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Abstract

We propose a computational scheme for the solution of the so-called minimum variance control problem for discrete-
time stochastic linear systems subject to an explicit constraint on the 2-norm of the input (random) sequence. In our
approach, we utilize a state space framework in which the minimum variance control problem is interpreted as a finite-
horizon stochastic optimal control problem with incomplete state information. We show that if the set of admissible
control policies for the stochastic optimal control problem consists exclusively of sequences of causal (non-anticipative)
control laws that can be expressed as linear combinations of all the past and present outputs of the system together
with its past inputs, then the stochastic optimal control problem can be reduced to a deterministic, finite-dimensional
optimization problem. Subsequently, we show that the latter optimization problem can be associated with an equivalent
convex program and in particular, a quadratically constrained quadratic program (QCQP), by means of a bilinear
transformation. Finally, we present numerical simulations that illustrate the key ideas of this work.

Keywords: Minimum-variance control, stochastic optimal control, discrete-time stochastic systems, convex
optimization

1. Introduction

We propose a computational framework for the charac-
terization of control policies for a special class of stochas-
tic optimal control problems for discrete-time stochastic
linear systems with incomplete state information. Specifi-
cally, our objective is to compute a control policy that will
minimize the expected value of a finite sum of cost-per-
stage functions, which are (convex) quadratic functions of
the system’s output, subject to an explicit constraint on
(the expected value) of the ℓ2-norm of the input (random)
sequence. The CMVC problem can find many real world
applications in, for instance, the so-called web-forming
processes including thickness control of paper sheets, cold
or hot rolled sheets and coils, and plastic film extrusion by
means of compressive forces [2, 13, 28]. Another example is
trajectory optimization problems for uncertain dynamical
systems in which the objective is to minimize the disper-
sion of the endpoints of a representative sample of their
state trajectories around the terminal goal (mean) state.
The latter problem is also related to the problem of steer-
ing the distribution of the uncertain state of a stochastic
dynamical system to a goal state distribution, which has
recently received some notable attention [4, 10, 11].

Literature Review: The CMVC problem in the absence
of constraints reduces to the standard Minimum Variance
Control (MVC) problem, which is a well studied prob-
lem in the literature [3, 12, 24]. Typically, the scope of the

∗Corresponding author
Email address: bakolas@austin.utexas.edu (E. Bakolas)

MVC problem is limited to SISO systems and its solution is
based on transfer function design techniques given that in
its state-space formulation, the MVC problem corresponds
to a singular linear quadratic stochastic optimal control
problem whose performance index does not reflect any
penalty on the control effort. For this reason, one cannot
use the standard Riccati-based techniques used for similar,
but non-singular, problems and may have to resort instead
to more sophisticated geometric techniques [14, 15]. It is
well-known that the optimal control policy that solves the
MVC problem can be characterized by passing the sys-
tem’s output through a certain stable linear filter [6]. The
previous interpretation of the solution to the MVC prob-
lem implies that the control input that should be applied
to the system at each stage can be expressed as a linear
combination of the past and present output measurements
of the system together with its past inputs. This observa-
tion will play an instrumental role in the proposed solution
approach for the CMVC problem.

One of the main limitations of the most popular trans-
fer function design techniques for the MVC problem is that
their applicability requires the solution of the so-called
Diophantine (polynomial) equation, which can be a com-
plex task, especially for high-dimensional and / or time-
varying systems [26]. Solution techniques for the MVC
problem based on state-space methods have also appeared
in the literature [19, 21, 26]. A comprehensive presentation
and analysis of several formulations of the MVC problem
for stochastic linear systems with an emphasis placed on
the so-called ARMAX (Auto-Regressive, Moving Average,
with eXogenous input) model can be found in [6, pp. 236–
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251].

Main Contribution: This work proposes a computa-
tional solution approach for the CMVC problem, which is
based on convex optimization techniques [8]. The main
idea of the proposed solution approach is centered around
the interpretation of the CMVC problem as a stochastic
optimal control problem with incomplete state informa-
tion. This particular formulation of the CMVC problem
will allow us to leverage certain convex optimization tools
and techniques, which are used in control design prob-
lems for discrete-time stochastic linear systems (see, for
instance, [1, 9, 16, 18, 25, 27]), for the development of
an algorithmic procedure for the efficient computation of
its solution. Motivated by the structure of the optimal
policy of the standard MVC problem, we will restrict our
search for the optimal control policy of the CMVC prob-
lem to the set of sequences of causal (non-anticipative)
control laws that can be expressed as linear combinations
of the past and present output measurements of the sys-
tem together with its past inputs. Under this assump-
tion, it turns out that the CMVC problem can be re-
duced to a tractable deterministic convex program, which
can be addressed by means of efficient and robust com-
putational tools. It should be highlighted that this par-
ticular parametrization of the admissible control policies
has its roots in the so-called Youla-Kucera parametriza-
tion of all stabilizing controllers for a given discrete-time
linear system as well as the affine / linear disturbance
feedback parametrization for discrete-time stochastic lin-
ear systems, which was proposed in [5]. For the reduction
of the stochastic optimal control problem to a convex pro-
gram, we will make use of some of the key ideas presented
in [27]. Finally, we wish to highlight that despite the fact
that in the formulation of the CMVC problem we only
consider a single input constraint, the proposed approach
can be extended in a natural way to the case of multiple
similar state / input constraints. One can use the solu-
tion to the problem with such constraints as a high-level
roadmap to the control design problem and subsequently
employ more specialized techniques from, for instance, the
literature of stochastic MPC problems [1, 18, 23, 22], to
enforce either hard constraints or tight chance constraints
on the applied control inputs point-wisely in time.

Structure of the paper: The rest of the paper is or-
ganized as follows. In Section 2, we formulate the CMVC
problem, which we subsequently reduce to a deterministic,
finite-dimensional optimization problem, which may not
be convex in general, in Section 3. In Section 4, we show
that by employing a certain bilinear transformation, the
previous optimization problem reduces to a tractable con-
vex program. Numerical simulations that illustrate some
of the key ideas of the proposed solution techniques are
presented in Section 5. Finally, Section 6 concludes the
paper with a summary of remarks.

