Copyright
by
Steven Jens M. Jorgensen
2016

Human Detection, Gesture Recognition, and Policy

Generation for Human-Aware Robots

by

Steven Jens M. Jorgensen, B.S.E.

THESIS
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Master of Science in Mechanical Engineering

THE UNIVERSITY OF TEXAS AT AUSTIN
December 2016

Human Detection, Gesture Recognition, and Policy

Generation for Human- Aware Robots

APPROVED BY

SUPERVISING COMMITTEE:

Luis Senti€, Supervis
< ﬂ?’%(

) 1
Andreh Thomaz (/

Dedicated to my parents, siblings, and fiancee.

Acknowledgments

First, I would like to thank my adviser, Dr. Luis Sentis, who has been
very supportive and patient with my progress. I would also like to thank
Dr. Andrea Thomaz for graciously agreeing to be the second reader for my
master’s thesis. I want to recognize and acknowledge NASA for their NASA
Space Technology Research Fellowship (NSTRF) program for supporting my
graduate studies. Finally, thank you to Kimberly Hambuchen from NASA
Johnson Space Center for being my NSTRF mentor and giving me access to

Valkyrie’s MultiSense SL sensor.

I would like to thank my parents and fiancee for being patient with
my absence from home as I pursue my graduate studies. I am motivated
to continue working because of them. I also want to recognize the many
friends and colleagues I have made in graduate school. They truly have been

a constant source of support and enriched my experience.

Thank you to Chien-Liang Fok who helped me on many different occa-
sions. Thank you for helping me transition to Austin, for inviting me to your
family gatherings, and for your helpful mentorship in my first two years in the
lab. Thank you to Gwendolyn Johnson for the useful discussion we had about
Whole-Body Control and the prospects of being a member of the Human-
Centered-Robotics Lab (HCRL). Her answers to my inquiry about controls

and graduate school was very helpful in my first year.

I would like to thank my lab’s senior members for their friendship and

more. Thank you to Nicholas Paine for his wisdom and advice about graduate

school and work-life balance. Thank you to Donghyun Kim who has been
a constant mentor, teacher, and friend in many aspects of robotics and life.
Thank you to Ye Zhao for his teachings about LTL, graduate school and
controls, and whose kindness and intelligence always amazes me. Thank you
to Kwan-Suk Kim for always being open to talk about his research with Trikey
as well as for teaching me Gaussian Mixture Models. Thank you to Gray
Thomas whose insight and feedback often gives me a direction to improve my
work. Thank you to Travis Llado for being an inspiration by showing me the
standards of what a true mechatronics engineer constitutes. Thank you also
to Kenan Isik for his friendship and his generosity with sharing his drinks,

which caffeinated and motivate me in long nights.

I also want to thank the new lab members in 2016. Thank you to
Orion Campbell for the open-minded intellectual discussions as well as our
continuing joint work whenever possible. Thank you to Binghan He for our
discussions regarding LTL control and general topics about culture and food.
Thank you to Rachel Schlossman for the fun discussions, and for showing me
what great work ethic looks like. Thank you also to Jaemin Lee for showing
me his approach to research as well as our discussions about Whole Body
Control as I always found my interactions with him intellectually rewarding
and fun. Thank you to Junhyeok Ahn for the fun dinners, lunch, and coffee
break, as well as his friendship, honesty, and work ethic demonstration. Thank
you also to Minkyu Kim for his genuine kindness, friendship, and meaningful
discussions during our commute to classes. Finally, thank you to Dorothy
Jorgensen for the honest and fun discussions about NASA, graduate school,

and life.

I also want to thank fellow graduate students Jack Hall, Prashant Rao,

vi

and Taylor Niehues for their consistent availability every Wednesday afternoon
for company. Thank you to Ajinkya Jain for the interesting and fun discussions
about learning and manipulation and Alex Guitierrez for our computer science
discussions. I always found the scientific and non-scientific discussion to be a
constant source of delight, and I felt that being surrounded by great people

was a good way to get motivated with research.

It’s been a great and continuing pleasure to know and work with ev-
eryone. My time at graduate school would not have been the same. Thank

you all!

vil

Human Detection, Gesture Recognition, and Policy

Generation for Human-Aware Robots

Steven Jens M. Jorgensen, M.S.
The University of Texas at Austin, 2016

Supervisor: Luis Sentis

For robots to be deployable in human occupied environments, the robots
must have human-awareness and generate human-aware behaviors and poli-
cies. This thesis posits that a human-aware robot must be capable of (1)
human detection and tracking, (2) human action or intent recognition and (3)
intelligent, human-aware action generation. This work presents and evaluates

a methodology for each stated capability.

In Chapter 2, a method for practical side-by-side human detection for
the Valkyrie robot using the Multisense SL sensor is presented. An explanation
of why current off-the-shelf techniques are not suitable and a depth-based
algorithm using point cloud descriptors and a Random Forest classifier for
detecting humans under occlusion, in close proximity, in varying sparsity, and

in random poses on the Multisense SL sensor are presented.

In Chapter 3, action recognition of arm motion gestures is framed as
a supervised learning problem. A popular technique for gesture representa-

tion with dynamic movement primitives (DMPs) and its classification using

viil

Gaussian Mixture Models (GMMs) is explored. The approach is tested under
various hypotheses to understand the intricacies of using DMPs for movement
representation. The following findings are reported: (a) recognition rate is sen-
sitive to the number of basis weights, (b) DMPs can be used to recognize two
linear motions, (¢) rhythmic gestures can be differentiated with the discrete

formulation of DMPs, and (d) DMPs can represent static-type gestures.

In Chapter 4, a novel technique for (a) representing Human-Robot-
Interaction as a dynamical system, and (b) using model predictive control to
generate control policies is presented. The approach is motivated by using a
scenario in which an Assistive Robot must be productive by bringing work to
the human but must also be mindful of the human’s workload. By modeling the
interaction as a dynamical system, advances in control theory can be leveraged

to generate useful control policies.

1X

Table of Contents

Acknowledgments v
Abstract viii
List of Tables xiii
List of Figures xiv
List of Algorithms xvii
Chapter 1. Introduction
1.1 Thesis Contributions
Chapter 2. Human Detection with the MultiSense SL Sensor
on Valkyrie 4
2.1 Background and Motivation 4
2.2 Required Capabilities oL 8
2.3 Technical Approach Overview 9
2.4 Feature Descriptions L oL 11
2.4.1 Local Surface Normal Calculations 11
2.4.2 FPFH Cluster feature 13
2.4.3 Other Features, 15
2.5 Random Forest Classification Learning 21
2.6 Results and Discussion 23
2.6.1 Learning Curves, Precision/Recall, and Calculation Time 23
2.6.2 Empirical Results 26
2.7 Evaluation and Future work00 28

Chapter 3. Action Recognition: Gesture Recognition with DMPs

and GMMs 31
3.1 Related Works oo 35
3.2 Technical Background 0L 37
3.2.1 Dynamic Movement Primitives (DMPs) for Gesture Rep-
resentation Lo L Lo 37
3.2.2 Gaussian Mixture Models (GMMs) for Gesture Recognition 39
3.3 Experiment Methodology for DMP and GMMs 40
3.3.1 Gesture Data Gathering 40
3.3.2 Gesture Feature Representation 41
3.3.3 GMM Supervised Classification 43
3.3.4 GMM Unsupervised Classification 44
3.4 Experiment and Results 45
3.4.1 Unsupervised GMM Performance 45
3.4.2 Supervised GMM Performance 46
3.5 Discussion 49
3.6 Future Work 52
Chapter 4. Action Generation: Decision Making with Model
Predictive Control 54
4.1 Related Works oo 58
4.2 HRI as Linear Dynamical Systems 58
4.3 Policy Generation via Model Predictive Control 59
4.4 Assistant Robot Scenario as a Linear Dynamical System 60
4.4.1 World State and Actions 60
4.4.2 State Transition Matrix 61
4.5 World Constraints formulated as Mixed-Integer Constraints for
Model Predictive Control 64
4.5.1 Scenario Constraints 64
4.6 Results 67
4.7 Discussion Lo 69
Chapter 5. Summary and Future Outlook 70

X1

Bibliography

Vita

xii

72

81

2.1
2.2

3.1
3.2
3.3
3.4

List of Tables

Table summarizing the features used for human segmentation

Table summarizing the classifier’s precision and recall perfor-
mance for each label. The average labeling accuracy is the clas-
sifier’s performance on a k-fold cross-validation set. The recall
performance for classifying a candidate human cluster is bolded
to indicate that human clusters are extracted at a high rate
even if non-human clusters are classified as humans.

DMP Learning Parameters
Unsupervised GMM
Supervised GMM on all datasets
Supervised GMM on Cross Validation data set

xiii

17

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

List of Figures

Multisense SL. RGB-D distortion: The raw camera image (top
left) shows a human placing his hand in front of the Multisense
SL sensor. The yellow box indicates that the human’s hand is
visible both in the raw camera image and the lidar point cloud
data. However, the orange box shows that the RGB-D point
cloud data is heavily distorted.

Multisense SL lidar data sparsity: Due to the scanning pattern
of the Multisense SL’s hokuyo sensor (center image), the lidar
data introduces sparsity as lidar speed, and distance and angle
from the sensor increases (top image).

Multisense SL Overhead Visibility: The green region shows
where both RGB-D and lidar point cloud data are visible, the
blue region shows where lidar point cloud data is visible, and
the yellow region is an approximation of where side-by-side col-
laboration occurs. oo

Visibility comparison between RGB-D point cloud data versus
lidar data from Valkyrie’s Multisense SL sensor

Visualizing how Human Points are extracted from Lidar data:
(a) The original point cloud data is sub-sampled by voxelizing
nearby points as one voxel. (b) The points are separated into
m layers after extracting the local normals for each voxel point.
(c¢) Euclidean clustering is used to cluster points together for
each layer. (d) Features of each clustered points are extracted
and classified as “Candidate Humans” (green) or not. Then,
“Candidate Humans” are clustered again and semantic classifi-
cation is performed. A bounding box is returned for all classified
human points.

Extracting the angular difference between two local normals.
This image is borrowed from [49].

An illustration of a 33-bin FPFH histogram with each bin hav-
ing a width of 27 /11. L

Random Forest Classifier: The candidate human cluster classi-
fication error rate vs number of training examples. The plot for
the training error and cross-validation (CV) error are shown. .

Calculation Time vs Number of Voxels

X1v

12

13

16

25

2.10 Human Detection Empirical Results. Green points indicate can-

3.1

3.2

3.3
3.4

3.5

4.1

4.2

didate human points and the purple bounding box indicates
the region where a human is detected. Each sub-figure demon-

strates the algorithm’s detection cacpability. See text for details. 30

The eight types of demonstrated gestures are shown. The sub-
figures indicate (a) a static gesture, (b)-(f) five discrete gestures,
and (g) and (h) are two rhythmic gestures. The gestures were
made using a Kinect that recognized the x-y-z position of the
AR marker held by the demonstrator. Each gesture demon-
stration is plotted as a single color. The static gesture, (a), is
a demonstration where the marker never moves. (b) and (d)
are discrete letter-type gestures which is used in existing DMP
literature to show movement recognition [23]. (c) is a trian-
gle shape gesture to test the ability of the DMP to recognize
gestures with almost equal starting and ending positions. (e)
and (f) are linear gestures with different starting and ending
positions to test if DMPs can discriminate between two spa-
tially different discrete motions. Finally, (g) and (h) represent
a continuous circular and waving motion respectively. For each
sub-figure, each colored trajectory represents the trajectory of
a single demonstration. L.,

The similarity matrix of all the gestures is visualized as a col-
ormap. FEach cell represents the similarity between any two
gestures where colors closer to 1 indicates high similarity and
those below 0 have minimum similarity.

Spatially Different Demonstrations

Linear Discrete Motion Gestures can be differentiated when K is
high such that the DMP’s attractor dynamics move faster than

the actual demonstration making the forcing function non-zero.

Recognizing static gestures is possible by setting the goal posi-
tion away from the user and using features such as arm angle
relative to the body of the user.

Assistive HRI Scenario: An assistive robot must bring deliv-
erables from the inventory station (I.S.) to the human’s work
station area (W.S.). A mindful robot will ensure that the hu-
man is never overworked.o

Fluid Analogy for the Assistive Scenario.

XV

34

42
46

49

20

o7
62

4.3

Assistant Robot Simulation Results: For both (a) and (b), the
robot worries more about the human’s workload more than its
own battery levels and productivity. Note that w,, = Wipy +Uwpu
and ug, = Uigo + Uwdo to indicate the total deliverable pick
up and drop off actions respectively. Also, the W.S. and L.S.
are located at [,; = 9 and [;; = 1 respectively. In (a), the
robot initially drops off the deliverables it is carrying to give
the human work and proceeds to charge its own batteries while
slowly dropping off more work to the human. In (b), the robot
notices that the human is overworked and proceeds to remove
work from the human at the cost of the robot’s own productivity
until the human’s workload becomes manageable. The robot
also charges its low battery levels to remain operational. Then,
the robot proceeds to slowly drop off work to the human at a
manageable rate, which also makes the robot’s perception of its
own productivity to rise again. L.

