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Stability and Performance
Analysis of Time-Delayed
Actuator Control Systems
Time delay is a common phenomenon in robotic systems due to computational require-
ments and communication properties between or within high-level and low-level control-
lers as well as the physical constraints of the actuator and sensor. It is widely believed
that delays are harmful for robotic systems in terms of stability and performance; how-
ever, we propose a different view that the time delay of the system may in some cases ben-
efit system stability and performance. Therefore, in this paper, we discuss the influences
of the displacement-feedback delay (single delay) and both displacement and velocity
feedback delays (double delays) on robotic actuator systems by using the cluster treat-
ment of characteristic roots (CTCR) methodology. Hence, we can ascertain the exact sta-
bility interval for single-delay systems and the rigorous stability region for double-delay
systems. The influences of controller gains and the filtering frequency on the stability of
the system are discussed. Based on the stability information coupled with the dominant
root distribution, we propose one nonconventional rule which suggests increasing time
delay to certain time windows to obtain the optimal system performance. The computa-
tion results are also verified on an actuator testbed. [DOI: 10.1115/1.4032461]

1 Introduction

Due to data processing, data transition, and physical perform-
ance constraints of sensors and actuators, delay is certainly inevi-
table in almost all the robotic systems. The main sources of delay
in these systems are sensing, actuation, and communication. The
negative influence of the delay on the robotic systems has been
studied for several decades, and it has been commonly believed
that the delay is detrimental for system stability and performance
[1–9]. However, the works in Refs. [10–14] have shown the useful
effects of the system delay. Therefore, in this paper, we propose
that for some robotic systems, increasing the feedback delay can
stabilize and also improve the overall system performance. More
specifically, we shall discuss the influences of time delay on
robotic systems using a powerful tool called CTCR [15–20]. To
validate the proposition, we will pursue the following studies.

We will construct a model of a robotic actuator and introduce
the displacement-feedback delay and the velocity-feedback delay
into our model.

We will obtain the exact stability interval for a displacement-
feedback delay (single-delay) system and rigorous stability region
for the system with both displacement-feedback delay and

velocity-feedback delay (two/double delays) using the CTCR
method.

We will discuss the performance of the system by changing the
system delay(s) within the stability interval/region.

1.1 Related Work in Robotics Literature. One of the typi-
cal robotic systems is the bilateral teleoperation system, which
has seen application in the areas of undersea exploration, outer
space exploration, toxic material handling, and modern automa-
tion factories [21–25]. The bilateral teleoperation system enables
robots to accomplish operations at a distance by the exchange of
the information between a master robot and a slave robot. Ohnishi
et al. [26,27] described bilateral telehaptics over a network to sup-
port human activities in remote environments and pointed out that
the time delay compensation enables real world haptics to be uti-
lized for various teleoperation applications like telesurgery. Since
the communication network is a part of the system, Cheong et al.
[28] gave a communication delay parameterized stability analysis
of the bilateral teleoperation system.

Several methods were proposed to reduce the influence of the
delay on the bilateral teleoperation system. The Smith predictor
was adopted for the preknown constant delay of the system [29].
The passivity-based control principle [30–32] is another powerful
tool to design the time delay robotic systems, based on which sev-
eral approaches were proposed to reduce the influence of delays in
single-master single-slave teleoperation systems [33] and single-
master multiple-slave teleoperation systems [24,34]. Similar to
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the Smith predictor or passivity-based control, Insperger et al.
[35] proposed the act-and-wait control concept for a digital force
control model with proportional feedback subject to a short, one
sample unit feedback delay. By using this method, the propor-
tional gain can be increased significantly without losing stability.
By applying linear matrix inequalities and adaptive techniques, a
fuzzy control strategy to reduce the influence of the stochastic
delays was proposed in Ref. [36]. Bilateral teleoperation of holo-
nomic constrained time delay robotic system was discussed in
Ref. [37], where the partial feedback linearization method was
used to decouple the delay dynamics from the local master/slave
position/force unmodeled dynamics. Reference [38] gave an
extensive study on Smith predictor-based control for haptic sys-
tems subject to distributed time delays. However, all of the above
methods were concentrating on designing new control algorithms,
which is cumbersome for most situations.