2. Problem Formulation

2.1. Notation

We denote by R and R≥0 the set of real numbers and
the set of non-negative real numbers, respectively, and by
R

n and R
m×n the set of n-dimensional real vectors and

m × n real matrices, respectively. We write |α| to de-
note the 2-norm of a vector α ∈ R

n. We write Z≥0

and Z>0 to denote the set of non-negative integers and
strictly positive integers, respectively. For a given N ∈
Z≥0, we denote by TN the discrete set {0, . . . , N} ⊂ Z≥0.
Given a probability space (Ω,F, P ) and N ∈ Z>0, we de-
note by ℓn2 (TN ; Ω,F, P ) the Hilbert space of mean square
summable random sequences {x(t) : t ∈ TN} on (Ω,F, P ),
where x(t) is an n-dimensional (random) vector for each
t ∈ TN . Given {x(t) : t ∈ TN} ∈ ℓn2 (TN ; Ω,F, P ), we write
‖x(·)‖ℓ2 to denote its norm in ℓn2 (TN ; Ω,F, P ), that is,

‖x(·)‖ℓ2 := (E
[
∑N

t=0 |x(t)|2
]

)1/2 = (
∑N

t=0 E
[

|x(t)|2
]

)1/2,
where E [·] denotes the expectation operator. Given a
square matrix A, we denote its trace by trace(A). The
induced matrix 2-norm of A is denoted by ‖A‖2, where
‖A‖2 = (λmax(A

TA))1/2 and λmax(M) denotes the maxi-
mum eigenvalue of a real symmetric matrix M. We write
0m×p (or simply, 0) and Im (or simply, I) to denote the
m× p zero matrix and the m×m identity matrix, respec-
tively. Furthermore, we denote by bdiag(A1, . . . ,Aℓ) the
block diagonal matrix whose diagonal blocks are matrices
Ai, i ∈ {1, . . . , ℓ}, of compatible dimensions. The set of
N × N block square and lower triangular (real) matrices
whose blocks have dimension m × n will be denoted by
BLN (m,n); note that BLN (m,n) ⊂ R

Nm×Nn. We will
denote the convex cone of n×n symmetric positive definite
and positive semi-definite matrices by Pn and Pn, respec-
tively. Finally, for a given a matrix A ∈ Pn, we will denote
by A1/2 its (unique) square root in Pn.

2.2. Formulation of the Constrained Minimum Variance
Control Problem

For a given N ∈ Z>0, let {A(t) ∈ R
n×n : t ∈ TN−1},

{B(t) ∈ R
n×m : t ∈ TN−1}, {C(t) ∈ R

n×p : t ∈ TN−1},
{G(t) ∈ R

n×q : t ∈ TN−1}, and {N(t) ∈ R
n×r : t ∈

TN−1} denote known sequences of matrices of appropriate
dimensions. Let us also consider a discrete-time stochastic
linear system that satisfies the following stochastic differ-
ence equation and output equation, respectively:

x(t+ 1) = A(t)x(t) +B(t)u(t) +G(t)w(t), (1a)

y(t) = C(t)x(t) +N(t)ν(t), (1b)

for t ∈ TN−1, where x(0) = x0 is a random vector drawn
from the Gaussian distribution N (µ0,Σ0) with µ0 and Σ0

be, respectively, a given vector in R
n and a given matrix

in Pn. In addition, {x(t) : t ∈ TN}, {u(t) : t ∈ TN−1},
and {y(t) : t ∈ TN−1} denote, respectively, the state,
the control input, and the output (random) sequences on
a complete probability space (Ω,F, P ). In addition, the
control input sequence {u(t) : t ∈ TN−1} is assumed to
belong to ℓm2 (TN−1; Ω,F, P ) and to have finite k-moments
for all k > 0. We will henceforth refer to a control input
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sequence that satisfies these properties as admissible. In
addition, {w(t) : t ∈ TN−1} and {ν(t) : t ∈ TN−1} are
sequences of independent normal random variables with
zero mean and unit covariance, that is,

E [w(t)] = 0, E
[

w(t)w(τ)T
]

= δ(t, τ) I, (2a)

E [ν(t)] = 0, E
[

ν(t)ν(τ)T
]

= δ(t, τ) I, (2b)

for all t, τ ∈ TN−1, with δ(t, τ) := 1, if t = τ , and δ(t, τ) :=
0, otherwise. It is assumed that x0 and {w(t) : t ∈ TN−1}
as well as {w(t) : t ∈ TN−1} and {ν(t) : t ∈ TN−1} are
mutually independent, which implies that

E
[

w(t)ν(τ)T
]

= 0, (3a)

E
[

ν(t)xT
0

]

= 0, E
[

w(t)xT
0

]

= 0, (3b)

for all t, τ ∈ TN−1.

Our objective is to find a control policy that minimizes
the expected value of a finite sum of cost-per-stage func-
tions, which are convex quadratic functions of the output
measurement y(t) of the stochastic linear system (1a)-(1b)
as t runs through TN−1, subject to an explicit inequality
constraint on the ℓ2-norm of the input sequence (realiza-
tion of the control policy). We will assume that the set of
admissible control policies, which is denoted by Π, consists
of all control policies π which are sequences of control laws
κ(·; t) that are causal (non-anticipative), measurable func-
tions of the elements of the so-called information set up to
time t. For a given t ∈ TN−1, the information set, which
is a random discrete set, is denoted as It and is defined as
follows: It := Iy

t ×Iu
t−1, where Iy

t := {y(τ) ∈ R
p : τ ∈ Tt}

and Iu
t−1 := {u(σ) ∈ R

m : σ ∈ Tt−1}. In particular, the
control law κ(·; t) will map a given information (random)
set It to a (random) m-dimensional input vector u(t) for
each t ∈ TN−1. We write π = {κ(It; t) : t ∈ TN−1}.
We also require that each possible realization of a control
policy π ∈ Π results in an admissible control input (ran-
dom) sequence. To improve computational tractability,
we will henceforth restrict our attention to control policies
π = {κ(It; t) : t ∈ TN−1} ∈ Π for which the feedback con-
trol law κ(It; t) can be expressed as a linear combination of
the past and present output measurements of the system
(elements of Iy

t ) together with its past inputs (elements of
Iu
t−1), for all t ∈ TN−1, that is,

