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Abstract—In collaborative interaction scenarios between a
human and a robot, The robot’s ability to recognize the movement
gestures of a human is crucial to understanding the underlying
intent. Gestures are particularly useful if there is some mapping
(constant, time-varying, or task-dependent) between the gesture
and the desired intention. As an effort towards recognizing
movement gestures better, this work focuses on modeling human
static, discrete, and rhythmic gestures as the forcing function of
a discrete Dynamic Movement Primitive (DMP). In particular,
the gestures are the gaussian basis weights that approximate the
forcing function. It was found that a supervised Gaussian Mixture
Model (GMM) classifer can recognize static and discrete gestures
with high accuracy. Additionally, accuracy classification is still
possible even when two discrete gestures are linear, a condition
often avoided by other movement primitive recognition studies.
Results also show that the GMM can also classify rhythmic
gestures with only the discrete DMP formulation, while still
performing much better than randomized guessing. For all types
of classification recognition, it was also found that the classifier’s
bias-variance trade-off performance is sensitive to the number of
basis weights used. The sensitivity finding is important as other
movement primitive gesture recognition studies ignore tuning
the number of basis weights, which can significantly improve
or reduce performance.

I. INTRODUCTION

In certain Human-Robot-Interaction(HRI) scenarios, rec-
ognizing human gestures is essential for efficient and safe
human robot collaboration. Note that recognizing gestures
is a key step to understanding the intent of a collaborative
human, especially if there is a mapping between the provided
movement gesture and the intent. This mapping may not
necessarily be a constant one-to-one mapping but can also
vary with time and task dependency.

This work models static, discrete, and rhythmic types of
arm gestures as the forcing function of a Dynamic Movement
Primitive (DMP) representing the gesture, where the basis
weights of the forcing function were used as the gesture’s
features.

Using Gaussian Mixture Models (GMMs) as the primary
classification tool, different experiments were made to show
the practicality of using DMPs for gesture recognition.

The following hypotheses are addressed in this work:

1) An unsupervised learning algorithm such as an
Expectation-Maximization (E-M) algorithm on GMMs
can be used to automatically segment different static and
discrete DMP demonstrations.

2) A supervised Gaussian Mixture Model (GMM) classifier
can be used to classify different discrete DMP-based
gestures.

3) A GMM classifier can distinguish between spatially
different discrete DMP-based gestures

4) The classifier will fail to distinguish between two linear
motions.

5) The GMM classifier will fail on classifying rhythmic
gestures.

6) Using the discrete DMP formulation to represent all the
gestures, the GMM classifier can classify static, discrete
gestures but will fail to classify rhythmic gestures.

7) For a given set of data, there is an optimal number of
weights that best represents the gestures.

In general, these experimental hypotheses were motivated to
identify the limits, practicality and intricacies of using DMPs
with GMMs for movement recognition. While not exhaustive,
exploring the short list presented gives sufficient insight as the
results and discussions presented in the paper show.

To test the hypotheses, we perform eight types of arm
motion gestures. We have one static gesture, five discrete
gestures, two of which are linear, and two rhythmic gestures.
Figure 1 gives a visualization of the gestures. The static gesture
is simply constant in space. Two of the discrete gestures
are letters U and S, and another two are linear motions
with different starting and ending positions. The last discrete
gesture is a triangle shape with very similar starting and ending
goal positions to test the stability of similar start and end-
goal states (see Section III-A). The rhythmic gestures are a
continuous circle motion and continuous waving motion.

From these gestures, it was found that hypothesis 1 is
possible, but unreliable, hypotheses 2, 3, 7 are true with high
confidence, hypothesis 4 is false with high confidence, and
hypotheses 5 and 6 are true with low confidence.

In essence, this paper presents the following new findings:
(a) As far as the authors know, the community who use
movement primitives for recognition do not discuss how
their systems are tuned, but here a performance sensitivity
analysis is discussed with respect to the number of basis
weights used for recognition. (b) Previous recognition studies
using DMPs do not try to recognize spatially linear/straight
motions as the forcing function may appear similar, but the
experiments presented here give evidence that it is possible to
discriminate between two straight motions. (c) By accident, it



was found that the two rhythmic gestures used in this study can
be recognized using the discrete formulation of DMPs with
unexpectedly high recognition rates. Finally, (d) DMPs can
also represent static-type gestures by setting the goal position
constant.

