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MIMO Identification of Frequency-Domain Unreliability in SEAs

Gray C. Thomas and Luis Sentis

Abstract— We investigate the use of frequency domain identi-
fication and convex optimization for obtaining robust models of
series elastic actuators. This early work focuses on identifying
a lower bound on the 7., uncertainty, based on the non-linear
behavior of the plant when identified under different conditions.
An antagonistic testing apparatus allows the identification of
the full two input, two output system. The aim of this work
is to find a model which explains all the observed test results,
despite physical non-linearity. The approach guarantees that a
robust model includes all previously measured behaviors, and
thus predicts the stability of never-before-tested controllers. We
statistically validate the hypothesis that a single linear model
cannot adequately explain the tightly clustered experimental
results. And we also develop an optimization problem which
finds a lower bound on the ., uncertainty component of the
robust models which we use to represent the plant in all the
tested conditions.

I. INTRODUCTION

It is widely acknowledged that robust ., control theory
depends heavily on its assumption of a validated H ., plant
model. Without one, the parameters of the uncertainty model
revert to another knob the control engineer tweaks to adjust
controller performance. But when the highest performance
is desired, when the cost of input is negligible, and when
the sensitivity is limited by uncertainty alone, we expect this
uncertainty model to represent some sort of physical limit
to the plant. In this paper we study the physical component
of the uncertainty model, which we term unreliability, for a
series elastic actuator—a fourth order system just complex
enough to warrant state-space control. Many open questions
in the study of series elastic actuators require a physically-
motivated unreliability model for a satisfactory answer, in-
cluding the question of which output impedances can be
attained through feedback control while guaranteeing internal
stability.

Perhaps the most well known system identification frame-
work, minimizing the prediction error [1] leads to high
quality linear models complete with a measure of model
certainty in the form of a model parameter covariance matrix.
This parameter covariance, its implication for robust control,
and the influence of weighting functions and closed loop
identification controllers on it have all been extensively
studied. [2], [3], [4], [5] This confidence measure is often
taken out of context, however, as it represents only the
distribution of models which would result from the same
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Fig. 1. Antagonistic identification hardware setup. Setup identifies a series
elastic ball-screw differential actuator (bottom right) with a second rigid
ball-screw differential actuator actuator (top left) to excite an external force.
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Fig. 2. Components of a “Tower of Hoo Guarantees,” the long term

promise of research in this direction. a.—A description of H o guaranteed
model performance under closed loop control. b—An Hs, model of the
series elastic actuator. c.—A model reference control design optimization
problem (a structured uncertainty problem) which can build a from b. Since
the guaranteed performance has the same form as the initial model the
optimization problem can be viewed as a recursive building process, which
closes loops to build more complex guarantees. The result is, to put it
poetically, a tower of guarantees with system identification as the foundation.

identification process if the data were regenerated. Prediction
error uncertainty is not capable of representing phase lag
beyond the known model order, nor can it represent the
influence of a nonlinearity. [6] Moreover, with additional
data the model parameter covariance will decrease even
if the error variance is constant—a sought after property
of consistency—but a property which clearly indicates that
the parameter covariance is not a measure of any physical
property.

A paradigm known as stochastic embedding [6], has been
proposed to work around this—adding an additional source
of uncertainty to the computation of parameter covariance.
By supposing that the model parameters are sampled from
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a distribution with pre-defined covariance, the stochastic
embedding approach estimates the means of these param-
eter distributions rather than the parameters themselves—
and returns a much more conservative covariance estimate.
This covariance doesn’t approach zero with more samples—
instead it approaches the a-prior covariance. Unfortunately,
this means the approach is still heuristic in practice—a
justification for padding the covariance estimates from the
prediction error method.

The primary alternative to prediction error identification is
broad-spectrum frequency-domain estimation. This approach
uses a ratio of the Fast Fourier Transform (FFT) spectra of
the input to the output. To eliminate noise, the FFT data
must be averaged in the frequency domain, often weighted
by the magnitude of the input (or occasionally by the
magnitude of the output)}—making a ratio of cross spectrum
to power spectrum. An uncertainty boundary can be obtained
by repeatedly generating estimates of the transfer function
and then drawing a bound around them numerically [7], but
the broad spectrum of the input makes it difficult for this
method to capture the full variability of the plant’s input—
output response, and also understates the transfer function
near poles with low damping ratios.