One of the most popular architectures in today’s robotic sys-
tems is a distributed control architecture because of its modularity
and high degree of flexibility [39–41]. A good example in this
case is the hypothetical robot as shown in Fig. 1, which uses em-
bedded systems located at each actuator to perform joint control.
Typically, the high-level controller is responsible for generating
reference trajectories to the distributed low-level controllers, but
due to the computation density and communications with low-
level controllers, the high-level controller is always subject to
larger delays. On the contrary, although the low-level controllers
lack information of the whole system they usually experience
smaller delays because each low-level controller is only responsi-
ble for computation of its own actuator and there is no communi-
cations between different actuators through low-level controllers
(more detailed reasons for using distributed control architecture in
robotics can be found in Ref. [41]).

Distributed control architecture is also widely used in wireless
sensor network where each sensor node only takes care of its own
computation and communication with gateway [42]. Another
example of distributed control design can be seen in high-mixed
semiconductor manufacturing run-to-run process control where
the same kinds of products are grouped together, and the control
actions are made based on the output of the latest product of the
same kind instead of the output of the previous product (which
may be different) [43–48].

Our actuator testbed at the Human Centered Robotics Lab at
the University of Texas at Austin (UT), Austin, TX serves as a

good example of a robotic system with distributed controller
architecture. Based on the Nyquist stability criterion, Zhao et al.
[49] discussed the performance of the UT actuator testbed with
different fixed time delays. Paine and Sentis [50] gave a closed-
form solution for selecting maximum critically damped actuator
impedance parameters for the known fixed delay of the system.

However, all of the above works focused on the stability prob-
lem of the system with a given delay or achieved conservative
results for an unknown time delay. In this paper, we give the first
exact analytical solution to characterize the maximum tolerable
delay (MTD)/latency (the maximum delay of the system before it
becomes unstable) of the system. The authors think that this is
important especially in distributed systems because knowing the
maximum latency of the system will ease the real-time hard
scheduling problem by giving a lower priority for the task which
has the larger maximum tolerable latency. The CTCR method
which examines the stability property rigorously shines light on
the unusual behavior associated with increased delays. Therefore,
the main contributions of this paper are as follows:

(i) The maximum stability interval for a single-delay robotic
system and the maximum stability region for a double-
delay robotic system have been obtained by using the
CTCR technique. One of the important properties of the
obtained stability interval and region is that they are exact
and not approximated.

(ii) Based on the stability information of the robotic system,
we proposed one unconventional method to increase sys-
tem delay within the maximum tolerable stability interval/
region to improve the system overall performance.

Although our analysis will be mainly focused on analyzing
time delay of the UT actuator testbed, the same procedures can be
easily implemented to analyze other time-delayed robotic
systems.

The remainder of the paper is organized as follows: In Sec. 2,
we will summarize the CTCR methodology for both single time
delay and multiple time delay systems (TDS). In Sec. 3, perform-
ance for TDS will be discussed. Sections 4 and 5 examine the
influences of single time delay and double time delays on the UT
actuator testbed and how to improve the system performance will
also be addressed. Experimental validation of our analysis will be
done in Sec. 6, and the concluding remarks are presented in
Sec. 7.

Fig. 1 Hypothetical robot control architecture
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2 Stability Theorems for Time Delay Linear Time

Invariant (LTI) Systems

Stability is one of the important properties of any real system.
An unstable system should not be used in any case. In this section,
one powerful stability tool for LTI systems with single delay and
multiple delays will be summarized.

2.1 Single TDS. A general class of LTI-TDS is given by the
form

_X tð Þ ¼ AX tð Þ þ BX t� sð Þ (1)

where X 2 Rn is the state of the system, and A;B 2 Rn�n are the
system matrix and the input matrix, respectively, both of which
are constant. s 2 Rþ is the time delay of the system.