For this project, the Matlab code used to recognize gestures
is available at http://github.com/stevenjj/Gesture Recognition,
and the forcing function DMP code is available at https:
//github.com/stevenjj/myROS/tree/64-bit/gestures

II. RELATED WORK

Military gesture recognition was previously implemented
using nearest neighbors and an SVM classifier [2]. In their
work, they focused significantly on recognizing only static
type and rhythmic type gestures, as they are targeting military
applications. Additionally their implementation throws many
data points away while also being sensitive to temporal and
spatial type of gestures.

In another work, the authors use a Hidden Markov Model
(HMM) to automatically segment sequences of natural ac-
tivities to automatically segment gestures and cluster them.
After the primitive gestures are extracted, the gestures are
represented as symbols and, the gestures’ lexicon is extracted
using their proposed algorithm [12]. Compared to their
work, this paper focuses on the gestures that are already
automatically segmented and only classification of the gestures
is needed.

In [1], different unsupervised algorithms were tried to au-
tomatically detect gestures and test the performance of various
unsupervised clustering methods. However, the features used
in their algorithm were not specified, and their features only
looked at static and rhythmic motions.

As for human robot collaboration scenarios, [6] uses
Probabilistic Movement Primitives (ProMPs) [9] to detect
human intentions for assembly hand-over tasks and spatial
mimicking of pointing tasks. Probabilistic movements use
spatial information as part of learning the movement primitive,
and therefore may not recognize similar looking gestures that
are spatially different. Thus, ProMPs do not have the spatial
invariant property of DMPs.

The closest work to this paper is the extensive work done in
[5] that details the mechanics of using DMPs. In their work,
they performed motion recognition of discrete movements. In
particular, they focused on showing that different alphabetical
letters will have a consistent similarity matrix, and so clas-
sification is possible. The difference between their work and
this paper is that GMMs were used to classify static, discrete,
and rhythmic gestures using only the discere formulation
of DMPs. Additionally, this paper shows that highly linear
discrete motions can also be distinguished provided that the
DMP parameters are specified properly. This paper also shows
that it is possible to recognize rhythmic motions despite being
modeled with the discrete formulation of DMPs.

III. BACKGROUND INFORMATION

A. Dynamic Movement Primitives for Gesture Recognition

The Dynamic Movement Primitive (DMP) framework [5]
is a powerful tool that enables dynamic representation of dis-
crete and rhythmic movements. Here, a biologically-inspired
discrete formulation of DMPs given in [10] and [4] is used.
As noted in [4], the primary difference is that the differential
equations are based on a sequence of convergent acceleration
fields instead of force. Practically, this is similar to the original
formulation, but with additional benefits such as better stability
when the goal and initial positions are similar, invariance under
transformations, and better generalization to new movement
targets. From this discussion, any one-dimensional movement
can be represented as a converging spring-damper system
perturbed by a nonlinear forcing function f(s):

τ ˙v(t) = K(g − x(t))−Dv(t)−K(g − xo)s+Kf(s), (1)

τ ˙x(t) = v(t), (2)

τ ˙s(t) = −αs(t), (3)

where x(t) and v(t) are the position and velocity of the
movement; K and D are the spring and damper terms; g and
xo are the goal and start positions of the movement; τ is
the temporal scaling factor; and s is the phase variable that
exponentially decreases from 1 to 0 with α to control the
convergence time.

While representing motion as a DMP has many favourable
properties [5], this work takes advantage of its temporal and
spatial invariant property. In particular similar-looking motions
can be demonstrated at varying durations with varying start
and end goal positions. For example motion demonstrations
can be spatially scaled and performed slowly but still have
the same underlying DMP dynamics.

TABLE I
DMP LEARNING PARAMETERS

τ(s) α K D

τdemo ln(0.01) 400N/cm 2
√
K

In this work, the parameters of the DMP are summarized
in Table I . The spring term is set to be high, whose
importance is described in Section VI , and here it was set to
K = 400N/cm. The damping term is critically damped with
D = 2

√
K. The temporal scaling term is set to τ = τdemo,

where τdemo is the length of the movement demonstration.
Finally, α = ln(0.01) to ensure that at t = τdemo, s(t) is 99%
converged.