Our identification strategy falls under the broad category
of stepped-sine, or “swept sine” in industry [8]. Under this
category of approaches the excitation signals carry only a
single sinusoidal excitation at a time, and this sinusoid’s
frequency is then swept through a range in discrete incre-
ments. This measures the steady state sinusoid response of
the system directly. The sinusoidal component at the tested
frequency is often used in place of the real signal, to ignore
the harmonic response generated by nonlinearities, and we
do this as well.

In an effort to capture a physical component to the H o
robust model, we repeat the tests for each frequency several
times, varying the conditions of our experiment several times
for each reference signal. These conditions, including the am-
plitudes and phase lag between the two sinusoidal excitation
signals, should not change the estimation of a linear model if
our plant were indeed linear. But they do, and we show this
empirically, using the classical statistical analysis of variance.
We then derive constraints on the transfer matrices of an H
robust model which is guaranteed to include all observed
input output behavior within the robust region of predicted
behavior. Our concept of unreliability is closely connected
to the far older concept of a describing function [9], but
includes factors other than input amplitude and focuses on
stability robust to all possible conditions, rather than aiming
to predict limit cycles and regions of convergence.

Our long term goal is identification and robust modeling
of the NASA RS Valkyrie [10] robot’s actuators for high
performance feedback control. We have employed an antag-
onistic testbed Fig. 1 which tests a differential ball-screw
drive UT-SEA [11] that is the predecessor of the differential
roller-screw drive SEAs in Valkyrie’s chest and ankles. We
ultimately aim to improve over the performance of the state
of the art disturbance observer based impedance controller,

Rigid ball-screw differential actuator
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Series elastic ball-screw differential actuator

Fig. 3. Schematic for testing configuration. DO and D1 are ball screw
differentials, FO and F1 are force sensors, MO and M1 are motors with
encoders, and S1 is a spring with a deflection encoder. The input vector to
the SEA model is (M1 current, F1 force) and the output is (M1 position,
S1 position). However, the system identification software controls the two
motor currents and reads all five sensors—and can be configured to perform
closed loop identification, which we use in this paper.

[12], by implementing the more general paradigm of model
reference control: an H., design goal similar to [13]. We
also seek to incorporate and a robustness requirement similar
to [14], but using an H, frequency-domain uncertainty set
informed by the identification system from this paper.

This paper studies the construction of a lower-bound on
the Ho, uncertainty model which is based on measurable
physical properties. Ultimately the H., uncertainty must
include three factors: measurement uncertainty due to noise,
intentional simplification due to limited model order, and
unreliability under different test conditions—the focus of this
paper. As the experiments become more extensive, and as
the model approaches the best possible linear description
of the real system in the relevant frequency region, this
unreliability factor limits the shape of the H., model. An
accurate identification of model unreliability is key to using
robust control to reach the physical performance limits of
the hardware, quantifying these limits, and understanding
the impact of mechanical design decisions from a controls
perspective.

II. FREQUENCY DOMAIN IDENTIFICATION STRATEGY

Modeling a series elastic actuator in the frequency domain,
we see it as a collection of transfer functions relating two
inputs, current (ug) and external force (uq), to two outputs: a
motor position encoder (yg), and a spring deflection encoder
(y1)- The four transfer functions between inputs and outputs
form a transfer matrix

P(jw) = ( (1

v (jw) u‘i(]«d))
(s Y1 (s ‘
B(jw) L(jw)
We use vector notation to express a steady state sinusoidal
input signal, output signal, and measurement noise signal

y(jw), u(jw),n € C?, 2)

often dropping the jw function argument when we can infer
a particular frequency by context. We assume that the noise
is multivariate normal distributed, n ~ A(0,3), for some
Hermitian covariance matrix .
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We consider the following two models to be fundamentally
different

y(jw) = P(jw)u(jw) +n, 3)
y(jw) = P(jw)u(jw) + AJ(jw)u(jw) +n
st. ATA T “4)

Where A is the local deviation, and A* is its conjugate
transpose. J(jw) is a weighting transfer matrix, the mag-
nitude of which bounds the model uncertainty—including
the unreliability we seek to identify. We term (3) the linear
model, and (4) the robust, or H ., model, since the condition
on A is equivalent to ||A]lo < 1.