κ(It; t) :=
t

∑

τ=0

Ky(t, τ)y(τ) +
t−1
∑

τ=0

Ku(t, τ)u(τ),

where Ky(t, τ) ∈ R
m×p, for all (t, τ) ∈ TN−1 ×TN−1 with

t ≥ τ , and Ku(t, τ) ∈ R
m×m, for all (t, τ) ∈ TN−1 ×

TN−2 with t > τ . The subset of Π that is comprised of
these control policies will be denoted by Π′. Next, we give
the precise formulation of the stochastic optimal control
problem with incomplete state information, which we will
refer to as the Constrained Minimum Variance Control
(CMVC) problem.

Problem 1. Let N ∈ Z>0, µ0 ∈ R
n, Σ0 ∈ Pn, and c̄ > 0

be given. In addition, let Q(t) ∈ Pp, for all t ∈ TN−1.
Then, find among all control policies π := {κ(It; t) : t ∈
TN−1} ∈ Π′ a control policy π⋆ := {κ⋆(It; t) : t ∈ TN−1} ∈

Π′ that minimizes the performance index:

J(π) := E

[

N−1
∑

t=0

y(t)TQ(t)y(t)
]

, (4)

subject to the equality constraints induced by (1a)-(1b), the
input energy constraint:

‖u(·)‖2ℓ2 = E

[

N−1
∑

t=0

|u(t)|2
]

≤ c̄, (5)

where u(t) = κ(It; t), for t ∈ TN−1, and the initial condi-
tion x(0) = x0 ∼ N (µ0,Σ0), which implies that

E [x0] = µ0, E
[

(x0 − µ0)(x0 − µ0)
T
]

= Σ0. (6)

Remark 1 Note that instead of considering only the in-
equality constraint (5), we could have considered q > 1
inequality constraints of the following form:

E

[

N−1
∑

t=0

y(t)TQℓ
c(t)y(t) + u(t)TRℓ

c(t)u(t)
]

≤ c̄ℓ,

for all ℓ ∈ {1, . . . , q}, where Qℓ
c(t) ∈ Pp, Rℓ

c(t) ∈ Pm,
for all t ∈ TN−1, and c̄ℓ > 0. The inclusion of these q
constraints would not practically change our subsequent
analysis. Note also that with the appropriate selection of
the matrices Qℓ

c(t) ∈ Pp and Rℓ
c(t) ∈ Pm, one can enforce

(soft) constraints point-wisely in (discrete) time, such as

E

[

y(t)TQc(t)y(t)
]

≤ c̄y, E

[

u(t)TRc(t)u(t)
]

≤ c̄u,

where c̄y, c̄u > 0, Qc(t) ∈ Pp and Rc(t) ∈ Pm, for all
t ∈ TN−1.

3. Conversion of the Constrained Minimum Vari-

ance Problem to a Tractable Convex Program

In this section, we try to establish a direct connection
between the CMVC problem and the rich literature on the
control design problem for discrete-time stochastic linear
systems subject to constraints based on convex optimiza-
tion techniques [1, 9, 16, 18, 25, 27]. In particular, our
strategy is to use some ideas and techniques from the pre-
vious references in order to reduce Problem 1, which is a
stochastic optimal control problem with incomplete state
information, into a tractable convex program. To this aim,
we first express the solution to the recursion equation (1a)
and the output equation (1b) in the following compact
form:

x = Bu+ Gw + x0, (7a)

y = Cx+Nν, (7b)

where x corresponds to the concatenation of the elements
of the sequence of states {x(t) : t ∈ TN}; in particular,

x := [x(0)T, . . . , x(N)T]T ∈ R
(N+1)n. (8)

Similarly, we denote by u and y the vectors which corre-
spond to the concatenations of the elements of {u(t) : t ∈
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TN−1} and {y(t) : t ∈ TN−1}, respectively, that is,
u := [u(0)T, . . . , u(N − 1)T]T ∈ R

Nm, (9a)

y := [y(0)T, . . . , y(N − 1)T]T ∈ R
Np. (9b)

Furthermore, we denote byw and ν the vectors that corre-
spond to the concatenations of the elements of {w(t) : t ∈
TN−1} and {ν(t) : t ∈ TN−1}, respectively, that is,

w := [w(0)T, . . . , w(N − 1)T]T ∈ R
Nq, (10a)

ν := [ν(0)T, . . . , ν(N − 1)T]T ∈ R
Nr. (10b)

In view of (2a)-(2b) and (3a)-(3b), we have that

E
[

ww
T
]

= I, E
[

νν
T
]

= I, E
[

wν
T
]

= 0. (11)

In addition, B := [0T, BT
1 ]

T ∈ R
(N+1)n×(Nm) and G :=

[0T, GT
1 ]

T ∈ R
(N+1)n×(Nq), whereB1 = [B

(i,j)
1 ] ∈ BLN (n,m)

and G1 = [G
(i,j)
1 ] ∈ BLN (n, q) and their (non-zero) blocks

are defined as follows:

B
(i,j)
1 := Φ(i, j)B(j − 1), G

(i,j)
1 := Φ(i, j)G(j − 1),

for (i, j) ∈ (TN\{0})× (TN\{0}) with i ≥ j, where

Φ(t, τ) := A(t− 1) . . .A(τ), Φ(τ, τ) = I,

for (t, τ) ∈ TN × TN with t ≥ τ . Furthermore,

C :=
[

bdiag
(

C(0), . . . ,C(N − 1)
)

, 0Np×n

]

∈ R
Np×(N+1)n,

N := bdiag
(

N(0), . . . ,N(N − 1)
)

∈ R
Np×Nr.