To obtain the forcing function that represents the gesture,
a demonstration trajectory, xdemo(t), is recorded and differ-
entiated twice to get vdemo(t) and v̇demo(t), which is then
substituted to the following equation:

ftarget(s) =
τ v̇(t) +Dv(t)

K
− (g − x(t)) + (g − xo)s, (4)

with s(t) = exp( α
τdemo

t) from solving Eq. 3 . Note that
Eq. 4 is obtained by solving for f(s) from Eq. 1. The target
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function can then be approximated by minimizing the squared
error between Eq. 4 and the wi weights of the following non-
linear function:

f(s) =

n∑
i=1

wiψi(s)s

n∑
i=1

ψi(s)s
(5)

where ψi(s) = exp(−hi(s − ci)
2) is the i-th Gaussian

basis function centered at ci with width hi. [3] empirically
determined that the width and centers of the Gaussian basis
functions can be set to ci = 1/n and hi = n

ci
, where n is

the number of basis weights used to approximate f(s). Since
all the parameters are fixed, local weighted regression of f(s)
will give consistent wi weights.

B. Gaussian Mixture Models (GMMs)

Since DMPs are invariant to spatial and temporal motion
demonstrations, it is reasonable to expect that the forcing
function weights of the gestures will be clustered together in
an n-dimensional plot [5]. This clustering may be oval in shape
and so a multivariate gaussian is used to represent the cluster
of the weights:

N(www,µµµk,ΣΣΣk) =
exp(− 1

2 (www −µµµk)TΣ−1
k (www −µµµk))

(2π)n/2|ΣΣΣk|(1/2)
(6)

where n is the dimension of the multivariate distribution,
www ∈ Rn is the input, µµµk ∈ Rn is the mean, and ΣΣΣk ∈ Rnxn
is the covariance. Now, a GMM [11] is defined to be

p(www|µµµ,ΣΣΣ) =

K∑
k=1

πkN(www,µµµk,ΣΣΣk), (7)

where p(www|µµµ,ΣΣΣ) is the probability of a particular feature,
www, given all the means, µµµ, and covariances ΣΣΣ of the com-
bined gaussians. The variable πk is the mixture component
representing the fraction of elements belonging to a mixture
k such that

K∑
k=1

πk = 1. (8)

As an intuition, if there are k clusters with equal number of
elements in each cluster, the mixture component is πk = 1/k,
a uniform distribution.

IV. METHODOLOGY

A. Gesture Data Gathering

Eight gestures with 30 demonstrations each were recorded
using the ROS package ar track alvar [7] to track a single
AR marker with the Microsoft Kinect. There are five discrete
gestures called ”U-shape, Letter-S, Triangle, LL-Swipe, and
UL-Swipe,” one static gesture called ”Static,” and two rhytmic
gestures called ”Wave and Circle.” The x-y plots of all the
recorded gestures are shown in Figure 1.

Each gesture type served a purpose to maximize scientific
findings. The U-shape, Letter-S, and Triangle discrete gestures

(a) Static (b) U-Shape

(c) Triangle (d) Letter-S

(e) UL-Swipe (f ) LL-Swipe

(g) Wave (h) Circle

Fig. 1. The eight types of demonstrated gestures are shown. The sub-figures
indicate (a) a static gesture, (b)-(f) five discrete gestures, and (g) and (h)
are two rhythmic gestures. The gestures were made using a Kinect that
recognized the x-y-z position of the AR marker held by the demonstrator.
The static gesture, (a), is a demonstration where the marker never moves.
(b) and (d) are discrete letter-type gestures which is used in existing DMP
literature to show movement recognition [5]. (c) is a triangle shape gesture to
test the ability of the DMP to recognize gestures with almost equal starting
and ending positions. (e) and (f) are linear gestures with different starting
and ending positions to test if DMPs can discriminate between two spatially
different discrete motions. Finally, (g) and (h) represent a continuous circular
and waving motion respectively. For each sub-figure, each colored trajectory
represents the trajectory of a single demonstration.

have obvious descriptions. The U-shape and Letter-S gestures
were provided as controls for hypothesis 2 since it has been
previously show that they can be recognized with DMPs [5].
However, the Triangle gesture was selected since previous
gesture recognition never dealt with motions that have almost
identical start and goal positions. The LL-Swipe and UL-Swipe
gestures are two discrete, linear-type gestures that starts from
the lower-left corner and upper left corner respectively and
ends in a corresponding opposite corner. The purpose of the
discrete linear gestures is to test hypothesis 4 (that is, the
linear DMP motions will be identical to each other and so
any classifier will fail to distinguish the two gestures). Finally,
two rhythmic gestures were added to test the hypothesis 5
(the discrete DMP formulation will fail recognizing rhythmic
gesture). During the demonstration process, both rhythmic
gestures Wave and Circle had no consistent starting and ending
position. Sometimes it was difficult to manage the frequency
of the rhythmic gesture, and these inconsistencies are kept as
part of training data.