Xvi

N N

List of Algorithms

Human Detection Algorithm for MultiSense SL’s Hokuyo Sensor 10

Decision Tree Learning 21
Random Forest Learning 23
Random Forest Classification 24

X Vil

Chapter 1

Introduction

Current high-performance industrial grade robots are unsafe to work
with humans. These robots are pre-programmed to do tasks as quickly pos-
sible with minimal concern for its environment. They lack human-awareness
and react on an out-of-context basis. This thesis claim that a successful col-

laborative robot must have the following capabilities:

1. An ability to detect and track the pose of fellow collaborators.

2. An ability to recognize the intent and actions and mental states of fellow

collaborators

3. An ability to generate intelligent actions to accomplish task objectives

and support fellow collaborators

1.1 Thesis Contributions

In chapter 2, a human detection algorithm is presented for the Multi-
sense SL sensor used on the NASA Valkyrie robot. The Multisense SL has two
primary sensors, a stereo camera which can output a colored point cloud data
from the RGB-D data and a spinning Hokuyo lidar sensor which generates a
3D point cloud data with varying cloud density. The detection algorithm was

created to handle the data points generated by the sensor’s spinning Hokuyo

Lidar sensor since the stereo camera has limitations both in terms of visibility
in regions where side-by-side interactions occur and distortion errors when an
object is too close to the camera. The detection algorithm accepts any 3D
point cloud data and outputs a set of 3D bounding boxes on regions where
human points are present. The algorithm is able to detect humans under oc-
clusions, varying point cloud sparsity, and in close proximity. However, due to
features extracted from the point cloud, the approach has high recall and low
precision classification. Thus, while human points are always extracted by the

algorithm, non-human points are sometimes classified as humans.

The field of action and intent recognition is vast, and it is difficult to
provide an all-purpose algorithm. One subset of general action recognition is
gesture recognition. In chapter 3, a methodology for recognizing arm motion
gesture recognition is addressed. Arm motion gestures are represented as a
Dynamic Movement Primitive (DMP). Recognition is performed by extracting
the basis weights of the gesture’s DMP forcing function and then performing
inference over a trained Gaussian Mixture Model (GMM) to identify the most
likely gesture. Using DMPs and GMMs are common in literature, but this
thesis tests many hypotheses to understand the discriminative power of DMPs
and GMMs for gesture recognition. It was found that recognition rates are
sensitive to the number of basis weights, DMPs can discriminate between
two different linear motions, and that DMPs can be used for static gesture

recognition.

Finally chapter 4 presents a methodology for generating intelligent,
human-aware robot control policies using Model Predictive Control (MPC)
with mixed integer constraints. Robot decision making has traditionally been

framed as a either a motion planning problem or as a Markov Decision Prob-

lem. Here, this work presents a new method of representing Human-Robot-
Interaction (HRI) scenarios as dynamical systems. Once represented as a dy-
namical system, advances in the field of control theory can be leveraged. The
methodology is motivated by an assistive robot scenario in which the robot
attempts to maximize productivity by delivering work to the human, but also
ensures that the human is never overworked. Simulation results show that the
approach is able to generate useful control behaviors from maximizing a cost

function with a notion for productivity and human workload.

Chapter 2

Human Detection with the MultiSense SL
Sensor on Valkyrie

In this chapter, an algorithm to detect humans in various poses and un-
der significant occlusions for Valkyrie’s [43] Multisense SL (MSL) sensor [9] is
presented. The MSL sensor is a multi-modal sensor capable of providing RGB-
D data from its cameras and point cloud data from a spinning Hokuyo laser
(lidar) sensor. Here, we describe why off-the-shelf solutions with the Kinect
is not applicable, why the RGB-D data is not used, and how to semantically

detect and extract human points from the MSL’s Hokuyo laser sensor.

2.1 Background and Motivation

For many side-by-side collaboration tasks, two or more humans working
together naturally communicate via verbal cues and nonverbal cues. While
detecting the presence of a human is not necessary for the former, the latter
means of communication requires an ability to detect, identify, and track poses
of human partners. Research has shown that nonverbal communication are
important in human-robot collaboration [7] [20]. Thus, human detection is a
necessary capability for a robot engaging in side-by-side collaboration with a
human. Without this capability, a robot will not be able to naturally assist

the human as another human partner would.

@ Left Rectified

Figure 2.1: Multisense SL. RGB-D distortion: The raw camera image (top left)
shows a human placing his hand in front of the Multisense SL sensor. The
yellow box indicates that the human’s hand is visible both in the raw camera
image and the lidar point cloud data. However, the orange box shows that the
RGB-D point cloud data is heavily distorted.

Furthermore, human detection is an essential component of many Human-
Robot-Interaction (HRI) scenarios such as pedestrian detection [14] for au-
tonomous driving, navigation with social-awareness [38], learning from demon-
stration [27], and others. Due to the extensive utility of human detection and
tracking, many real-time algorithms exist for tackling this problem [29] [14]
[55].

A potential solution for human tracking is to require the human to
wear specialized markers so that the visual sensors can locate the markers
on the human body and infer the human’s kinematic pose. However, using

markers has issues as well. The markers may be sensitive to lighting and other

Figure 2.2: Multisense SL lidar data sparsity: Due to the scanning pattern of
the Multisense SL’s hokuyo sensor (center image), the lidar data introduces
sparsity as lidar speed, and distance and angle from the sensor increases (top
image).

environmental conditions. Wearing multiple markers can also be cumbersome

to the user.

Recently, with the advent of a cheap RGB-D sensor, the Microsoft
Kinect [60], the rise of open-source robotics, the Robot Operating System
(ROS) [42], and an open-sourced implementation of human pose detection
and tracking, [36] [55], researchers have gained access to the necessary off-
the-shelf hardware and software implementation to bootstrap their needs for

reliably tracking and detecting human poses.

However, the Kinect’s implementation for human tracking has limited
capability. First, due to hardware limitations, the human must be at a mini-
mum distance away from the sensor to prevent point cloud distortion. Second,
due to their feature selection, their algorithm requires that the humans un-
obstructed full-body must face the sensor. These two requirements are too
restrictive for a robot engaging in side-by-side collaboration, as humans might

be partially occluded when they are on the periphery of the robot’s vision.

Figure 2.3: Multisense SL Overhead Visibility: The green region shows where
both RGB-D and lidar point cloud data are visible, the blue region shows where
lidar point cloud data is visible, and the yellow region is an approximation of
where side-by-side collaboration occurs.

While it is possible to place multiple Kinects externally from the robot, robots
with on-board sensing have more utility from a deployment point of view. It’s
also possible to place multiple kinects on the robot, however this approach
introduces unnecessary costs and does not address the issue of the minimum

distance requirement of the Kinect sensor.

Additionally, the Kinect’s tracking algorithm is also not immediately
usable for the Valkyrie robot [43] engaging in side-by-side collaboration with
humans. Similar to the kinect’s hardware limitations, the MSL’s RGB-D re-
quires a minimum distance to properly perform point cloud correspondence

without introducing distortion (Figure 2.1) .

Note that the Kinect algorithm also assumes very dense point clouds
to generate an appropriate depth map. Unfortunately, the algorithm can only
work on the RGB-D data of the MSL sensor, as the lidar data introduce
significant point cloud sparsity depending on the lidar speed and where the
human is standing with respect to the sensor (Figure 2.2). Furthermore, the
MSL’s RGB-D data has a limited viewing angle and will be blind to areas where
physical HRI occurs and side-by-side collaboration is expected (Figure 2.3).

When comparing the point cloud data available with the MSL, data
from the lidar shows that it has no minimum distance limitation (Figure 2.1)
and has a wider viewing angle (Figure 2.4), which can enable human detection

for side-by-side collaboration.

Given the limitations of the Kinect algorithm and the challenges that
come with using the MSL sensor on Valkyrie, there is a need for creating a
real-time human detection algorithm for the MSL using its lidar data. This
is not immediately easy as in addition to the sparsity issue (Figure 2.2), the
scanning pattern of the Hokuyo sensor introduces another problem. Namely,
it needs to rotate 180 degrees before obtaining a full visual update. Thus, the
hokuyo needs to be spun as fast as possible to obtain the latest update of its

environment which further increases point cloud sparsity.

2.2 Required Capabilities

In order to make the human detection algorithm for the MSL practical,
it is important to state its required capabilities. In essence, the algorithm

must be able to detect humans under:

1. varying point cloud sparsity.

Visible point cloud data from the RGB-D camera Visible point cloud data from the lidar

Human in
close proximity!

Figure 2.4: Visibility comparison between RGB-D point cloud data versus
lidar data from Valkyrie’s Multisense SL sensor

2. regions where reliable RGB-D data is not available.
3. occlusions of up to 50 % of the body.
4. varying poses.

5. real-time constraints (less than 30ms [19]).

2.3 Technical Approach Overview

Algorithm 1 details the overview procedure for semantically extracting
human point clouds from the MSL’s lidar data. Figure 2.5 gives a visualization

of Algorithm 1.

The separation of point clouds into m different layers is inspired from
[18] which used the same method to recognize occluded humans better. The

algorithm presented here has a couple of notable differences. First, their im-

Algorithm 1 Human Detection Algorithm for MultiSense SL’s Hokuyo Sensor
1: procedure DETECTHUMANS
2 Voxelize point cloud data
3: For every voxel, compute its local normal
4
5

Separate points into m layers along the z- axis

For each layer, cluster the points using a segmentation algorithm (eg:
Euclidean distance clustering)

Calculate the features of each cluster and construct its feature vector.

Using the cluster’s feature vector, use a classification algorithm (eg:
Random Forests) to classify whether the cluster is part of a human or not.

8: Clusters marked as humans are labeled as “Candidate Humans”

9: Cluster “Candidate Humans” points

10: Create a bounding box for each clustered candidate human points

11: Extract features of points inside the bounding box and classify the
points as human or not.

12: Return the set of bounding boxes enclosing human points

plementation relies on using RGB-D points from the Kinect. However, here
we use sparser data from the MSL’s lidar sensor. Second, instead of using a
histogram of Local Surface Normals (LSNs) that depend on the orientation of
the point cloud with respect to the sensor origin, we instead use the Fast Point
Feature Histogram (FPFH) [50] descriptors available from the Point Cloud Li-
brary [51] as our primary feature vector. Instead of creating a histogram for
each normal axis direction (x,y,z), the FPFH feature descriptor instead relies
on angular differences between neighboring local normals. This makes the fea-
ture agnostic to the origin of the sensor. Finally, instead of using the Nearest
Neighbors to reconstruct the human points, we instead use a clustering algo-
rithm, which results to a similar performance, with potential extensions. At
the naivest solution, a simple Euclidean clustering algorithm can reconstruct
the human points. However, more sophisticated clustering algorithms that

utilize probabilistic methods over temporal data and semantic data exist [19]

10

and can be substituted to the clustering algorithm used.

2.4 Feature Descriptions

In this section we describe the feature vector we use to semantically
extract human points from non-human points for a given point cloud data. As

algorithm 1 describes, we cluster points for every layer.

Our approach relies on classifying whether a given cluster, ¢, belongs to
a candidate human or not. To perform this binary classification, we describe

how to construct our feature vector, f(c), of a given cluster.

2.4.1 Local Surface Normal Calculations

For a given radius around a point, the FPFH descriptor creates a his-
togram of the angular differences between neighboring local normals. Thus,
the point’s local normal must first be computed. The computation of a point’s
local surface normal utilizes Principal Component Analysis (PCA) [25], a stan-

dard statistical technique used for dimensionality reduction.

The procedure is as follows. For each point, p € R3, its nearest neigh-
bors within a specified spherical radius, 7, € R are extracted. The centroid

p € R? of all the points within the radius is calculated.

>_pi (2.1)

The 3 x 3 covariance, C' € R3*3, matrix of the spherical region is calculated

p:

T =

using the following formula.

C = Z(pz‘ —p)- (i —p)" (2.2)

el

11

Figure 2.5: Visualizing how Human Points are extracted from Lidar data: (a)
The original point cloud data is sub-sampled by voxelizing nearby points as
one voxel. (b) The points are separated into m layers after extracting the local
normals for each voxel point. (c¢) Euclidean clustering is used to cluster points
together for each layer. (d) Features of each clustered points are extracted and
classified as “Candidate Humans” (green) or not. Then, “Candidate Humans”
are clustered again and semantic classification is performed. A bounding box
is returned for all classified human points.

12

Figure 2.6: Extracting the angular difference between two local normals. This
image is borrowed from [49].

Using Singular Value Decomposition, eigenvalues, A;, and eigenvectors
v; of C' are calculated. The eigenvalues are ordered in increasing order. The
eigenvector corresponding to the smallest eigenvalue is the local normal direc-
tion of the point p. This is intuitive as in PCA, the two largest eigenvectors
describe the direction of greatest change. These two eigenvectors are perpen-
dicular to each other. Since C' € R3, the last eigenvector must be perpendicular

to the first two vectors and sufficiently describes the local normal of point p.

2.4.2 FPFH Cluster feature

The Fast Point Feature Histogram (FPFH) [50] is a histogram-based
feature descriptor for point cloud data. The FPFH is an improvement over
the Point Feature Historgram (PFH) [49]. The goal of FPFH and PFH is to

capture the local curvature of a point using its local k-neighborhood of points.

FPFH is computed in two steps. First, for each point, p,, compute the
angular differences between the local normals of nearby points, expressed as
three angles («, ¢, #). The angular differences are binned into a histogram.
This is referred to as the point’s Simplified Point Feature Histogram (SPFH).

In the second step, for each p, neighbor of p,, its neighbors are recomputed

13

and SPFH is performed on on p;. The SPFH of p,’s neighbors are used to
weigh the final histogram of p,.

To compute the angular difference between two point’s local normals,
we first construct a fixed-coordinate frame on one of the points using the
vector of the local normals and euclidean distance vector between the two
points (See Figure 2.6). Let p;, and ps be two points with local normals n;
and n, respectively. The angular difference of the local normals between these

two points can be computed by defining a tuple (u, v, w), where

u = ng, (2.3)

pmux PP (2.4)
|lpe — psll2

w=u X . (2.5)

Then we compute the angular differences (a, ¢, 6) as

a=v-n, (2.6)

¢ = MM7 (2.7)
|[pe — pslla

0 = atan(w - ng,u - ny). (2.8)

The SPFH is obtained by binning the angular differences into a his-
togram that is evenly spaced. With the SPFH properly defined, we can now
define the FPFH of each query point p, as follows.

k
1 1

where w; is a scalar weight defined as the euclidean distance between p, and

p;. This weight is used to place bins more importance on points nearby p, and

14

less on the neighbors of p;. The Point Cloud Library’s FPFH implementation
uses 33 bins, using 11 bins for each angle where each angle has a bin width of

27 /11.