Finally, x0 := Γx0, where Γ :=
[

I . . . Φ(N, 0)T
]T ∈

R
(N+1)n×n. We note that in view of (3a)-(3b)

E
[

wx
T
0

]

= E
[

wxT
0

]

ΓT = 0, (12a)

E
[

νx
T
0

]

= E
[

νxT
0

]

ΓT = 0. (12b)

Under the assumption that the utilized control policy
π = {κ(It; t) : t ∈ TN−1} should belong to Π′, the control
input at stage t has to satisfy the following equation:

u(t) = κ(It; t) =
t

∑

τ=0

Ky(t, τ)y(τ) +
t−1
∑

τ=0

Ku(t, τ)u(τ),

for all t ∈ TN−1, where Ky(t, τ) ∈ R
m×p, for all (t, τ) ∈

TN−1 × TN−1 with t ≥ τ , and Ku(t, τ) ∈ R
m×m, for all

(t, τ) ∈ TN−1 × TN−2 with t > τ . The previous equation
can be written in compact form as follows:

u = Kyy +Kuu, (13)

where Ky = [K(i,j)
y

] ∈ BLN (m, p) and Ku :=

[

0 0

Ku 0

]

∈ BLN (m,m) with Ku = [K(ℓ,κ)
u

] ∈ BLN−1(m,m), where

the (non-zero) blocks K(i,j)
y

and K
(ℓ,κ)
u

are defined as fol-
lows:

K(i,j)
y

:= Ky(i− 1, j − 1), K
(ℓ,κ)
u

:= Ku(ℓ, κ− 1),

for (i, j) ∈ (TN\{0}) × (TN\{0}) with i ≥ j and (ℓ, κ) ∈
(TN−1\{0}) × (TN−1\{0}) with ℓ ≥ κ, respectively. By
collecting terms in (13), we can express u as follows:

u = Ky, K := (I−Ku)
−1Ky. (14)

Note that the inverse of (I − Ku) is always well-defined
and belongs to BLN (m,m). Note also that, for a given
K ∈ BLN (m, p), there may exist more than one pairs

(Ku,Ky) ∈ BLN (m,m) × BLN (m, p) that satisfy (14).
In particular, the pair (Ku,Ky) = (0,K) trivially satisfies
the second equation in (14) for any given K ∈ BLN (m, p).
Practically, this means that the inclusion of linear combi-
nations of past inputs in the expression of the control input
at each stage t will not yield any performance benefits.

After substituting the expression for y given in (7b)
into (14), we obtain a new equation for u, which we sub-
sequently plug into (7a) to finally take

x = Xw(K)w +X ν(K)ν +X 0(K)x0, (15)

Xw(K) := (I−BKC)−1G

= G +BK(I− CBK)−1CG, (16a)

X ν(K) := (I−BKC)−1BKN

= BK(I− CBK)−1N , (16b)

X 0(K) := (I−BKC)−1

= I+BK(I− CBK)−1C. (16c)

Note that the inverse of (I− CBK) is always well defined
and belongs to BLN (p, p).

In view of (15), the expression for y given in (7b) can
be written as follows:

y = Yw(K)w +Yν(K)ν +Y0(K)x0, (17)

where, in the light of (16a)–(16c),

Yw(K) := CXw(K) = CG + CBK(I− CBK)−1CG

= (I− CBK)−1CG, (18a)

Yν(K) := CX ν(K) +N = CBK(I− CBK)−1N +N

= (I− CBK)−1N , (18b)

Y0(K) := CX 0(K) = C + CBK(I− CBK)−1C

= (I− CBK)−1C. (18c)

Next, we will find an explicit expression for the perfor-
mance index J(π), when π ∈ Π′, in terms of the decision
variable K, which we denote as J (K). In particular, in
the light of (4) and (9b), J(π) can be written as follows:

J(π) = E
[

y
TQy

]

= trace(E
[

yy
T
]

Q), (19)

where Q = bdiag(Q(0), . . . ,Q(N − 1)). In view of (19)
and (36), we define J (K) as follows:

J (K) := trace
(

(

Yw(K)Yw(K)T +Yν(K)Yν(K)T

+Y0(K)Γ(Σ0 + µ0µ
T
0 )Γ

TY0(K)T
)

Q
)

. (20)

In addition, in view of the definition of u given in (10a),
the inequality constraint (5) can be written as follows:

E

[

N−1
∑

t=0

u(t)Tu(t)
]

= E
[

u
T
u
]

≤ c̄. (21)

By virtue of (14) and (17), we can express u as follows:

u = Uw(K)w + Uν(K)ν + U0(K)x0, (22)
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where, in view of (18a)–(18c), we have

Uw(K) := KYw(K) = K(I− CBK)−1CG, (23a)

Uν(K) := KYν(K) = K(I− CBK)−1N , (23b)

U0(K) := KY0(K) = K(I− CBK)−1C. (23c)

The inequality constraint given in (21) can be written
equivalently as follows: F(K) ≤ c̄, where in view of (37)

F(K) := trace
(

Uw(K)Uw(K)T + Uν(K)Uν(K)T

+ U0(K)Γ(Σ0 + µ0µ
T
0 )Γ

TU0(K)T
)

. (24)

In the light of the previous discussion, we immediately
conclude that Problem 1, which is a stochastic optimal
control problem, can be associated with the following de-
terministic, finite-dimensional optimization problem:

Problem 2. Given c̄ > 0, find K⋆ ∈ BLN (m, p) that
minimizes the performance index J (K), which is defined
in (20), over all K ∈ BLN (m, p) subject to the inequality
constraint F(K) ≤ c̄, where F(K) is defined in (24).