As shown in Fig. 3, the antagonistic SEA testing apparatus
has five sensors (M1 position, S1 “force”, MO position,
FO force, and F1 force) and two input motor currents
(M1 current, and MO current). We directly control the two
motor current driver commands, and measure the external
force acting on the SEA using the F1 force sensor. This
is an important improvement over a single input testing
protocol because even an indirect second input allows full
independence between the motor current and external force
inputs.

In order to keep our system away from the hard actuator
position limits, we have identified it in closed loop. We
implemented two copies of the same PD controller on the
two motors, making the input currents

v (t) =co + ¢1 cos(wt) — cg sin(wt)

— Ky (t) — Kabi () (5)
imo(t) =cs + ¢4 cos(wt) — c5 sin(wt)
= Ky0mo(t) — Kathao(b), (6)

where 0y19, and 67 refer to the two motor encoder positions,
the over-dot refers to a time derivative'. The parameter vector
(co, €1, C2,C3, €4, C5) defines the experimental conditions we
later use to group the data.

We define a condition group® to be a set of experiments
which share the same experimental conditions. In our case
this means the parameter vector (co, ¢1, ¢2, €3, C4, C5). In gen-
eral, the choice of condition groups determines the stability
guarantee the robust model provides. We assume that the
local deviation A is constant within a condition group.

A. Single Period Phasor Transform

Frequency domain transfer functions can be thought of as
the linear relationship between sinusoidal input signals and
sinusoidal output signals in steady state. Sinusoidal signals at
a known frequency can be represented by complex phasors.
We let phasors be defined by a Phasor Transform based on
the Fourier transform of a variable?,

t) = [ h f(t)e 7t (7)

!Actually an estimate obtained using a discrete time implementation of
a low pass filter differentiator.

2Not to be confused with the algebraic notion of a group

30f course, this is not the only way to arrive at this result.

MW £(t)

= wcos(wt)/, = —wsin(wt) /7

/f dt+j/f

Fig. 4. Concept illustration for the Single Period Phasor Transform (SPPT)
as convolution with scaled sine and cosine signals. This mirrors the hardware
implementation.

where the phasor transform is scaled so that purely sinusoidal
signals have a finite phasor transform at their frequency, and
are otherwise zero:

P(f(t) = Jim T, fR)e it .
e f_TT cos(wt)e—iwtdt

However they are often defined more simply—a phasor is a
complex number z which maps to a sinusoidal signal as

f(t) = R[ze?'] = R[z] cos(wt) — F[z] sin(wt).  (9)

Where R and & select the real and imaginary parts of
complex numbers. We note the relationship to the Fourier
transform because we use a ratio of phasors to estimate
a ratio of Fourier transforms. Moreover, we split up the
calculation of a phasor

T p(e
P(f(t)) = ngnm = — (10)

So that we can justify approximating it with an average of
many sequential Single Period Phasor Transform results,

w

27w
Pu(f) = 7/0 F(t —2nk)e 9¥tdt. (1)

™

Our system identification software efficiently records the Sin-
gle Period Phasor Transform (SPPT) of both input and all five
output signals. We then use the four records corresponding to
the M1 current, the F1 force sensor, the M1 encoder, and the
S1 encoder to find a model of the SEA. The records are split
up by frequency, and then the records at the same frequency
are split up by the test conditions, forming what we call
condition groups. Data is discarded at the beginning of each
new test condition, to ignore the transient between steady
state behaviors. We index the condition groups with the
integer g € 1,..., N, where N is the number of condition
groups, and the individual SPPT results with the integer
i1€1,..., Ny, where IV, is the number of completed periods
after steady state in condition group g.

As previously mentioned, we consider the system to be
Multiple-Input, Multiple-Output (MIMO), and vectorize the
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Fig. 5. Best fit linear model for each tested frequency.

two inputs and two outputs. At angular frequency w the input
vector u refers to a vector of complex numbers, the first
element representing the SPPT of the M1 current and the
second the SPPT of the F1 force. Adding double subscripts,
ug ; specifies the result of the gth condition group, and the ith
period of the excitation signal since the start of that condition
group’s steady state recording period.