The stability of this kind of system is determined by the roots
of its characteristic equation (CE), which is obtained by Laplace
transform with Laplace variable s and a proper dimensional iden-
tity matrix I, i.e., the CE of system (1) is

CE s; sð Þ ¼ det sI � A� Be�ssð Þ ¼ 0 (2)

which can be expanded to obtain

CE s; sð Þ ¼ an sð Þe�nss þ an�1 sð Þe� n�1ð Þss þ � � �

þa1 sð Þe�ss þ a0 sð Þ ¼
Xn

j¼0

aj sð Þe�jss (3)

where aj sð Þ are the polynomials in s with real coefficients of
degree n� j. Interestingly enough, this kind of system is
“retarded” due to the fact that the derivative term in Eq. (1) is not
influenced by the time delay and sn term only appears at a0 sð Þ.
Notice that a0 sð Þ in Eq. (3) is the only polynomial which contains
the highest order, n, of s, and no delay term accompanying it [51].

It is well known in control theory that system (1) is asymptoti-
cally stable if and only if all of the characteristic roots of its CE
are located in the left-half of the complex plane; each of these
roots with negative real part pushes X tð Þ to 0 as t! þ1. How-
ever, the CE of system (1) in form (2) (or in its generic form (3))
is transcendental, having infinitely many roots. As discussed in
Refs. [51–54], for the retarded LTI-TDS, there are an infinite
number of roots in the left-half plane and a finite number of roots
in the right-half plane (if any exist); the number of purely imagi-
nary roots has an upper bound [17].

One of the possible root distributions in the complex plane for
system (1) is shown in Fig. 2, where the stable root (blue) repre-
sents the complex root with negative real part. An unstable root
(red) refers to a complex root with positive real part. The imagi-
nary roots on the imaginary axis are depicted in black.

The examination of the location of infinite many roots is a com-
plex task, and several methods have been proposed in Refs.
[55–57], but unfortunately none of them resolved the problem
completely. In Refs. [58–61], the researchers proposed simplified
tests for determining the ranges of stability which involve the
introduction of a pseudodelay T in the form of

e�ss ¼ 1� Ts

1þ Ts
T 2 R (4)

which only holds on the imaginary axis, i.e., s ¼ 6xi and
i ¼

ffiffiffiffiffiffiffi
�1
p

(since the root loci are symmetric with respect to the
real axis, we only concentrate on s ¼ þxi and ignore the case of
s ¼ �xi). The existence of Eq. (4) was guaranteed by the
D-subdivision method (or the “continuity argument”), which
states that there are regions within which the number of unstable
(NU) root of Eq. (2) is fixed, and there are at least one pair of
purely imaginary roots for each s on the boundaries which

separate these regions [62]. By using the D-subdivision method,
one can develop a complete description of the stability regions in
the delay space. The application of the D-subdivision method for
LTI-TDS can be found in Refs. [63–66]. The substitution of the
transcendental term with a rational function in the form of Eq. (4)
is often called the Rekasius substitution in the control and math
literature.

It is obvious that the angular mapping condition of the Rekasius
substitution is

s ¼ 2

x
tan�1 xTð Þ6lp
� �

l ¼ 0; 1;…;þ1 (5)

from which one knows that there are an infinite number of values
of s that can be mapped onto the same x.

Substituting Eq. (4) into Eq. (3), one obtains

Xn

j¼0

aj sð Þ 1� Ts

1þ Ts

� �j

¼ 0 (6)

multiplying Eq. (6) with 1þ Tsð Þn and grouping by powers of s,
one gets

CE s;Tð Þ ¼
X2n

j¼0

bj Tð Þsj (7)

which is a polynomial of degree 2n with coefficients bj (polyno-
mials in T). Its pure imaginary roots coincide with the pure imagi-
nary roots of Eqs. (2) and (3). It is important to note that the
Rekasius substitution is an exact method, unlike the Pade approx-
imant or the Kautz formula methods.

By the Rekasius substitution, the transcendental CE (2) or (3),
which has an infinite number of solutions, has been reduced to a
finite polynomial equation and hence possesses only a finite num-
ber of solutions. This in return makes detection of the stability of
the LTI-TDS analytically tractable. Since T has an infinite range,
it is important to note that the imaginary crossings are not lost
with the dimensional reduction from Eqs. (3) to (7). The system-
atic detection of the stability of LTI-TDS is introduced first in a
method called CTCR by Olgac and Sipahi [15,16].