Note that Problem 2 is in general a nonlinear program
(NLP), which may not be convex.

4. Reduction of the CMVC Problem to a Tractable

Deterministic Convex Program

4.1. Introduction of a New Decision Variable via a Bilin-
ear Transformation

Next, we will introduce a new decision variable that
will allow us to reduce Problem 1 to a (finite-dimensional)
deterministic convex program. To this end, we introduce
the following bilinear transformation [27]:

K 7→ f(K), f(K) := K(I− CBK)−1, (25)

whose domain and co-domain are both equal toBLN (m, p)
(note that f(K) ∈ BLN (m, p) for any K ∈ BLN (m, p)).
The new decision variable is denoted as Ψ and is defined
as follows:

Ψ = K(I− CBK)−1 = f(K). (26)

By virtue of (26), we can write

K = (I+ΨCB)−1Ψ =: g(Ψ), (27)

where g(·) denotes the inverse function of f(·). Note again
that g(Ψ) is well defined for all Ψ ∈ BLN (m, p). In the
light of (17) and (27), we can express y in terms of the
new decision variable, Ψ, as follows:

y = Yw(Ψ)w +Yν(Ψ)ν +Y0(Ψ)x0, (28)

Yw(Ψ) := Yw(g(Ψ)) = C(I+BΨC)G, (29a)

Yν(Ψ) := Yν(g(Ψ)) = (I+ CBΨ)N , (29b)

Y0(Ψ) := Y0(g(Ψ)) = C(I+BΨC). (29c)

Similarly, in view of (22) and (27), it follows that

u = Uw(Ψ)w + Uν(Ψ)ν + U0(Ψ)x0, (30)

Uw(Ψ) := Uw(g(Ψ)) = ΨCG, (31a)

Uν(Ψ) := Uν(g(Ψ)) = ΨN , (31b)

U0(Ψ) := U0(g(Ψ)) = ΨC. (31c)

A very important observation at this point is that all
the quantities which are defined in (29a)–(29c) and (31a)–
(31c) are linear or affine functions of the new decision vari-
able Ψ. Now let J (Ψ) := J (g(Ψ)), which implies that
J (Ψ) = J (K) provided that Ψ = f(K). In the light of
(20) and (28), it follows that

J (Ψ) := trace
(

(

Yw(Ψ)Yw(Ψ)T +Yν(Ψ)Yν(Ψ)T

+Y0(Ψ)Γ(Σ0 + µ0µ
T
0 )Γ

TY0(Ψ)T
)

Q
)

. (32)

Proposition 1. The function Ψ 7→ J (Ψ), where J (Ψ)
is defined in (32), is convex.

Proof. In the light of (32), we can express J (Ψ) as the
sum of three functions which correspond to the composi-
tions of the function Z 7→ f(Z) := trace(ZZTQ) with the
functions Ψ 7→ g1(Ψ) := Yw(Ψ), Ψ 7→ g2(Ψ) := Yν(Ψ)
and Ψ 7→ g3(Ψ) := Y0(Ψ)Γ(Σ0 + µ0µ

T
0 )

1/2, respectively.
Note that f(Z) is convex (in Z), whereas g1(Ψ), g2(Ψ)
and g3(Ψ) are all affine functions of Ψ in view of (29a)–
(29c). Because the composition of a convex function with
an affine function yields a convex function [7], we con-
clude that the composite functions Ψ 7→ f(gi(Ψ)), for
i ∈ {1, 2, 3}, are convex (in Ψ). Consequently, the sum of
these three composite functions, which is equal to J (Ψ),
will also be a convex function of Ψ. �

In addition, the inequality constraint given in (5) can
be expressed in terms of the new decision variable Ψ as
follows: F(Ψ) ≤ c̄, where F(Ψ) := F(g(Ψ)), where in the
light of (24) and (31a)–(31c)

F(Ψ) := trace
(

Uw(Ψ)Uw(Ψ)T + Uν(Ψ)Uν(Ψ)T

+ U0(Ψ)Γ(Σ0 + µ0µ
T
0 )Γ

TU0(Ψ)T
)

. (33)

Proposition 2. The constraint function Ψ 7→ F(Ψ), where
F(Ψ) is defined in (33), is convex.

Proof. The proof of this proposition is very similar to
the proof of Proposition 1 and will be omitted. �

In the previous discussion, we have shown that J(π) =
J (K) = J (Ψ) and ‖u(·)‖2ℓ2 = F(K) = F(Ψ), where
u(t) = κ(It; t) for all t ∈ TN−1, provided that π = {κ(It; t)
: t ∈ TN−1} ∈ Π′ and Ψ = f(K) (or equivalently, K =
g(Ψ)). Consequently, the CMVC problem (Problem 1) is
equivalent to Problem 2, which in turn is equivalent to the
following deterministic optimization problem.

Problem 3. Given c̄ > 0, find Ψ⋆ ∈ BLN (m, p) that
minimizes the performance index J (Ψ), which is defined
in (32), over all Ψ ∈ BLN (m, p), subject to the inequality
constraint F(Ψ) ≤ c̄, where F(Ψ) is defined in (33).
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Proposition 3. Problem 3 is a convex optimization prob-
lem.

