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Abstract— This paper considers the problem of numerically
efficient planning for legged robot locomotion, aiming towards
reactive multi-contact planning as a reliability feature. We pro-
pose to decompose the problem into two parts: an extremely low
dimensional kinematic search, which only adjusts a geometric
path through space; and a dynamic optimization, which we
focus on in this paper. This dynamic optimization also includes
the selection of foot steps and hand-holds—in the special case of
instantaneous foot re-location. This case is interesting because
1) it is a limiting behavior for algorithms with a foot switching
cost, 2) it may have merit as a heuristic to guide search, and
3) it could act as a building block towards algorithms which
do consider foot transition cost. The algorithm bears similarity
both to phase space locomotion planning techniques for bipedal
walking and the minimum time trajectory scaling problem for
robot arms. A fundamental aspect of the algorithm’s efficiency
is its use of linear programming with reuse of the active set
of inequality constraints. Simulation results in a simplified
setting are used to demonstrate the planning of agile locomotion
behaviors.

I. INTRODUCTION

Dynamic multi-contact locomotion is easy to take for
granted as a human, but the simple ability to opportunis-
tically use hands in addition to feet to balance has been
a challenge for humanoid robots. Robots which can safely
enter the home must be practical and robust—robots which
can plan for dynamic multi-contact locomotion fast enough
to recover from disturbances like slipping, or being kicked.
Such planning is not possible today, and highlights the
importance of planning efficiently. To this end we investigate
an area between kinodynamic planning, which is general
but computationally complex, and flat-ground locomotion
planning, which is simple and fast but not applicable to the
general multi-contact case.

We aim to bridge this gap with a nested optimization
strategy—a kinematic optimization and a dynamic optimiza-
tion. This paper only addresses the dynamic optimization,
but the general strategy for both is explained below. By
kinematic optimization we mean a process which chooses
kinematic paths of the center of mass of the robot. These
paths must be continuous, so Bezier splines are a natural
parameterization.

Since any path only represents the center of mass of the
robot, the path still contains uncertainty—a family of paths
in joint space will all achieve the same center of mass path.
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Fig. 1. Example robot, conservative collision model, and path-following
multi-contact point mass model. a.) Rendering of a simplistic multi-contact
robot in a 2D environment. Our model is the least over-conservative with
robots that have 1) a heavy body and light legs, 2) wide leg workspaces, 3)
fast legs, 4) approximately uniform leg-tip force limits over that workspace,
and 5) legs that can retract towards the body. The pictured “triskelion” robot
was designed to demonstrate aggressively dynamic multi-contact, and is a
good fit for this model—but the model is also applicable to humanoids.
b.) Work spaces of the robot. Workspaces are used to identify potential
collisions and potential contacts. The terrain which falls in the potential
contact region has been highlighted. If any terrain intersected the blue region
then there would be potential for a collision even if the robot retracted its
legs. c.) Diagram of path-following multi-contact point mass model with
one leg in contact and two legs not in contact. Here the robot attempts to
follow a center of mass path (orange), and its position is represented as
progress along this path in the arc-length variable ξ. The speed of path
following, ξ̇, is always positive. The model allows the robot to maximize
path acceleration, ξ̈, without deviating from the path—by choosing where
the feet are, and what the reaction forces are at each foot. It is impossible to
move the legs instantaneously, so a non-zero swing time must be accounted
for later.

Thus when a kinematic optimization checks for collisions
it uses a center of mass based model which represents this
ambiguous behavior. In spirit, this is a trick from the field
of robust control: Use a simple model instead of a complex
one, but embed uncertainty into the simple model to account
for the simplification.

A kinematic optimization relies on a dynamic optimiza-
tion to evaluate the dynamic quality of a kinematic path.
Using this information such an optimization searches for the
dynamically best path which avoids potential collisions.

This dynamic optimization problem is similar to a reactive
planning algorithm in the assumptions it makes about the
robot. It chooses the speed at which the robot follows the
path, and also where each leg should go. The trade-off
sacrificed is real optimality in the resulting motions, and this
stems from conservative assumptions for the kinematic and
dynamic models.

