

#### **Magnetic Scaling and Constraints**

Prof. Alex Hanson, Elaine Ng, Alyssa Brown

University of Texas at Austin

## Our Goal: Escape the Tyranny of the Case Study

- Much of published magnetics design is for specific applications
- Often much doubt as to whether the conclusions will apply to different frequencies and power levels
- (Often no "conclusions" at all just a good design)

- We're looking for the opposite: generalizable conclusions that can easily be applied across size/power/frequency
- We're willing to accept coarse precision

### Ampere's Law

$$\oint H \cdot \underline{dl} = \int J \cdot \underline{dA}$$

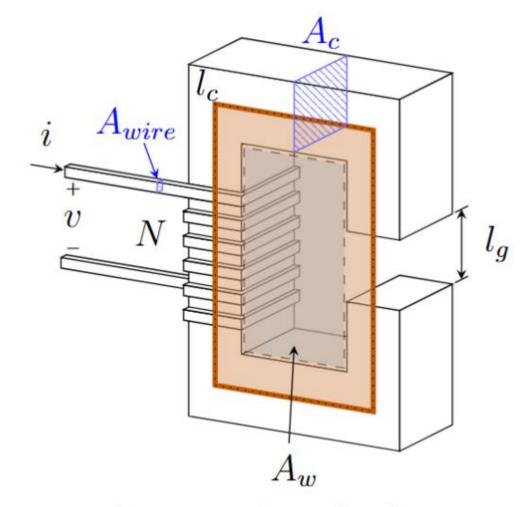
$$H_c l_c + H_g l_g = Ni$$

Constitutive Equation:  $B = \mu H = \mu_r \mu_0 H$ 

Boundary Condition on B:  $B_{\perp}$  is conserved

$$\Rightarrow \frac{B}{\mu_c} l_c + \frac{B}{\mu_0} l_g = Ni$$

$$\Rightarrow B = \frac{Ni}{\frac{l_c}{\mu_c} + \frac{l_g}{\mu_g}}$$



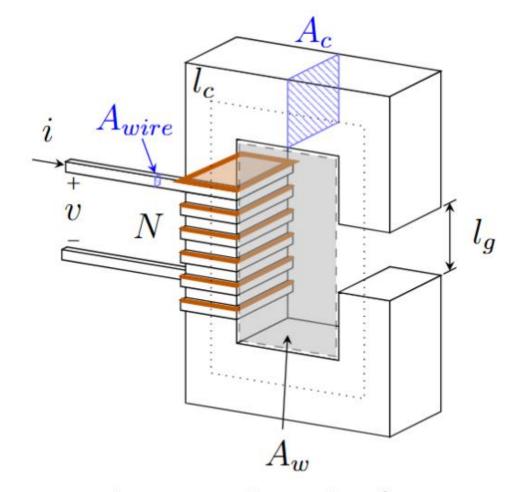
 $l_t$ : mean length of turn

## Faraday's Law

$$\oint E \cdot \underline{dl} = -\frac{d}{dt} \int B \cdot \underline{dA}$$

$$-V = -\frac{d}{dt} \left( \frac{Ni}{\frac{l_c}{\mu_c} + \frac{l_g}{\mu_0}} \right) \times (NA_c)$$

$$V = \frac{N^2}{\frac{l_c}{\mu_c A_c} + \frac{l_g}{\mu_0 A_c}} \times \frac{di}{dt}$$



 $l_t$ : mean length of turn

## A simplifying observation?

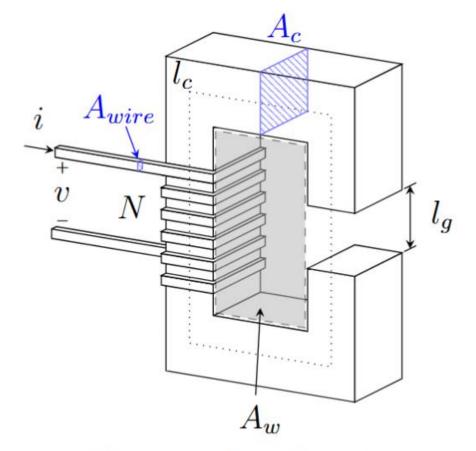
 $B \times A_c$  has a suspicious form

$$BA_c = \frac{Ni}{\frac{l_c}{\mu_c A_c} + \frac{l_g}{\mu_g A_g}} = \phi \text{ (flux)}$$

This looks suspiciously like 
$$I = \frac{V}{\frac{l_1}{\sigma_1 A_1} + \frac{l_2}{\sigma_2 A_2}} = \frac{V}{R_1 + R_2}$$

Is it possible that magnetic flux "flows" following a sort of "Magnetic Ohm's Law"?

Yes! -- and we can use this observation to repurpose all the intuition and powerful analysis techniques we inherit from circuits



 $l_t$ : mean length of turn

### Magnetic Circuits

$$\phi = \frac{Ni}{\mathcal{R}_1 + \mathcal{R}_2}$$

Where

NI plays the role of voltage

 $\Rightarrow$  MMF

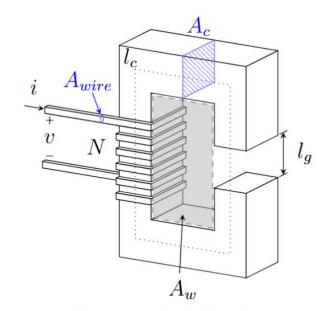
 $\mathcal{R} = l/\mu A$  plays the role of resistance  $\Rightarrow$  Reluctance

 $\phi$  plays the role of current

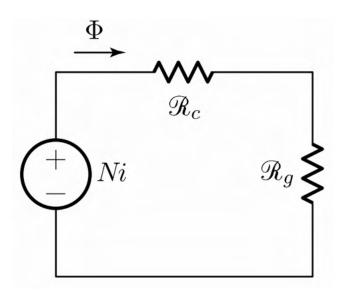
⇒ Flux

$$V = L \frac{di}{dt} = N \frac{d\phi}{dt}$$
  $\Rightarrow$   $\int V dt = Li = N\phi = \lambda$ 

Inductance can be found from the flux flowing through an MMF source and the number of turns in that source,  $L=\frac{N\phi}{i}=\frac{\lambda}{i}$ 



 $l_t$ : mean length of turn



## What constrains a magnetic component design?

- We **must** obtain L and be able to sustain an excitation i(t)
- We get to **choose**  $A_c$ ,  $l_c$ , N,  $l_g$ ,  $\mu_c$
- We want the component to be small and efficient

It's tempting to just say "everything affects everything" and fall into trial and error, scripting, computer-based optimization

#### We must avoid that temptation!

• Recast equations in terms of must-haves: L and i(t)

$$\lambda = N\phi = NA_cB = Li$$

$$B = \frac{Li}{NA_c} \quad \text{and} \quad$$

$$A_{wire} = \frac{A_w}{N}$$

 $(l_a \text{ is } \underline{\text{whatever it has to be}} \text{ to achieve } L \text{ for }$ a given core geometry and number of turns ⇒ not an independent design choice)

#### The core's interests

# Do not enter saturation $B_{pk} < B_{sat}$

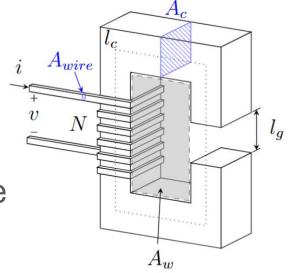
#### **Avoid** core loss

Keep  $P_{core} = (VOL) \times kB_{ac}^{\beta}$  within acceptable bounds; otherwise, minimize along with  $P_{cu}$ 

### The winding's interests

#### **Avoid** copper loss

Keep  $P_{cu}=I_{rms}^2\left(\rho\frac{Nl_t}{A_{wire}}\right)=I_{rms}^2\left(\rho\frac{N^2l_t}{A_w}\right)$  within acceptable bounds; otherwise, minimize along with  $P_{core}$ 



 $l_t$ : mean length of turn

## Key design intuition

• The design question: what prevents me from making the component infinitely small with one turn?

$$B = \frac{Li}{NA_c}$$
 and  $A_{wire} = \frac{A_w}{N}$ 

- 1. Smaller size makes B bigger (bad for saturation/core loss) and  $A_{wire}$  smaller (bad for conduction loss)
- ⇒ There's a **minimum size** required to meet all the specifications
- 2. Larger N makes B smaller (good for saturation/core loss) and makes  $A_{wire}$  smaller (bad for conduction loss)
- $\Rightarrow$  There's an **optimum** N that best balances the interests of the core and the winding

## Key design intuition

- Very often, the goal is to minimize size, and inefficiency mainly matters from a thermal perspective loss keeps you from making the component smaller
- To reach broadly useful conclusions, let us assume from the beginning that a component is size-optimized, i.e., it has been shrunk to its absolute limit.
- Copper loss <u>will</u> be at its maximum tolerable amount. If it weren't, then the window could be shrunk, contrary to our assumption
- The B field will be at its maximum tolerable value. If it weren't, then the core area could be shrunk, contrary to the assumption

But – is the maximum B field set by saturation or by core loss?



### Will saturation or core loss limit a design?

Elaine Ng

## B field limits – there can be only one!

#### Do not enter saturation

$$B_{pk} < B_{sat}$$

#### Avoid core loss

Keep  $P_{core} = (VOL) \times kB_{ac}^{\beta}$  within acceptable bounds; otherwise, minimize along with  $P_{cu}$ 

$$B_{ac} < \widehat{B}$$
 such that

$$B_{ac} < \hat{B}$$
 such that  $P_v = k B_{ac}^{\beta} < P_{v,max} \sim 200\text{-}500 \text{ mW/cm}^3$ 

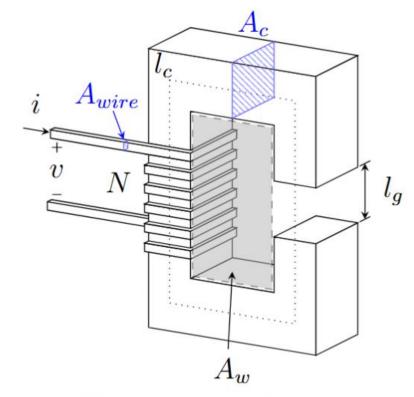
### Design is limited by saturation or core loss (not both)

From flux linkage relationship:

$$B = \frac{LI}{NA_c}$$

B can be kept low by growing the core  $(A_c \uparrow)$  or by adding turns  $(N \uparrow)$ 

We use the same design parameters (N and  $A_c$ ) to avoid saturation or core loss (to limit  $B_{pk}$  or  $B_{ac}$ )



 $l_t$ : mean length of turn

### Design is limited by saturation or core loss (not both)

#### **Either:**

1.  $B_{pk}$  will reach  $B_{sat}$  first (core loss will still exist but  $P_v \ll P_{v,max}$ )

#### Or:

**2.**  $B_{ac}$  will reach  $\hat{B}$  first (but  $\hat{B} \ll B_{sat}$ )

If (1), the design is saturation limited

If (2), the design is core loss limited

Which one will it be? Can we derive an easy inequality to determine this?