Proof. The proof of this proposition is an immediate con-
sequence of the following two facts: (i) the function Ψ 7→
J (Ψ) is convex by virtue of Proposition 1 and (ii) the in-
equality constraint F(Ψ) ≤ c̄ is a convex constraint (in the
sense that its corresponding feasible set is convex), given
that the c̄-sublevel set {Ψ ∈ BLN (m, p) : F(Ψ) ≤ c̄}
of the function Ψ 7→ F(Ψ), which is convex in view of
Proposition 2, is necessarily a convex set. �

The upshot of the previous discussion is that the CMVC
problem, which is a stochastic optimal control problem
with incomplete state information, is equivalent to Prob-
lem 3, which is a tractable (deterministic) convex opti-
mization problem. If the latter problem does not admit
a solution, then the CMVC problem is infeasible, and
vice versa. In addition, in view of (32) and (33), it is
rather straightforward to express both the performance in-
dex and the constraint function as convex quadratic func-
tions of the ℓ-dimensional (column) vector, x, where ℓ :=
N(N + 1)mp/2, which is formed by the entries of the
N(N + 1)/2 non-zero blocks with dimension m× p of the
block lower triangular matrix Ψ via a relevant one-to-one
mapping h(·) : Ψ 7→ h(Ψ) =: x. This means that Prob-
lem 3 can be associated with an equivalent convex quadrat-
ically constrained quadratic program (QCQP) whose deci-
sion variable is x. (The details for the conversion of Prob-
lem 3 to the latter QCQP, and vice vera, are omitted due
to space limitations). From a practical point of view, this
is a very powerful result given the recent proliferation of
robust, efficient and scalable computational tools for the
solution of the later class of optimization problems [8].

For the solution of the QCQP, which is equivalent to
Problem 3, one can use, for instance, CVX [17]. After the
computation of an optimal vector x⋆ ∈ R

ℓ that solves the
latter QCQP, one can characterize the corresponding op-
timal decision variable Ψ⋆ ∈ BLN (m, p) via the inverse of
the mapping h(·), that is, Ψ⋆ = h−1(x⋆). After the char-
acterization of Ψ⋆ ∈ BLN (m, p), one can proceed to the
computation of the corresponding optimal gain matrixK⋆,
where K⋆ := g(Ψ⋆). Then, we simply set K⋆

y
= K⋆ and

K⋆
u
= 0, as we have already explained. Finally, we char-

acterize the optimal policy π⋆ ∈ Π′ of the CMVC problem
(Problem 1), where π⋆ = {κ⋆(Iy

t ; t) : t ∈ TN−1} with

κ⋆(Iy
t ; t) :=

∑t
τ=0 K

⋆
y(t, τ)y(τ), by extracting the optimal

gains K⋆
y(t, τ) ∈ R

m×p, for all (t, τ) ∈ TN−1 × TN−1 with
t ≥ τ , from the corresponding entries of the optimal gain
matrix K⋆

y
∈ BLN (m, p).

4.2. A Brief Discussion on the Mean Square Boundedness
of the State Trajectory

Next, we will show that the state sequence generated
with the application of any admissible policy π ∈ Π′ will
remain mean-square bounded at each stage, regardless of
the (finite) horizon length [9]. In particular, we will show

that supt∈TN
E
[

|x(t)|2
]

< ∞, for any given N ∈ Z>0. To
streamline the subsequent analysis and its presentation, we
will assume that all the matrices that appear in (1a)-(1b)
are constant.

Proposition 4. Let us assume that A(t) ≡ A◦, B(t) ≡
B◦, G(t) ≡ G◦, C(t) ≡ C◦ and N(t) ≡ N◦, where A◦,
B◦, G◦, C◦ and N◦ are known matrices of appropriate
dimensions. Furthermore, we assume that ‖A◦‖2 ≤ ᾱ <
1. In addition, we are given a (deterministic) sequence
{̟(t) ∈ R≥0 : t ∈ Z≥0} which has finite ℓ2-norm, that is,
there exists ¯̟ > 0 such that

∑∞

t=0 ̟(t)2 = ¯̟ < ∞. Then,
the state process {x(t) : t ∈ TN} generated with the appli-
cation of an admissible input sequence {u(t) : t ∈ TN−1},
which is a realization of a control policy π ∈ Π′ with
‖u(·)‖2ℓ2 ≤ c̄, will remain mean-square bounded for all

t ∈ TN , that is, for a given N ∈ Z>0, supt∈TN
E
[

|x(t)|2
]

<
∞. Furthermore, if w(t) is equal to W (t) in distribu-
tion, for all t ∈ TN−1, where {W (t) : t ∈ Z≥0} is
a random sequence of independent normal random vari-
ables with E

[

W (t)
]

= 0 and E
[

|W (t)|2
]

= ̟(t)2, for all

t ∈ Z≥0, then supt∈TN
E
[

|x(t)|2
]

≤ ǭ < ∞, where ǭ is
independent of N .

Proof. In view of (38), the expression of x(t) for each
t ∈ TN is given by x(t) = Γtx0+Btut+Gtwt, where Γt :=
At

◦, Bt :=
[

At−1
◦ B◦, . . . ,B◦

]

, Gt :=
[

At−1
◦ G◦, . . . ,G◦

]

,

ut :=
[

u(0)T, . . . , u(t−1)T
]T

and wt :=
[

w(0)T, . . . , w(t−
1)T

]T
. Hence, for all t ∈ TN\{0}, ‖Γt‖2 ≤ ‖A◦‖t2 ≤ ᾱt <

1, whereas ‖Bt‖22 = ‖BT
t ‖22 = λmax(BtB

T
t ) satisfies the

following upper bound

‖Bt‖22 ≤
t

∑

τ=1

λmax(A
τ−1
◦ B◦B

T
◦ (A

T
◦ )

τ−1) =

t
∑

τ=1

‖Aτ−1
◦ B◦‖22,

≤
t

∑

τ=1

‖A◦‖2(τ−1)
2 ‖B◦‖22

≤ ‖B◦‖22
t

∑

τ=1

ᾱ2(τ−1) ≤ ‖B◦‖22/(1− ᾱ2) =: β̄,

where in the previous derivations, we have used the sub-
additivity and the sub-multiplicative properties of the ma-
trix norm ‖ · ‖2 together with the fact that

∑∞

τ=0 ε
τ =

1/(1 − ε), for |ε| < 1 (in our case, ε = ᾱ2). Similarly, we
can show that ‖Gt‖22 ≤ ḡ, where ḡ := ‖G◦‖22/(1− ᾱ2).