Three additional types of discrete gestures were also gath-
ered, but with only 5 demonstrations each. In particular, a
spatially smaller versions of the discrete gestures U-shape,
Triangle, and Letter-S were also provided as test data to test
hypothesis 3.



B. Gesture Feature Representation

After all the demonstrations were made, using the DMP
formulation with the constants listed in Table I, the data
was pre-processed to calculate the 3-dimensional x,y,z forcing
function of each gesture. We define nb to be the number of
basis weights on a particular dimension. Then, the nb basis
weights of each forcing function was extracted using local
weighted regression, and the values of the weights were stored
as vectors of wx, wy , wz , where x, y, and z indicates the
particular Cartesian axis the weight represents. Finally, each
gesture is represented as

wwwg = [wwwTx ,www
T
y ,www

T
z ]T , (9)

where wwwg is the concatenated vector of the forcing func-
tion’s basis weights. Thus each gesture, wwwg , has n = 3nb
dimension features.

In order to visualize the relationship of the basis weights
between any two gestures, the similarity function

similarity =
wwwTg1wwwg2

||wwwg1 || · ||wwwg2 ||
(10)

previously proposed by [5] is used. Note that Eq. 10 is 1
when two gestures are 100% similar and is 0 or below when
there is minimum similarity. Figure 2 is a color map visu-
alization of the similarity matrix between any two gestures,
where each cell uses Eq. 10 with nb = 5 basis weights per
dimension.

C. GMM Supervised Classification

To perform supervised classification, a finite K number of
gaussian mixtures are trained. Each mixture k ∈ {1, 2, ...,K},
representing one gesture, makes K total number of gestures to
consider. For eachwwwg gesture, D = 20 random demonstrations
were used as positive training examples. Then, for each k
gaussian mixture, training is done by stacking the mean and
covariance of the corresponding training examples:

µµµk = mean([wwwg1 , ...,wwwg2 ...,wwwgD ]T ) (11)

ΣΣΣk = Cov([wwwg1 , ...,wwwg2 ...,wwwgD ]T ) (12)

Now, given an unknown gesture, wwwg , the gesture’s mem-
bership weight probability, rk, is calculated for each k cluster
using Baye’s Rule. More specifically, rk is the probability
that the demonstration belongs to mixture k given a gesture
demonstration, wgwgwg:

rk = p(k|wg) =
πkN(wgwgwg,µµµk,ΣΣΣk)
K∑̄
k=1

πk̄N(wgwgwg,µµµk̄,ΣΣΣk̄)

, (13)

where p(k|wgwgwg) represents the cluster membership proba-
bility given a wgwgwg demonstration, and πk is the k-th mixture
weight representing that a randomly selected demonstration is
part of the k-th mixture component. Note that

∑K
k=1 πk = 1.

Here, πk = D
D·K = 1

K since each mixture component was
trained with D demonstrations and there are D·K total number

of demonstrations. To identify the gesture, the cluster k that
maximizes rk is the gesture’s classification. This is represented
as:

p(k|wwwg) = arg max
k

p(k|wwwg), (14)

D. GMM Unsupervised Classification

For unsupervised classification, Gaussian Mixture Regres-
sion using an Expectation-Maximization [11] algorithm is
performed on the static and discrete gestures data set and only
the number of mixtures, K, is provided as input. If the mixture
regression is 100% successful, it is expected that each mixture
component πk will reflect the the true mixture. Note that it is
known there are mper = 30 demonstrations for each gesture,
and there are m = mper · K total demonstrations. Thus,
it is enough to see if each cluster has identified exactly 30
components. Suppose a cluster has specified mg(k) gestures
to belong to cluster k. If mg(k) <= mper then it is assumed
that cluster k has found the correct mg gestures. However, if
mg(k) > mper then cluster k has mmistakes(k) = mg(k) −
mper mistakes since perfect clustering should contain mper

gestures for each cluster. Using this intuition, the following
performance index is specified:

score =

(m−mper −
K∑
k=1

mmistakes(k))