### How do we quantify if a design is core loss or sat limited?

First, let's relate  $B_{pk}$  and  $B_{ac}$ 

From flux linkage relationship, B is related to I:

$$B = \frac{LI}{NA_c}$$

An inductor will have a certain  $I_{pk}$  and  $I_{ac}$  which corresponds to  $B_{pk}$  and  $B_{ac}$ . The relationship between  $I_{pk}$  and  $I_{ac}$  is given by the ripple ratio  $\mathcal{R}=I_{ac}/I_{dc}$ 

$$\frac{I_{pk}}{I_{ac}} = \frac{1 + \mathcal{R}}{\mathcal{R}}$$

### How do we quantify if a design is core loss or sat limited?

Is  $B_{sat}/I_{pk}$  (saturation limit) lower or  $\hat{B}/I_{ac}$  (core loss limit) lower?

If core loss limited:

$$\frac{B_{sat}}{I_{pk}} > \frac{\hat{B}}{I_{ac}} = \frac{\hat{B}}{I_{pk}} \frac{1 + \mathcal{R}}{\mathcal{R}}$$

$$\Longrightarrow \left| B_{sat} > \hat{B} \frac{1 + \mathcal{R}}{\mathcal{R}} \right|$$

### How do we quantify if a design is core loss or sat limited?

$$B_{sat} > \hat{B} \frac{1 + \mathcal{R}}{\mathcal{R}}$$
 (core loss limited)  
 $B_{sat} < \hat{B} \frac{1 + \mathcal{R}}{\mathcal{R}}$  (saturation limited)

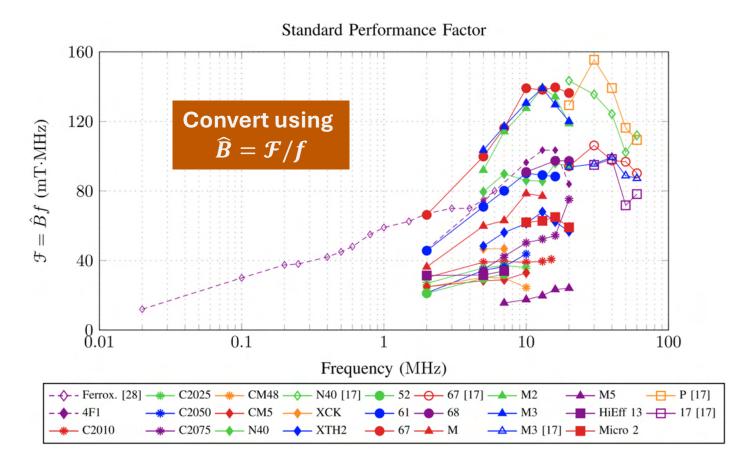
Before we get into numbers, what do we expect?

- 1) Low ripple should make a saturation limit more likely
- 2) High frequency should make a core loss limit more likely (at higher frequencies, materials can't sustain as much  $\hat{B}$ )

### Core loss $(\hat{B})$ dataset

The reference below tabulates Steinmetz parameters  $(k(f), \beta(f))$  and the performance factor  $\mathcal{F} = f\hat{B}$  across frequencies using industry data and original research

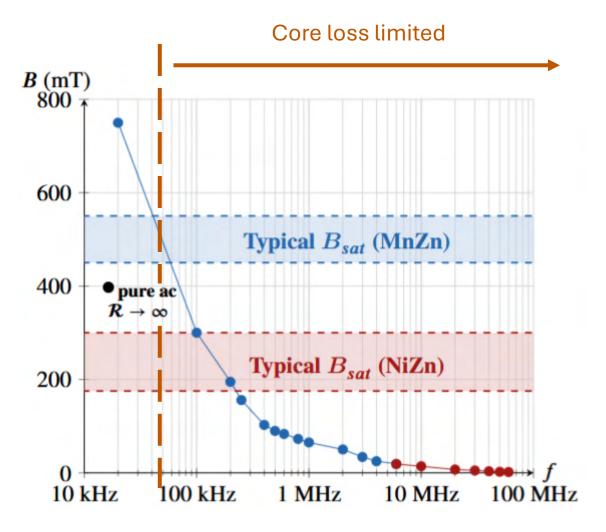
| $Frequency \rightarrow$     |         | 2 N  | ИHz  | 5 M   | Hz   | 7 M   | Hz   |
|-----------------------------|---------|------|------|-------|------|-------|------|
| Material                    | $\mu_r$ | k    | β    | k     | β    | k     | β    |
| Ceramic Magn. C2010 [39]    | 340     | 0.20 | 2.89 | 2.61  | 2.56 | 10.61 | 2.23 |
| Ceramic Magn. C2025 [39]    | 175     | 0.49 | 2.67 | 3.14  | 2.58 | 11.33 | 2.27 |
| Ceramic Magn. C2050 [39]    | 100     | 0.52 | 2.9  | 2.47  | 2.75 | 5.25  | 2.76 |
| Ceramic Magn. C2075 [39]    | 50      | _    | _    | 2.31  | 2.77 | 3.42  | 2.77 |
| Ceramic Magn. CM48 [39]     | 190     | 0.59 | 2.68 | 7.49  | 2.33 | 21.5  | 2.17 |
| Ceramic Magn. CM5 [39]      | 290     | 0.61 | 2.66 | 9.42  | 2.29 | 22.55 | 2.19 |
| Ceramic Magn. N40 [39]      | 15      | _    | _    | 1.52  | 2.09 | 3.04  | 2.00 |
| Ceramic Magn. XCK [39]      | 210     | _    | _    | 1.07  | 2.75 | 4.86  | 2.44 |
| Ceramic Magn. XTH2 [39]     | 80      | _    | _    | 0.83  | 2.82 | 1.72  | 2.72 |
| Fair-Rite 52 [40]           | 250     | 0.46 | 2.97 | 5.44  | 2.53 | 14.44 | 2.32 |
| Fair-Rite 61 [40]           | 125     | 0.08 | 2.79 | 0.42  | 2.67 | 0.83  | 2.62 |
| Fair-Rite 67 [40]           | 40      | 0.10 | 2.44 | 0.69  | 2.20 | 1.11  | 2.18 |
| Fair-Rite 68 [40]           | 16      | _    | _    | _     | _    | _     | _    |
| Ferroxcube 4F1 [28]         | 80      | 0.15 | 2.57 | 1.11  | 2.27 | _     | _    |
| Metamagnetics HiEff 13 [41] | 425     | 0.11 | 3.06 | 10.44 | 2.10 | 12.69 | 2.32 |
| Micrometals 2 [42]          | 10      | _    | _    | _     | _    | _     | _    |
| National Magn. M [43]       | 125     | 0.03 | 3.36 | 0.45  | 2.83 | 1.35  | 2.69 |
| National Magn. M2 [43]      | 40      | _    | _    | 0.41  | 2.44 | 0.69  | 2.36 |
| National Magn. M3 [43]      | 20      | _    | _    | 0.85  | 2.10 | 1.66  | 2.03 |
| National Magn. M5 [43]      | 7.5     | -    | -    | -     | -    | 90.34 | 2.14 |



$$\frac{\hat{B}(1+\mathcal{R})}{\mathcal{R}}$$
 vs  $B_{sat}$  for purely ac

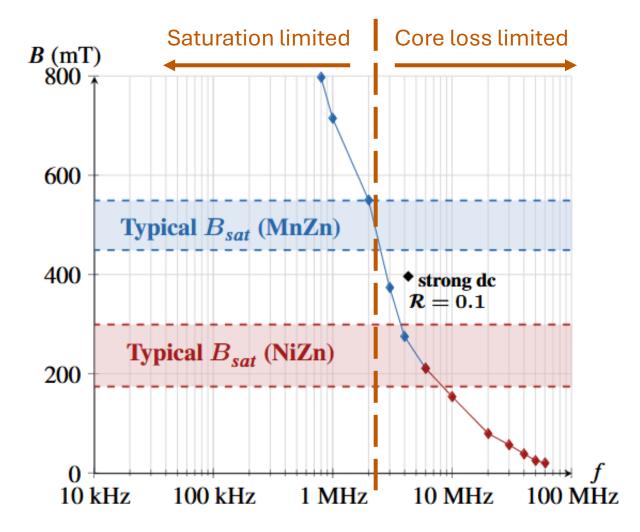
• Expect ac-dominated designs to more likely be core loss limited (only  $B_{ac}$  contributes to core loss, and there's no  $B_{dc}$  to push  $B_{pk}$  close to  $B_{sat}$ )

 Purely ac designs can be core loss limited as low as ~50 kHz



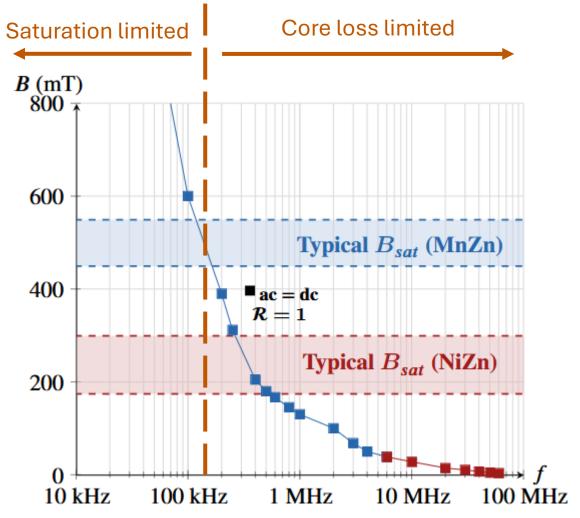
$$\frac{\hat{B}(1+\mathcal{R})}{\mathcal{R}}$$
 vs  $B_{sat}$  for low ripple (10%)

- Expect low ripple designs to more likely be saturation limited (only  $B_{ac}$  contributes to core loss, and large  $B_{dc}$  pushes  $B_{pk}$  close to  $B_{sat}$ )
- Designs up to a few MHz are saturation limited as expected
- But high frequency designs start becoming core loss limited above
   ~2 MHz



$$\frac{\hat{B}(1+\mathcal{R})}{\mathcal{R}}$$
 vs  $B_{sat}$  for ac=dc (e.g., BCM)

Designs start becoming core loss limited at frequencies as low as ~150 kHz!



#### How do we choose a material?

| Material | Relative<br>Permeability ( $\mu_r$ ) | $\widehat{B}$ (mT) | $B_{sat}$ (mT) |
|----------|--------------------------------------|--------------------|----------------|
| 1        | 1000                                 | 150                | 700            |
| 2        | 100                                  | 300                | 400            |
| 3        | 500                                  | 100                | 800            |

Unless permeability is close to 1, ignore it (we'll discuss this in a later section!)