So far, only the FPFH feature of a point has been described. However,
we need to classify whether a cluster is a candidate human. Thus, a feature

descriptor for the cluster is needed.

To get the cluster’'s FPFH feature, we sum all the FPFH feature his-
tograms of each point p; in the cluster. Formally, let S. be the set of all points
p belonging to cluster ¢, fi(c) € R3? be the cluster’s FPFH feature vector and
let p; € S. be a point inside the cluster. Then a cluster’s FPFH feature is

file) = 1 3 FPFH(p), (2.10)

PjE€Se
where W is a scaling factor such that the integral of the FPFH feature
vector is unity. Other normalization schemes are possible such as requiring that
the mean of all training examples for each bin is centered at 0. In Figure 2.7,
normalization was performed using the maximum of each training example’s

corresponding bin for illustration purposes.

2.4.3 Other Features

While the previous section described our most discriminative feature,
here we construct other features used to describe cluster ¢. Table 2.4.3 sum-

marizes all the features used.

The cluster covariance feature fo(c) € R? is inspired from its utility by

other pedestrian detection algorithms [26]. To define f2(c) We simply take the

15

—_

normalized
frequency

o

12 3 45 6 7 8 9101112131415 16 17 1819 20 21 22|23 24 2526 27 28 29 30 31 32 33
Qo > 0,

Figure 2.7: An illustration of a 33-bin FPFH histogram with each bin having
a width of 27 /11.

cluster’s covariance, C(c) € R**? and roll out its elements.
fa(e) = [Cu(c), Cuale), -+, Caz ()], (2.11)

with Cj; is the ¢th row and jth column of the matrix C(c).

To calculate features f;(c) from ¢ = 3 to i = 5, we first calculate the
cluster’s bounding box. The bounding box’s x,y, 2z Cartesian positions are

max

min ,,min ,min mazr o mar _
P ad) -

calculated by first initializing z;"", y;"", z;"" = oo and z;'**,y;

—o0. These coordinates specify the axis-aligned corners of the bounding box.

min,max
{min,maz}

Then for each point p; in cluster ¢, update {z,y, z}, accordingly.

The length, width, and height of the cluster’s bounding box can be
extracted by specifying

(1, w, B§) = abs(af™ — 2™, ypree — ypn, 2o —). (2.12)

16

Features Dimensions
f1 FPFH (Fast Point Feature Histogram) 33
fo Cluster Covariance 9
f3 Axis-Aligned Side Ratios 2
f1 Axis-Aligned Side Area 1
fs Bounding Box Diagonal 1
fs Bounding Box Volume 1
fr Variance Ratios 2
fs Eigenvalue Ratio 1
fo x-y Best Fit Radius 1
fio x-y Distance from Sensor 1
fi1 x-y Angle from Sensor 1

Table 2.1: Table summarizing the features used for human segmentation

We now order the side lengths of the bounding box in increasing order.

Define the tuple (¢, 15, lg), which indicate the side lengths of the axis aligned

bounding box of cluster ¢ in increasing order.

This ordering is important

to retain independence from the cluster’s position with respect to the sensor

origin.

The cluster features fs(c), fi(c), f5(c) that describe the axis-aligned

bounding box side ratios, side area and diagonal can be defined as follows.

The bounding box volume, fg(c) is defined as

I I
fale) = (s +1)" (g :L 1)
fale) =15, - 15

f5(0) = H [lnglfvhlc)] ||2

felc) =1 - wg - hy.

17

(2.16)

Next, the variance and eigenvalue ratios which describe features f7(c)
and fs(c) are an attempt towards modeling the distribution of the cluster’s
points, which have also been shown to be helpful with classifying pedes-
trians in a point cloud [26]. Similar to features f3(c) and fy(c), we will
order the variances and eigenvalues. The cluster’s axis aligned variances
(C11(c), Caa(c), C33(c)) have already been calculated when extracting the clus-
ter’s covariance matrix. We order these variances in increasing order defined
as (Ca(c), Cs(c), C(c)). Similarly, we extract the eigenvalues of the cluster’s

covariance matrix and order them in increasing order as (A, (c), Ag(c), A, (c)).

We now define the cluster’s Variance ratios and Eigenvalue ratios fea-

tures, fr(c) and fs(c) respectively, as follows.

Cs(c) Gy (e)

1) = @t + 1) Calo) + 1) (2.17)
o= 28
fs(c) o)+ 1) (2.18)

Next, the circularity of the cluster is extracted. Humans are mostly
cylindrical in shape when standing, and one way to capture this cylindrical
feature of humans is to estimate the best fitting z — y radius of the cluster.
The x — y radius is the best fit circle when the cluster’s points are projected
to the x — y plane. Typically the x — y plane is parallel to the ground. To
obtain this we first project all the points of cluster ¢ to the x — y plane by
ignoring the point’s z-coordinate axis. As described in [1], the best fit circle
can be extracted by parameterizing the problem with the following vector of

unknowns,, v(c), for cluster c:

v(e) = lao(e) , (), 27(e) +yi(c) — (o))" (2.19)

where z,.(c) and y,(c) are the x and y positions of the center of the best
fit circle respectively with radius r2(c) for cluster c. We now construct the
training matrices A and b which are functions defined by the points p; € S,
in cluster c¢. Let J = |S.| be the total number of points in cluster ¢ and
p;(z) and p;(y) be indexing functions which indicate the j-th point’s = and y

coordinates. Thus, the training matrix A is defined as

—2pi(z) —2pi(y) 1
—2pa(r) —2pa(y) 1

A= , (2.20)
—2p;(z) —2ps(y) 1
and the training vector b as
—pi(x) - pi(y)
R x —
b P) ps(y) ' (2.21)

This establishes the over-determined system Av(c) = b. One way to

find a solution is to minimize the following function
min||Av(c) — bl[3. (2.22)

This problem is equivalent to finding the least squares fit with linear parame-

ters v(c). The solution of this optimization problem is the pseduo-inverse

v(e) = (ATA)" AT (2.23)

19

Now, we can extract the best-fit radius feature, fo(c), to be

fole) = re(c) = V/(v(e, 1) +v(e,2) = v(c, 3)) (2.24)
where v(c, i) with i € {1,2,3} indexes the elements of v(c).

As previously mentioned, the lidar’s scanning pattern varies the point
cloud sparsity as distance and angle from the sensor changes (Figure 2.2). To
capture the sparsity changes, we extract the features z — y distance from the
sensor and x — y angle from the sensor. We use the cluster’s centroid, p(c),

and ignore its z-coordinate which projects this point to the x — y plane.

We define the indexing functions p(c, x) and p(c, y) which extracts the
x,y positions of the cluster’s centroid w.r.t the global frame. We also define
ps(x) and ps(y) to be the sensor’s z and y positions w.r.t the global frame.
Thus,

ple,z,y) = [Dle,x) — ps(a), ple,y) — ps(y) |7, (2.25)
is the vector from the sensor to the cluster’s centroid. With these

definitions, the x — y distance from the sensor, fio(c) is defined as

fro(e) = [Ip(e, z, y)ll2 (2.26)

Next, we define sg;, = [1,0,0]7 to be the unit vector describing sensor’s
forward facing direction in the local frame. Intuitively, sy, states that the
sensor is facing forward in the x direction. Let R be the rotation matrix from
the local sensor frame to the global frame, then R - sg, is the unit vector

describing the forward facing direction of the sensor in the global frame.

20

Using the dot product relationship, a-b = ||al|2 ||b]]2 cos(8) for arbitrary

vectors a and b we can extract the x — y angle from the sensor feature as

fulc) ple.2,y) - (R Sar) (2.27)

Al plez)l 1R - saill

2.5 Random Forest Classification Learning

Algorithm 2 Decision Tree Learning

1:
2:

*®

10:
11:
12:

13:

14:

15:

procedure DECISIONTREE(d;, my)

Let d; be the maximum depth, and Q = m; be the the set of x = (f,)
training example tuples with f and [being the feature vector and its label.

Propose a random set of splitting candidates ¢ = {(f;, 7;)} where i €
{1,2,..., A}, A = logy(|F|), F is the set of feature attributes, f; € F' and
7; is a threshold.

At each split, partition the set of examples into left and right subsets:

Q={z|filx) <7}
Qr=Q\Q
For the current split, compute which ¢ gives the largest gain in infor-

mation by calculating the entropy

¢* = argmax G(¢)

G(¢) = H(T) — H(T|a) where H(-) is the entropy and a is the
current attribute selected

H(T) =— ineQ P(x;)loga P(x;).

H(Tla) = —(3_,,cq P(@i)log2P(x:) + 3 °,.co, P(xi)loga P(x;))

Define P(z;) to be the number of examples in @ with labels the
same as x; over the size of ().

If G(¢) is maximized and the current split is not the maximum depth
specified, recurse left and right.

At the terminal leaf, store the size of examples for each label repre-
sented.

return a DecisionTree

Having specified the features for the cluster, a binary classifier must

21

be selected to specify whether a cluster belongs to a candidate human or not.
The algorithm proposed does not restrict which classifier to be used. Here,
the random forest classifier is utilized for a few reasons. In the seminal work
of [55] which detects and tracks humans using the using only the depth data
from the Kinect’s RGB-D sensor, multi-class classification was performed with

high accuracy and efficiency with the random forest classifier.

The random forest classifier, is an ensemble method consisting of many
decision trees. It uses bootstrapping technique both when selecting training
examples and when selecting the best-feature per branch split. The basic idea
for training a random forest follows. Create n; number of decision trees with a
maximum depth of d;. Let m be the total number of training examples, where
each example is an (f,[) tuple with f the feature vector of the example and
[the label of the example. Each decision tree is built with a random subset
of m/n; training examples with replacement. (ie: Given two decision trees,
it’s possible that they share the same training example. This bootstrapping
technique is useful for reducing the classification variance). Then, the decision
tree is trained using Algorithm 2. At every split in the tree, select the best-
split feature from a random subset of all feature attributes. Typically, the size
of the subset of feature attributes is of size logs(|F|) where F is set of feature
attributes. Note that the feature selection is bootstrapped, that is, at every
split possible, all features are still considered only that a subset is selected
when identifying the best-split feature. This training algorithm is summarized

in Algorithm 3.

The splitting technique utilized here is unlike regular decision trees. In
regular decision trees, the the best-split feature is selected from all available

feature attributes. Once an attribute is selected, it is no longer considered in

22

future splits.

Algorithm 3 Random Forest Learning
1: procedure RANDOMFOREST(ny, d;, m, F)

2: Initialize n; decision trees

3: For each decision tree, train the decision tree with maximum depth d,
on a random subset of m examples of size m/n;.

4: Return a Random Forest

Now, given a feature vector f, the random forest performs classifica-
tion as follows. Each decision tree outputs a classification with a probability
attached to it. For example, if a decision tree has to classify between 3 classes
(a, b, c), the decision tree may output (p(a) = 0.3,p(b) = 0.6, p(c) = 0.1). The
random forest, accepts a feature vector f and passes it to the n; decision trees.
It then averages the probability result of each decision tree and returns label

with the maximum probability (Algorithm 4).

The randomness both at the bootstrapped training example selection
and the bootstrapped feature selection, the bias increases slightly. However,
due to the number of trees and averaging, the variance also decreases. In the
implementation of the human detection algorithm, we use Python’s scikit-learn
random forest implementation [41], which follows the training and classifica-

tion methodology detailed here.

2.6 Results and Discussion

2.6.1 Learning Curves, Precision/Recall, and Calculation Time

To evaluate the performance of the detection algorithm, Figure 2.8
shows the learning curve of the Random Forest classifier. To construct this

graph, we hold out a random subset (typically 10 — 30%) of the training

23

Algorithm 4 Random Forest Classification
1: procedure RANDOMFORESTCLASSIFY (RF', f)
2: Let RF be a trained random forest and f be a feature vector to be
classified.
3: Get the result from each decision tree, DT in RF, by calling
DecisionTreeClassify (DT, f).

4: Average the probability result from all the decision trees in RF.

5: return the label with the maximum probability

6:

7. procedure DECISIONTREECLASSIFY (DT, f)

8: Propagate f down the decision splits ¢ in DT until a terminal leaf is
reached.

9: At the terminal leaf, the size of the number of examples representing

each label was previously stored.

10: Use the stored sizes to construct a probability vector p;(f) € R with
L being the set of all labels possible. The probability of each label is the
frequency of the examples with a specific label over all stored sizes.

11: return p;(f)

examples. The classifier is trained only on the remaining training examples.
While the training error is calculated using the training examples used to
train the classifier, the cross-validation error always test the classifier on the
entire hold-out examples. Figure 2.8 shows that while the training error
rate is always below 1%, the cross-validation plateaus at 10 — 13% after 2000
examples. This implies that more training examples will not necessarily help

with making the classifier more discriminative.

Table 2.6.1 summarizes the overall performance of the classifier. For
each label, the precision and recall is calculated. Define TP, FP, and F'N as
true positives, false positives, and false negatives respectively. Then precision

and recall are calculated as

24

Error Rate vs Number of Training Examples

60

—

50

40

30 —— Train Error

—+— CV Error

Error %

20

10

0 500 1000 1500 2000 2500 3000 3500

Number of Training Examples

Figure 2.8: Random Forest Classifier: The candidate human cluster classifica-
tion error rate vs number of training examples. The plot for the training error
and cross-validation (CV) error are shown.

TP
Precision = TP+ FP) (2.28)
TP
Recall = ——————. 2.29
T TP L FEN) (2.29)

The average labeling accuracy is calculated simply as number of correct
labels over total labels. Overall, Table 2.6.1 shows that the classifier has high
recall but low precision. This implies that humans are always seen but objects
are sometimes seen as humans. While not perfect, this performance is quite
desirable. At the very least, the point cloud to process is significantly reduced.

Moreover, the classified point cloud certainly contains human points.