III. STATISTICAL VALIDATION OF UNRELIABILITY

The model (4) treats the physical plant as an uncertain
transfer matrix plus noise. The premise of model unreliability
is that repeating the same test will produce nearly the
same result every time, but that different tests will vary
much more from a linear model. Essentially, this is saying
that the noise term in (4) has a much smaller variance
than the noise term in (3). This premise can be supported
statistically, using a common technique called analysis of
variance, or ANOVA. An ANOVA is traditionally described
as a statistically refutation of a null hypothesis—a statistical
proof by contradiction. In this case our null hypothesis is
that the linear model (3) has produced the data in all the
condition groups. Thus the residual,

€g,i = Yg,i — Pug,iv (12)

for condition group ¢’s ith element, should be samples drawn
from a single multivariate distribution. We use least squares
to find the transfer matrix P which minimizes the trace of
the covariance of 7 for each angular frequency w, as shown
in Fig. 5. In the data, the residuals for each condition group
are almost identical, and many condition groups have average
residuals which are far from zero. However, under the null
hypothesis, this is exceedingly unlikely. Instead, the null
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Fig. 6. Output phasors (black) against linear model predictions (blue) for
nine randomly generated condition groups plotted a—j. It is hard to visualize
the features that are directly tested in the F-test, but this plot shows the tight
and distinct clustering of the condition group results relative to the best
possible linear model, and the F-test can be said to indirectly test for this.
The yo variable predicted in these plots is the motor encoder position. It
also shows the transients and clustered equilibria that the SPPT allows, see
SubFigs. b and e in particular. Without loss of generality, we have assigned
the phase of the overall motor translation component of each experiment to
be approximately —135° relative to the start of the SPPT clock, and this
explains why all nine phasor clusters fall into the third quadrant.

hypothesis claims that while the condition groups will have
average residuals which are not quite zero, the average

Ny

By = ¢i/Ng € C?

i=1

13)

of the N, samples from condition group g should deviate
from zero with a covariance matrix about N%] times the
covariance of the samples themselves. This means that the
averages of each condition group can be used to estimate the

covariance of the samples as

N
>, EyEGN,
=1
Segroup wve” = (14)
But this can also be estimated using the deviation of the
samples within their respective groups from their group
average

N Ny
> _ (€9, = Eg)(€g,i — Eg)”
Yewithin group” = o=l N (15)
Z (Ng B 1)

g=1
Let us define the following distance metric between hermi-

tian matrices
¥ /Yy =tr [KﬁlElK**] Jte[I], | KK* =%, (16)

With I the identity matrix of the same size as ;7 and X,
so that tr[/] is just 2 for our matrices in C2*2. Note that
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such a K exists for all positive definite Hermitian matrices—
this is known as the Cholesky decomposition. In essence,
this construction uses the Cholesky decomposition of X5 to
transform the covariance of X; into the space of estimated
covariances for a standard multivariate Gaussian. Taking the
trace of this matrix and then dividing it by the trace of
the identity matrix is a construction to find the average
eigenvalue.

Following the logic of the null hypothesis, the residuals
are normally distributed and we expect the distance between
the two sample covariance estimates

F= Z“group avg.”/E“within group” o))

to be near one and, more specifically, f-distributed with
N

4(N—2)and 4 > (Ngy—1) degrees of freedom. The factor
=1

of four accountsgfor the use of complex numbers, and the use
of two dimensional vectors. We validated this with a simple
Monte-Carlo simulation, noting strong similarity between
the empirical cumulative distribution function generated by
1000 trials and the cumulative distribution function for the
f-distribution.

In statistics there is a concept of a P-value, which is
defined as the probability of obtaining a result more extreme
or equal to the result observed. Statistical hypothesis are
refuted by showing that the observed result has an extremely
low P-value according to the expected distribution defined in
the hypothesis. As is clear from Fig. 7, F' > 1, a result the
null hypothesis predicts to be exceedingly unlikely, with a
P-value P < 10~'°. From this we can conclude that the
condition groups show more variation in their overall behav-
ior than can be explained by the small amount of variation
between repeated measurements of the same conditions. In
other words, we can expect the condition groups to produce
samples which deviate from the linear model in almost the
same way every time. It is this repeatable deviation from a
linear model which we intend to capture in the notion of
unreliability, and which puts a lower limit on the H ., norm
of J(jw) from (4).

IV. Hoo INTERPRETATION OF THE RESULTS

Given condition groups which represent fundamentally
different linear behaviors, we can determine conditions on
the transfer matrices in (4) which guarantee that the input
output behavior of each condition group is included within
the potential behavior of the model.