Assuming that the problem of optimizing paths given
an arbitrary quality criterion has already been addressed,
we present an algorithm for efficient computation of a
limiting case of the dynamic optimization, the dynamics
and leg-allocation problem. We leave out the problem of



Fig. 2. Big picture planning framework. a) Uncertain robot collision model with a.1) workspaces of the limbs, a.2) worst-case body collision model and
a.3) safe foot retraction workspace. b) Sweeping b.1) the robot-centric collision model along b.2) the center of mass path to check for intersections with
b.3) the terrain. c) Result of sweeping procedure when the path is good with c.1) no terrain in the potential collision region and c.2) terrain identified as
reachable. d) Contacts only considered within reachable region. d.2) The area around d.1) a specific contact is the focus of e) the process of calculating the
contact limit. The e.1) ξ region in which e.2) a contact is usable (valid) is defined by e.3) the leg workspace and e.4) the the safe leg retraction workspace.
At any ξ the contact can be invalidated by not being in the leg workspace, and also by terrain obstructing the safe retraction workspace. f) Contact options
for various feet represented by their regions of validity. Contacts are combined into stances combinatorially. For example f.1) marks a point along the
path with 3 options for leg 1, 2 options for leg 2 and 2 options for leg three, adding in the option to have each leg lifted there are 24 separate stance
options available at this time. Contacts are combined combinatorially into f.2) a big list, where each stance has f.3 a region over which it is valid, and
f.4) a friction cone approximation for each f.5) contact. g) Minimum time planning can now be conducted as in Sec. IV. h) After the planning, or perhaps
as a modification to it, transition times for each leg must be forced. h.1) The limiting case of instantaneous transitions could be converted to a valid path
through leg-allocation space by h.2) naı̈vely switching after or h.3) just before the nominal transition time—the instant that one stance becomes better than
another. Finally i) application on a robot will require generating i.1) swing trajectories which, along with i.2) the center of mass trajectory will be tasks
for a whole body controller to follow. Note that this only specifies the locomotion portion of the robot’s behavior, and that additional active sensing or
manipulation tasks are decoupled from the locomotion planning.

designing a good heuristic to ensure adequate transition
time between stances. This means the algorithm presented
here does not, by itself, generate plausible motions, but
rather a theoretical limiting case—the limit as leg transitions
become instantaneous. However, this is not to say that the
algorithm presented here is without use. It could certainly
prove to be an important building block towards efficient
algorithms possessing such a heuristic. It is additionally
capable of invalidating paths, since the instantaneous foot
motion assumption is a relaxation of the real problem—and
this suggests potential for use as a planning heuristic.

Additionally, the implementation presented here is at an
early stage of development, and must eventually validate the

overarching planning structure described in Fig. 2. Algorithm
aside, this paper 1) introduces the path-following multi-
contact point mass as a model of dynamic multi-contact
locomotion, 2) presents a generalization of the minimum
time algorithm as a single hybrid dynamical system—
compatible with efficient hybrid dynamic system integration
software [1], and 3) uses the phase space framework to
explain interesting behaviors which will naturally exist in
all dynamic multi-contact locomotion problems.

II. RELATED WORK

The motion planning community has addressed multi-
contact locomotion in a general manner. This community
relies on powerful algorithms which can solve virtually any



planning problem given enough time, [2], [3]—probabilistic
road-maps (PRM) [4] and rapidly exploring random trees
(RRT) [5]. It could be said that the approach of PRM
and RRT is to make intractably hard problems tractable by
sacrificing the optimality of the path, substituting it with
the best path in an approximate graph (PRM) or simply
the first path found (RRT). Multi-contact planning has been
accomplished for simple static climbing systems using off-
line computation of a probabilistic road map [6]. Off-line
computation of dynamic trajectories for complex robots is
very difficult, but has been accomplished for humanoids [7],
and leg-wheeled space robots [8]. In such cases the best
results have exploited good guesses to predispose the planner
to try the best paths first, e.g. a precomputed set of walking
motion primitives [7]. Despite this success, these approaches
remain practical only for off-line optimization. Planning is
fundamentally more difficult in high dimensional spaces, and
both PRM and RRT suffer from this curse of dimensionality.