The main philosophy behind the CTCR paradigm is the
“clustering” of all possible imaginary crossing frequencies in
delay domain. This method starts with exhaustively finding these
crossing frequencies and then determining the root tendencies at
each crossing. The following is an outline of the CTCR paradigm:

(i) The LTI-TDS only has a finite number of possible imagi-
nary characteristic roots xci for all s 2 Rþ, where xc is
given in a set

xc ¼ fx1
c ; x2

c ;…; xm
c g m < þ1 (8)

Fig. 2 Possible root distribution of retarded LTI-TDS
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and subscript c refers to “crossing” the imaginary axis, the super-
script m means the mth crossing.

(ii) For each imaginary crossing, s ¼ xk
ci, k ¼ 1; 2;…;m,

there are infinite many periodically spaced s values, i.e.,

sk ¼ fs0
k ; s

1
k ;…; sj

k;…; s1k g (9)

where the subscript k of sk corresponds to delay for the xk
c, and

the superscript j refers to the jth solution in sk. From the angular
mapping condition of the Rekasius substitution, i.e., Eq. (5), one

obtains that sj
k ¼ 2=xk

c tan�1 xk
cT

� �
6jp

� �
and slþ1

k � sl
k ¼ 2p=xk

c.

Since the time delay for the real system cannot be negative, one
always only consider the positive time delays.

(iii) The root tendency (RT) associated with each purely imagi-
nary characteristic root, s ¼ xk

ci, is defined as

RTjs¼xk
ci;s¼sk

¢sgn Re
ds

ds

				
s¼xk

c i;s¼sk

 !" #
(10)

is invariant at each purely imaginary characteristic root, s ¼ xk
ci,

and corresponding infinite delays sk, i.e.,

RTjs¼xk
c i;s¼sk

¼ RTjs¼xk
ci;s¼sj

k
(11)

where ds=ds can be obtained from Eq. (2), i.e.,

ds

ds
¼ �

@CE s; sð Þ
@s



@CE s; sð Þ

@s
(12)

Note that RT describes the direction of transition of the roots at
s ¼ xk

ci as sl
k increases from sl

k � e to sl
k þ e, 0 < e � 1. If

RT ¼ þ1, which means the roots cross the imaginary axis from
the left-half plane to the right-half plane, the corresponding delays
will bring the instability into the system (Fig. 3(a)). On the other
hand, if RT ¼ �1, the roots cross the imaginary axis from the
right-half plane to the left-half plane, and the corresponding
delays will possibly stabilize the system (Fig. 3(b)).

The imaginary crossing frequencies can be efficiently obtained
by using Routh array properties (the Routh array for Eq. (7) is
listed in Table 1) [15,16].

The following is a brief review of the properties of the Routh
stability criterion.

If Eq. (7) has a pair of purely imaginary roots, then the next
two conditions must be satisfied:

(i) The only term on the row corresponding to s1, call it
R11 Tð Þ, must be zero.

(ii) The two terms on the row corresponding to s2, call them
R21 Tð Þ and R22 Tð Þ, must satisfy the so-called “auxiliary
equation”

R21 Tð Þs2 þ R22 Tð Þ ¼ 0 (13)

and the sign agreement (to exclude the asymmetric real roots
case) between these coefficients must be satisfied, i.e.,

R21 Tð Þ � R22 Tð Þ > 0 (14)

and whenever Eq. (14) holds, the corresponding frequency is

xc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R22 Tð Þ=R12 Tð Þ

q
(15)

When implementing the CTCR method, one needs to find each
Tk

c which satisfies R11 Tk
c

� �
¼ 0 and then the corresponding fre-

quencies s ¼ xk
ci can be determined from Eq. (15). By using Eq.

(9), the infinite number of delays for each xk
c can be found

exhaustively, and therefore, their RT can be examined directly by
using Eq. (10). Schematically, the correspondence is as follows:

Tk
c �!

generates
xk

c �!
generates

sk; k ¼ 1; 2;…;m (16)

From the above analysis, one can establish xk
c; sk

� �
, and the sta-

bility of the LTI-TDS is determined by the following steps [15]:

(i) Form a table of sl
k, where k ¼ 1; 2;…;m,

l ¼ 1; 2;…;þ1, and corresponding RTjs¼xk
c i;s¼sk

in
ascending order of sl

k.
(ii) Obtain the NU roots for s ¼ 0 from the Routh stability

criterion.
(iii) Calculate the NU roots by using the information of

RTjs¼xk
c i;s¼sk

. If RTjs¼xk
ci;s¼sk

¼ þ1, then increase NU by

2; if RTjs¼xk
c i;s¼sk

¼ �1, decrease NU by 2.