- 1. Use  $B_{sat} > \hat{B} \frac{1+\mathcal{R}}{\mathcal{R}}$  to determine if each material is core loss or saturation limited
- 2. If material is core loss limited,  $B_{max} = \hat{B}$
- 3. If material is saturation limited,  $B_{max} = B_{sat} \frac{\mathcal{R}}{1+\mathcal{R}}$
- 4. Choose the material with the highest  $B_{max}$

#### Which material should you choose for $\mathcal{R} = 0.4$ ?

Step 1: Determine if each material is core loss or saturation limited

If 
$$B_{sat} > \hat{B} \frac{1+\Re}{\Re} = 3.5\hat{B}$$
, material is core loss limited

Otherwise, material is saturation limited

| Material | Relative<br>Permeability ( $\mu_r$ ) | $\widehat{B}$ (mT) | $B_{sat}$ (mT) | $\widehat{B}  rac{1+\mathcal{R}}{\mathcal{R}}  (mT)$ | Core or Sat<br>Limited? |
|----------|--------------------------------------|--------------------|----------------|-------------------------------------------------------|-------------------------|
| 1        | 1000                                 | 150                | 700            | 525                                                   | Core Loss               |
| 2        | 100                                  | 300                | 400            | 1050                                                  | Saturation              |
| 3        | 500                                  | 100                | 800            | 350                                                   | Core Loss               |

#### Which material should you choose for $\mathcal{R} = 0.4$ ?

Step 2: Calculate  $B_{max}$  for each material

If material is core loss limited,  $B_{max}=\hat{B}$ If material is saturation limited,  $B_{max}=B_{sat}\,\frac{\mathcal{R}}{1+\mathcal{R}}$ 

| Material | $\mu_r$ | $\widehat{B}$ (mT) | $B_{sat}$ (mT) | $B_{sat}rac{\mathcal{R}}{1+\mathcal{R}}$ (mT) | Core or Sat Limited? | $B_{max}$ (mT) |
|----------|---------|--------------------|----------------|------------------------------------------------|----------------------|----------------|
| 1        | 1000    | 150                | 700            | 200                                            | Core Loss            | 150            |
| 2        | 100     | 300                | 400            | 114                                            | Saturation           | 114            |
| 3        | 500     | 100                | 800            | 229                                            | Core Loss            | 100            |

#### Which material should you choose for $\mathcal{R} = 0.4$ ?

| Material | Relative<br>Permeability ( $\mu_r$ ) | $\widehat{B}$ (mT) | $B_{sat}$ (mT) | Core or Sat<br>Limited? | $B_{max}$ (mT) |
|----------|--------------------------------------|--------------------|----------------|-------------------------|----------------|
| 1        | 1000                                 | 150                | 700            | <b>Core Loss</b>        | 150            |
| 2        | 100                                  | 300                | 400            | Saturation              | 114            |
| 3        | 500                                  | 100                | 800            | Core Loss               | 100            |

Step 3: Choose material with highest  $B_{max}$ 

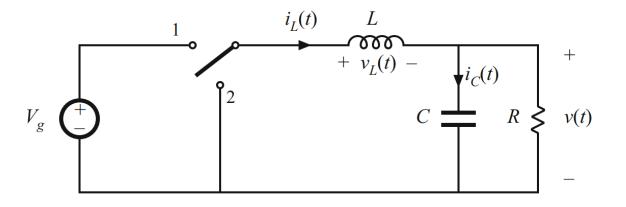
In this case, material 1 is the best choice for this application even though it has neither the highest  $\hat{B}$  or highest  $B_{sat}$ 

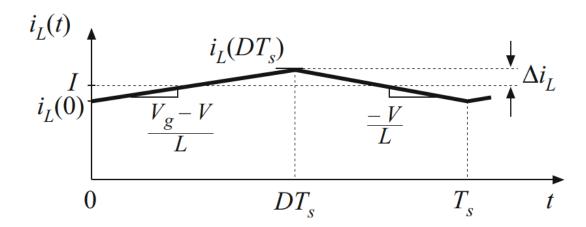
Material 2 has better  $\hat{B}$  but is hamstrung by its very low  $B_{sat}$  Material 3 has better  $B_{sat}$  but is hamstrung by its very low  $\hat{B}$ 

Consider selecting a core material for the inductor in a CCM buck converter with

- Switching frequency:
  - $f_s = 200 \text{ kHz}$
- Inductor current ripple ratio:

• 
$$\mathcal{R} = \frac{\Delta i_L/2}{I_L} = 0.4$$

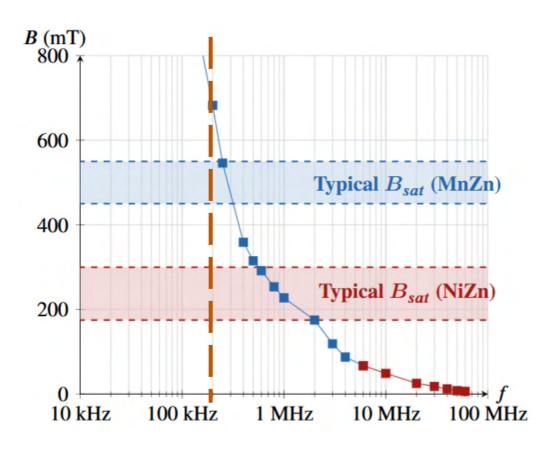




Let's plot saturation vs. core loss limit for ferrites for  $\mathcal{R}$ =0.4:

At 200 kHz, both MnZn and NiZn ferrites are likely saturation limited (the threshold is fuzzier for MnZn)

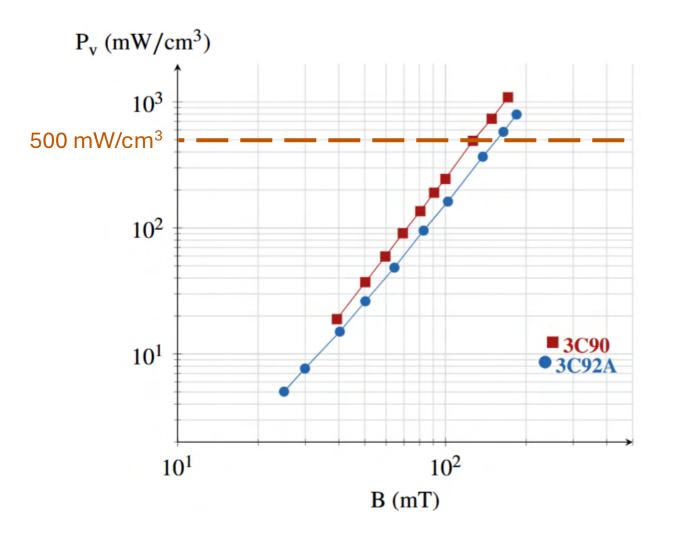
Does that mean we choose material with highest  $B_{sat}$ ?



Consider choosing between two MnZn materials from Ferroxcube (3C90 and 3C92A)

Get  $B_{sat}$  and  $\hat{B}$  (which yields  $P_v \leq 500$  mW/cm<sup>3</sup>) from datasheets

| Ferroxcube<br>Material | $\widehat{B}$ (mT) | $B_{sat}$ (mT) |
|------------------------|--------------------|----------------|
| 3C90                   | 140                | 470            |
| 3C92A                  | 160                | 570            |



 $<sup>[1]\ 3</sup>C90\ -\ ferroxcube, \underline{https://www.ferroxcube.com/upload/media/product/file/MDS/3c90.pdf}$ 

<sup>[2] 3</sup>C92a – ferroxcube, https://www.ferroxcube.com/upload/media/product/file/MDS/3c92a.pdf

Determine saturation vs. core loss limits for 3C90 and 3C92A:

If 
$$B_{sat} > \hat{B} \frac{1+\mathcal{R}}{\mathcal{R}} = 3.5\hat{B}$$
, (where  $\mathcal{R} = 0.4$ ), material is core loss limited

3C90 is **just barely** saturation limited 3C92A is **just barely** core loss limited (usually the answer is far more obvious)

From previous plots, we expected these materials to be near the threshold!

| Ferroxcube<br>Material | $\widehat{B}$ (mT) | $B_{sat}$ (mT) | $\widehat{B}  rac{1+\mathcal{R}}{\mathcal{R}}  (mT)$ | Sat vs. Core Limited? |
|------------------------|--------------------|----------------|-------------------------------------------------------|-----------------------|
| 3C90                   | 140                | 470            | 490                                                   | Saturation            |
| 3C92A                  | 160                | 570            | 560                                                   | Core Loss             |

<sup>[1] 3</sup>C90 - ferroxcube, https://www.ferroxcube.com/upload/media/product/file/MDS/3c90.pdf

<sup>[2] 3</sup>C92a - ferroxcube, https://www.ferroxcube.com/upload/media/product/file/MDS/3c92a.pdf

Determine  $B_{max}$  for each material: If material is core loss limited,  $B_{max} = \hat{B}$  If material is saturation limited,  $B_{max} = B_{sat} \frac{\mathcal{R}}{1+\mathcal{R}}$ 

Pick 3C92A b/c it has the highest  $B_{max}$  attributed to its core loss limit, NOT because it has higher  $B_{sat}$ 

| Ferroxcube Material | $\widehat{B}$ (mT) | $B_{sat}$ (mT) | Sat vs. Core Limited? | $B_{max}$ (mT) |
|---------------------|--------------------|----------------|-----------------------|----------------|
| 3C90                | 140                | 470            | Saturation            | 131            |
| 3C92A               | 160                | 570            | Core Loss             | 160            |

<sup>[2] 3</sup>C92a - ferroxcube, https://www.ferroxcube.com/upload/media/product/file/MDS/3c92a.pdf

### Real designs are core loss limited at even lower frequencies

- Previous plots are based on  $\widehat{B}$
- ullet  $\widehat{B}$  typically based on sinusoidal excitations with no dc bias
- ac+dc excitations cause more core loss than purely ac excitations
- Non-sinusoidal ac excitations have higher core loss than purely sinusoidal excitations for a given  $\Delta i_{pkpk}$  and a given fundamental frequency

 $\Rightarrow$  Real applications will have higher core loss than  $\widehat{B}$  alone suggests and applications will become core loss limited at lower frequencies

### Core loss is a fairly likely limit: so what?

- A lot of design approaches (like  $K_g$ ) assume  $B_{sat}$  as the core's limit
- A lot of students only learn  $B_{sat}$  as a limit
- A lot of sales pitches for magnetic materials focus heavily on  $B_{\it sat}$

...Yet for many designs,  $B_{sat}$  is irrelevant!



#### How does magnetic goodness scale with size?

Elaine Ng

## Size scaling of magnetics through the lens of...

- Dc-dominated inductors
  - $K_g$  method (limited by winding resistance)
  - Limited by current density  $\hat{J}$
- Ac-dominated inductors
  - Core-area product

### How big does an inductor need to be?

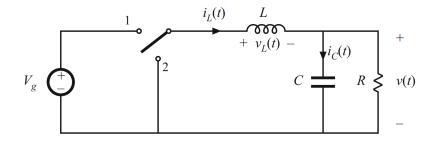
- Consider a choke or dc-dominated inductor
- The core is likely to be limited by saturation

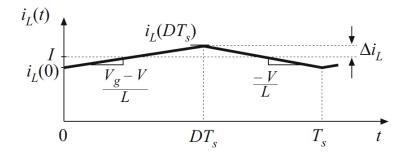
$$B_{pk} = \boldsymbol{B_{dc}} + B_{ac} = \frac{LI_{pk}}{NA_c} = B_{sat}$$

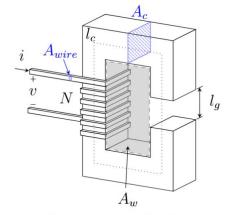
(equals, not less than!)