Another branch of motion planning—which has seen re-
newed interest recently—plans dynamics once a kinematic
motion has already been specified [9]–[11]. While originally
envisioned as a method to improve industrial efficiency for
robot arms, this approach can be applied to the general
problem of optimizing kinodynamic trajectories as well [12].
For this purpose it acts as a dynamic optimization similar to
our vision, but without the flexibility to choose footsteps.
Naturally, this means the kinematic trajectory fully specifies
the robot position. A minimum speed traversal algorithm has
recently been applied to multi-contact humanoid maneuver
planning [13] given a full joint space motion path. There
have also been attempts to extend it to more general classes
of motion planning: combining it into an RRT framework
[14]; and using a convex optimizer to offer cost functions
other than minimum time [15]. The latter again applied the
framework to multi-contact humanoid maneuver planning in
the full joint space of the robot. As shown in [13], however,
the minimum time algorithm is much faster than the convex
optimization approach for the subset of cases which can be
solved by both.

The fastest planning occurs with the simplest models, and
in that category the flat-ground locomotion models are clear
winners. These models abstract themselves above the joint
space of the robot. They deal only with the center of mass
and the location of the feet. The ZMP oriented cart-table
model [16], for instance, specifies a relationship between the
feet and the acceleration of the center of mass, given the
simplifying assumption that the center of mass maintains a
constant height. The linear inverted pendulum model makes
the same assumption to explain the unstable dynamics of
balancing on a point foot [17] and presents analytically
solvable center of mass dynamics. This is simplified even
further by the capture point [18], which is extended to 3D by
the divergent component of motion [19] locomotion models.
Both of which provide analytical frameworks relating poten-
tial footstep locations to the center of mass behavior. All of
these models abstract themselves above robot kinematics to
yield simple and easy-to-compute results.

One less analytic, yet still very efficient, model of loco-
motion is the prismatic inverted pendulum model [20]. This
2D model assumes that the center of mass will follow a
pre-determined path, and it reasons about when to switch
between point-foot contacts using the phase space of the
center of mass—the plot of its velocity against its position.
This model’s main strength is that it allows the path to be
determined beforehand, rather than arising as a result of
the footstep locations and linear-in-position leg forces—as
is the case with the capture point, divergent component of
motion, and linear inverted pendulum model. An application
of phase space planning to robot control used this model’s
prediction of the future to reactively determine footstep
locations [21]–[23]. This illustrates the real-time potential of
these phase space techniques. It has also been extended to a
more ambitious numerical optimization process—one which
both adjusts the center of mass path and searches for point-
footstep locations along a 1D ground surface—to maximize
efficient motion over rough terrain [24]. Which demonstrates
it acting as a dynamic optimization subcomponent of a larger
kinematic optimization.

III. A PATH-FOLLOWING MULTI-CONTACT POINT MASS

We now introduce some notation describing our simple
model for analyzing multi-contact locomotion constrained to
follow a center of mass path. This path is parameterized by
a progression variable1 ξ ∈ Ξ = [0, ξmax] (Ξ is a closed
set of reals), with time derivative denoted ξ̇ ∈ R+ (real non-
negative numbers). The multi-contact stances are represented
by a set S, where each stance S ∈ S is itself a set of indexes.
Not all stances are valid, in the sense that the kinematic
model claims them to be certainly reachable and not at risk
of tripping, at any location along the path. We define the
boolean function valid : S× [0, ξmax] 7→ {T,F} such that
the set of all stances which are valid at a location ξ is Vξ =
{S : valid(S, ξ) = T}.

We define the robot model—a (non-rotating) point mass,
constrained to follow a path, and limited to a maximum
speed—using mass m ∈ R+, (kinematic) path x : Ξ 7→ R3,
gravitational acceleration vector g ∈ R3, and maximum
speed smax. The path is differentiable twice both by ξ
(x′(ξ) ∈ R3, x′′(ξ) ∈ R3) and by time (ẋ ∈ R3, ẍ ∈ R3). We
choose to parameterize this path such that ξ is the arclength
of the path and ‖x′‖ = 1. A net force f acts on the center
of mass.