25

Precision Recall

Label: Positive(Human) 86.16 £ 2.89 92.13 £1.07
Label: Negative(Non-Human) 91.58 £ 0.72 86.22 £ 3.41
Average Labeling Accuracy 88.43 +1.37

Table 2.2: Table summarizing the classifier’s precision and recall performance
for each label. The average labeling accuracy is the classifier’s performance on
a k-fold cross-validation set. The recall performance for classifying a candidate
human cluster is bolded to indicate that human clusters are extracted at a high
rate even if non-human clusters are classified as humans.

Next, we evaluate the real time capability of the algorithm. When the
algorithm was implemented on the real system, the algorithm was split be-
tween using C++ and Python. Figure 2.9 breaks down the processing time
of the classification process. Note that the most computationally expensive
operation, the FPFH feature calculation (since it uses nearest neighbors and
histogram construction as part of the calculation) , finish consistently below
0.1ms independent of the number of voxels to process. The performance bot-
tleneck comes from processing the data using Python. In particular, python’s
append operation is very slow and scales linearly with the number of voxels to
process. Moreover using python for other mundane feature calculation such as
finding the area of the bounding box, causes significant slow downs. Thus, in

the future, all processing and calculation should be done with C++.

2.6.2 Empirical Results

We recall that the detection algorithm is performed in two steps. The
first marks whether a cluster is a candidate human or not. If so, the cluster
is colored with green points. Next, the candidate human points are clustered

together and a bounding box classifier decides whether or not the new clustered

26

Prediction Time (ms)

800

700

600

500

400

300

200

100

Calculation Time vs Number of Voxels

—+ C++ FPFH calculation ime
Python append time
Python features calculation time
—+ Prediction time
—+ Total recognition time

Real time constraint

(=1 {3 [==HEHHl— >
0 1000 2000 3000 4000 5000 6000 7000

Number of Voxels

Figure 2.9: Calculation Time vs Number of Voxels

points is human or not. Here, the bounding box classifier simply asks whether
the the bounding box formed by the clustered points is big enough to be a
human. Thus, the final output of the algorithm are a set of bounding boxes

enclosing candidate human points.

Figure 2.10 shows some of the empirical capabilities of the human
detection algorithm. In (a), the basic human detection is shown. In (b), the
human detection is still possible under lower body occlusions. This is made
possible since the Euclidean space has been split into m-layers. In (c), the

human is detected at a close proximity, which addresses the problem with

27

detecting humans with the stereo camera at close ranges (Figure 2.1 and
2.4). In (d) the algorithm is able to detect humans under varying sparsity,
which is an issue with using the MSL’s lidar data (Figure 2.2). In (e), a
human in a sitting pose is detected. Finally, in (f), a human (not represented
in the training data) in a random pose is detected. Note that both (e) and (f)
are possible because the algorithm uses local normal angular differences as the
main feature, which enables similar shaped humans to be detected. Finally,
the false positivity of the candidate human classifier is evident by the small
green points in (a-f). However, the bounding box classifier acts as second filter

to identify human points correctly.

2.7 Evaluation and Future work

This chapter presented a method for detecting humans using the Multi-
sense SL’s Lidar sensor, which can be used to in areas where the stereo RGB-D
sensor is not available or reliable. The algorithm provided can detect humans
in partial occlusion, in close proximity, under varying sparsity and in random
poses. The classification performance of the algorithm has high recall but
comparatively low precision. When testing the performance of the algorithm
in practice, this quantitative evaluation holds as human points are always ex-
tracted and classified as candidate humans, but sometimes objects are also
classified as candidate humans. At the very least, the algorithm is capable of
processing the entire point cloud input and always returning a reduced number
of points with the guarantee that human points are present in the returned

point cloud.

Further work remains to ensure that the algorithm is deployable in real

systems. First, the implementation presented here has a computational time

28

bottleneck due to using Python for a subset of the routines. Porting the code to
be completely C++ will ensure that the algorithm runs real-time. Second, the
algorithm performs detection at every time step without considering temporal
data. Third, the algorithm only detect humans and does not perform persistent
tracking or skeleton matching. Finally, other human detection approaches
using Convolutional Neural Networks are recently more appealing as it is able
to automatically extract the necessary features to describe RGB-D data and

point cloud data as well as run in real-time with a GPU [16] [44].

29

Figure 2.10: Human Detection Empirical Results. Green points indicate can-
didate human points and the purple bounding box indicates the region where
a human is detected. Each sub-figure demonstrates the algorithm’s detection
cacpability. See text for details.

30

Chapter 3

Action Recognition: Gesture Recognition with
DMPs and GMMs

Human-aware robots must not only detect humans but also recognize
their actions. Action recognition can take on many forms, but in this work,
the focus will be placed on recognizing gesture-based actions only. Performing
gestures is a key component in non-verbal communication and has been part

a subject of interest in psychology [15].

In certain Human-Robot-Interaction(HRI) scenarios, recognizing hu-
man gestures is essential for efficient and safe human robot collaboration.
Recognizing gestures is a key step to understanding the intent of a collabora-
tive human, especially if there is a mapping between the provided movement
gesture and the intent. For example, gestures combined with speech have
been shown to enable joint-visual attention and spatial task completion for a
human-robot collaborative scenario [8]. In general, the gesture-to-intent map-
ping is not necessarily a constant one-to-one mapping but can also vary with

time and task dependency.

One approach towards action recognition is utilizing some form of fea-
ture extraction on some representation of the performed action and using a
classifier to distinguish between different actions. This work models static,
discrete, and rhythmic types of arm gestures as the forcing function of a Dy-

namic Movement Primitive (DMP) [23] representing the gesture, where the

31

basis weights of the forcing function were used as the gesture’s features. Using
Gaussian Mixture Models (GMMSs) as the primary classification tool, different
experiments were made to show the practicality of using DMPs for gesture

recognition.

The purpose of this work is to identify the limits, practicality and in-
tricacies of using DMPs with GMMs for movement recognition. While not
exhaustive, exploring the short list of hypotheses to be tested, which are pre-
sented below, gives sufficient insight as the results and discussions sections will

show.

The following hypotheses are addressed in this work:

1. An unsupervised learning algorithm such as an Expectation-Maximization
(E-M) algorithm on GMMs can be used to automatically segment dif-

ferent static and discrete DMP demonstrations.

2. A supervised Gaussian Mixture Model (GMM) classifier can be used to
classify different discrete DMP-based gestures.

3. A GMM classifier can distinguish between spatially different discrete
DMP-based gestures

4. The classifier will fail to distinguish between two linear motions.
5. The GMM classifier will fail on classifying rhythmic gestures.

6. Using the discrete DMP formulation to represent all the gestures, the
GMM classifier can classify static, discrete gestures but will fail to clas-

sify rhythmic gestures.

32

7. For a given set of data, there is an optimal number of weights that best

represents the gestures.

To test the hypotheses, we perform eight types of arm motion gestures.
We have one static gesture, five discrete gestures, two of which are linear, and
two rhythmic gestures. Figure 3.1 gives a visualization of the gestures. The
static gesture is simply constant in space. Two of the discrete gestures are
letters U and S, and another two are linear motions with different starting and
ending positions. The last discrete gesture is a triangle shape with very similar
starting and ending goal positions to test the stability of similar start and end-
goal states (see Section 3.2.1). The rhythmic gestures are a continuous circle

motion and continuous waving motion.

33

(a) Static (c) Triangle

(f) LL Swipe (g) Wave (h) Circle

Figure 3.1: The eight types of demonstrated gestures are shown. The sub-
figures indicate (a) a static gesture, (b)-(f) five discrete gestures, and (g) and
(h) are two rhythmic gestures. The gestures were made using a Kinect that
recognized the x-y-z position of the AR marker held by the demonstrator.
Each gesture demonstration is plotted as a single color. The static gesture,
(a), is a demonstration where the marker never moves. (b) and (d) are discrete
letter-type gestures which is used in existing DMP literature to show movement
recognition [23]. (¢) is a triangle shape gesture to test the ability of the DMP to
recognize gestures with almost equal starting and ending positions. (e) and (f)
are linear gestures with different starting and ending positions to test if DMPs
can discriminate between two spatially different discrete motions. Finally, (g)
and (h) represent a continuous circular and waving motion respectively. For
each sub-figure, each colored trajectory represents the trajectory of a single
demonstration.

34

From these gestures, it was found that hypothesis 1 is possible, but
unreliable, hypotheses 2, 3, 7 are true with high confidence, hypothesis 4 is

false with high confidence, and hypotheses 5 and 6 are true with low confidence.

This work presents the following new findings: (a) currently, the com-
munity who use movement primitives for recognition do not discuss how their
systems are tuned, but here a performance sensitivity analysis is discussed with
respect to the number of basis weights used for recognition. (b) Previous recog-
nition studies using DMPs do not try to recognize spatially linear /straight mo-
tions as the forcing function may appear similar, but the experiments presented
here give evidence that it is possible to discriminate between two straight mo-
tions. (c) By accident, it was found that the two rhythmic gestures used in
this study can be recognized using the discrete formulation of DMPs with
unexpectedly high recognition rates. Finally, (d) DMPs can also represent

static-type gestures by setting the goal position constant.

3.1 Related Works

The extensive work done in [23] is the most similar to this work. In
[23], they detail the mechanics of using DMPs. In their work, they performed
motion recognition of discrete movements. In particular, they focused on show-
ing that different alphabetical letters will have a consistent similarity matrix,
and so classification is possible. The difference between their work and this
work is that GMMs were used to classify static, discrete, and rhythmic ges-
tures using only the discere formulation of DMPs. Additionally, this work
shows that highly linear discrete motions can also be distinguished provided
that the DMP parameters are specified properly. This work also shows that

it is possible to recognize rhythmic motions despite being modeled with the

35

discrete formulation of DMPs.

In another work, the authors use a Hidden Markov Model (HMM) to
automatically segment sequences of natural activities to automatically segment
gestures and cluster them. After the primitive gestures are extracted, the
gestures are represented as symbols and, the gestures’ lexicon is extracted
using their proposed algorithm [59]. Compared to their work, this work
focuses on the gestures that are already automatically segmented and only

classification of the gestures is needed.

Using nearest neighbors and an SVM classifier were shown to be ef-
fective at recognizing military-type gesture recognition [4]. In their work,
they focused significantly on recognizing only static type and rhythmic type
gestures. To handle noise and feature extraction, their implementation throws
many data points away. Their implementation is also sensitive to temporal

and spatial type of gestures. Here, the use of DMPs capture the entire motion.

In [2], different unsupervised algorithms were tried to automatically
detect gestures and test the performance of various unsupervised clustering
methods. However, the features used in their algorithm were not specified,

and their features only looked at static and rhythmic motions.

As for human robot collaboration scenarios, [30] uses Probabilistic
Movement Primitives (ProMPs) [39] to detect human intentions for assembly
hand-over tasks and spatial mimicking of pointing tasks. Probabilistic move-
ments use spatial information as part of learning the movement primitive, and
therefore may not recognize similar looking gestures that are spatially differ-

ent. Thus, ProMPs do not have the spatial invariant property of DMPs.

36

3.2 Technical Background
3.2.1 Dynamic Movement Primitives (DMPs) for Gesture Repre-

sentation

The Dynamic Movement Primitive (DMP) framework [23] is a powerful
tool that enables dynamic representation of discrete and rhythmic movements.
Here, a biologically-inspired discrete formulation of DMPs given in [40] and
[22] is used. As noted in [22], the primary difference is that the differential
equations are based on a sequence of convergent acceleration fields instead of
force. Practically, this is similar to the original formulation, but with addi-
tional benefits such as better stability when the goal and initial positions are
similar, invariance under transformations, and better generalization to new
movement targets. From this discussion, any one-dimensional movement can
be represented as a converging spring-damper system perturbed by a nonlinear

forcing function f(s):

mu(t) = K(g — z(t)) — Dv(t) — K(g — x0)s + K f(s), (3.1)
rz(t) = v(t), (3.2)
7s(t) = —as(t), (3.3)

where z(t) and v(t) are the position and velocity of the movement; K
and D are the spring and damper terms; ¢g and x, are the goal and start
positions of the movement; 7 is the temporal scaling factor; and s is the
phase variable that exponentially decreases from 1 to 0 with « to control the

convergence time.

While representing motion as a DMP has many favourable properties

[23], this work takes advantage of its temporal and spatial invariant property.

37

In particular similar-looking motions can be demonstrated at varying durations
with varying start and end goal positions. For example motion demonstrations
can be spatially scaled and performed slowly but still have the same underlying

DMP dynamics.

7(s) a K D
Tagemo 1n(0.01) 400N/em 2VK

Table 3.1: DMP Learning Parameters

In this work, the parameters of the DMP are summarized in Table 3.2.1
. The spring term is set to be high, whose importance is described in Section
3.5, and here it was set to K = 400N/cm. The damping term is critically
damped with D = 2v'K. The temporal scaling term is set to 7 = Tgemo, Where
Tiemo 18 the length of the movement demonstration. Finally, a = In(0.01) to

ensure that at t = Tyemo, S(t) is 99% converged.

To obtain the forcing function that represents the gesture, a demon-
stration trajectory, Zgemo(t), is recorded and differentiated twice to get Ugemo(t)
and Vgemo(t), which is then substituted to the following equation:

To(t) + Du(t)

) (g + g w)s, (34)

ftarget(s> =

with s(¢) = exp(-“—t) from solving Eq. 3.3 . Note that Eq. 3.4 is
obtained by solving for f(s) from Eq. 3.1. The target function can then be
approximated by minimizing the squared error between Eq. 3.4 and the w;

weights of the following non-linear function:

f:lwﬂ/fi(s)s

f(s)=—F——
i;wi(s)s

38

where ¥;(s) = exp(—h;(s — ¢;)?) is the i-th Gaussian basis function

centered at ¢; with width h,;. [11] empirically determined that the width and

n
c;’

centers of the Gaussian basis functions can be set to ¢; = 1/n and h; =
where n is the number of basis weights used to approximate f(s). Since all
the parameters are fixed, local weighted regression of f(s) will give consistent

w; weights.