• Let's give ourselves a maximum tolerable winding resistance as well

$$R = \rho \frac{l_{total}}{A_{wire}} = \rho \frac{N l_{turn}}{A_w/N} = \rho \frac{l_t N^2}{A_w} = R_{max}$$
 (equals, not less than!)



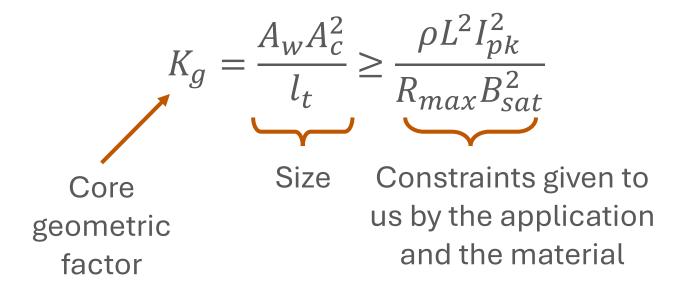


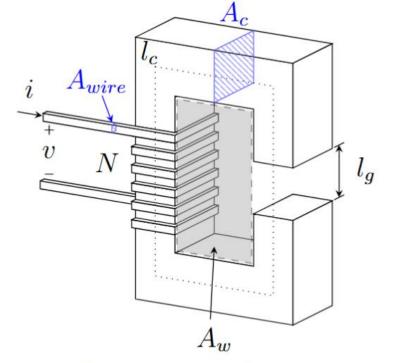


 $l_t$ : mean length of turn

## How big does an inductor need to be? $\Rightarrow K_g$

To achieve both constraints  $B_{pk} \leq B_{sat}$  and  $R \leq R_{max}$ :





 $l_t$ : mean length of turn

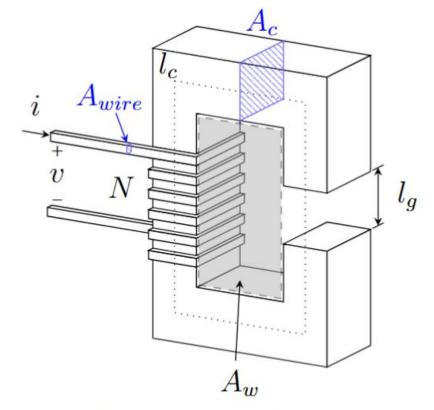
# Let's dwell on the power of $K_g$

$$K_g = \frac{A_w A_c^2}{l_t} \ge \frac{\rho L^2 I_{pk}^2}{R_{max} B_{sat}^2}$$
 Constraints given to us by the application and the material

Take a moment to ponder how  $K_g$  allows us to cut through a lot of confusing equations. Given **only** application and material constraints, we can **immediately** calculate how big of a core we need to **guarantee** that we can meet the interests of the core and the winding

# $K_g$ method

- 1. Choose  $B_{pk} = B_{sat}$
- 2. Obtain a core with  $K_g = \frac{A_w A_c^2}{l_t} \ge \frac{\rho L^2 I_{pk}^2}{R_{max} B_{sat}^2}$
- 3. Choose  $N = \frac{LI_{pk}}{B_{sat}A_c}$  (i.e., use the minimum number of turns to avoid  $B_{sat}$ ).
- 4. Make the turns as big as possible to fill the window.
- 5. Choose gap length g to achieve L with given geometry and N



 $l_t$ : mean length of turn

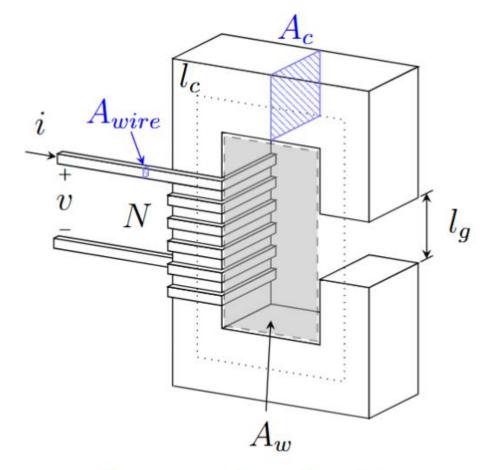
# $K_g$ method

If 
$$K_g = \frac{\rho L^2 I_{pk}^2}{R_{max} B_{sat}^2}$$

• yields the smallest possible component to meet *R* requirement

If 
$$K_g > \frac{\rho L^2 I_{pk}^2}{R_{max} B_{sat}^2}$$

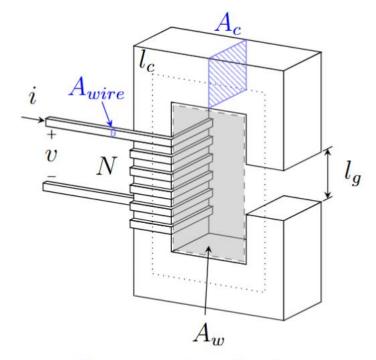
- Bigger core than minimum size
- Guaranteed to have  $R < R_{max}$



 $l_t$ : mean length of turn

# Based on $K_g$ , how do inductors scale?

$$K_g = \frac{A_w A_c^2}{l_t} \ge \frac{\rho L^2 I_{pk}^2}{R_{max} B_{sat}^2}$$
 (length)<sup>5</sup> Inductor "goodness"



 $l_t$ : mean length of turn

"Inductor goodness" for R-limited, dc inductor scales as (length)<sup>5</sup>

## Is resistance the right limit?

- $K_g$  uses a limit on winding resistance R
- A huge component has more surface area to dissipate heat and can tolerate larger R.
- A small component can only tolerate smaller R.
- But if we don't know beforehand how big the component will be, can we really specify a tolerable  $R_{max}$ ?
- What if we specified a tolerable winding loss density  $P_{v,cu,max}$ ?

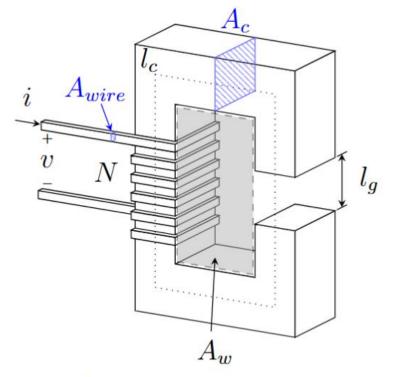
## What if we are limited by a winding loss density?

• Winding loss density is  $P_{v,cu}$ 

$$P_{v,cu} = \frac{I^2 R}{VOL_{cu}} = \frac{I^2 \rho \frac{N l_t}{A_w/N}}{l_t \times A_w} = \left(\frac{I}{A_w/N}\right)^2 \rho$$

$$\Rightarrow P_{v,cu} = J^2 \rho$$

- Holding  $P_{v,cu} < P_{v,cu,max}$  is the same as  $J < \hat{J}$ 
  - where  $\hat{J}$  is the current density that results in  $P_{v,cu,max}$ .



 $l_t$ : mean length of turn

# Inductor goodness using $\hat{J}$ instead of R

Consider an inductor with mostly dc current and a sinusoidal voltage excitation  $v(t) = V_{pk} \sin(\omega t)$ .

The peak flux linkage is

$$\lambda_{pk} = NA_cB_{sat} = I_{pk}L$$
 where

$$L = \frac{\int v dt}{\Delta i_{pkpk}} = \frac{2V_{pk}}{\omega \Delta i_{pkpk}} \text{ and } I_{pk} = I_{dc} + I_{ac} = I_{dc} + \frac{\Delta i_{pkpk}}{2}$$

# Inductor goodness using $\hat{J}$ instead of R

Recall the ripple ratio 
$$\mathcal{R} = \frac{I_{ac}}{I_{dc}} = \frac{\Delta i_{pkpk}/2}{I_{dc}}$$

Rewrite flux linkage in terms of  $\mathcal{R}$ :

$$I_{pk} = I_{dc}(1 + \mathcal{R})$$
 and  $\Delta i_{pkpk} = 2I_{dc}\mathcal{R}$ 

$$\Rightarrow \lambda_{pk} = NA_c B_{sat} = \frac{V_{pk}}{\omega} \left( \frac{1 + \mathcal{R}}{\mathcal{R}} \right)$$

Applied voltage is constrained by B:

$$V_{pk} = \omega N A_c B_{sat} \left( \frac{\mathcal{R}}{1 + \mathcal{R}} \right)$$

# Inductor goodness using $\hat{J}$ instead of R

The rms current can be set by the current density limit  $\hat{J}$ :

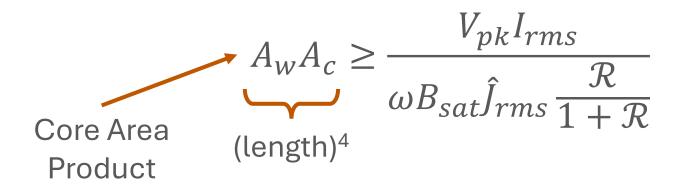
$$I_{rms} = \hat{J}_{rms} \frac{A_w}{N}$$

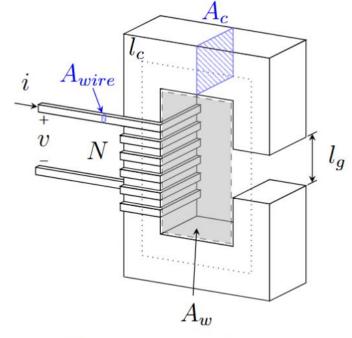
Inductor "goodness" can be defined as its power handling capability:

$$V_{pk}I_{rms} = \omega B_{sat}NA_c \frac{\mathcal{R}}{1+\mathcal{R}} \left( \frac{\hat{J}_{rms}A_w}{N} \right)$$

# Based on $\hat{J}$ , inductor goodness scales with (length)<sup>4</sup>

To achieve a target power handling capability within a winding density limit:





 $l_t$ : mean length of turn

Maximum power processing capability for  $\hat{J}$ -limited, dc inductor scales as (length)<sup>4</sup>

# Comparing $K_g$ and $\hat{J}$ approaches

• For  $K_g$  method with fixed R,

$$\frac{A_w A_c^2}{l_{turn}} \ge \frac{\rho L^2 I_{pk}^2}{R_{max} B_{sat}^2}$$

• For fixed  $\hat{J}_{rms}$ ,

$$A_w A_c \ge \frac{V_{pk} I_{rms}}{2\pi f B_{sat} \hat{J}_{rms} \frac{\mathcal{R}}{1 + \mathcal{R}}}$$

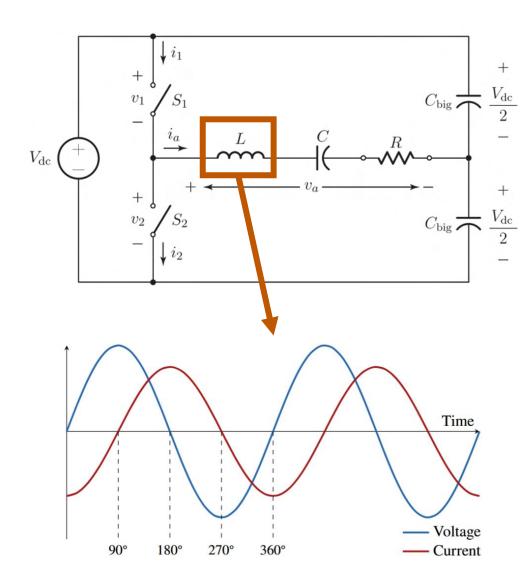
For the  ${\it K_g}$  method, inductor goodness scales as  $m^5$ 