(m−mper)
, (15)

Note that a perfect score of 1 means that each gaussian
mixture has exactly 30 gestures and a 0 means that all gestures
are classified as a single cluster. It is possible that a score of
1 can be obtained while the clustered gestures are a mix of
other gestures. However, in general this is unlikely to happen
as different gestures will have different target functions and
therefore have different basis weights.

V. EXPERIMENT AND RESULTS

A. Unsupervised GMM Performance

TABLE II
UNSUPERVISED GMM

Weights per Dimension Discrete Gestures Weights per Dimension Discrete Gestures

1 (2.0± 6.3)% 25 (61.8± 13.6)%
3 (14.3± 13.8)% 30 (69.0± 12.5)%
5 (24.1± 15.9)% 35 (58.2± 10.6)%

10 (46.3± 10.2)% 40 (55.9± 7.7)%
15 (47.8± 10.5)% 50 (56.4± 9.2)%

The first experiment was to see how well unsupervised
classification works on the entire static and discrete gestures
data set. The number of basis weights nb per dimension was
changed as experiments consistently show that performance
is sensitive to the number of weights used to represent the
gesture. Matlab has a built in gaussian mixture model fitting
function, called fitgmdist, that utilizes the E-M algorithm.
Using the criteria described in Eq. 15, the performance of
the unsupervised clustering was recorded in Table II, where
each cell in the table is the mean plus or minus the standard
deviation of the score after 10 random trials.
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Fig. 2. The similarity matrix of all the gestures is visualized as a colormap.
Each cell represents the similarity between any two gestures where colors
closer to 1 indicates high similarity and those below 0 have minimum
similarity

The results indicate that 30 basis weights per dimension has
the best unsupervised GMM performance with 69% ± 12.5
accuracy. However, as more basis weights are added to the
dimension, the performance stagnates. Finally, the standard
deviation for all the weights tested have high variance indi-
cating unreliability due to its inconsistent performance. Thus,
hypothesis 1 has potential but it is not reliable. The unsu-
pervised GMM’s performance sensitivity to nb also confirms
hypothesis 7.

B. Supervised GMM Performance

TABLE III
SUPERVISED GMM ON ALL DATA SETS

Weights per Dimension Discrete Spatial Rhythmic Discrete and Rhythmic

1 (78.7± 0.7)% (54.7± 4.2)% (31.5± 8.5)% (62.8± 1.2)%
3 (98.3± 0.6)% (73.7± 7.1)% (93.2± 4.0)% (96.3± 1.7)%
5 (98.6± 1.2)% (88.0± 5.3)% (97.0± 2.2)% (95.1± 7.1)%

10 (89.3± 1.5)% (43.3± 5.7)% (82.7± 2.9)% (86.1± 1.3)%
15 (71.6± 3.1)% (11.3± 3.2)% (58.8± 11)% (62.7± 2.8)%
25 (78.7± 2.5)% (33.3± 6.3)% (76.3± 4.0)% (77.0± 2.4)%

TABLE IV
SUPERVISED GMM ON CROSS VALIDATION DATA SET

Weights per Dimension Discrete Spatial Rhythmic Discrete and Rhythmic

1 (77.2± 3.7)% (51.3± 3.2)% (36.0± 12.4)% (60.9± 2.5)%
3 (97.3± 1.4)% (66.7± 7.1)% (81.1± 9.1)% (88.6± 3.6)%
5 (96.2± 2.5)% (65.3± 8.2)% (88.5± 8.8)% (92.5± 2.6)%
10 (86.5± 1.1)% (40.7± 4.9)% (68.0± 8.5)% (73.9± 8.6)%
15 (57.2± 4.3)% (10.0± 3.5)% (61.2± 7.5)% (45.5± 6.9)%
25 (50.17± 9.2)% (26.0± 4.9)% (77.1± 4.0)% (36.5± 5.7)%

The next experiment was to test hypotheses (2-6) and
further confirm hypothesis 7. Tables III and IV summarizes
the results. For all scenarios, each GMM was trained using 20
random gestures from a corresponding gesture type. Except
for the ”Spatial” columns, Table III tests the performance
against the entire Ktest · 30 gesture data set where Ktest ∈

{Kdiscrete,Krhythmic, ,Kspatialdiscrete,Kall} is the number
of gestures being considered.