3.2.2 Gaussian Mixture Models (GMMs) for Gesture Recognition

Since DMPs are invariant to spatial and temporal motion demonstra-
tions, it is reasonable to expect that the forcing function weights of the gestures
will be clustered together in an n-dimensional plot [23]. This clustering may
be oval in shape and so a multivariate gaussian is used to represent the cluster
of the weights:

exp(~ 3w —) S w —)
CRREPREYE)

where n is the dimension of the multivariate distribution, w € R" is the
input, g, € R™ is the mean, and ¥; € R™" is the covariance. Now, a GMM
[58] is defined to be

K
p(’ll)|[l,,2) = Zﬂ-kN(wvll'k)Ek)a (37)
k=1

where p(w|p,X) is the probability of a particular feature, w, given all
the means, p, and covariances ¥ of the combined gaussians. The variable
is the mixture component representing the fraction of elements belonging to a

mixture k such that

d me=1 (3.8)
k=1

39

As an intuition, if there are k clusters with equal number of elements

in each cluster, the mixture component is 7, = 1/k, a uniform distribution.

3.3 Experiment Methodology for DMP and GMMs
3.3.1 Gesture Data Gathering

Eight gestures with 30 demonstrations each were recorded using the
ROS package ar track alvar [34] to track a single AR marker with the Microsoft
Kinect. There are five discrete gestures called ” U-shape, Letter-S, Triangle,
LL-Swipe, and UL-Swipe,” one static gesture called ” Static,” and two rhytmic
gestures called ” Wave and Circle.” The x-y plots of all the recorded gestures

are shown in Figure 3.1.

Each gesture type served a purpose to maximize scientific findings. The
U-shape, Letter-S, and Triangle discrete gestures have obvious descriptions.
The U-shape and Letter-S gestures were provided as controls for hypothesis 2
since it has been previously show that they can be recognized with DMPs [23].
However, the Triangle gesture was selected since previous gesture recognition
never dealt with motions that have almost identical start and goal positions.
The LL-Swipe and UL-Swipe gestures are two discrete, linear-type gestures
that starts from the lower-left corner and upper left corner respectively and
ends in a corresponding opposite corner. The purpose of the discrete linear
gestures is to test hypothesis 4 (that is, the linear DMP motions will be identi-
cal to each other and so any classifier will fail to distinguish the two gestures).
Finally, two rhythmic gestures were added to test the hypothesis 5 (the dis-
crete DMP formulation will fail recognizing rhythmic gesture). During the
demonstration process, both rhythmic gestures Wave and Circle had no con-

sistent starting and ending position. Sometimes it was difficult to manage the

40

frequency of the rhythmic gesture, and these inconsistencies are kept as part

of training data.

Three additional types of discrete gestures were also gathered, but with
only 5 demonstrations each. In particular, a spatially smaller versions of the
discrete gestures U-shape, Triangle, and Letter-S were also provided as test

data to test hypothesis 3.

These spatially different demonstrations can be viewed at Figure 3.3.
Notice that the spatially different demonstrations are only represented in the
training data from Figure 3.1 in terms of the overall shape of the gesture.

This is important for testing hypothesis 3.

3.3.2 Gesture Feature Representation

After all the demonstrations were made, using the DMP formulation
with the constants listed in Table 3.2.1, the data was pre-processed to calculate
the 3-dimensional x,y,z forcing function of each gesture. We define n; to be
the number of basis weights on a particular dimension. Then, the n;, basis
weights of each forcing function was extracted using local weighted regression,
and the values of the weights were stored as vectors of w,, w,, w,, where z,
y, and z indicates the particular Cartesian axis the weight represents. Finally,

each gesture is represented as
T, T ,TT
’ll)g = [wx7wy7wz]) (39)

where w, is the concatenated vector of the forcing function’s basis

weights. Thus each gesture, wy, has n = 3n; dimension features.

In order to visualize the relationship of the basis weights between any

two gestures, the similarity function

41

Static : :
<409

U shape 5o : I 1| | Jos
| o |
Triangle ' % 1°
rEIE
- : = f 0.6
Letter S esiecd '
i | 05
LL Swipe i
150 : -l o4
UL Swipe e | e

Wave 200

Circle

Static

U shape
Triangle
Letter S
LL Swipe
UL Swipe
Circle

<)
>
<
=

Figure 3.2: The similarity matrix of all the gestures is visualized as a colormap.
Each cell represents the similarity between any two gestures where colors closer
to 1 indicates high similarity and those below 0 have minimum similarity.

T
wgl w92

similarity = (3.10)

[[wg,[| - [lwg,|

previously proposed by [23] is used. Note that Eq. 3.10 is 1 when two
gestures are 100% similar and is 0 or below when there is minimum similarity.
Figure 3.2 is a color map visualization of the similarity matrix between any
two gestures, where each cell uses Eq. 3.10 with n, = 5 basis weights per

dimension.

42

3.3.3 GMM Supervised Classification

To perform supervised classification, a finite K number of gaussian
mixtures are trained. Each mixture k € {1, 2, ..., K'}, representing one gesture,
makes K total number of gestures to consider. For each w, gesture, D = 20
random demonstrations were used as positive training examples. Then, for
each k gaussian mixture, training is done by stacking the mean and covariance

of the corresponding training examples:
pr = mean([wy,, ..., wy,...,w,,|") (3.11)
T = Cov([wy,, ..., wgy...,wy, ") (3.12)

Now, given an unknown gesture, w,, the gesture’s membership weight
probability, rg, is calculated for each k cluster using Baye’s Rule. More specif-
ically, r; is the probability that the demonstration belongs to mixture k given

a gesture demonstration, wy:

N Y
= plkfy) = Y ekt (3.13)
Py WEN(WQ,#E, 2E>
k=1

where p(k|wg) represents the cluster membership probability given a
wy demonstration, and m, is the k-th mixture weight representing that a ran-
domly selected demonstration is part of the k-th mixture component. Note
that Zszl m, = 1. Here, m, = % = % since each mixture component was
trained with D demonstrations and there are D- K total number of demonstra-

tions. To identify the gesture, the cluster k£ that maximizes 7y is the gesture’s

classification. This is represented as:

kpest = argmax p(kjw,), (3.14)
k

43

3.3.4 GMM Unsupervised Classification

For unsupervised classification, Gaussian Mixture Regression using an
Expectation-Maximization [58] algorithm is performed on the static and dis-
crete gestures data set and only the number of mixtures, K, is provided as in-
put. If the mixture regression is 100% successful, it is expected that each mix-
ture component 75, will reflect the the true mixture. Note that it is known there
are mpe, = 30 demonstrations for each gesture, and there are m = mye, - K
total demonstrations. Thus, it is enough to see if each cluster has identified
exactly 30 components. Suppose a cluster has specified m (k) gestures to be-
long to cluster k. If my(k) <= my., then it is assumed that cluster k has
found the correct m, gestures. However, if my(k) > my., then cluster & has
Mumistakes(K) = Mg(k) — mye, mistakes since perfect clustering should contain
Myper gestures for each cluster. Using this intuition, the following performance

index is specified:

K
(m - mper - Z mmistakes(k>>
k=1
score = , (3.15)
(m — Myper)

Note that a perfect score of 1 means that each gaussian mixture has
exactly 30 gestures and a 0 means that all gestures are classified as a single
cluster. It is possible that a score of 1 can be obtained while the clustered
gestures are a mix of other gestures. However, in general this is unlikely to
happen as different gestures will have different target functions and therefore

have different basis weights.

44

Weights per Dimension Discrete Gestures Weights per Dimension Discrete Gestures

1 (2.0 +6.3)% 25 (61.8 +13.6)%
3 (14.3 +13.8)% 30 (69.0 + 12.5)%
5 (24.1 + 15.9)% 35 (58.2 4 10.6)%
10 (46.3 +10.2)% 40 (55.9 + 7.7)%
15 (47.8 +10.5)% 50 (56.4 +9.2)%

Table 3.2: Unsupervised GMM

3.4 Experiment and Results
3.4.1 Unsupervised GMM Performance

The first experiment was to see how well unsupervised classification
works on the entire static and discrete gestures data set. The number of basis
weights n, per dimension was changed as experiments consistently show that
performance is sensitive to the number of weights used to represent the gesture.
Matlab has a built in gaussian mixture model fitting function, called fitgmdist,
that utilizes the E-M algorithm. Using the criteria described in Eq. 3.15, the
performance of the unsupervised clustering was recorded in Table 3.4.1, where
each cell in the table is the mean plus or minus the standard deviation of the

score after 10 random trials.

The results indicate that 30 basis weights per dimension has the best
unsupervised GMM performance with 69% 4 12.5 accuracy. However, as more
basis weights are added to the dimension, the performance stagnates. Finally,
the standard deviation for all the weights tested have high variance indicating
unreliability due to its inconsistent performance. Thus, hypothesis 1 has po-
tential but it is not reliable. The unsupervised GMM’s performance sensitivity

to ny also confirms hypothesis 7.

45

Letter S U Shape Triangle

TN
14 QHJ-\\L* 'J Z /Ij\&’

Figure 3.3: Spatially Different Demonstrations

Weights per Dimension Discrete Spatial Rhythmic Discrete and Rhythmic
1 (78.7+£0.0N% (54.7+4.2)% (31.5+8.5)% (62.8+1.2)%
3 (98.3+£0.6)% (73.7£7.1)% (93.2+4.0)% (96.3+1.71%
5 (98.6 £1.2)% (88.0£5.3)% (97.0+2.2)% (951 +7.1)%
10 (89.3+£1.5)% (43.3+£5.71% (82.7+2.9)% (86.1 +1.3)%
15 (71.6 £3.1)% (11.3+£3.2)% (58.8+11)% (62.7+2.8)%
25 (78.7+£25)% (33.3+£6.3)% (76.3+4.0)% (77.0+2.4)%

Table 3.3: Supervised GMM on all data sets

3.4.2 Supervised GMM Performance

The next experiment was to test hypotheses (2-6) and further con-
firm hypothesis 7. Tables 3.4.2 and 3.4.2 summarizes the results. For all
scenarios, each GMM was trained using 20 random gestures from a corre-
sponding gesture type. Except for the ”Spatial” columns, Table 3.4.2 tests
the performance against the entire K. - 30 gesture data set where Ko €

{Kdiscretey Krhythmicy ’ Kspatialdiscretea Kall} is the number of gestures being con-

Weights per Dimension Discrete Spatial Rhythmic Discrete and Rhythmic
1 (772£370% (51.3+£3.2)% (36.0+12.4)% (60.9 £2.5)%
3 973+£14H)% (66.7+7.1)% (81.1+£9.1)% (88.6 £3.6)%
5 (96.2£25)% (65.3+82)% (88.5+8.8)% (92.5 £2.6)%
10 (86.5£1.1)% (40.7+£4.9)% (68.0£8.5)% (73.9+£8.6)%
15 (572+£43)% (10.0+£35)% (61.2+7.5)% (45.5+£6.9)%
25 (50.17+£92)% (26.0£4.9% (77.1+4.0)% (36.5+5.71)%

Table 3.4: Supervised GMM on Cross Validation data set

46

sidered.

In this work, there are K, pyinmic = 2 rhythmic gestures types, Kgiserete =
5 discrete and static gesture types, Kgpatialdiscrete = o spatially different dis-

crete gestures and Ky = Kynythmic + Kdiserete discrete and rhythmic gesture
types.

Recall that for each gesture, D = 20 training data were used to train
each mixture model. To ensure that the performance is not skewed by the
trained data, Table 3.4.2 tests the performance only on the remaining unseen

Kiest - 10 gesture data set.

In the "Discrete” column, the supervised GMM was trained and tested
only on the Kyiserete Static and discrete gestures. The ’Spatial” column was
also trained using the Ky;serere - 30 static and discrete gestures but was tested
using the Kpatiaidiscrete spatially different discrete gesture set. The "Rhythmic”
column was trained and compared only on the K, pyinmic Thyhtmic gestures.
Finally, the *Discrete and Rhythmic” column was trained and tested on the K
static, discrete, and rhythmic gestures without the spatially different gestures.
For all types of tests, the number of basis weights per dimension were also

changed to test hypothesis 7.

Tables 3.4.2 and 3.4.2 show that in general, there is high accuracy in
the recognition performance of static and discrete gestures, which confirms
hypothesis 2 and disproves hypothesis 4. In general, recognizing spatially
similar static and discrete gestures performs very well, and the accuracy drops
below 80% only when more basis weights per dimension are used due to over

fitting.

The Spatial column confirms hypothesis 3. Concretely, spatially differ-

ent discrete gestures can recognized with basis weights of 3 and 5 per dimen-

47

sion. As a reminder, the training set for the Spatial has never seen spatially
smaller demonstrations, which makes this result more meaningful and signifi-

cant.

What is surprising is that the Rhythmic column shows that even with
using the discrete formulation of DMPs to represent rhythmic gestures, the
supervised GMM can distinguish between the rhythmic ” Wave” and ” Circle”
gestures. It was expected that the rhythmic gestures would appear as noise and
the GMM will fail to recognize the rhythmic gestures completely. However, as
the result shows, the accuracy is better than guessing between two rhythmic

gestures at random.

To test if the GMM classifier can discriminate between static, discrete,
and rhythmic gestures, the Discrete and Rhythmic columns shows that the
presence of rhythmic gestures did not affect recognition performance as it
reflects similar values to the Discrete column. From this study, it is surprising
that hypotheses 5 and 6 are both false as rhythmic gestures were classified

successfully.

For all of the gesture recognition tests, it is evident that the number of
weights used to represent the gesture affected the performance of the classifier,
which confirms hypothesis 7 convincingly. Using too many basis weights
causes over-fitting with high variance error, and not using enough basis weights
(eg: when basis weights per dimension = 1) causes under-fitting with higher

bias errors.

48

oal

g
Actual /
Progressiory

Difference creates a
non-zero forcing function

goal

Expected Progression of
DMP Attractor

start start

Figure 3.4: Linear Discrete Motion Gestures can be differentiated when K
is high such that the DMP’s attractor dynamics move faster than the actual
demonstration making the forcing function non-zero.