For fixed  $\hat{J}_{rms}$ , inductor goodness scales as  $m^4$ 

- 1) Different assumptions yield different conclusions!
- 2) Inductor goodness does seem to scale faster than  $m^3$  (volume)

#### How about for ac inductors?

- Choke inductors have mostly dc current
- AC inductors have mostly/entirely ac current
- (All inductors have only ac voltage in steady state)
- Consider an inductor with purely sinusoidal voltage and current
- Define power handling capability as  $V_{pk}I_{pk}$



## Sizing ac-inductors with core-area product

- $V_{pk}$  is constrained by  $B_{max}$ :
- Ac B field limit:  $B_{ac} = B_{max}$ 
  - We've already learned that  $B_{max}$  is often based on core loss
- Recall that  $B_{max}$  is related to flux linkage:

$$\lambda_{pk} = NA_c B_{max} = \frac{V_{pk}}{\omega} \left( \frac{1 + \mathcal{R}}{\mathcal{R}} \right)$$

• Since we are considering ac inductors,  $\mathcal{R} \longrightarrow \infty$ 

$$NA_c B_{max} = \frac{V_{pk}}{\omega}$$

$$\Rightarrow V_{pk} = N\omega B_{max} A_c$$

## Sizing ac-inductors with core-area product

•  $I_{pk}$  is constrained by current density limit  $J_{max}$ :

$$I_{pk} = J_{max} A_{wire} = \frac{J_{max} A_w}{N}$$

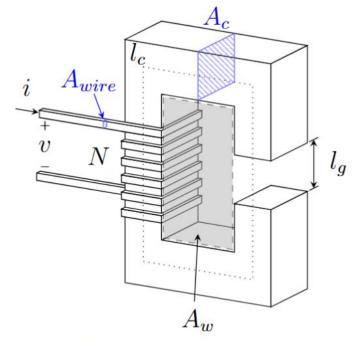
• Recall  $V_{pk} = N\omega B_{max}A_c$  from previous slide

$$\Rightarrow V_{pk} I_{pk} = \omega B_{max} J_{max} A_c A_w$$
Core-area product

#### Core-area product $\Rightarrow$ ac-inductor goodness scales with (length)<sup>4</sup>

To achieve a target power handling capability for ac-inductors:

$$A_w A_c \geq \frac{V_{pk} I_{pk}}{\omega B_{max} \hat{J}_{max}}$$
 (length)<sup>4</sup>



 $l_t$ : mean length of turn

Maximum power processing capability for ac inductor scales as (length)<sup>4</sup>

## Comparing methods for magnetics scaling

| Design<br>Method                    | Application  | "Goodness"<br>Metric                                            | Condition to Achieve<br>Good Metric                                                                    | How Metric<br>Scales with<br>Length |
|-------------------------------------|--------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------|
| K <sub>g</sub> (Constant <i>R</i> ) | Dc-dominated | $\frac{L^2 I_{pk}^2}{R_{max}} = E_{store} \frac{X_L/R}{\omega}$ | $K_g = \frac{A_w A_c^2}{l_t} \ge \frac{\rho L^2 I_{pk}^2}{R_{max} B_{sat}^2}$                          | (length) <sup>5</sup>               |
| Constant $\hat{J}$                  | Dc-dominated | Power processing capability = $V_{pk}I_{rms}$                   | $A_w A_c \geq \frac{V_{pk} I_{rms}}{\omega B_{sat} \hat{J}_{rms} \frac{\mathcal{R}}{1 + \mathcal{R}}}$ | (length) <sup>4</sup>               |
| Core Area                           | Ac-dominated | Power processing capability = $V_{pk}I_{pk}$                    | $A_w A_c \ge \frac{V_{pk} I_{pk}}{\omega B_{max} \hat{J}_{max}}$                                       | (length) <sup>4</sup>               |

For all methods, inductor goodness

scales faster than inductor volume = (length)<sup>3</sup>

#### Power density scaling for different forms of energy storage

• Volumetric power density = 
$$\frac{\text{Power processing}}{\text{capability}}$$

 If each dimension of energy storage component is scaled by a linear factor α: ⇒

| Energy Storage<br>Form                              | Power<br>Density<br>Scaling | Ideal for<br>Miniaturization? |
|-----------------------------------------------------|-----------------------------|-------------------------------|
| Dc-dominated inductor limited by constant $\hat{J}$ | α                           | ×                             |
| Ac-dominated inductor                               | $\alpha$                    | ×                             |
| Capacitor                                           | 1                           | <b>✓</b>                      |
| Piezoelectric<br>Resonator [1]                      | $\alpha^{-1}$               | <b>✓</b>                      |

#### Broad conclusions about inductor scaling

For all presented methods, inductor goodness does seem to scale faster than volume

#### So what?

- Expect physics to resist miniaturization: half-power will not yield half size.
- Capacitors or piezoelectric solutions may be best at the smallest sizes.
- Splitting a big inductor into multiple smaller inductors is likely to lose out on density (but slowly).



#### How do magnetics scale with frequency?

Elaine Ng

## Why do we always want higher frequency?

Power electronics has been moving to higher frequency for a long time Why? – mainly because we expect the required L and C to get smaller

Example: buck ripple = 
$$\frac{V_o}{L}(1-D)T = \frac{V_o\left(1-\frac{V_o}{V_i}\right)}{Lf}$$

 $\Rightarrow L \propto 1/f$  to maintain constant ripple

But small inductance L does not necessarily imply a small component!

#### Volume scaling with frequency

Consider again expressions for power processing capability of inductors:

DC: 
$$V_{pk}I_{rms} = 2\pi f B_{sat}\hat{J}_{rms} \frac{\mathcal{R}}{1+\mathcal{R}} A_c A_w$$

AC: 
$$V_{pk}I_{pk} = 2\pi f B_{max}\hat{J}_{max}A_cA_w$$

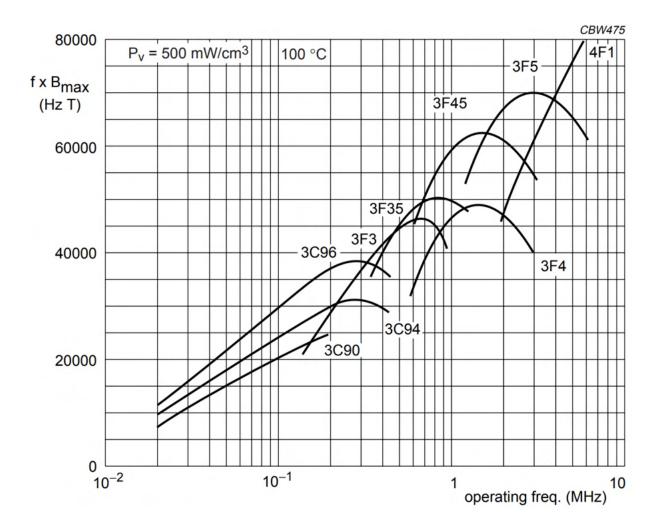
- Increasing f does allow  $A_cA_w$  to decrease
- Volume only scales as  $1/\omega^{3/4}$  if  $B_{max}$  and  $J_{max}$  are unchanged
- But it's worse than that  $\widehat{B}$  in particular does reduce, strongly, with f

#### The Performance Factor

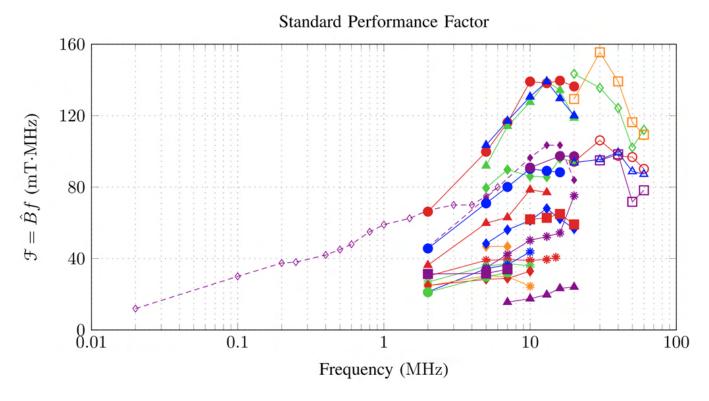
- What if, instead of tracking  $\hat{B}$ , we tracked the product  $\hat{B} \times f$ ? This merged quantity being bigger or smaller does directly predict volume
- The Performance Factor  $\mathcal{F} \equiv \widehat{B}f$
- ullet At low frequencies  $\widehat{B}$  decreases slowly and  ${\mathcal F}$  increases with f
- ullet At high frequencies,  $\hat{B}$  decreases rapidly and  ${\mathcal F}$  decreases
- ullet Any given material has a frequency that maximizes  ${\mathcal F}$

#### Performance Factor Trends

- Each material has an optimum f
- Different materials peak at different f and  $\mathcal F$
- Higher frequency does tend to improve  $\mathcal{F}$ , but slowly
  - 2x from 100 kHz to 1 MHz
  - Another ~1.3x per decade above that



#### Looking to even higher frequencies



- Purple = envelope of data from previous slide
- Big jump in moving from MnZn to NiZn materials in the ~10 MHz range
- Recall  $\mathcal{F}$  is predicting power density  $\Rightarrow$  expect continued improvements to ~30 MHz



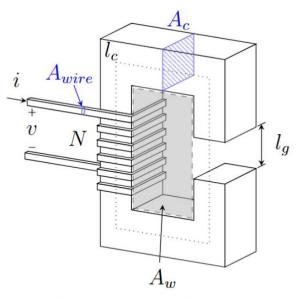
#### How much permeability is necessary?

Alyssa Brown

## Where did permeability go?

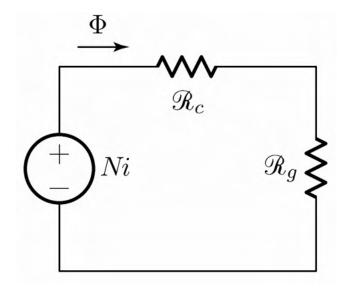
Why can  $\mu_c$  often be approximated out of key equations?

$$B = \frac{Ni}{\frac{l_c}{\mu_0 \mu_r} + \frac{l_g}{\mu_0}} \approx \frac{\mu_0 Ni}{l_g} \qquad L = \frac{N^2}{\frac{l_c}{\mu_0 \mu_r A_c} + \frac{l_g}{\mu_0 A_c}} \approx \frac{\mu_0 A_c N^2}{l_g}$$



 $l_t$ : mean length of turn

- Electric:  $R_{wire} = \frac{l}{\sigma^A}$  is much lower than any other resistance in the circuit
- Magnetic:  $\mathcal{R}_{core} = \frac{l}{\mu A}$  is much lower than any other reluctance in the circuit
- Then when is  $\mu_r$  "large enough"?



