms ai, which is given in (5).

solution for any3 € R™, and thus for anyy € R™, in view
of (6b). In addition, among all the solutions ¢ RY™ of

Problem 4: Find a vectoru* € RV™ that minimizes the
convex quadratic performance inde% (u) := |u|; subject

(5), the one that has the minimum 2-norm is given by (7)o the equality constrain€ yu = 3, whereCy and 3 are

(see, for instance, Proposition 6.3 in [13]). [ ]

defined, respectively, in (6a)-(6b).

Note that for the evaluation of the right hand side of (7), One way to characterize the solution to Problem 4 is

one needs to multiplg - with C}y, which costs?(n>Nm)

to employ the so-called modified Least Angle Regression

flops (here© denotes the big-O Landau symbol). Instead ofLARS) algorithm (also known as théomotopy method

directly performing the multiplication betweafy andC},,
we observe that
N-1
CnCl = > A'BBT(AT).
t=0

9)

for /;-norm minimization problems). The LARS algorithm
will generate a sequence of control input vectfis, } .cz+
that will eventually converge to the solution to Problem 4.
In particular, for eachk € Z™*, u; is equal to a (global)
minimizer of the following convex functio;(-) : RN™ —

R with

Using (9) can significantly reduce the cost for the compu-

tation of CyCJ given that the latter is now expressed as Jx(u) := (1/2)[Cnu — B3 + Ai|ul1,

the sum of N matrix products of the fornC,C], where
C,:= A'B € R™™ fort € [0, N — 1],; the computation
of each of these products requir€n?m) flops. A more
significant reduction over the cost of computidg,C}, can
be achieved, if one computes the proddgtC}, recursively.
This is possible becaus@NC}, is actually equal to the so-
called reachability Grammian [14] of the discrete-timeshn
system given in (1) evaluated at stage= N — 1, which
is denoted byR(N — 1), where R(¢t), t € [0, N — 1]4

keZt, (12)

where {\;}rez+ iS a non-decreasing sequence of non-
negative numbers that converges to zero (from above).

Proposition 2: Let {\;}rcz+ be a non-decreasing se-
guence of non-negative numbers withm; .., A\ = 0.
Furthermore, letu, € RV™ denote the minimizer of the
function J.(-) : R¥™ — R, where Ji(u) is defined in
(12), for everyk € Z*. Then, the sequenciuy },cz+ Will
converge to a pointz that is a solution to Problem 4. If



in addition, Problem 4 admits a unique solutiag, then following augmented performance index:

: e i
limp o0 w = = u”. Ji(u, w;e) = u'diag(w)u + 217w + 17w’

Proof: The reader may refer to [15]. [ ] Ne1 m
Proposition 2 implies that the application of the LARS = Z Wy () uer) (1)

algorithm will give the solution to Problem 4 as the limit t=0 k=1
of a sequence of points formed by the global minimizers of N-1 m )
a sequence of unconstrained convex optimization problems. + )0 (Eway () + wey(t), (13)
Although, this approach can be implemented in practice t=0 k=1
given the proliferation of convex optimization algorithms,,nere w :— [w(O)T L w(N - 1)T]T c RY™ that is
and the relevant computational tools, it cannot furnish g, ;" < ¢ for al P e 0,N — 1]; and k>0€’ i m}d'
solution to Problem 4 in closed form. To see why this ; ._ wH(O)T, .. wh (N —1)T L R with wi(t) =

is the case, it suffices to note that the convex functio
Jx(+) is not differentiable everywhere due to the existenc
of the term A|ul;. Thus, the computation of the global
minimizers of J(-) requires the characterization of its sub-

Jway(t); -, 1 wemy()]T for all t € [0,N — 1]y, and
inally, ¢ > 0. We observe that7; (u;w,e) can be also
expressed as follows:

differential, which is denoted b¥J(-) and defined as the Th(u, w;e) = T (uw; w) + Jf (w; e), (14)
set-valued mappinge — 0Ji(u) with 0J(u) == {z € - _ .
RN™ ; 3,(0) — Ju(w) = 2T(v — w), for all v € RAm};  Where JP(wiw) = w'diag(w)u and Jj(wie) =

. 217 T i i
note thatdJ,(w) is a convex and compact set. It follows thatt 1 @ + 1 w'. The reason why7;* is considered to be
a function ofu whereasw is treated as a known parameter