3.5 Discussion

The results with regards to the ability of a supervised GMM to classify
rhythmic gesture is strange and very unexpected. There are many possible
explanations and some of are discussed here. It’s possible that since there are
only 2 rhythmic gestures, classifying between the two is easy as the GMM
always return the best guess. The weights of each rhythmic gesture could also
be sufficiently different in terms of forcing function noise, so fitting a GMM on
two noise distributions was sufficient to discriminate between the two rhythmic

gestures.

The hope was to show that rhythmic gestures will completely fail and
using the rhythmic formulation of DMPs will be necessary. However, to even
use the rhythmic DMP formulation for proper comparison, more rhythmic
gesture types need to be recorded. Still, with the gestures used in this study,
the static, discrete, and rhythmic gestures were classified successfully. Thus,
until further study is conducted, hypotheses 5 and 6 are false but with low

confidence.

The second surprising finding is that while the static and discrete ges-

49

f91 (S)

f92 (S)T

egoal

Figure 3.5: Recognizing static gestures is possible by setting the goal position
away from the user and using features such as arm angle relative to the body
of the user.

tures were classified successfully, confirming hypotheses 2 and 3, it did so
while also classifying two different types of discrete linear gestures. The tra-
ditional thinking is that discrete linear gestures will have a 0 forcing function.
This is why in [23] the motion gestures performed were all letters as trying to
different linear motions could be problematic. However, here the results show
that recognizing between two linear discrete gestures is possible. An intuitive
explanation is provided in Figure 3.4. That is, if K of the DMP is set to be
very high such that the attractor dynamics moves faster than the demonstra-
tion, the forcing function is non-zero and any type of linear motion in x-y-z

can be classified.

In fact, this finding is predicted much earlier by looking at the similarity
matrix between the two linear gestures in Figure 3.2. It is evident that they

have no similarity at all.

This finding has an additional consequence. That is, it is also possible

50

to detect richer types of static gestures. For example, suppose that recognizing
between two types of static arm gestures is necessary. The coordinates can be
set to the angle formed by the upper arm to the shoulder and the angle formed
by the elbow to the upper arm as shown in [4]. Then, for all static gestures,
the goal position can be set away from the user as indicated in Figure 3.5.
However, the additional complication is that the goal position is now different.
Thus, to make this work with the framework, a higher level classifier is needed

to distinguish between static and discrete gestures.

In this work the recognition of static, discrete, and rhythmic gestures
were performed by using the discrete formulation of DMPs. In particular,
the forcing function of the DMP was used to represent the gesture in which
the weights obtained from local-weighted regression of equally-spaced gaussian

functions were the features.

Using only GMMs for classification, it was found that unsupervised
clustering can potentially be used to automatically learn different gesture
types. However the high variability of the unsupervised GMM in the results

shows that it will be unreliable.

On the other hand, using supervised GMM clustering provided an easy
way to train a classifier while performing reliable recognition at a high accu-
racy especially when the number of basis weights are tuned. In particular,
the classifier was able to distinguish between discrete and static gestures. Ad-
ditionally, the classifier was also able to recognize different types of discrete
linear motion under the DMP framework. This is an unexpected result as the

DMPs of the two linear motions were expected to be different.

Finally, another unexpected result shows that the GMM can also clas-

sify rhythmic gestures even though the gestures were represented as discrete

51

motions. However, there are not enough rhythmic gestures in this data set
to truly claim that the discrete DMP formulation can classify all types of

rhythmic gestures.

Overall, this work demonstrates that using the new discrete formula-
tion of DMPs is an effective method for recognizing spatially and temporally
invariant movement gestures. Once the gestures are recognized, a mapping

between the gesture to intention may be formulated.

3.6 Future Work

In this work, only one static gesture was tested. Still, experiments
with the discrete linear gestures resulted into a finding that DMPs can also
represent richer static gesture types, but experimental validation remains. As
a potential approach, identifying static gestures can be recognized with the
current framework. Since it is static, the forcing function will be close to 0
as the goal and start positions are very close. Then after recognizing that the
gesture is a static type, another GMM that classifies different type of static

gestures can be used with the goal position explicitly specified.

Another future work is on the topic of rhythmic gestures. It is still
not convincing that the discrete formulation of DMPs is enough to classify
rhythmic gestures. In the future, two better ways of recognizing rhythmic
gestures exist. The first is to use the rhythmic formulation for DMPs and use
the learned basis weights for classification. Second, performing alignment on
the data and approximating one period of the demonstration using a fourier

transform can give consistent basis function weights.

Another problem with the current classification scheme is that it can-

52

not handle incorrect gestures as the current framework only assumes that all
gesture demonstrations is represented by the GMM. Thus the classifier always
returns the best maximum guess for any given gesture. This can be fixed by

doing some threshold study after the best cluster membership is selected.

Finally, while using DMPs is invariant to different temporal demon-
strations of similar gestures, the classifier will not be able to identify when the
desired gesture has begun or ended. Thus, this will fail when a time series of
data is given without some heuristics given to the system. An example heuris-
tic for example could be detecting minimum velocity onset for both start and
ending conditions [23]. However, this has the disadvantage that no gesture is
ever given when the velocity is less than the specified threshold and gestures
are assumed to be always given when the velocity is greater than the thresh-
old. Perhaps a better approach to handle continuous time series is to use a

change-point-detection algorithm [35].

53

Chapter 4

Action Generation: Decision Making with
Model Predictive Control

A robot that can detect and track humans as well as understand human
actions may be human-aware in the sense that it can identify where humans
are and make statements about their actions. However, human detection and
action recognition on their own are not necessarily useful. To be useful, a
robot must generate actions and behaviors on its environment that are human-
aware. Human-aware actions are important when the robot is under safety
constraints. Furthermore, the robot’s performance is directly tied to its actions

and behavior.

Since generating human-aware robot behaviors is important, how can
a robot make such decisions that, for example, balance between safety and
performance requirements? This decision making process is a fundamental
problem in robotics [53]. Here we will discuss one approach towards human-
aware action generation. The approach described here breaks the problem of

generating human-aware actions into two components.

First, we model Human-Robot-Interaction (HRI) scenarios as linear
dynamical systems which will describe the dynamic interplay between robot
actions, human actions, and the environment. Second, we use Model Predic-
tive Control (MPC) with mixed integer constraints to generate human-aware

control policies over the dynamical system representation. The approach is

54

motivated by presenting an assistive robot that aims to maximize productiv-
ity while minimizing the human’s workload, and the simulation results show
that the robot generates useful behaviors as it finds control policies to minimize

the specified cost function.

This work is inspired from studying Social Cognitive Theory (SCT)
[3] which claims that human behavior is based on the dynamic interplay of
personal, environmental, and behavioral influences. It was recently used to
model the walking exercise behavior of humans as a linear dynamical sys-
tem [31]. Among many other states that interplay with each other, their
model included a measure of self-efficacy which increases as a result of ex-
ercise, thereby increasing the exercising behavior further. Subsequently, the
authors also showed that a policy for behavior intervention can be generated

using Model Predictive Control [32].

In the same way, we ask similar questions: Can HRI scenarios be mod-
eled as dynamical systems? If so, can the tools of control theory generate
useful policies? Previous work on modeling HRI scenarios and generating ap-
propriate behaviors include creating belief models of the robot and human
[5, 6], probabilistic anticipatory action selection [21], collaborative agent plan-
ning [54], motion planning for navigation to maximize human comfort [56],
fluent-turn taking using timed petri-nets [10], utilizing POMDPs for modeling
cognition of an autonomous service robot [52], and many others. For all sce-
narios the robot’s cognitive model of the world and the human was necessary

to generate appropriate actions to address the task at hand.

Here, we frame the cognitive modeling problem based on intuitive me-
chanical analogies. This technique leverages the power of feedback optimal

control to generate useful interactive behaviors. In particular, this work ex-

55

plores how Model Predictive Control (MPC) with mixed-integer constraints
can be used to solve HRI scenarios modeled with linear dynamics. In do-
ing so, this methodology is an approach towards creating cognitive feedback
controllers. The modeling and policy generation technique here is high level.
Therefore, it is assumed that the low level control of the robot, such as its joint
controllers or torque controllers [37], is given. Other low-level modules needed
to accomplish the task such as perception modules to process the environment,

and motion primitives to accomplish sub-tasks are also assumed to be given.

As the name suggests, MPC contains a model of the system and can
simulate how its control policies can affect the model in the future [46]. Since
MPC can “see” a finite horizon into the future using its model of the world,
it can identify locally what the best control policies are to minimize some

objective function.

To describe the usefulness of MPC for extracting useful control policies
in HRI, we consider an assistive robot that helps a human accomplish his work
by bringing the human the necessary deliverables from an inventory station
(Fig. 4.1). The assistive robot must (la) ensure it has enough battery to
remain operational, (1b) continue being productive by delivering work to the

human, and (1c) ensure that the human is never overworked.

Note that the HRI scenario contain a number of if-then statements
which activate or deactivate boolean variables to specify if certain control
inputs are available for the robot. For instance, the robot can only move if it
has enough battery power or it can only pick up deliverables when it is near the
inventory station or the human’s workstation. Such if-then constraints must
be incorporated in the optimization routine mathematically via reformulating

the statements as inequality constraints. To incorporate these constraints, we

56

Inventory Human Work
Station Area Station Area

lws @
W o we

A
Y

\
Y

Figure 4.1: Assistive HRI Scenario: An assistive robot must bring deliverables
from the inventory station (I.S.) to the human’s work station area (W.S.). A
mindful robot will ensure that the human is never overworked.

use Mixed Integer MPC, which is an optimization routine that minimizes some
objective function subject to both real-valued and integer constraints. This

optimization framework is called Mixed-Integer Programming (MIP) [57].

Interestingly, while our objective function only contains battery levels,
productivity, and human workload the robot is able to find the correct control

policies to satisfy the end objective.

To demonstrate the approach, simulations were performed using a Python
interface called CVXPY [12], a convex optimization library with mixed-integer
programming capability with an academic license of the Gurobi [17] solver.

The code is available at https://github.com/hrianon/mpc_hri.

o7

https://github.com/hrianon/mpc_hri

4.1 Related Works

MIP was previously used for planning spacecraft trajectories [47] and
using integer constraints to model obstacle avoidance. MIP has also been used
for generating optimal paths for manipulators [13]. Martin et al. [31] used a
fluid-tank analogy and a corresponding linear dynamic model to characterize
human mental states that influence daily walking behavior. With a simplified
version of the model, they controlled the system using Hybrid Model Predictive

Control with integer and boolean constrains to achieve a desired goal [32].

In addition to previously mentioned works on modeling HRI and gen-
erating behaviors [5, 6, 21, 54, 56, 10, 52|, kinodynamic planning with RRT
can also be used to solve search problems with dynamic constraints [28]. How-
ever, as with most planning algorithms, this requires specifying a desired goal
state that may not be reachable. On the other hand, an MPC formulation
performs an optimization routine to find the best control policy to minimize

an objective function over the given time horizon.

4.2 HRI as Linear Dynamical Systems

To take advantage of the techniques found in the controls community,

we model HRI scenarios as linear dynamical systems which have the form

d
d—f:ﬁc:Ax—l—Bu, (4.1)

where A € A™" and B € R™™describe the state changes due to the n world
states, x € R™, and m control inputs, u € R™ respectively. In this work, we
discretize the dynamics by At. Note that by Euler integration, an estimate of

the state vector after At can be obtained using Equation 4.1 as

o(k+1) = i (k) At + z(k), (4.2)

58

where (k) denote the state at time step k. Next, by expanding @(k), the state

evolution can be described by known variables

x(k+1) = (Az(k) + Bu(k))At + x(k), (4.3)
= (AAt + Iz(k) + Bu(k)At. (4.4)

where I € R™*" is identity and u(k) denote the input at time step k.

4.3 Policy Generation via Model Predictive Control

Given some desired robot behavior y"¢/ € R™ with n, behaviors, e.g.
we want the robot to be 100% productive and minimize the human workload
to 25%, a standard quadratic cost function is used to quantify how well the
decision vectors, g, ug, ..., u,—1 , bring a state output y to y,.r over a finite

horizon p time steps. The cost function is then defined as
p
T=> (k+i)—y)TQyy(k +i) —y™), (4.5)
i=1

where @, € R"*" is a matrix describing the quadratic weights of the desired

behavior.

The mixed-integer MPC problem can now be formulated as follows. In
general, the MPC problem attempts to minimize a cost function J subject to

dynamic constraints and inequality constraints:

59

argmin J (4.6)
{[u(k+)]225 [(k+0))P 25

s.t.

z(k+1) = (AAt + I)x(k) + Bu(k)At,
y(k+1i) = Cx(k + 1),

E,0(k) < Ey + Esz(k) + Equ(k) + Esz(k),

where 0(k) € {0, 1}t are nyy, boolean variables used in the prob-
compactly specify the constraints of the problem. However, to be very clear
about how constraints are specified in the MPC problem, we will describe each

inequality constraint used for the scenario.

4.4 Assistant Robot Scenario as a Linear Dynamical
System

4.4.1 World State and Actions

We use a fluid-flow analogy to describe the linear dynamics of the sce-
nario (Fig. 4.2) which enables easy visualization of how the different states of
the world are affected by the robot’s actions and other world states. We model

the state of the world as a vector 2z € R?,
TR = [Rxa Rb7 Rd7 Rp7 HI]T7 (47)

where R, Ry, Rq, R,, and H;, are the robot’s x-coordinate position, battery
levels, amount of deliverables being carried, self-perceived productivity, and
perceived human workload respectively. In general, the system has control

inputs u € R® defined as

60

T
URr = [umov67 uchargm uipw Uido, uwpu; uwdo] . (48)

More specifically, Umove lets the robot move left and right, ueparge spec-
ifies how the robot’s batteries change, w;,, and w,,,, denote the act of picking
up deliverables from the inventory station and the human’s work station re-
spectively, and u;4, and w4, denote the act of dropping off deliverables to the

inventory station and the human’s work station respectively.