#### Permeability limits for inductors

• Consider a perfectly-designed inductor with inductance L and a peak B field  $B_{max}$ 

$$L = \frac{N^2}{\frac{l_c}{\mu_0 \mu_r A_c} + \frac{l_g}{\mu_0 A_c}}$$

• To compensate for  $\downarrow \mu_r$ , we need  $\downarrow l_g$ , but this <u>doesn't affect the</u> <u>performance</u> because

$$B_{max} = \frac{Li}{NA_c}$$

- Same B field  $\rightarrow$  same core loss, same buffer before saturation.
- Same window geometry, same  $N \rightarrow$  same winding loss.

#### $\mu_r$ doesn't matter, until...

$$L = \frac{N^2}{\frac{l_c}{\mu_0 \mu_r A_c} + \frac{l_g}{\mu_0 A_c}} \qquad B_{max} = \frac{Li}{NA_c}$$

- If we keep dialing down  $\mu_r$  and dialing down  $l_g$  to compensate, absolutely nothing else changes, until  $l_g=0$ .
- Once  $l_g=0$ , it can't be used to compensate for lower  $\mu_r$ . It becomes necessary to change the core geometry or increase N, both of which make the component worse
- $\Rightarrow$  Find the limit where  $oldsymbol{l}_g = oldsymbol{0}$

#### The Critical Permeability for Inductors

$$l_g = 0 \implies \mu_{r,critL} = \frac{Ll_c}{\mu_0 A_c N^2} = \frac{Ll_c}{\mu_0 A_c \frac{L^2 I^2}{A_c^2 B_{max}^2}} = \frac{A_c l_c \frac{1}{2\mu_0} B_{max}^2}{\frac{1}{2} L I^2}$$

$$\mu_{r,critL} = \begin{cases} \frac{A_c l_c \frac{1}{2\mu_0} B_{sat}^2}{\frac{1}{2} L I_{pk}^2} & \text{if saturation limited} \\ \frac{A_c l_c \frac{1}{2\mu_0} \hat{B}^2}{\frac{1}{2} L I_{ac}^2} & \text{if core loss limited} \end{cases}$$

#### Deeper interpretation of $\mu_{r,critL}$

• When  $B_{max} = B_{pk}$  (saturation limited or purely ac cases)

$$1 = \frac{A_c l_c \frac{1}{2} \frac{1}{\mu_0 \mu_{r,critL}} B_{pk}^2}{E_{store}} = \frac{E_{core,max}}{E_{store}}$$

As  $\mu_r$  increases, less energy can be stored in the core for a given B limit. Only when the core itself becomes incapable of storing the necessary energy for the application,  $E_{store}$ , does a design include a gap and true optimization is possible.

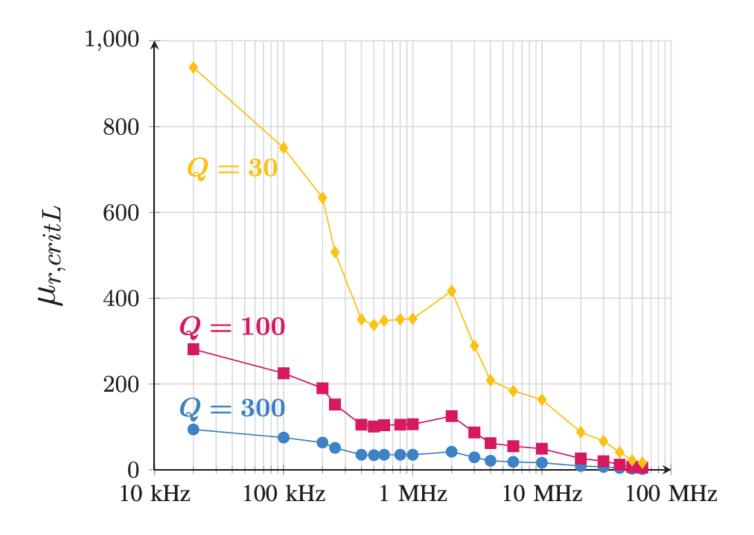
## In terms of peak energy storage and Q

$$\mu_{r,critL} = \frac{A_c l_c \frac{1}{2\mu_0} B_{max}^2}{E_{store}}$$

- So long as the core has sufficient permeability that the core does not store the energy, a gap will be used, and more permeability is no longer beneficial.
- For size optimized designs:  $P_{core} = P_{cu}$
- In terms of Quality Factor,  $Q=rac{2\pi E_{store}}{E_{Loss}}$ , where  $E_{Loss}pproxrac{2P_{core}}{f}=rac{2P_{v,core}}{fA_cl_c}$

$$\mu_{r,critL} = \frac{\frac{1}{2\mu_0} 2\pi A_c l_c B_{max}^2}{QE_{Loss}} = \frac{\frac{1}{\mu_0} \pi f B_{max}^2}{QP_{v,core}}$$

#### $\mu_{r,critL}$ for best ferrites vs. frequency



• 
$$P_{v,core} = 500 \frac{mW}{cm^3}$$

 For reasonable values of Q, the required permeability can be well under 100 in MHz regime.

#### Permeability Example

$$L = \frac{N^2}{\frac{l_c}{\mu_0 \mu_r A_c} + \frac{l_g}{\mu_0 A_c}}$$

$$B_{max} = \frac{Li}{NA_c}$$



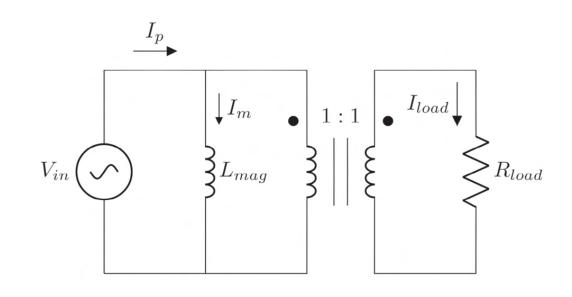
- We have a 500 kHz RM10 inductor designed to be size optimized for a DC-DC converter:
  - L = 24  $\mu$ H,  $B_{max} = 100$  mT,  $\mu_r = 1600$ ,  $A_c = 98$  mm<sup>2</sup>,  $l_c = 44$  mm, N = 11,  $l_g = 0.6$  mm
- How much permeability do we actually need?

$$\mu_{r,critL} = \frac{Ll_c}{\mu_0 A_c N^2} \approx 74$$

We have **21 times** the permeability we need for the same performance ⇒ **Permeability is not a limiting design factor** 

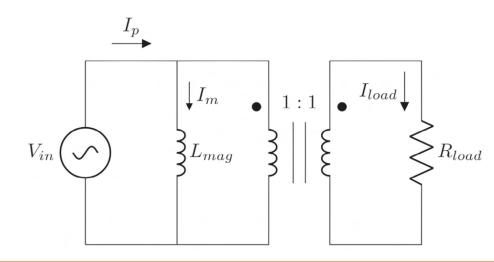
#### Critical permeability for transformers

- High  $\mu_r$  increases  $L_{mag}$  for no gap and a given number of turns (N is fixed by loss constraints)
- As  $L_{mag}$  increases, the transformer can handle more  $I_{load}$  for a given limit on  $I_p$  (i.e., can deliver more power)
- Once  $\omega L_{mag} \gg R_{load}$ , further increasing  $L_{mag}$  has little further impact
- Identify  $\omega L_{mag} = R_{load}$  as an important turning point



#### Critical permeability for transformers

- $P_{load} = \frac{1}{2}V_{load}I_{load} = \frac{1}{2}V_{in}I_{load} = \frac{1}{2}\omega NA_cB_{max}I_{load}$
- The primary current  $I_p$  is limited by current density in the wires:  $I_p = \frac{\hat{J}A_W/2}{N}$
- Since  $I_{load}$  and  $I_m$  are orthogonal:  $I_{load} = \sqrt{I_p^2 I_m^2}$
- $P_{load} = \frac{1}{2} V_{load} I_{load}$
- $\bullet = \frac{1}{2}\omega N A_c B_{max} \sqrt{\left(\frac{\hat{J}A_w}{2N}\right)^2 \left(\frac{V_{in}l_c}{\omega N^2 \mu_0 \mu_r A_c}\right)^2}$



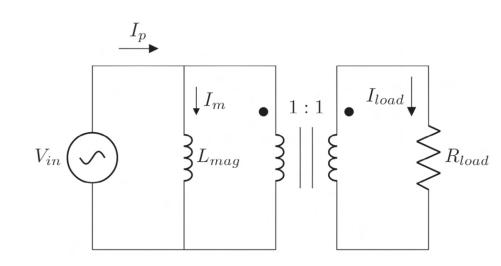
#### Critical permeability for transformers

$$=\frac{1}{4}\omega A_c A_w B_{max} \hat{J} \sqrt{1-\left(\frac{2B_{max}l_c}{\mu_0\mu_r \hat{J}A_w}\right)^2}$$

 Assume a core loss limited design and assume core loss is approximately equal to winding loss

$$P_{v,core}A_{c}l_{c} \approx \frac{1}{2}\hat{J}\rho A_{w}l_{w}$$

$$\Rightarrow P_{load} \approx \frac{1}{4}\omega A_{c}A_{w}\hat{B}\hat{J}\sqrt{1 - \frac{2B_{max}^{2}\rho}{\mu_{0}^{2}\mu_{r}^{2}P_{v,core}}\frac{l_{c}l_{w}}{A_{c}A_{w}}} V_{in}$$



### Critical permeability for transformers

$$P_{load} \approx \frac{1}{4} \omega A_c A_w \hat{B} \hat{J} \sqrt{1 - \frac{2B_{max}^2 \rho}{\mu_0^2 \mu_r^2 P_{v,core}} \frac{l_c l_w}{A_w A_c}}$$

$$\mu_{r,critX} = \frac{B_{max}}{\mu_0} \sqrt{\frac{2\rho}{P_{v,core}} \frac{l_c l_w}{A_c A_w}}$$

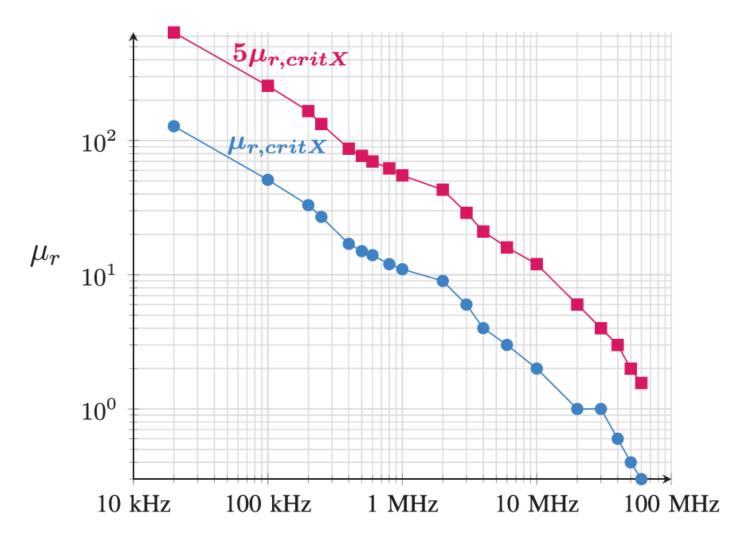
### So how much does $\mu_r$ need to be?

$$\sqrt{1 - \frac{\mu_{r,crit}X}{\mu_r}} = 0.6 \\ 0.2 \\ 0.2 \\ 0 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ \mu_r/\mu_{r,crit}X$$

• 
$$P_{load} \propto \sqrt{1 - \frac{\mu_{r,critX}}{\mu_r}}$$

- As long as  $\mu_r \gg \mu_{r,critX}$  then  $P_{load}$  is not affected by additional  $\mu_r$ 
  - Can define >> as × 5

### $\mu_{r,critX}$ for best ferrites vs. frequency



- $P_{v,core} = 500 \frac{mW}{cm^3}$ , RM7 core size
- Modest permeabilities ( $\leq 100$ ) satisfy the demands of  $5\mu_{r,critX}$  above a few hundred kHz.