In this work, there are Krhythmic = 2 rhythmic ges-
tures types, Kdiscrete = 5 discrete and static gesture types,
Kspatialdiscrete = 3 spatially different discrete gestures and
Kall = Krhythmic + Kdiscrete discrete and rhythmic gesture
types.

Recall that for each gesture, D = 20 training data were used
to train each mixture model. To ensure that the performance is
not skewed by the trained data, Table IV tests the performance
only on the remaining unseen Ktest · 10 gesture data set.

In the ’Discrete” column, the supervised GMM was trained
and tested only on the Kdiscrete static and discrete ges-
tures. The ’Spatial” column was also trained using the
Kdiscrete · 30 static and discrete gestures but was tested using
the Kspatialdiscrete spatially different discrete gesture set.
The ’Rhythmic” column was trained and compared only on
the Krhythmic rhyhtmic gestures. Finally, the ’Discrete and
Rhythmic” column was trained and tested on the Kall static,
discrete, and rhythmic gestures without the spatially different
gestures. For all types of tests, the number of basis weights
per dimension were also changed to test hypothesis 7.

Tables III and IV show that in general, there is high accuracy
in the recognition performance of static and discrete gestures,
which confirms hypothesis 2 and disproves hypothesis 4.
In general, recognizing spatially similar static and discrete
gestures performs very well, and the accuracy drops below
80% only when more basis weights per dimension are used
due to over fitting.

The Spatial column confirms hypothesis 3. Concretely,
spatially different discrete gestures can recognized with ba-
sis weights of 3 and 5 per dimension. As a reminder, the
training set for the Spatial has never seen spatially smaller
demonstrations, which makes this result more meaningful and
significant.

What is surprising is that the Rhythmic column shows that
even with using the discrete formulation of DMPs to repre-
sent rhythmic gestures, the supervised GMM can distinguish
between the rhythmic ”Wave” and ”Circle” gestures. It was
expected that the rhythmic gestures would appear as noise
and the GMM will fail to recognize the rhythmic gestures
completely. However, as the result shows, the accuracy is
better than guessing between two rhythmic gestures at random.

To test if the GMM classifier can discriminate between
static, discrete, and rhythmic gestures, the Discrete and Rhyth-
mic columns shows that the presence of rhythmic gestures did
not affect recognition performance as it reflects similar values
to the Discrete column. From this study, it is surprising that
hypotheses 5 and 6 are both false as rhythmic gestures were
classified successfully.

For all of the gesture recognition tests, it is evident that
the number of weights used to represent the gesture affected
the performance of the classifier, which confirms hypothesis
7 convincingly. Using too many basis weights causes over-
fitting with high variance error, and not using enough basis



Fig. 3. Linear Discrete Motion Gestures can be differentiated when K is
high such that the DMP’s attractor dynamics move faster than the actual
demonstration making the forcing function non-zero.

weights (eg: when basis weights per dimension = 1) causes
under-fitting with higher bias errors.

VI. DISCUSSION

The results with regards to the ability of a supervised
GMM to classify rhythmic gesture is strange and very un-
expected. There are many possible explanations and some
of are discussed here. It’s possible that since there are only
2 rhythmic gestures, classifying between the two is easy as
the GMM always return the best guess. The weights of each
rhythmic gesture could also be sufficiently different in terms
of forcing function noise, so fitting a GMM on two noise
distributions was sufficient to discriminate between the two
rhythmic gestures.

The hope was to show that rhythmic gestures will com-
pletely fail and using the rhythmic formulation of DMPs
will be necessary. However, to even use the rhythmic DMP
formulation for proper comparison, more rhythmic gesture
types need to be recorded. Still, with the gestures used in this
study, the static, discrete, and rhythmic gestures were classified
successfully. Thus, until further study is conducted, hypotheses
5 and 6 are false but with low confidence.