4.4.2 State Transition Matrix

Referring to Fig. (4.2) , at every time step, the robot’s battery decreases
by —1/7, and is further decreased as it moves (|tumope| > 0). The battery can

be charged by tcharge When the robot is near the inventory station.

The robot feels productive whenever it has high battery levels, 85 /7,
and whenever it drops off deliverables, w4, to the human, but feels less pro-
ductive whenever it takes work, ., away from the human and whenever the
robot perceive high levels of human workload, —f;/7,. As with battery levels,

the robot’s perception of its own productivity decreases by —1/7, with time.

The robot’s capacity to carry deliverables is modeled by the state R,.
Whenever the robot performs a deliverable pick up action (p, and),
this state increases. Similarly, when the robot performs a deliverable drop off

action (u;g, and u,4,) this state decreases.

Finally, the robot has a model of the human’s workload, H;. Namely,
deliverables dropped off to the human’s work station is analogous to increas-

ing the human workload. The human, working at his own pace, reduces his

workload by —1/7;.

61

Inventory Station

Charger Uipu(t) uido(t)
5charge (t) Vi
i
e Productivity Deliverables %_)
Belief Yw
Battery Level Yw
| | N | 4

—]./Tb l uwdo(t) V 7[
ﬂb/’rp B Human

Productivit <
5move (t) y D Bl Work Load

_1/Tll M

Ypenalty

V —1/7 T

! e

Figure 4.2: Fluid Analogy for the Assistive Scenario.

We note that Fig. (4.2) contains gamma, -y, variables. These variables

are constants to describe how much the state changes, Z—f, as a function of
time due to the input u. These variables are useful since the units for e
is different from R;, but battery levels are affected by moving nonetheless.
They also capture how the robot’s deliverables Ry gets converted to human
workload, H;, and robot productivity R, through an action w,q,. However

while v might be different, the exchange between two states uses the same

62

constant. Thus, if a robot drops off deliverables to the human’s work station,
which increases H; and R, and decreases R, the robot can pick up the same
amount of deliverables, decreasing H; and R, and increasing R, back to its
original values. This abstraction enables the model to evolve later if more

states are added to model human workload or robot productivity.

Thus, the world state evolves with the following A and B matrices

0 0 0 0 0
0 —1/7n 0 0 0
A=10 0 0 0 0 , (4.9)
0 B/mp —Bu/mp —1/7 0
0 0 0 0 —1/7

Ym 0 0 0 0 0
0O % 0 0 0 0

B=10 0 % =% =% —Yw |, (4.10)
0 00 0 =% %
0 0 0 0 —v

where the v variables are constants that describe how the state changes due

to the input w.

The current state transition matrix that describes the HRI scenario
does not incorporate certain constraints of the problem. For example, the
robot may only pick up deliverables whenever it is near the inventory station
or when it is near the human work station. The next section describes how such

constraints are automatically incorporated in the MPC problem statement.

63

4.5 World Constraints formulated as Mixed-Integer Con-
straints for Model Predictive Control

To maximize battery and productivity, and minimize human workload,
we define the observation vector y € R? at time step k + 1 to be y(k + 1) =
Cx(k+1)

where C' is
01000
C=]100010]/], (4.11)
0 00O0°1

We set y"¢/ = [1,1,0.25]7 which tells the robot to aim for 100% battery
level, 100% productivity, and a human workload of 25%. The cost function
weights are set to be @, = diag{w,, w,, w;} with w,, w,, and w; denote the

weights for the battery, robot productivity, and human workload respectively.

4.5.1 Scenario Constraints

The HRI scenario presented contains a number of constraints and the
optimization routine must be restricted to a set of allowable actions depending

on the world states. The robot has the following constraints:

1. It can move only if it has enough battery.

2. Its batteries are charged only if it is near the inventory station.

3. It can pick up and drop off deliverables only if it is near either station.
4. Tt cannot pick up deliverables beyond its capacity.

5. It cannot drop off deliverables if it has no deliverables.

6. It loses more battery as it moves.

64

Such if-then constraints must be converted to inequality constraints
in order to frame the problem as a mixed-integer MPC problem. To specify
constraint 1, we introduce a boolean variable, d,,; that indicates if the robot
has enough battery to move. Namely, it is only true if and only if the robot’s

battery is above a threshold, b esh-
5bat =1 Rb(k) > bthresh (412)

The following inequalities express this if-then constraint from Eq. 4.12 as a

mixed-integer constraint.
Rb(k) - bthresh S 5bat(k) (Rznam - R?m% (413)

Ry(k) = bunres > (1 — Gpar (k) (R™ — R, (4.14)

where R"* and R{™" are upper and lower bounds of the battery level. Next,

we specify that the robot can only move if it has enough battery

Unove (k) > Opar (K)uprir,, (4.15)
umove(k) < 5bat(k)uzg$e7 (416)
where u™” and u™% specify the maximum movement effort the robot can

use at every time step.

Next, to specify constraints 2, and 3, we introduce two booleans, d;,
and d,,s to indicate whether the robot is at the inventory station or the human

work station. The desired location constraint is described as

Suws =1 Ry > Ly, (4.18)

where [;5 specifies the location of the inventory station and [, specifies the

location of the human’s work station. Similar to the battery level constraint,

65

the location constraints can be expressed as a mixed-integer constraint using

the following inequality constraints.

(Re(k) = lis) < (1 = 0is(K)) R, (4.19)
(Ra(k) = lis) > 0is(k) (= RY), (4.20)
(Ry(k) — Liyps) < dus(k) R, (4.21)
(Ro (k) = lws) 2 (1 = 0us(k))(—R). (4.22)

Having location constraints, we can now constrain the robot to only
pick up and drop off deliverables whenever it is near the inventory station or

the human work station:

0 < Uipu (k) < bis, (4.23)
0 < Upu (k) < G, (4.24)
0 < wiao(k) < Gis, (4.25)
0 < Undo(k) < Ous, (4.26)

Next, to specify capacity constraints 4 and 5, we simply state that the
robot cannot take actions that will cause it to exceed its carrying capacity of

100% or to drop off deliverables when it doesn’t have any.

0< Ry <10 (4.27)

To specify constraint 6, we introduce two boolean variables, d,,, and
Omn which are true if the robot exerts a positive effort and negative effort
respectively. This is necessary because taking absolute values does not satisfy

the Disciplined Convex Programming (DCP) [12] ruleset.

Smp = 1 € Umove > 0,0 = 1 S Upope < 0. (4.28)

66

These are again specified as inequality constraints

(1 = Smp (E)UT™ < Upoe (k) < S (k) U (4.29)

move move?

S (B)UT™ - <Upoe (k) < (1 = Gy (k)) Ul (4.30)

move move”

Finally, to encode the overall change in battery due to robot movement and

charging, we specify

ucharge = 5chm"ge - (6move)7movepenalty (431)

where dcparge = 0is, a0d dmove = (Omp + Omn). Additionally, to be consistent
with the constants’ effects as specified in Fig. 4.2 and Eq. 4.10, Yimovepenaity =
Ypenaity/Ve- That is, the battery is charged whenever it is near the inventory
station (constraint 2) and the battery is decreased whenever the robot moves

(constraint 6).

4.6 Results

We provide two test cases to the robot. For both cases, the optimization
routine is set to maximize robot battery and productivity, and target a 25%
human workload (y"¢/ = [1;1;0.25]). The following weights w, = 1, w, = 1,
and w; = 10 were used. That is, the robot cares more about ensuring the
human is never overworked over its own battery and productivity levels. The

simulation parameters are available in the linked code repository.

In the first case (Fig. 4.3a), the robot starts between the inventory sta-
tion and the human work station and the human starts out with no workload.
The robot first drops off its deliverables to the human and proceeds to charge
its batteries. Then it moves back and forth to bring just enough deliverables

to ensure that the human has a manageable workload (always at 25%).

67

Ry
Ocharge

Upy
Udo

battery workload workload existential battery workload
management tracking relief crisis management tracking
=) h\ [\ E 3
\ / / = o \ &=
\ / _\\/ /_\Iu ¢ \ M \

10
o0a
05
04
02

“\T

'EEL\M/JMA mﬁ ml SMlVA

1
08

Hy o
1 oa
02

WAl

t(minutes)

(a) 0% human workload at t= 0

t(minutes)

(b) 30% Robot battery & 90% human workload at t= 0

Figure 4.3: Assistant Robot Simulation Results: For both (a) and (b), the
robot worries more about the human’s workload more than its own battery
levels and productivity. Note that w,, = wipy + Uypy a0d Uge = Uido + Uydo tO
indicate the total deliverable pick up and drop off actions respectively. Also,
the W.S. and LS. are located at l,s = 9 and [;; = 1 respectively. In (a),
the robot initially drops off the deliverables it is carrying to give the human
work and proceeds to charge its own batteries while slowly dropping off more
work to the human. In (b), the robot notices that the human is overworked
and proceeds to remove work from the human at the cost of the robot’s own
productivity until the human’s workload becomes manageable. The robot also
charges its low battery levels to remain operational. Then, the robot proceeds
to slowly drop off work to the human at a manageable rate, which also makes
the robot’s perception of its own productivity to rise again.

In the second case (Fig. 4.3b), all the parameters and initial conditions
are the same except that the human starts out with 90% workload and the
robot starts out with 30% battery. Despite having low battery, the robot
rushes to the human and removes the workload from the human. This causes
the robot’s productivity to become negative as per the definition of robot pro-
ductivity. The robot understands that the human being overworked is the more

important issue. When the human’s workload is at 40%, the robot charges its

battery to remain operational. Then, the robot returns to a behavior which

68

ensures the human has a manageable workload

4.7 Discussion

Potential future work includes testing the assistive robot MPC model
as well as further improvements on modeling human-robot connection dynam-
ics. By taking inspiration from SCT models found in the exercise behavior
intervention community, this work explored the possibility of treating HRI as
controllable dynamical systems in which state-of-the-art techniques from the

controls community can be leveraged.

69

Chapter 5

Summary and Future Outlook

This thesis presented methodologies for detecting humans, recognizing
arm motion gestures, and generating human-aware control policies as an at-
tempt to address the necessary capabilities of a human-aware robot. Chapter
2 presented an algorithm for detecting humans given a 3D point cloud data.
Chapter 3 tested many hypotheses when arm motion gestures are represented
as Dynamic Movement Primitives and classified with Gaussian Mixture Mod-
els. Finally, Chapter 4 presented a new novel method for representing HRI
scenarios as a dynamical system and generate human-aware control policies

using Model Predictive Control with mixed-integer constraints.

Plenty of work remains for the future as this thesis only addressed a
subset of the technical challenges needed to be solved to have a human-aware

robot.

Half of the problem with creating a truly autonomous human-aware
robot comes from creating deployable algorithms that can extract useful in-
formation from sensor data. For example, the problem of Human detection,
tracking, and pose estimation as well as human action and intent recognition
have been framed as supervised machine learning problems. Recent advances
in the field of Convolutional Neural Networks (CNNs) are defeating well en-

gineered supervised classification problems. At least in the very near future,

70

CNNs have the most promise in creating general detection, tracking, and recog-

nition modules for human-aware robots.

The other half of the problem comes from how to generate safe, high-
performance, human-aware robot policies. Here, using CNNs has not been
shown to be effective or desirable as it is difficult to state or reason about
performance guarantees due to its black box nature. At the very least, the
approach of modeling HRI as dynamical systems and using MPC to generate
control policies enables the engineer to design and reason about the robot’s
actions. While not perfect, having a clear understanding of the robot’s actions
make it deployable. Thus, designing a framework for autonomous behaviors
remains to be an important research avenue. Representing HRI as dynamical

systems and using MPC is one approach and must be tested on a real system.

71

1]

Bibliography

Kai O. Arras, Oscar Martinez Mozos, and Wolfram Burgard. Using
boosted features for the detection of people in 2D range data. In Pro-
ceedings - IEEE International Conference on Robotics and Automation,

pages 3402-3407, 2007.

Adrian Ball, David Rye, Fabio Ramos, and Mari Velonaki. A comparison
of unsupervised learning algorithms for gesture clustering. Proceedings of
the 6th international conference on Human-robot interaction - HRI 11,

page 111, 2011.

Albert Bandura. Social Foundations of Thought and Action: A Social
Cognitive Theory. Prentice Hall, 1 edition, 1985.

Garrett Bernstein, Nyk Lotocky, and Dan Gallagher. Robot Recognition
of Military Gestures CS 4758 Term Project. 2012.

Cynthia Breazeal, Matt Berlin, Andrew Brooks, Jesse Gray, and An-
drea L. Thomaz. Using perspective taking to learn from ambiguous

demonstrations. Robotics and Autonomous Systems, 54(5):385-393, 2006.

Cynthia Breazeal, Jesse Gray, and Matt Berlin. An Embodied Cognition
Approach to Mindreading Skills for Socially Intelligent Robots. The
International Journal of Robotics Research, 28(5):656-680, 2009.

Cynthia Breazeal, Cory D Kidd, Andrea Lockerd Thomaz, Guy Hoff-

man, and Matt Berlin. Effects of Nonverbal Communication on Efciency

72

[10]

[11]

[12]

[13]

[14]

and Robustness of Human-Robot Teamwork.pdf. 2005 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pages 708-713,
2005.

Andrew G Brooks and Cynthia Breazeal. Working with Robots and
Objects: Revisiting Deictic Reference for Achieving Spatial Common

Ground. Gesture, pages 297-304, 2006.

Carnegie Robotics. MultiSense SL. http://files.carnegierobotics.
com/products/MultiSense_SL/MultiSense_SL_brochure.pdf, 2014.

Crystal Chao and Andrea Lockerd Thomaz. Timed Petri nets for flu-
ent turn-taking over multimodal interaction resources in human-robot

collaboration. The International Journal of Robotics Research, page

0278364915627291, 2016.