#### When should air-core magnetics be used?

Alyssa Brown

#### Fundamental Tradeoff

- At typical operating frequencies, magnetic cores are used to reduce the number of turns needed to reach a desired inductance.
  - Less copper loss but now have saturation limits and core loss.
- Tradeoff leans towards use of core for sub-MHz applications.
- At many MHz, typical design intuition leads us to believe that the core incurs too much loss and needs to be omitted ("air-core" design).
- At what frequency should we shift to air cores? 1 MHz? 10 MHz?
- The answer matters! Many applications operate in this region, including plasma generation, rf heating, envelope tracking, on-chip power supplies, etc.

### An air-core boundary estimate based on $\mu_{r,crit}$

- $\mu_{r,crit} = 1$  indicates that a core would no longer be beneficial
- For both  $\mu_{r,critL}$  and  $5\mu_{r,critX}$ , this is predicted to happen in the 80-100 MHz range.



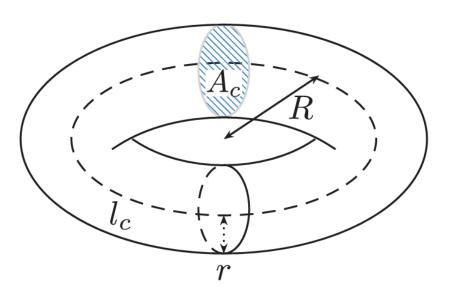
### A more rigorous air-core boundary

 At what frequency does the total power loss of an optimized magnetic-core inductor equal that of an optimized air-core inductor?

$$P_{diss} = P_{mag,diss} = P_{air,diss}$$

• Begin with an optimized magnetic-core toroidal inductor, which generally has copper loss  $(P_{cu,mag}) \approx \text{core loss } (P_{core,mag})$ 

$$P_{mag,diss} = P_{cu,mag} + P_{core,mag}$$
  
=  $2P_{cu,mag} = 2A_c l_c P_{v,core}$ 



## Constant $P_{total}$ boundary: Magnetic-Core

Current is restricted by the maximum copper loss

$$P_{cu,mag} = \frac{1}{2} I_{max}^2 R = \frac{I_{max}^2}{2} \frac{2\pi rN}{\delta \sigma \left(\frac{l_c}{N}\right)}$$

$$I_{max} = \sqrt{\frac{\delta \sigma l_c P_{cu,mag}}{\pi r N^2}} = \sqrt{\frac{\delta \sigma A_c l_c^2 P_{v,core}}{\pi r N^2}}$$

• The ac B field is restricted to  $\hat{B}$ , therefore  $V_{max} = NA_c\hat{B}\omega$ . Thus, maximum power for cored inductor is

$$P_{mag} = \frac{1}{2} I_{max} V_{max} = \frac{1}{2} A_c l_c \hat{B} \omega \sqrt{\frac{\delta \sigma A_c P_{v,core}}{\pi r}}$$

### Constant $P_{total}$ boundary: Air-Core

• For the same  $P_{diss}$ , we can set the copper loss of the air-core component equal to twice that of the magnetic-core component and follow the same procedure

$$P_{diss} = P_{cu,air} = 2P_{cu,mag}$$

$$I_{max} = \sqrt{\frac{2\delta\sigma A_c l_c^2 P_{v,core}}{\pi r N^2}} \text{ and } V_{max} = LI_{max}\omega$$

$$P_{air} = \frac{1}{2}L\omega I_{max}^2 = \frac{1}{2}\frac{N^2 A_c \mu_0 \omega}{l_c} \frac{2\delta\sigma A_c l_c^2 P_{v,core}}{\pi r N^2}$$

$$= \frac{1}{\pi r}A_c^2 l_c \delta\sigma \mu_0 \omega P_{v,core}$$

### Ratio of power processing capabilities

$$\frac{P_{mag}}{P_{air}} = \frac{\pi r \hat{B}}{2A_c \delta \sigma \mu_0 P_{v,core}} \sqrt{\frac{\delta \sigma A_c P_{v,core}}{\pi r}} = \frac{\hat{B} f^{\frac{1}{4}} \pi^{\frac{1}{4}}}{2\mu_0^{\frac{3}{4}} \sigma^{\frac{1}{4}} r^{\frac{1}{2}} P_{v,core}^{\frac{1}{2}}}$$

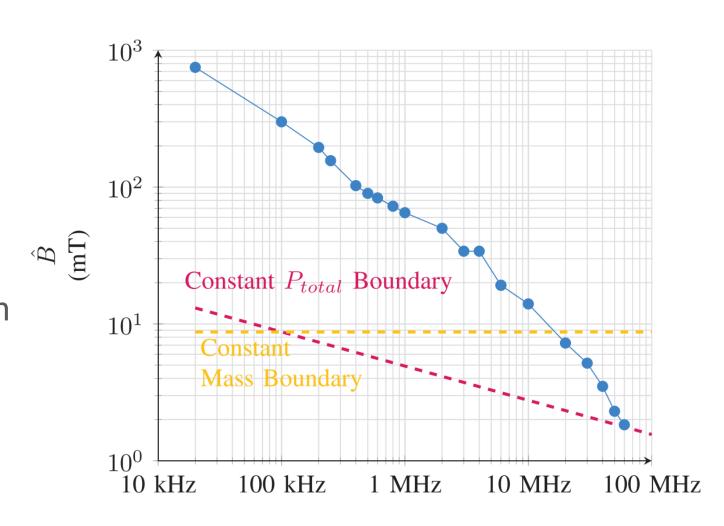
$$A_c = \pi r^2$$

Setting this ratio equal to 1 means that both devices have the same maximum power rating for a given  $P_{diss}$  and solving for the threshold  $\widehat{\mathbf{B}}$ 

$$1 \leq \frac{\hat{B}f^{\frac{1}{4}}\pi^{\frac{1}{4}}}{2\mu_0^{\frac{3}{4}}\sigma^{\frac{1}{4}}r^{\frac{1}{2}}P_{v,core}^{\frac{1}{2}}} \to \hat{B} \geq 2\sqrt{rP_{v,core}\sqrt{\frac{\mu_0^3\sigma}{\pi f}}}$$

# Survey of maximum- $\hat{B}$ materials vs boundaries

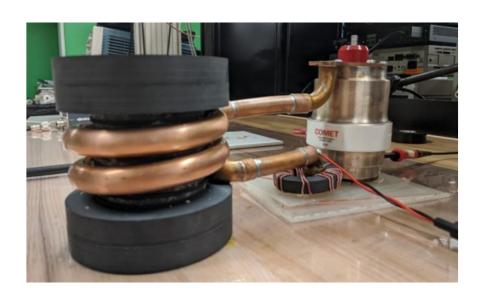
- $P_{v,core} = 200 \frac{mW}{cm^3}$ , r = 5 mm
- A magnetic-core component would outperform an air-core counterpart with the same  $P_{diss}$  up to about 60 MHz
- For a mass constrained design (derived in [1]), a magneticcore component would be preferred over air-core up to about 15 MHz



### Real-world impact of magnetic/air choice

- Plasma generation at 13.56 MHz uses resonant matching networks to make the plasma impedance look like  $50\;\Omega$
- It is assumed that the resonant inductors *must* be air core, but we have just shown that a magnetic-core inductor is very likely to win at 13.56 MHz
- Rachel Yang (MIT) and Rod Bayliss (MIT, now Berkeley) have demonstrated magnetic-core inductors at this frequency with Q ~ 1000-1200
- Compare with air-core magnetics with similar effective volume, which have Q~200-300







#### How much interstitial heat sinking can be included?

Alyssa Brown

### Thermal Management in Magnetic Components

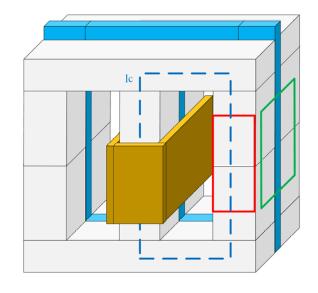
- Ferrite is a terrible thermal conductor
  - 1 to 5  $\frac{W}{mK}$  vs aluminum which has ~200  $\frac{W}{mK}$
- Many avenues taken to improve thermal performance
  - Optimization of insulation structures/bobbins
    - Low cost since both are typically necessary
  - Addition of materials/active cooling
    - Can add weight, cost, or volume but when optimized the benefits outweigh the cost
    - E.g. liquid/gas/air/hybrid cooling methods, immersion in oil, heat pipes, air channels, cooling planes, etc.
- We will focus on cooling planes/plates a.k.a. interstitial heat sinking

### Wait, isn't metal a no-no?

Engineering intuition tells us that metal next to magnetic fields results in wasteful eddy currents.

#### However:

- If the metallic planes are kept in parallel with the flow of H fields, then little eddy currents will be induced in the plate.
- The reluctance model of the device is only slightly changed, so the impact on the component design is minimal.



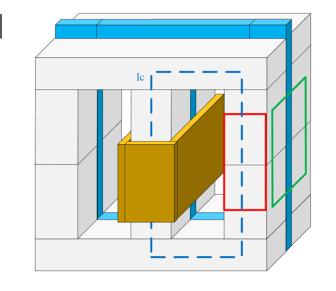
### Derivation of loss within cooling plane(s)

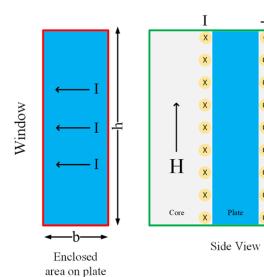
• The loss in the area enclosed in red is given by:

Loss for this section = 
$$2(Kh)^2 \times \frac{\rho \sqrt{A_c/2}}{h\delta}$$
  
=  $\sqrt{2}(Kh)^2 \times \frac{\rho \sqrt{A_c}}{h\delta}$ 

• For the full geometry  $\Sigma h=2l_{c}$  and  $H=\frac{B}{H}$ 

$$Total\ loss = \frac{2\sqrt{2}B^2\sqrt{A_c}l_c\rho}{\mu^2\delta}$$





### Loss ratio for comparison of materials

• Further generalize by finding the loss in the plate per unit volume of

the core (
$$Vol_{core} \approx A_c l_c$$
) and plugging in  $\delta = \sqrt{\frac{2\rho}{\omega \mu_0}}$ 