The second surprising finding is that while the static and
discrete gestures were classified successfully, confirming hy-
potheses 2 and 3, it did so while also classifying two different
types of discrete linear gestures. The traditional thinking is that
discrete linear gestures will have a 0 forcing function. This is
why in [5] the motion gestures performed were all letters
as trying to different linear motions could be problematic.
However, here the results show that recognizing between two
linear discrete gestures is possible. An intuitive explanation is
provided in Figure 3. That is, if K of the DMP is set to be
very high such that the attractor dynamics moves faster than
the demonstration, the forcing function is non-zero and any
type of linear motion in x-y-z can be classified.

In fact, this finding is predicted much earlier by looking at
the similarity matrix between the two linear gestures in Figure
2. It is evident that they have no similarity at all.

This finding has an additional consequence. That is, it is
also possible to detect richer types of static gestures. For
example, suppose that recognizing between two types of static
arm gestures is necessary. The coordinates can be set to the
angle formed by the upper arm to the shoulder and the angle
formed by the elbow to the upper arm as shown in [2]. Then,
for all static gestures, the goal position can be set away from
the user as indicated in Figure 4. However, the additional

Fig. 4. Recognizing static gestures is possible by setting the goal position
away from the user and using features such as arm angle relative to the body
of the user.

complication is that the goal position is now different. Thus,
to make this work with the framework, a higher level classifier
is needed to distinguish between static and discrete gestures.

VII. CONCLUSION

In this work the recognition of static, discrete, and rhythmic
gestures were performed by using the discrete formulation of
DMPs. In particular, the forcing function of the DMP was used
to represent the gesture in which the weights obtained from
local-weighted regression of equally-spaced gaussian functions
were the features.

Using only GMMs for classification, it was found that un-
supervised clustering can potentially be used to automatically
learn different gesture types. However the high variability of
the unsupervised GMM in the results shows that it will be
unreliable.

On the other hand, using supervised GMM clustering pro-
vided an easy way to train a classifier while performing
reliable recognition at a high accuracy especially when the
number of basis weights are tuned. In particular, the classifier
was able to distinguish between discrete and static gestures.
Additionally, the classifier was also able to recognize different
types of discrete linear motion under the DMP framework.
This is an unexpected result as the DMPs of the two linear
motions were expected to be different.

Finally, another unexpected result shows that the GMM can
also classify rhythmic gestures even though the gestures were
represented as discrete motions. However, there are not enough
rhythmic gestures in this data set to truly claim that the discrete
DMP formulation can classify all types of rhythmic gestures.

Overall, this work demonstrates that using the new discrete
formulation of DMPs is an effective method for recognizing
spatially and temporally invariant movement gestures. Once
the gestures are recognized, a mapping between the gesture to
intention may be formulated.

VIII. FUTURE WORK

In this work, only one static gesture was tested. Still,
experiments with the discrete linear gestures resulted into a
finding that DMPs can also represent richer static gesture
types, but experimental validation remains. As a potential
approach, identifying static gestures can be recognized with
the current framework. Since it is static, the forcing function
will be close to 0 as the goal and start positions are very



close. Then after recognizing that the gesture is a static type,
another GMM that classifies different type of static gestures
can be used with the goal position explicitly specified.

Another future work is on the topic of rhythmic gestures. It
is still not convincing that the discrete formulation of DMPs is
enough to classify rhythmic gestures. In the future, two better
ways of recognizing rhythmic gestures exist. The first is to use
the rhythmic formulation for DMPs and use the learned basis
weights for classification. Second, performing alignment on
the data and approximating one period of the demonstration
using a fourier transform can give consistent basis function
weights.

Another problem with the current classification scheme
is that it cannot handle incorrect gestures as the current
framework only assumes that all gesture demonstrations is
represented by the GMM. Thus the classifier always returns
the best maximum guess for any given gesture. This can be
fixed by doing some threshold study after the best cluster
membership is selected.

Finally, while using DMPs is invariant to different temporal
demonstrations of similar gestures, the classifier will not be
able to identify when the desired gesture has begun or ended.
Thus, this will fail when a time series of data is given without
some heuristics given to the system. An example heuristic
for example could be detecting minimum velocity onset for
both start and ending conditions [5]. However, this has the
disadvantage that no gesture is ever given when the velocity
is less than the specified threshold and gestures are assumed to
be always given when the velocity is greater than the threshold.
Perhaps a better approach to handle continuous time series is
to use a change-point-detection algorithm [8].
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