Each contact in each stance in the set of stances, index
i ∈ S ∈ S, also has a position xi ∈ R3 and a force
fi ∈ R3. Each contact’s reaction force must remain inside
a friction cone. We approximate the friction cone as the
convex cone generated by a finite number ni ∈ N of basis
vectors bj,i ∈ R3 j = 1, ..., ni. We combine these
into Bi ∈ R3×ni , a matrix with jth column bj,i. The
generation of this cone requires positive multiplier variables
φj,i ∈ R+ j = 1, ..., ni. We consider φi ∈ Rni+ a
column vector, and ΦS the vertical stacking of all such

1Analogous to s in the work of [9].



column vectors in stance S. Ultimately, the force for each
contact fi =

∑ni
j=1 bj,iφj,i = Biφi. The multipliers are our

optimization variables, and are constrained by

φi,j ≥ 0 ∀ i ∈ S, j ∈ {1, ..., ni} (1)∑
j∈{1,...,ni}

φi,j ≤ 1 ∀ i ∈ S. (2)

Thus, (1) ensures that the forces are within the friction cones,
and (2) ensures that contact forces do not exceed a pre-
defined limit.

As is shown in [25], the relationship between the center
of mass acceleration, whole body angular momentum rate
of change, and net reaction wrench can be separated from
the dynamics of the robot’s joints and the internal wrenches.
Though whole body motion occasionally includes significant
rotation, we follow other simple locomotion centric models
[16]–[18] which treat angular momentum as non-essential.
This naturally leads to a point mass description of the robot,
and a constraint on the reaction forces which guarantees there
is no net reaction moment about the center of mass. The net
reaction wrench f will thus determine the acceleration of the
center of mass point x,

mẍ = f =
∑
i∈S

Biφi +mg, (3)

0 =
∑
i∈S

[xi − x]×Biφi (4)

where m is the robot mass and [·]× is the cross product
matrix operator.

Considering the constraint of the path we have a vector
equality,

ẍ = x′ξ̈ + x′′ξ̇
2

= m−1
∑
i∈S

Biφi + g, (5)

Together with (4) this forms the basis of our optimization.
Note that linearity in both ξ̈ and ξ̇

2
, as pointed out in [26],

allows optimization problems constrained by this equality to
remain convex.

The maximum possible path acceleration at a point
(
ξ, ξ̇

)
can be found

ξ̈max(ξ, ξ̇) =maximize
ΦS S∈Vξ

ξ̈

subject to inequalities (1) and (2),
equalities (5) and (4),

(6)

and will identify the best possible stance for acceleration.
Calculation of ξ̈min simply converts (6) to a minimization.
Note that the two optimizations can and almost always do
settle on different stances.

The maximum and minimum feasible speed-squared for
any stance S ∈ Vξ can be found,

ξ̇2S,max(ξ) =maximize
ΦS

ξ̇2

subject to inequalities (1) and (2),
equalities (5) and (4).

(7)

If ξ̇2S,max < 0 there are no valid speeds. If ξ̇2S,min < 0, then
the minimum speed is zero. The ultimate speed allowed by
any valid stance cannot be exceeded, nor can the maximum
safe operating speed model parameter (smin) be exceeded.
The maximum speed for the purposes of planning is thus
the lesser of these two values.

IV. DYNAMIC MULTI-CONTACT PLANNING

This paper’s application of the path-following multi-
contact point mass model to dynamic multi-contact loco-
motion planing is based on the idea of bang-bang optimal
control, and its extension to systems with a speed limit [9].

A bang-bang optimal control strategy solves the prob-
lem of minimum time travel given acceleration limits by
choosing maximum acceleration from the start and minimum
acceleration until the end, with a transition at the unique
switching point which lets the strategy reach the goal. One
straightforward way to calculate this switching point is to
simulate maximum acceleration forward from the start point,
and then to simulate minimum acceleration backwards in
time from the end. Where the two lines intersect in the
phase space of position marks the switching point in both
position and speed. Points in the phase space which are above
the maximum acceleration line are too fast to be reached
from the start, and points which are above the minimum
acceleration line are too fast to bring to a stop—at least
without overshooting the objective and turning around. The
area above each line represents a phase space region which
is unusable for one of these two reasons, and the union of
the two regions represents points which are unusable for
either reason. The final path bounds this union from below:
it uses the fastest allowable speed for any ξ, and thus has
the minimum traversal time over all valid trajectories.