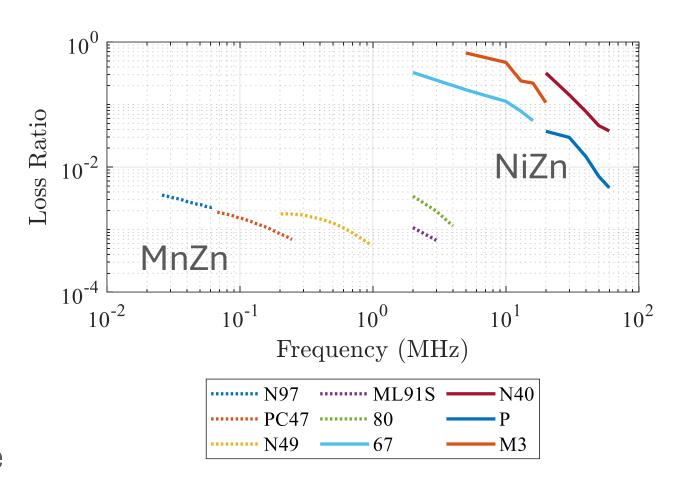
$$\frac{Loss\ in\ plate}{Vol_{core}} = \frac{2\sqrt{2}B^2\rho}{\mu^2\delta\sqrt{A_c}} = \sqrt{\frac{\omega\rho}{A_c\mu_0^3}} \frac{2B^2}{\mu_r^2}$$

• To compare between magnetic materials, we can set up a loss ratio

$$1 \gg \frac{Loss \ in \ Plate}{Loss \ in \ Core} = \sqrt{\frac{\omega \rho}{A_c \mu_0^3} \frac{2B^2}{P_{v,core} \mu_r^2}}$$

#### Loss for some ferrites

- For an aluminum plate with a core with  $P_{v,core}=200\frac{mW}{cm^3}$ ,  $A_c=0.2~cm^2$
- All materials' loss ratios are < 1, but a cooling plate is better suited for lower frequency MnZn materials (<5 MHz) in terms of loss
- Works better with MnZn because permeability is higher (loss ratio  $\propto 1/\mu_r^2$ )



### How many plates can be used?

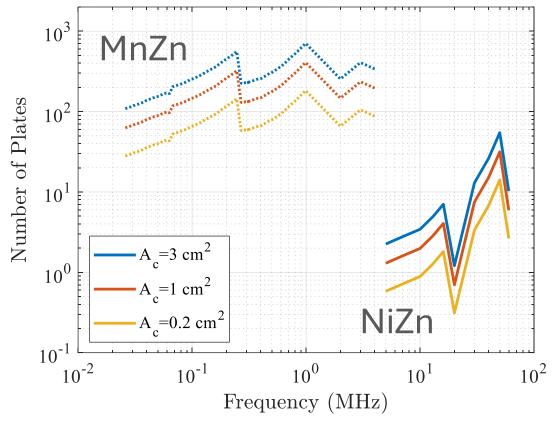
 We can multiply the loss ratio by N for multiple plates

$$\frac{Loss\ in\ N\ Plate}{Loss\ in\ Core} = \sqrt{\frac{\omega\rho}{A_c\mu_0^3} \frac{2NB^2}{P_{v,core}\mu_r^2}}$$

• If we set a limit on the increase in loss, then we can solve for N.

$$\frac{Loss\ in\ N\ Plate}{Loss\ in\ Core} = 0.1$$

$$N = \frac{0.1}{2} \sqrt{\frac{A_c \mu_0^3}{\omega \rho}} \frac{P_{v,core} \mu_r^2}{B^2}$$



For an Al plate with  $P_{v,core} = 200 \frac{mW}{cm^3}$  and 10% increase in loss

### **Example Cases**

For an aluminum plate with a core with  $P_{v,core} = 200 \frac{mW}{cm^3}$ ,  $A_c = 0.2 \ cm^2$ 

$$1 \gg \frac{Loss \ in \ Plate}{Loss \ in \ Core} = \sqrt{\frac{\omega \rho}{A_c \mu_0^3} \frac{2B^2}{P_{v,core} \mu_r^2}}$$

MnZn: N97 at 40 kHz

 $Loss\ ratio = 0.003$ 

NiZn: 67 at 10 MHz

 $Loss\ ratio = 0.14$ 

For 10% increase in loss

$$N = 39$$

$$N \approx 1$$

#### Learn more at the APEC technical session

Session: (T05) Magnetics Applications I (8:30 AM – 12:00 PM)

Tuesday, March 18, 2025

8:30 AM - 8:50 AM

(T05.1) Heat Extraction from Ferrite Cores Using Metallic Laminations

Alyssa Brown, Tan Duy Nguyen, Alex Hanson

The University of Texas at Austin



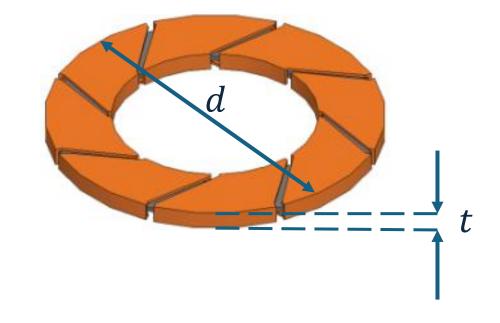
#### Is scaling different for hyper-planar magnetics?

Alex Hanson

### On-chip magnetics are extremely planar

 $d \sim mm$   $t \sim 100 \ um$  Aspect Ratio  $\sim 10$  or more

- Surface Area/Volume ratio is huge compared to ordinary magnetics – maybe we can drive them harder?
- Planar magnetics aim to sit on top of CMOS, increasing substrate temp – maybe we can't drive them as hard?



### How much heat can hyper-planar magnetics handle?

Consider designing inductors to live on top of high-performance processors that can dissipate 100-1000 W/cm<sup>2</sup>

• Most likely efficiency-limited (have sufficient thermal management solutions for the processor already)

Consider designing a hyper-planar inductor with

- $t=100~\mu m$ , limited by on-chip manufacturing capability and cost
- A 1% loss budget per unit area  $P_A = 1-10 \text{ W/cm}^2$

Yields a volumetric power density limit:

$$P_{v,planar} = \frac{P_A}{t} = 1 \times 10^5 - 1 \times 10^6 \text{ mW/cm}^3$$

 $P_{v,planar}$  is **200-5000 times larger** than typical  $P_{v,bulk}$  (due to high aspect ratio and crazy aggressive heatsinking)

# What should $\hat{B}$ be for hyper-planar magnetics?

Steinmetz equation at a given frequency:

$$P_v = kB_{ac}^{\beta}$$
 where  $2 < \beta < 3$ 

AC B field is limited to:

$$B_{ac} = \left(\frac{P_v}{k}\right)^{1/\beta}$$

$$\Longrightarrow \widehat{B}_{planar}$$
 is  $\left(\frac{P_{v,planar}}{P_{v,bulk}}\right)^{1/\beta}$  larger than  $\widehat{B}_{bulk}$ 

 $\hat{B}_{planar}$  is **5.8 to 70.7 times larger** than typical  $\hat{B}_{bulk}$  at a given frequency

### How does sat vs core loss threshold change?

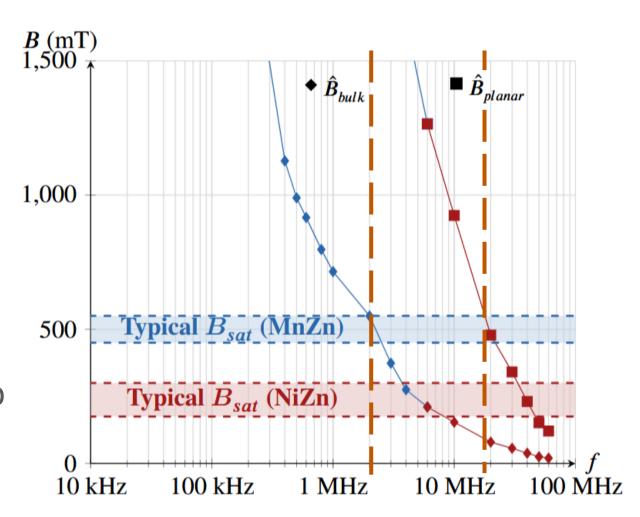
- Recall that saturation vs. core loss threshold is based on  $\hat{B}$
- If  $B_{sat} > \hat{B} \frac{1+\mathcal{R}}{\mathcal{R}}$ , design is core loss limited, else saturation limited
- Hyper-planar magnetics can tolerate more core loss than bulk counterparts at a given frequency
- Hyper-planar designs can tolerate  $\hat{B}$  that is 5x to 70x compared to what was shown previously
- Pushes threshold for core-loss-limited designs to higher frequencies

### How does sat vs core loss threshold change?

Assume

$$\hat{B}_{planar} = 6 \, \hat{B}_{bulk}$$
 $\mathcal{R} = 0.1$ 

- With  $\hat{B}_{bulk}$ , designs are core loss limited starting ~2 MHz
- With  $\hat{B}_{planar}$ , designs are core loss limited starting ~20 MHz
- Threshold between limits for on-chip magnetics (f>10 MHz) is fuzzier



### Conclusions about hyper-planar magnetics

- Hyper-planar magnetics may potentially tolerate
  - $P_{v,planar}$  200-5000 times larger than typical  $P_{v,bulk}$
  - $\hat{B}_{planar}$  is **5.8 to 70.7 times larger** than typical  $\hat{B}_{bulk}$
- Hyper-planar magnetic designs may be saturation limited up to higher frequencies than bulk designs
- At the tens of MHz frequencies relevant for on-chip magnetics, hyper-planar designs may still be core loss limited



### **Take-Home Conclusions**

Alex Hanson

#### Learn more:

"Magnetic Material Selection for Power Inductors and Transformers"

Chapter 6, IET Handbook on Inductive Devices in Power Electronics, 2025

Alyssa Brown, Elaine Ng, Alex Hanson

The University of Texas at Austin

Plus the references contained in the slides

#### Take-Home Conclusions

There's a lot we can learn by breaking free from the case study and seeking broadly applicable conclusions

- $\Rightarrow$  Core loss or saturation will limit a design, but not both
- ⇒ Core-loss-limited designs more common at higher ripple ratio
- ⇒ Core loss limits kick in at surprisingly low frequencies
- $\Rightarrow$  Many magnetic components' performance scales as  $l^4$  or  $l^5$ , faster than volume (vs capacitance  $l^3$  or piezoelectric  $l^2$ )
- ⇒ The performance factor predicts continued improvements in power density for frequencies increasing to the tens of MHz

#### Take-Home Conclusions

- $\Rightarrow$  Additional  $\mu_r$  has no effect on inductor performance above  $\mu_{r,critL}$
- $\Rightarrow \mu_{r,crit}$  is surprisingly low (< 200) over most useful frequency range
- $\Rightarrow$  Additional  $\mu_r$  has diminishing returns on transformer performance above  $\mu_{r,critX}$ , which is likewise lower than usually thought
- $\Rightarrow$  Air-core magnetics don't win volumetrically until > 50 MHz, leaving opportunity on the table for many applications in the 1-30 MHz range
- ⇒ Air-core magnetics start to win gravimetrically at ~15 MHz
- ⇒ Metallic cooling planes can be used over most frequencies, esp. with higher permeability MnZn materials sometimes dozens of them
- $\Rightarrow$  Planar magnetics can handle much higher  $\hat{B}$  -- but still may be core loss limited