OFk(u) = {z e RVN™ : 2z =CN(Cnu — B) + Ml is because it will serve later on as the performance index
¢ € O} of an optimization problem whose decision variableuis
’ Similarly, jf is considered to be a function af only, for
where dlul; = {¢ € R¥™ : () € Oluyl, ¢ € adven parameter.
[1, Nm]q} with Olugy| = {sign(u(y))}, whenug, # 0, Next, we describe the main steps of IRLS algorithm
anddlul|; = [-1,1], otherwise, for/ € [1, Nm];. We know tailored to Problem 4. The discussion that will be given next
that a vectonu,, is a (global) minimizer ofj.(-), if and only  will follow the exposition presented in [15, Chapter 15]. We
if 0 € 9Jk(ux) [16] or equivalently, will omit most proofs, which can be found in the relevant

literature of compressive sensing. For the execution of the
(€ (Cru—p)),, — —Asign((ur)(e)), if (ur)e) #0, algorithm, we will assume that we are given the following
N\FN Bk © v E [_)\k; )\k]v Otherwise’ data:’Y > O, o€ [17Nm]d, €tol > 0 andz > 0.
. Step 0:Setw!® :=1, % := 1 andj := 0.
for all ¢ € [1, Nm]|q. It should be clear from the previous _ 1] ) .
discussion that, in general, the characterization of trecex SteP 1: Setul/™ 1 := ujp;q, whereufp g corresponds to
solution to Problem 4 in closed form, based on the LAR&N€ solution of the following convex QP problem:
algorithm or any other direct solution approach, is pradiyc min jla(u; w;), subject to Cyu=p. (15)

impossible. . . . .
In view of Proposition 1 together with the following change

of variablesi = (WU1)1/2u, whereWU! .= diag(wl), it
IV. SEMI-ANALYTIC ITERATIVE APPROACH TOTHE  follows readily that

MINIMUM ¢1-NORM CONTROLLABILITY PROBLEM . o1 T ]\—1 T \—1
urrs = (W) Cn(CNWY) " CN) 7 8. (16)

On the basis of the previous discussion, it is more pru- _ G4l e o L] o
dent to look for a solution approach that will allow us to>t€P 2.1Set e = min{eV), yv(o41)}, Where v :=
characterize in closed-form an approximation of the sotuti = (ub ).
to Problem 4. The proposed approach will be based Btep 3: Setwl/*! := wi,; s, Wherewiy; 4 corresponds to
the so-callediteratively reweighted least squares (IRLS) the solution of the following optimization problem:
algorithm, which is a very popular tool fa optimization . , —0 m
problems (also known asasis pursuit problems) and prob- min (J7 (w; e/ ™) + T (w)), w e R, (17)
lems with sparsity constraints in the literature of compres \where T (w) = jla(u[ﬂl];w)_ It is not hard to show
sensing [15] to yield a “proxy” to the optimal solution to that the components of the vector of weighis,; ; can be
Problem 4. The approximate solution to Problem 4 wildetermined by the following equation:
in turn furnish a control sequence that is a proxy to the .
solution of the minimum¢;-norm controllability problem  (wirys)@) = 1/\/(uEJZ;r”)2 + (eb+2) ¢ e [1, Nm)q.
(Problem 3), which can be characterized in closed form. (18)

Next, we present the main steps of the proposed iterati&ep 4: Setj := j + 1. If j < jna andeld! € [0,2], then
approach for the characterization of a suboptimal solutioreport “success” and stop. 4’ ¢ [0, 2], theni) if j < jmax,
to Problem 4 in analytic form. To this aim, we consider theyo to Step 1, andii) if j = jmax, report “failure.”



The following proposition illuminates an important prop-(Problem 3), provided that Assumption 1 holds true, can be
erty that is enjoyed by the successive iterates of the prewiharacterized in closed form.
ously described IRLS algorithm [15, Lemma 15.8]:

Proposition 3: Let /] denote the vector generated at the

j-th iteration of the IRLS algorithm. Therim; _, . (u!] — In this section, we will illustrate the applicability of the
uli=11) = 0. results presented so far in the class of space proximityasper

It is very important to highlight that the fact that tions. In these operations, the continuous use of “com_e’tti
hmj_m(u[j} _ u[jfl]) = 0 does not necessarily imply thrust maneuvers by a spacecraft can be too costly, in terms

that the sequencéull};;+ will also be Cauchy, and thus of fuel usage. It is well known that optimal maneuvers, such
convergent (in view of the completenessRo¥™). In order to &S minimum fuel maneuvers, may require the application of a
establish the convergence of the sequendé! }jezt, which  Very small number of “impulsive” corrective maneuvers (see
is generated with the application of the IRLS algorithm, tdOr instance, [17]), which can be viewed as abstractions of
an s-sparse vector, that is, a vector with at meston-zero 1arge” control inputs similar to those that typically agpe

following key assumption. consider, in particular, the so-called spacecraft renolegv

problem (a special class of space proximity operations) for

Assumption 1 There_ is a positive integes € [1, Nmlq two spacecraft moving along a geosynchronous circulat orbi
such that matrixC 5 enjoys thenull space property of order (of radiusa = 42164E+03[m)).

s, that is, for any subsef of [1, Nm], with card(S) < s, _ _ _ _ _ _
it holds true thaips)|1 < |p(s<)|1, for all non-zero vectors The linearized relative motion of the second vehicle with
p in the null space o€y, null(C ), where p(s) (respec- respect to the first one (the “reference” vehicle) is desctib
tively, p(s-)) denotes theard(S)-dimensional (respectively, in continuous time by the so-called Clohessy Wiltshire (CW)
card(S¢)-dimensional) vector formed by the component£duations:

V. NUMERICAL SIMULATIONS

pe) of p with i € S (resp.,i € §°). i(t) = Acz(t) + Bou(t), x(0) = zo, (21)
Next, we give the main convergence result for the IRLS 0s0 I
algorithm. The (rather lengthy) proof of this result can bavherez = [0z, &y, dv,, dv,]" and A, = {Axg AJ’
found in the relevant literature [8], [1?]. A, — [3"?2 8]’ A, = [_Q%T Q%T] and B, —

Theorem 1. Suppose that Assumption 1 holds true. Thens p72) /(1 5) 025 12]T and u = [us, u,)T. In this

the sequencéulll}jcz+ will converge to a poink,, thatis,  model, [z, 6y]" and [5v., 6v,]T correspond to, respec-
lin; o ubl = u,. In addition, iflim; o e = 0, thenu,  tively, the relative position vector and the relative vétpc

is an s-sparse minimizer of Problem 4. lfm; o) = of the second spacecraft with respect to the first one at
e® > 0, thenu, is a global minimizer of the following time ¢. Furthermore,m corresponds to the mass of the
problem: second vehicle andl', T', and.S are normalization constants.

The corresponding discrete-time model is described by the

recursive equation given in (1) with = exp(ATA,.), B =

whereJ (u) := 32,00 S, /Tug (O + (°)%. 27 exp(sA.)dsB,, where AT > 0 is the discretization

step. For our simulations, we have used the following ihitia

Bosition and velocity vector&00, 0] in [m] and [0, 0]

in [m/s], respectively, (which means that the second vehicle

is_initially 200 m ahead of the reference vehicle while

both of them travel along the same circular orbit with the

same speed) and the following data: = 7.2922E—05,

S = 100[m], T = 60[s], F = 0.1]N], m = 500[kg],

ol = 0.0065ul’l|;, AT = 0.25[s], N = 2400. The total
Ut ={a*(t) =P’ : te[0,N—1]4}, (19) duration of the proximity operation were taken to be 10

minutes. In addition, the values of the masf the second

where P, € R™*N™ is a block row vector comprised of vehicle and the normalization constarifs 7', and S were

N blocks from which the(t 4+ 1)-th block is equal tal,, taken from [18]).

whereas all the other ones are equadtg. .. Note thatu®

can be written as follows:

min j(u), subject to Cyu = 3,

Note that after the IRLS algorithm has converged to
vector u® € RN™ for a given vector3 € R", which is
in turn determined by the given initial statey € R™ in
accordance with Eq. (6b), then a control sequence that
an approximation to the solution to the minimuim-norm
controllability problem (Problem 3) from, € R™ att =0
to the originz = 0 at¢t = N can be characterized as follows:

Figure 1 illustrates the evolution of the state components
of system (21) driven by the control sequence that solves
u’ — (W[jo])‘1CL(CN(WUO])‘1C},)‘1§, (20) Problem 1 (minimumés-norm controllability problem) and
the control sequence that approximates the solution to-Prob
where j° corresponds to the iteration at which the converlem 4 (minimum¢;-norm controllability problem), which is
gence criterion of the IRLS algorithm, which is given ingenerated after ten iterations of the IRLS algorithm. Fegair
Step 4 was met for the first time. In light of (20), we canillustrates the magnitude of the control input at each stage
claim that the control input sequence that serves as proxy tor both of the two utilized control sequences. We observe
the solution to the minimurd; -norm controllability problem that the control sequence generated with the application of
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(a) Time-evolution of the components of the position
vector.
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(b) Time-evolution of the components of the velocity
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Fig. 1. Time-evolution of the components of the state vectahefsystem
driven by the control sequence that solves £heoptimal control problem
versus the control sequence that results from the apgicatf the IRLS [6]
algorithm (approximate solution to thig optimal control problem).
(7]

the IRLS algorithm consists of a significant number of null
inputs and the magnitude of its control inputs is large onlyg
during a brief period at the beginning of the proximity
operation and another one near its end. By contrast, th
control sequence that solves Problem 1 is comprised mainl
of non-zero control inputs of relatively small magnitude.

VI. CONCLUSION
[11]
In this work, we have presented an iterative scheme for the
computation of an approximate solution to the minimém [12]
norm controllability problem for discrete-time linear syss
by solving a sequence of convex quadratic programs subjﬁ:lzg]
to linear constraints, each of which admits a closed for
solution. The proposed approach is based on a populas]
algorithm from compressive sensing, namely the iterativel
reweighted least square algorithm tailored to the contr(gjrs']
problem. In our future work, we will explore the minimum [16]
£1-norm controllability problem for continuous-time Iinear[m
systems.
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