Travis Dewolf. Dynamic movement primitives: The basics part 1. http:

//tinyurl.com/z49c7g5. Last Accessed: 2015-12-04.

Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded mod-
eling language for convex optimization. Journal of Machine Learning

Research, 17(83):1-5, 2016.

Hao Ding, Gunther Reiflig, Dominic Grof}, and Olaf Stursberg. Mixed-
Integer Programming for Optimal Path Planning of Robotic Manipula-

tors. Int. Conference on Automation Science and Engineering, pages

133-138, 2011.

Piotr Dollar, Christian Wojek, Bernt Schiele, and Pietro Perona. Pedes-
trian detection: An evaluation of the state of the art. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 34(4):743-761, 2012.

73

http://files.carnegierobotics.com/products/MultiSense_SL/MultiSense_SL_brochure.pdf
http://files.carnegierobotics.com/products/MultiSense_SL/MultiSense_SL_brochure.pdf
http://tinyurl.com/z49c7g5
http://tinyurl.com/z49c7g5

[15]

[16]

[20]

22]

Paul Ekman and Wallace V Friesen. The Repertoire of Nonverbal Be-
havior: Categories, Origins, Usage, and Coding. Semiotica, 1(1):49-98,
1969.

Martin Engelcke, Dushyant Rao, Dominic Zeng Wang, Chi Hay Tong, and
Ingmar Posner. Vote3Deep: Fast Object Detection in 3D Point Clouds
Using Efficient Convolutional Neural Networks. 2016.

Inc. Gurobi Optimization. Gurobi optimizer reference manual, 2015.

Frederik Hegger, Nico Hochgeschwender, Gerhard K Kraetzschmar, and
Paul G Ploeger. People Detection in 3D Point Clouds using Local Surface
Normals. RoboCup 2012: Robot Soccer World Cup XVI pages 154—165,
2013.

David Held, Devin Guillory, Brice Rebsamen, Sebastian Thrun, and Silvio
Savarese. A Probabilistic Framework for Real-time 3D Segmentation
using Spatial, Temporal, and Semantic Cues. Proceedings of Robotics:

Science and Systems, 2016.

Guy Hoffman and Cynthia Breazeal. Collaboration in Human-Robot
Teams. Proc. of the AIAA 1st Intelligent Systems Technical Conference,
Chicago, IL, USA, pages 1-18, 2004.

Guy Hoffman and Cynthia Breazeal. Cost-Based Anticipatory Action
Selection for Human-Robot Fluency. IEFEE Transactions on Robotics,

23(5):952-961, 2007.

Heiko Hoffmann, Peter Pastor, Dae-Hyung Park, and Stefan Schaal. Bio-

logically inspired dynamical systems for movement generation: Automatic

74

23]

[24]

[25]

[26]

28]

[29]

real-time goal adaptation and obstacle avoidance. 2009 IEEE Interna-

tional Conference on Robotics and Automation, pages 2587-2592, 2009.

Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and
Stefan Schaal. Dynamical movement primitives: learning attractor mod-

els for motor behaviors. Neural computation, 25(2):328-73, 2013.

Auke Jan Ijspeert, Jun Nakanishi, and Stefan Schaal. Movement imita-
tion with nonlinear dynamical systems in humanoid\nrobots. Proceedings
2002 IEEE International Conference on Robotics and Automation (Cat.
No.02CH37292), 2(May):1-6, 2002.

lan Jolliffe. Principal component analysis. Wiley Online Library, 2002.

Kiyosumi Kidono, Takeo Miyasaka, Akihiro Watanabe, Takashi Naito,
and Jun Miura. Pedestrian Recognition Using High-definition LIDAR.
IEEFE Intelligent Vehicles Symposium, pages 405-410, 2011.

Hema Swetha Koppula, Rudhir Gupta, and Ashutosh Saxena. Learn-
ing human activities and object affordances from RGB-D videos. The

International Journal of Robotics Research, 32(8):951-970, 2013.

Steven M. LaValle and James J Kuffner. Randomized Kinodynamic
Planning. International Journal of Robotics Research, 20(5):378-400,
2001.

Xia Lu, Chen Chia-Chih, and Jake K Aggarwal. Human detection using
depth information by Kinect. C'VPR 2011 WORKSHOPS, pages 15-22,
2011.

75

[30] Guilherme Maeda, Marco Ewerton, Rudolf Lioutikov, Heni Ben Amor,
Jan Peters, and Gerhard Neumann. Learning Interaction for Collab-
orative Tasks with Probabilistic Movement Primitives. International

Conference on Humanoid Robots, pages 527-534, 2014.

[31] César A Martin, Daniel E Rivera, William T Riley, Eric B Hekler, Matthew P
Buman, Marc A Adams, and Abby C King. A Dynamical Systems Model
of Social Cognitive Theory. In American Control Conference(ACC),
pages 24072412, 2014.

[32] Cysar A Martyn, Daniel E Rivera, and Eric B Hekler. A Decision
Framework for an Adaptive Behavioral Intervention for Physical Activity
Using Hybrid Model Predictive Control. In American Control Confer-
ence(ACC), pages 3576-3581, 2016.

[33] Robin R Murphy. A Survey of Social Gaze Categories and Subject De-
scriptors. ACM/IEEE International Conference on Human-Robot Inter-
action, pages 253-254, 2011.

[34] Scott Niekum. Ar tracker alvar ros package. http://wiki.ros.org/
ar_track_alvar. Last Accessed: 2015-12-04.

[35] Scott Niekum, Sarah Osentoski, Christopher G Atkeson, and Andrew G
Barto. Online Bayesian Changepoint Detection for Articulated Motion
Models. 2015 IEEE International Conference on Robotics and Automa-
tion, 2015.

[36] OpenNI. openni_tracker ROS package. http://wiki.ros.org/openni_
tracker, 2013.

76

http://wiki.ros.org/ar_track_alvar
http://wiki.ros.org/ar_track_alvar
http://wiki.ros.org/openni_tracker
http://wiki.ros.org/openni_tracker

[37]

[39]

[40]

[42]

Nicholas Paine, Joshua S Mehling, James Holley, Nicolaus A Radford,
Gwendolyn Johnson, Chien-Liang Fok, and Luis Sentis. Actuator control
for the nasa-jsc valkyrie humanoid robot: A decoupled dynamics approach

for torque control of series elastic robots. Journal of Field Robotics,

32(3):378-396, 2015.

Panagiotis Papadakis, Patrick Rives, Anne Spalanzani, Panagiotis Pa-
padakis, Patrick Rives, Anne Spalanzani, Adaptive Spacing, Panagiotis
Papadakis, Patrick Rives, and Anne Spalanzani. Adaptive Spacing in
Human-Robot Interactions. 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 2627-2632, 2014.

Alexandros Paraschos, Christian Daniel, Jan Peters, and Gerhard Neu-
mann. Probabilistic Movement Primitives. Neural Information Process-

ing Systems, pages 1-9, 2013.

Peter Pastor, Heiko Hoffmann, Tamim Asfour, and Stefan Schaal. Learn-
ing and generalization of motor skills by learning from demonstration.
2009 IEEE International Conference on Robotics and Automation, pages
763768, 2009.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-

learn: Machine learning in Python. Journal of Machine Learning Re-

search, 12:2825-2830, 2011.

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Eric Berger, Rob Wheeler, and Andrew Mg. ROS: an

7

[43]

[45]

[46]

[48]

open-source Robot Operating System. [ICRA workshop on open source

software, 3(3.2):5, 2009.

Nicolaus A Radford, Philip Strawser, Kimberly Hambuchen, Joshua S
Mehling, William K Verdeyen, A Stuart Donnan, James Holley, Jairo
Sanchez, Vienny Nguyen, Lyndon Bridgwater, et al. Valkyrie: Nasa’s
first bipedal humanoid robot. Journal of Field Robotics, 32(3):397-419,
2015.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
Only Look Once: Unified, Real-Time Object Detection. 794:185-192,
jun 2015.

Charles Rich, Brett Ponsler, Aaron Holroyd, and Candace L. Sidner. Rec-
ognizing engagement in human-robot interaction. Human-Robot Inter-
action (HRI), 2010 5th ACM/IEEE International Conference on, pages
375-382, 2010.

Arthur Richards and Jonathan How. Mixed-integer programming for
control. Proceedings of the 2005, American Control Conference, 2005.,
pages 2676-2683, 2005.

Arthur Richards, Tom Schouwenaars, Jonathan P. How, and Eric Feron.
Spacecraft Trajectory Planning with Avoidance Constraints Using Mixed-

Integer Linear Programming. Journal of Guidance, Control, and Dynam-

ics, 25(4):755-764, 2002.

Laurel D. Riek. Wizard of Oz Studies in HRI: A Systematic Review
and New Reporting Guidelines. Journal of Human-Robot Interaction,

1(1):119-136, 2012.

78

[49]

[51]

[52]

Radu Bogdan Rusu. Semantic 3d object maps for everyday manipulation
in human living environments. KI-Kiinstliche Intelligenz, 24(4):345-348,
2010.

Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast point feature
histograms (fpfh) for 3d registration. In Robotics and Automation, 2009.
ICRA’09. IEEE International Conference on, pages 3212-3217. 1EEE,
2009.

Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud library
(pcl). In Robotics and Automation (ICRA), 2011 IEEE International
Conference on, pages 1-4. IEEE, 2011.

Sven R. Schmidt-Rohr, Martin Losch, and Riidiger Dillmann. Human
and robot behavior modeling for probabilistic cognition of an autonomous
service robot. Proceedings of the 17th IEEE International Symposium on
Robot and Human Interactive Communication, RO-MAN, pages 635-640,
2008.

Luis Sentis. Lecture notes. The University of Texas at Austin, 2016.

Julie Shah, James Wiken, Brian Williams, and Cynthia Breazeal. Im-
proved human-robot team performance using Chaski, a Human-Inspired
Plan Execution System. Proceedings of the 6th international conference

on Human-robot interaction, pages 29-36, 2011.

Jamie Shotton, Toby Sharp, Alex Kipman, Andrew Fitzgibbon, Mark
Finocchio, Andrew Blake, Mat Cook, and Richard Moore. Real-time
Human Pose Recognition in Parts from Single Depth Images. Commu-

nications of the ACM, 56(1):116-124, 2013.

79

[56]

[58]

[59]

Emrah Akin Sisbot, Kuis F. Marin-Urias, Rachid Alami, and Thierry
Siméon. A human aware mobile robot motion planner. IEFE Transac-

tions on Robotics, 23(5):874-883, 2007.

J Cole Smith and Z Caner Taskin. A Tutorial Guide to Mixed In-
teger Programming Models and Solution Techniques. Optimization in

Medicine and Biology, pages 1-23, 2008.

Padhraic Smyth. The EM Algorithm for Gaussian Mixtures The EM
Algorithm for Gaussian Mixture Models. http://www.ics.uci.edu/
~smyth/courses/cs274/notes/EMnotes.pdf. Last Accessed: 2015-12-
04.

Tian-Shu Wang, Heung-Yeung Shum, Ying-Qing Xu, and Nan-Ning Zheng.
Unsupervised analysis of human gestures. Advances in Multimedia In-
formation Processing. Lecture Notes in Computer Science, 2195:174-181,

2001.

Zhengyou Zhang. Microsoft kinect sensor and its effect. IEEE Multime-
dia, 19(2):4-10, 2012.

80

http://www.ics.uci.edu/~smyth/courses/cs274/notes/EMnotes.pdf
http://www.ics.uci.edu/~smyth/courses/cs274/notes/EMnotes.pdf

Vita

Steven Jens Mangubat Jorgensen was born in Manila, Philippines on
April 1st, 1992. He’s the son of Robert Jens M. Jorgensen and Marissa M.
Jorgensen. He received the Bachelor of Science degree in Engineering from
the Massachusetts Institute of Technology (MIT) on June 2014. He decided
to pursue his graduate studies as an effort towards understanding how to
control robots more intelligently. He applied to The University of Texas at
Austin to join Dr. Luis Sentis’s Human-Centered Robotics Lab (HCRL). From
2014-2015 he was funded by PI Electronics to work on designing humanoids
with Electrorheological-Fluid Actuators. In August 2015, his NASA Space
Technology Research Fellowship (NSTRF 2015) began, which enabled him
to start focusing on high-performance, safe, human-aware robots. With the
support of his NASA fellowship, this thesis is a summary of the subset of work
performed from Fall 2015 to Fall 2016.

Permanent address: stevenjensj@gmail.com

This thesis was typeset with ITEX' by the author.

'IATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

81

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	List of Algorithms
	Chapter 1. Introduction
	Thesis Contributions

	Chapter 2. Human Detection with the MultiSense SL Sensor on Valkyrie
	Background and Motivation
	Required Capabilities
	Technical Approach Overview
	Feature Descriptions
	Local Surface Normal Calculations
	FPFH Cluster feature
	Other Features

	Random Forest Classification Learning
	Results and Discussion
	Learning Curves, Precision/Recall, and Calculation Time
	Empirical Results

	Evaluation and Future work

	Chapter 3. Action Recognition: Gesture Recognition with DMPs and GMMs
	Related Works
	Technical Background
	Dynamic Movement Primitives (DMPs) for Gesture Representation
	Gaussian Mixture Models (GMMs) for Gesture Recognition

	Experiment Methodology for DMP and GMMs
	Gesture Data Gathering
	Gesture Feature Representation
	GMM Supervised Classification
	GMM Unsupervised Classification

	Experiment and Results
	Unsupervised GMM Performance
	Supervised GMM Performance

	Discussion
	Future Work

	Chapter 4. Action Generation: Decision Making with Model Predictive Control
	Related Works
	HRI as Linear Dynamical Systems
	Policy Generation via Model Predictive Control
	Assistant Robot Scenario as a Linear Dynamical System
	World State and Actions
	State Transition Matrix

	World Constraints formulated as Mixed-Integer Constraints for Model Predictive Control
	Scenario Constraints

	Results
	Discussion

	Chapter 5. Summary and Future Outlook
	Bibliography
	Vita