To show that E
[

|x(t)|2
]

is bounded, it suffices to show

that ‖E
[

x(t)x(t)T
]

‖2 is bounded [20]. To this aim, we note
that

‖E
[

utx
T
0

]

‖2 ≤ E
[

‖utx
T
0 ‖2

]

= E
[

|ut||x0|
]

≤ (E
[

|ut|2
]

)1/2(E
[

|x0|2
]

)1/2

≤
√

c̄ (trace(Σ0) + |µ0|2),
where in the previous derivations we first used the fact
that ‖abT‖2 = |a||b| for any real (column) vectors a and b;
subsequently, we invoked Jensen’s inequality and then the
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Cauchy Schwarz inequality for the product of two random
(scalar) variables; finally, we used the fact that E

[

|ut|2
]

=

E
[
∑t−1

τ=0 |u(τ)|2
]

≤ ‖u(·)‖2ℓ2 ≤ c̄ together with E
[

|x0|2
]

=

|µ0|2 + trace
(

Σ0

)

. Similarly,

‖E
[

wtw
T
t

]

‖2 ≤ E
[

‖wtw
T
t ‖2

]

= E
[

|wt|2
]

= tq,

‖E
[

utu
T
t

]

‖2 ≤ E
[

‖utu
T
t ‖2

]

= E
[

|ut|2
]

≤ c̄,

‖E
[

utw
T
t

]

‖2 ≤ E
[

‖utw
T
t ‖2

]

= E
[

|ut||wt|
]

≤
(

E
[

|ut|2
]

E
[

|wt|2
])1/2 ≤ √

c̄tq.

In the previous derivations, we have used the fact that
E
[

|wt|2
]

=
∑t−1

τ=0 E
[

|w(τ)|2
]

= t trace(Iq) = tq. Thus, in
view of (39),

‖E
[

x(t)x(t)T
]

‖2 ≤ ᾱ2t‖Σ0 + µ0µ
T
0 ‖2 + β̄c̄+ ḡtq

+ 2ᾱt
√

c̄β̄(trace(Σ0) + |µ0|2) + 2

√

c̄β̄ḡtq =: χ(t).

We conclude that, for a given N ∈ Z>0, ‖E
[

x(t)x(t)T
]

‖2
is upper bounded for all t ∈ TN . In the special case
where w(t) = W (t) (in distribution) for all t ∈ TN−1, we

have that ‖E
[

wtw
T
t

]

‖2 ≤ E
[

|wt|2
]

=
∑t−1

τ=0 E
[

|w(τ)|2
]

≤
∑∞

τ=0 ̟(t)2 = ¯̟ and ‖E
[

utw
T
t

]

‖2 ≤
(

E
[

|ut|2
]

E
[

|wt|2
])1/2

≤
√
c̄ ¯̟ . Therefore,

‖E
[

x(t)x(t)T
]

‖2 ≤ ‖Σ0 + µ0µ
T
0 ‖2 + β̄c̄+ ḡ ¯̟

+ 2
√

c̄β̄(trace(Σ0) + |µ0|2) + 2

√

c̄β̄ḡ ¯̟ =: χ̄,

where we have also used the fact that ᾱ2t ≤ ᾱt ≤ 1, for
all t ∈ Z≥0, given that ᾱ < 1 by hypothesis. Because
the upper bound χ̄ is independent of both t and N , we
conclude that ‖E

[

x(t)x(t)T
]

‖2 is upper bounded for all t ∈
TN and for any given N ∈ Z>0, which in turn implies, as
we have already mentioned, the existence of ǭ > 0, which
is also independent of N , such that supt∈TN

E
[

|x(t)|2
]

≤
ǭ < ∞. The proof is now complete. �

5. Numerical Simulations

In this section, we present numerical simulations that
will illustrate some of the main ideas and techniques that
have been presented so far. To this aim, we will consider
the CMVC problem for a discrete-time stochastic second
order mechanical linear system described by (1a)-(1b) with

A(t) ≡ I + ∆τ
[

0 1
−ω2

n
−2ζωn

]

, B(t) ≡ ∆τ [0, 1]T, G(t) ≡
√
∆τ [0, 0.5]T, C(t) ≡ [1, 0] (only position measurements

can be obtained) and N(t) ≡ 0.25. In addition, Q(t) ≡
1 and Rc(t) ≡ 1. Furthermore, x(0) ∼ N (µ0,Σ0) with
µ0 = [0.5, 0.25]T and Σ0 = 0.25I2. For our computations,
we take ∆τ = 0.2, N = 16, ζ = 0.25 (under-damped

system) ωn =
√
2 and c̄ = 2.25 (all quantities are taken to

be dimensionless). Following the procedure described in
Section 4, we first compute the optimal decision variable
Ψ⋆ ∈ BLN (m, p) that solves Problem 3 via solving its
equivalent QCQP. Subsequently, we compute the optimal
gain matrix K⋆ ∈ BLN (m, p) by using the equation K⋆ =

0 5 10 15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t

E
[

y
(t
)2
]

c̄ = 0.25
c̄ = 1.25

c̄ = 2.25
c̄ = 3.25

c̄ = 4.25

Figure 1: Plot of E
[

y(t)2
]

versus the number of stages t for different
values of c̄. We observe that by making the constraint on the ℓ2-norm
of the input sequence tighter, we achieve a less drastic reduction of
E
[

y(t)2
]

in the finite horizon of interest.