Bang bang optimal controllers are easy to visualize for sec-
ond order linear systems with constant acceleration bounds,
however our system is non-linear and has non-constant
acceleration bounds—which depend both on speed and on
position. This means that when our system attempts to accel-
erate, the maximum possible acceleration may be negative—
the system may be forced to decelerate. The same applies
for the maximum deceleration case—it may be impossible
to decelerate over some segment of the path, or for some
range of speeds.2 Another alternation from the simple case is
that we must explicitly assume that valid trajectories satisfy
ξ̇ > 0. Optimal paths satisfy this naturally in the simple case,
but this is no longer true when we consider non-constant
acceleration constraints.

This paper proposes a planner for minimum time traversal
of a path-following multi-contact point mass system. We treat
the planner as a hybrid automata system (Fig. 7) with dis-
crete event boundaries switching between different dynamic
behaviors. Each state of the automata, each automata-state,
has different equations defining its dynamics. The automata-
states of the planner system loosely correspond to the phases
of the original minimum time trajectory scaling algorithm:

2While in the single support phase of a walking gait, for example.



Fig. 3. First step of the planning process. The integration of the
accelerate forward state is represented by , and the transition
between different stances by . The shaded area represents points which
have inaccessibly high speeds, speeds which could only be reached by if
the system had started with a speed higher than that of the start point .

acceleration, deceleration, and search [9]. In the original
algorithm the dynamics of acceleration and deceleration were
continuous. They were described by one ODE. But to handle
multi-contact, each automata-state is now a hybrid system
in its own right, with additional internal state informa-
tion representing—in essence—which multi-contact stance
is being used. Other cases of internal state are explained
later. Event boundaries control transitions between automata-
states. Additionally, each automata-state has internal transi-
tions which change its internal state. The planner partitions
the final trajectory into segments, and associates an internal
state to each segment. The automata-state transition graph is
presented in Fig. 7, and Figures 3–6 demonstrate its operation
in the phase space.

The states of the automata are labeled —“accelerate
forward”, —“follow forward”, —“decelerate back-
ward”, —“search ahead”, F—“fail”, and S—“succeed”.
Our approach begins with the system, which chooses
both stances and reaction forces to maximize acceleration
at any point in the state space. The internal state is
often simple: merely the best stance is sufficient. Internal
transitions for this automata-state occur when a stance upsets
the current best. always has the maximum slope in the
phase space, and the area above a phase space trajectory
segment generated by can only be reached by trajectories
which had a higher speed for the same ξ as the point where
the trajectory began. This region is explained in Fig. 3

As shown in Fig. 4, when the state reaches a fol-
lowable maximum speed, the state machine switches to the

state. Internal changes within this automata-state
represent a change in the set of stances which are capable of
following the maximum speed curve. The also represents
the case where the maximum speed can only be maintained
via high frequency switching between two stances. In this
case one stance can only result in acceleration relative to the
maximum speed, and the other can only result in relative
deceleration. Infinite frequency chatter can be considered a
more general case of following the maximum speed curve.
A segment of the max speed curve is followable if it can be
followed at all, and strictly followable if it can be followed
without infinite frequency chatter. When the state reaches

Fig. 4. Dealing with maximum speed: following maximum speed until
forced to decelerate relative to it. Extends the scenario of Fig. 3. The
maximum speed is followed by the forward follower system , . A
stance change internal to the system occurs at . Shaded area above
the system’s trajectory is above max speed. The system’s trajectory
is terminated when the system is suddenly forced to decelerate. Because its
trajectory is ended by forced deceleration instead of forced acceleration, the

system transitions back to the system.

Fig. 5. Forced acceleration max speed case. Extends from Fig. 4. Search
ahead system ’s trajectory, shown , terminates at critical point .
Deceleration backwards in time system ’s trajectory marks the
lower bound of a region, shaded , in which speed is too high to avoid
going above the maximum speed in the future.

a position on the max speed curve where it is no longer
followable, it switches to another state. If the system is
forced to decelerate relative to the maximum speed curve,
then the next state is , as Fig. 4 illustrates. Points above
the state’s trajectory are naturally unreachable: they are
above the maximum speed.