(iv) Repeat the previous step for the next sl
k until the sk of

interest is reached.
(v) Identify those regions in sk, where NU sð Þ ¼ 0 as stable

and others as unstable.

Remark. It is impossible to form a table with infinite many
delays. In the real implementation of CTCR, it proves out that it is
unnecessary to consider all the delays. What one needs to do is
calculate the NU for the first few delays until there are delays for
each imaginary crossing. Repeat this step several times, and note

the pattern of NU based on the RT and sj
k. The stability of the sys-

tem can be easily judged based on the pattern of NU.

2.2 Multiple TDS. As described in Ref. [67], the stability
problem for multiple TDS is N-P hard due to the lack of a numeri-
cally efficient algorithm to solve it. Implementing the same idea
as CTCR, this problem becomes tractable but still N-P hard
[18–20]. For the LTI system with multiple (P) independent time
delays in the form of Eq. (17), we summarize the main results
obtained by implementing the CTCR methodology

_X tð Þ ¼ AX tð Þ þ
XP

J¼1

BJX t� sJð Þ (17)

where the capital J for subscript is used here to differentiate from
the single time delay case.
The CE of this kind of system is

CE s; sð Þ ¼ CE s; s1; s2;…; sPð Þ

¼ det sI � A�
XP

J¼1

BJe�sJ s

 !
¼ 0 (18)

The same as single time delay LTI systems, by implementing
the Rekasius substitution on each delay sJ , one obtains the pseudo
delay TJ which satisfiesFig. 3 RT of retarded LTI-TDS
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e�sJs ¼ 1� TJs

1þ TJs
TJ 2 R (19)

and substituting Eq. (19) into Eq. (18), the resulting equivalent
CE on imaginary axis is

CE s;Tð Þ¢CE s;T1;T2;…; TPð Þ ¼
X2n

J¼0

bJ T1;T2;…;TPð ÞsJ (20)

In order to examine the influences of delays on the
imaginary crossings, we map the solution of Eq. (20) for each

crossing s ¼ xK
c i (capital K for superscript refers to the Kth

crossing) into delay space by using Eq. (19) and denote its solu-

tion as sK ¼ fsK
10 þ 2p=xK

c

� �
K1; sK

20 þ 2p=xK
c

� �
K2; …; sK

P0

þ 2p=xK
c

� �
KPg with 0 � sK

J0 < 2p=xK
c , K ¼ 1; 2;…;M, and

K1;K2;…; KP ¼ 0; 1; 2;…;þ1. Furthermore, we define the

smallest positive delay set, sK
kernel¢sK jK1¼K2¼���¼KP¼0, and the

remaining sets as sK
offspring¢sK � sK

kernel. The corresponding kernel

hyperplanes and offspring hyperplanes consist of the delays at all

the imaginary crossings: }kernel ¼ s1
kernel; s

2
kernel;…; sM

kernel

� �
and

}offspring ¼ s1
offspring; s

2
offspring;…; sM

offspring

n o
.

The following results are held:

(i) The offspring hyperplanes are uniquely determined by ker-
nel hyperplanes.

(ii) The RT

RTjs¼xK
c i;s¼sK

J0
¢sgn Re

ds

dt

				
s¼xK

c i;s¼sK
J0

 !" #

is invariant as long as the grid points on different offspring

hyperplanes are selected, while the sK
Q0 þ 2p=xK

c

� �
KQ (with Q

¼ 1; 2;…; J � 1; J þ 1;…;P and KQ ¼ 0; 1;…;þ1) are kept
unchanging, i.e., for a specific crossing frequency, the RT on off-
spring hyperplanes is the same as the RT on the corresponding

kernel hyperplanes RTjs¼xK
c i;s¼sK

J0
¼ RTjs¼xK

c i;s¼sK
J0
þ 2p=xK

cð ÞKJ


 �
.