g(Ψ⋆). It turns out that K⋆ =
[

K⋆
1, K⋆

2

]

with

K⋆
1 =





























−0.757 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.316 −0.593 0.000 0.000 0.000 0.000 0.000 0.000
0.601 0.123 −0.622 0.000 0.000 0.000 0.000 0.000
0.541 0.377 0.015 −0.605 0.000 0.000 0.000 0.000
0.364 0.375 0.269 −0.026 −0.545 0.000 0.000 0.000
0.195 0.275 0.303 0.220 −0.034 −0.485 0.000 0.000
0.074 0.163 0.243 0.272 0.197 −0.034 −0.451 0.000
0.001 0.074 0.158 0.231 0.254 0.179 −0.041 −0.447
−0.033 0.015 0.081 0.157 0.219 0.234 0.157 −0.061
−0.039 −0.015 0.026 0.084 0.148 0.198 0.204 0.125
−0.030 −0.022 −0.002 0.031 0.078 0.127 0.163 0.160
−0.017 −0.016 −0.010 0.005 0.030 0.061 0.094 0.115
−0.007 −0.008 −0.007 −0.003 0.007 0.021 0.039 0.055
−0.002 −0.002 −0.002 −0.002 0.000 0.004 0.009 0.015
0.000 −0.000 −0.000 −0.000 −0.000 −0.000 −0.000 −0.000
0.000 −0.000 −0.000 −0.000 −0.000 −0.000 −0.000 −0.000





























,

K⋆
2 =



























0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
−0.460 0.000 0.000 0.000 0.000 0.000 0.000 0.000
−0.088 −0.465 0.000 0.000 0.000 0.000 0.000 0.000
0.081 −0.111 −0.429 0.000 0.000 0.000 0.000 0.000
0.104 0.035 −0.114 −0.336 0.000 0.000 0.000 0.000
0.063 0.049 0.000 −0.087 −0.202 0.000 0.000 0.000
0.020 0.020 0.011 −0.008 −0.039 −0.074 0.000 0.000
−0.000 −0.000 −0.000 −0.000 −0.000 −0.000 −0.000 0.000
−0.000 −0.000 −0.000 −0.000 −0.000 −0.000 −0.000 −0.000



























,

and J (K⋆) = 4.860.

Figure 1 illustrates the graph of E
[

y(t)2
]

versus t for
different values of the upper bound c̄. In each case, the
constraint ‖u(·)‖2ℓ2 ≤ c̄ was active (that is, the controller
has used all the available input energy in TN−1). One can
observe that by making the constraint on the ℓ2-norm of
the input sequence more stringent (by taking smaller val-
ues of c̄), the performance, in terms of suppressing the
variations of the output from the null reference signal,
yr(t) ≡ 0, deteriorates.
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6. Conclusion

In this work, we have addressed the minimum variance
control problem for discrete-time stochastic linear systems
with incomplete state information subject to a constraint
on the (expected value of the) ℓ2-norm of the input se-
quence. The main idea of our approach was to associate
the constrained minimum variance control problem with
a tractable (deterministic) convex program, which can be
addressed by means of reliable, efficient and scalable nu-
merical tools under the key assumption that the admissible
control policies admit an affine parametrization in terms of
the history of the system’s output measurements. In our
future work, we will explore ways to reduce even more the
computational cost of the proposed approach. In particu-
lar, we plan to explore the possibility of integrating a state
estimation algorithm in the overall control framework in
order to compute control policies that can possibly depend
on the current estimate of the system’s state rather than
the complete history of output measurements (assuming
that the separation principle [29] holds).

Appendix

In the Appendix, we will provide the derivations of
the expressions of several quantities that appear in the
analysis presented in Sections 3 and 4. In particular, in
view of (15), we have that

E
[

xx
T
]

= E
[(

Xw(K)w +X ν(K)ν +X 0(K)x0

)

×
(

Xw(K)w +X ν(K)ν +X 0(K)x0

)T]

= Xw(K)E
[

ww
T
]

Xw(K)T

+X ν(K)E
[

νν
T
]

X ν(K)T

+X 0(K)E
[

x0x
T
0

]

X 0(K)T

= Xw(K)Xw(K)T +X ν(K)X ν(K)T

+X 0(K)Γ(Σ0 + µ0µ
T
0 )Γ

TX 0(K)T. (34)

In the previous derivations, we have used (11), (12a)–(12b)
and the following identity:

E
[

x0x
T
0

]

= ΓE
[

x0x
T
0

]

ΓT = Γ(Σ0 + µ0µ
T
0 )Γ

T. (35)

In view of (17) and (22), we can similarly show that E
[

yy
T
]

and E
[

uu
T
]

satisfy, respectively, the following equations:

E
[

yy
T
]

= Yw(K)Yw(K)T +Yν(K)Yν(K)T

+Y0(K)Γ(Σ0 + µ0µ
T
0 )Γ

TY0(K)T, (36)

E
[

uu
T
]

= Uw(K)Uw(K)T + Uν(K)Uν(K)T

+ U0(K)Γ(Σ0 + µ0µ
T
0 )Γ

TU0(K)T. (37)

When the system (1a)-(1b) is driven by an admissible
input sequence {u(τ) : τ ∈ Tt−1}, then it follows that

x(t) = Γtx0 +Btut + Gtwt, for all t ∈ TN , (38)

where Γt := Φ(t, 0), Bt :=
[

Φ(t, 1)B(0), . . . ,B(t − 1)
]

,

Gt :=
[

Φ(t, 1)G(0), . . . ,G(t− 1)
]

, ut :=
[

u(0)T, . . . , u(t−
1)T

]T
and wt :=

[

w(0)T, . . . , w(t−1)T
]T

. To obtain (38),

we have used the following identity: x(t) = Et+1x, for
t ∈ TN , where Et+1 ∈ R

n×(N+1)n is a block row vector
comprised of N + 1 blocks of dimension n× n that are all
equal to 0 except from the (t+ 1)-th block which is equal
to I. Then, in view of (11), (12a) and (35), we have that

E
[

x(t)x(t)T
]

= E
[

(Γtx0 +Btut + Gtwt)(Γtx0 +Btut + Gtwt)
T
]

= Γt(Σ0 + µ0µ
T
0 )Γ

T
t +BtE

[

utu
T
t

]

BT
t

+ GtE
[

wtw
T
t

]

GT
t + ΓtE

[

x0u
T
t

]

BT
t +BtE

[

utx
T
0

]

ΓT
t

+ GtE
[

wtu
T
t

]

BT
t +BtE

[

utw
T
t

]

GT
t . (39)
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