As illustrated in Figs. 5 and 7, if the forward accelerator
reaches the maximum speed and cannot begin to follow

it, the state machine switches to the search ahead state .
If the maximum speed was reached, then clearly at least one
stance allows acceleration. The system must be in a state of
forced relative acceleration, where the minimum acceleration
the robot is capable of producing, ξ̈min(ξ, ξ̇max), forces the
robot to exceed the maximum speed. To avoid exceeding the
maximum speed the robot must preemptively slow down.
The “critical point”, [10] and [27], occurs at the transition
between forced acceleration and a followable region. It marks
the end of the optimal preemptive slowdown trajectory, and
the end of the state.

Any phase space point above a minimal acceleration
trajectory which ends at a critical point will be forced to
exceed maximum speed. By switching to the state at a
critical point, the state machine finds exactly this trajectory.



Fig. 6. Reaching the end. The system’s jump from the point of
intersection to the start of its own trajectory shown thin and dotted, as with
the system’s jump to the endpoint . This final trajectory marks the
lower bound of the region of points which are too fast to stop by the time
they reach the end of the path. Together, the trajectory forming the lower
boundary of the union of all shaded regions is the optimal trajectory through
the phase space. The regions separated by transitions between trajectories
and stance change markers , , and are allocated to the same stance,
list of functionally equivalent stances, or pair of lists of stances—chattering
between any selection of one stance from each list.

The state integrates the dynamics of the robot backwards
in time, using the minimum possible acceleration. It moves
from right to left in the phase space, until it finds an
intersection with the previous trajectory segments.

After the intersection is found, the trajectory segments
generated by are reversed. They were generated back-
wards in time. They are spliced with the forward trajectory
segments up until the point of intersection. This forms the
new “forward trajectory”. The automata, in the state, then
continues forward from the critical point. As shown in Fig. 6,
the same procedure is used to end the planning process. The
end point is treated as a final critical point.

Ultimately, the union of all excluded regions in the phase
space is bounded from below by the final trajectory. Excluded
points are too fast to either 1) be achieved from the starting
point, 2) avoid crossing the maximum speed curve, or 3)
avoid overshooting the end point.

Sometimes the most effective acceleration or deceleration
strategy is to temporarily follow the maximum speed curve of
a particular stance—a curve below the true maximum speed
curve. This can happen if there is a stance with a high speed
limit but which forces the robot to decelerate. This situation
can even include optimal chatter within the or states.
When this happens the internal state contains two lists of
stances—just like when there is chatter in the state.

Under this model, not all problems admit a valid trajec-
tory. Untraversable combinations of path and stance list are
detected when any state passes below zero speed or the
minimum speed of all available stances. A trajectory which
reaches minimum speed guarantees that no speed is valid
for that ξ, and thus that no phase space path connects the
endpoints.

It is possible to guarantee that limbs are not re-allocated
to a new location instantaneously. The stance list input to
the planning process must guarantee this order itself. That
is, for any ξ the valid stances must either uses a limb at its
assigned contact, or not use it. By ensuring a ξ region exists

Edge condition jump

→ forced deceleration
→ forced acceleration
→ followable max speed
→ non-followable max speed
→ critical point located
→ end of path reached to end
→ intersection found to c.p.
→ no intersection

, , internal state change
?→ F zero or min speed
→ S final intersection

Fig. 7. Max Speed Planning State Machine with full list of state
transitions. represents the accelerate forward state the maximum
speed following state (following it forward in time), the backward
minimum acceleration state, and the search ahead state. S is the
“success” state, in which the problem admits a solution. F represents
“failure”—a problem with no valid trajectories.

in which no valid stance uses a limb, a lifting phase can
be guaranteed. Its temporal duration would be at least the ξ
distance divided by the maximum speed.

Similarly, chatter in the result could be avoided by only
permitting a single stance to be valid for every ξ. However,
by restricting the problem in this way many important
decisions—which stances to use, and at which point to switch
stances—have already been made. With only a single stance
for every ξ, the linear program could be expressed in a way
compatible with the prior art. Until the stance allocation and
chatter problem is solved, the potential of this algorithm
lies in its ability to generate infeasible trajectories which
approximate and bound the feasible ones. Though they have
sudden stance changes and chatter, these limiting trajectories
may serve as the basis for making more difficult decisions,
and may offer quick insight on the problem itself. If such
complicated behavior arises in the simple case, the behavior
is at least as complex with minimum transition times.