For simplicity, we first consider the single-input single-
output (SISO) case, where each condition group can provide
an estimate of the transfer function directly, via phasor divi-
sion. For each frequency tested and for each condition group
tested at that frequency, we have an average input phasor u
and an average output phasor y. The ratio y/u provides a
point in the complex plane representing an estimate of the
observed behavior of the transfer function. Considering all
the condition groups tested at that frequency, we can plot a
cluster of observed behaviors. If we draw a circle around all
the estimates we can interpret that circle as an H., model of

experiment
P=1le-5

P = 1e-10
P=1le-15

F-test result

10°
w

10 10

Fig. 7. Statistical significance of group deviation from best possible linear
fit at each frequency, using ANOVA for complex vector data. Different
frequencies have different numbers of experiments, hence the critical F-
test values for different P-values are shown for comparison. There may be
numerical accuracy issues at play in computing the cutoff values for such
small p-values, however it is clear that the astronomically high F-test values
are statistically significant.

the transfer function evaluated at that frequency. The smallest
possible radius, r of such a circle is thus a lower bound on the
Hoo uncertainty—which will ultimately also include factors
representing estimation uncertainty due to noise, and under-
modeling. This intuition informs the following condition
imposed on a MIMO model.

Each condition group has a single input signal, and this
means that only a linear projection of the MIMO model
can be identified for each condition group. We can use the
singular value constraint on A,

I-A*A =0, (18)
to relate the measurement to the possible values of P and
J at w. We do this by pre-multiplying by «*J* and post
multiplying by Ju,

W I Ju —u T AT AJu > 0, (19)
Which results in a one dimensional real inequality. We can
replace a term using (4),

AJu=Pu+n—y. (20)

However, this estimate is corrupted by the noise 7, and the
way we choose to deal with the noise will determine the
conservatism of the bound. For now, we will simply average
the phasor vectors within the condition groups and assume
that the noise in the average, which now has covariance
Y./Ng, can be ignored. After replacement,

w* J*Ju — (Pu —y)*(Pu—1y) >0, 21
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which expands,

u*(J*J — P*P)u+2u* Py > y*y. (22)

Seeking a linear inequality for computationally efficient
optimization, we introduce

Q=4 J"J— PP, (23)

which is Hermitian by construction. We can use the Kro-
necker product, ®, and the vectorization operator, vec, to
express

(u? @ u*)vec(Q) + 2(yT ®@ u*)vec(P*) > y*y  (24)

Note that when re-constructing J from () and P there
will be ambiguity up to a unitary transform. This is unsur-
prising, since the A model uncertainty objects are permitted
to include such transforms. Note as well that this means
the uncertainty model is incapable of representing larger
uncertainty in one output than another.

In the SISO case there is an obvious choice for an
optimization criteria: to minimize the absolute value of the
scalar J, equivalent to the geometric radius of the H ., circle
in the complex plane. However in the MIMO case there is
more ambiguity, since a hyper ellipsoid is being fit to contain
a bunch of points and there are many ways to define optimum
in this case. We can optimize the trace to arrive at a linearly
constrained quadratic optimization problem

i t P*P
o, HQ+PP)
s.t. Q=Q"

(u @ u)vec(Q)

+ 2(y§ ® uy)vec(P*)

>Ygyg Vg=1,...,N
V. DISCUSSION

This final form of the optimization problem is convex,
having a quadratic cost and linear inequality constraints. And
this is the ultimate result of this study: the unreliability of
our plant has been convincingly shown to exist, has been
measured, and defines a computationally tractable limit on
robust models. In the future we hope to expand on this result
by generating a finite dimensional model which satisfies the
optimization constraints. We also aim to apply state-of-the-
art structured H., synthesis techniques to build actuator
controllers with guaranteed performance out of robust plant
models, as suggested in Fig. 2. From there we hope to
keep building upwards, using robust actuator controllers to
design whole body robot controllers with frequency domain
performance guarantees, ultimately allowing us to answer
questions about the input—output capabilities of the robot—
e.g. the robot’s ability to stabilize inverted pendulum behav-
iors, or the haptic rendering quality of the robot’s human
interactions.

Clearly, system identification can hardly be expected to
construct models which are robust to unmeasured factors
or untested conditions. Unmeasured factors cause deviations
which are hardly distinct from noise. If amplitudes within a

certain range are used to construct a robust model, then a
robust controller for that model may still become unstable
outside of that amplitude range. It ultimately remains the
responsibility of the control engineer to understand the
important aspects of the plant and ensure that they are
represented in the test. We hope that our statistical analysis
can be extended to answer questions in this domain as
well, determining if additional factors merit inclusion in the
condition vector.
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