V. SOME SIMPLE EXAMPLES

A simplified Python implementation of the above planning
algorithm was constructed, restricted to 2D and using a fairly
restrictive maximum speed. The plan was generated first,
and then the position trajectory of the center of mass was
tracked by a linear controller. This controller follows its own
separate force optimization, and is responsible for stabilizing
the path-following behavior. The controller shares structure
with the planner, and also exploits what we call the repeated
linear programming structure, using a remembered active set.



This reduces its complexity. With 1000 iterations, moving
slowly along the path in triple contact, the solver takes
15 s without and 0.643 s with the active set remembering
alteration. This optimization is much simpler than the one
in [28], which also remembers the active set, yet it runs at
approximately the same speed (1 ms per solution on a quad
core i7). This suggests that the control implementation has
a lot of performance improvement still to be realized. Since
the planner uses fundamentally the same code, the same is
true of the planner. Currently the planning process takes 0.43
s (real-time on an Intel Core i7-3770, 3.40 GHz) to plan the
0.89 s motion shown in Fig. 8. The more complex plan in
Fig. 10 takes 0.69 seconds to plan, and has a duration of
1.43 s. Without re-using the active set, this same planning
process takes 7.6 s.

The result of planning in a scenario with a ceiling and a
gap in the floor is presented in Fig. 8. This experimental
setup highlights the dynamic aspect of these plans: it is
not possible to traverse this path quasi-statically, because
the robot can’t balance itself above the gap. This is due,
in part, to the available list of stances. There is no stance
on the list which is valid above the gap and which permits
zero acceleration at zero speed. The robot can choose from
only three stances, which are easily distinguishable in the
figure. The planner’s phase space result is shown in Fig. 9
for the same scenario. As might be expected given such wide
initial and final stances, the planner reaches maximum speed
quickly, stays at maximum speed for the majority of the
maneuver, and then comes to a stop fairly quickly.

VI. DISCUSSION

More than just a single purpose tool, the path-following
multi-contact point mass model allows understanding dy-
namic multi-contact locomotion. It expresses concepts of
preemptive deceleration, un-necessary stances, speed-based
infeasibility, optimal chattering, and untraversable combina-
tions of path and stances.

The algorithm presented here calculates the limit of robot
motion as the foot switching speed approaches instantaneous.
This is a more tractable problem than one which includes a
cost for switching feet. However, for any algorithm which
does include switching cost, our algorithm should be a
relaxation.

To include a switching cost would likely sacrifice either
optimality or speed. The state space in which we plan is
only two dimensional, but to consider this problem we would
need to make the current stance into a state, rather than a
control input as it is now. True optimal planning in high
dimensional state spaces is a nightmare replete with dead-
ends and local minima. We suspect that fast, yet approximate
reactive algorithms will rely on basic principles such as the
limiting case solution we have provided. From the point of
view of a robot trying to recover from a large disturbance,
there is a time cost to computing. Time spent computing
delays the onset of a strategy. A cost function that includes
computation time may still have a knowable optimum. As
a relaxation of the dynamics, the algorithm presented here

could calculate an upper bound on the benefit of continued
optimization of a foot-switching trajectory.

When using this algorithm as a heuristic for planning, or
as a cost function for kinematic optimization, repeatability is
important. So too is the ability to calculate derivatives with
respect to the path parameters.

Some may notice that the structure of the optimization
problem, including the selection of a stance, can be formu-
lated as a mixed integer problem. If a mixed integer approach
could guarantee that some contacts do not appear in the best
stance then many stances would not need to be evaluated,
and this could save considerable time. There may be merit
in relaxing the optimization over multiple stances into one
large linear program to eliminate some contacts.

Implicit in the formulation of this model is the idea that
speed will strongly influence the choice of contact, and the
available acceleration potential. But this is not necessarily
the best assumption to make. Speed is very important for
robots which verge on leaping between contacts, but for
more conservative motions there is another option: evaluating
stances based on their worst case performance in a range
of speeds. A speed-free, or a finitely many speed ranges,
formulation may prove better suited to guaranteeing swing
time.
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