(iii) The possible stability switch can only take place on the
kernel hyperplanes and offspring hyperplanes.

The same as in the single time delay case, for the multiply time
delay case, we claim that the regions with NU sð Þ
¼ NU s1; s2;…; sPð Þ ¼ 0 are stable for the system, and the regions
with NU sð Þ ¼ NU s1; s2;…; sPð Þ > 0 are unstable for the system.

Detailed proofs can be found in Refs. [18–20].
Since Eqs. (19) and (20) have multiple variables TJ 2

fT1;T2;…;TPg in them, one cannot use Routh array properties to
calculate the crossing frequencies. Instead the half-angle substitu-
tion method can be adopted. To simplify our illustration, we use
the two-TDS as an example and the angular mapping condition
can be obtained from Eq. (19)

TJx ¼ tan
nJ

2

� �
¼ ZJ (21)

where nJ ¼ sJx 2 0; 2p½ Þ and J ¼ 1; 2. By substituting Eq. (21)
into Eq. (20), one can obtain the CE of the two TDS

q s;Z1;Z2ð Þ ¼
Xn

L¼0

CL Z1;Z2ð ÞsL ¼ 0 (22)

with coefficients of CL (polynomials in both Z1 and Z2). In order
for Eq. (22) to hold, both imaginary and real parts of q s;Z1;Z2ð Þ
with s ¼ xi should be 0, i.e.,

Re q s;Z1;Z2ð Þð Þ ¼
Xn

L¼0

fL Z1; Z2ð ÞxL ¼ 0

Im q s; Z1; Z2ð Þð Þ ¼
Xn

L¼0

gL Z1;Z2ð ÞxL ¼ 0

8>>>>><
>>>>>:

(23)

where fL and gL are the coefficients of the real part and imaginary
part of q xi;Z1;Z2ð Þ, respectively. The common root of Eq. (23)
can be obtained by using the Sylvester method [68]

M �WT ¼ 0 (24)

where WT ¼ xn xn�1 � � � x1 x0ð ÞT and

M ¼

fn

0

�

0

0

gn

0

�

0

0

fn�1

fn

�

0

0

gn�1

gn

�

0

0

� � �
� � �
. .

.

…

…

…

…

. .
.

…

…

f0

f1

�

fn

0

g0

g1

�

gn

0

0

f0

�

fn�1

fn

0

g0

�

gn�1

gn

…

…

. .
.

…

…

…

…

. .
.

…

…

0

0

�

f0

f1

0

0

�

g0

g1

0

0

�

0

f0

0

0

�

0

g0

0
BBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCA

(25)

the arguments Z1;Z2ð Þ of both functions f Z1;Z2ð Þandg Z1; Z2ð Þ
have been omitted for brevity. Equation (24) has solution only if
the determinant of the Sylvester’s resultant matrix (M) is singular
[69].

One can scan n1 through 0; 2p½ Þ and calculate n2 from Eq. (24),
i.e., for each fixed n1, the n2 can be evaluated based on the singu-
larity condition of Eq. (25), and the corresponding x value can be
obtained from Eq. (23). Note that each (n1; n2) will result in a pair
of 6x. With the information of (n1; n2; s), and the kernel hyper-
planes }kernel and the offspring hyperplanes }offspring can be
obtained directly; therefore, the stability of the system can be
checked on the kernel and corresponding offspring hyperplanes.

For the system with arbitrary number of delays, Refs. [70] and
[71] provide advanced methodologies to find the kernel and off-
spring hyperplanes.

3 System Performance for LTI-TDS

If a system is proved to be stable, one should then inspect the
next important property performance. In this section, we will dis-
cuss the influences of the root of the CE on the system perform-
ance and propose a delay selection rule to improve the system
performance for LTI-TDS.

For a second-order delay-free system, the specifications like
rise time, settling time, overshoot, and peak time for the step
response are often examined during control system design. Linear
quadratic regulation (LQR) method and model approximation
approach are widely adopted in higher-order system designs. The
LQR method always gives an exact solution, while the model
approximation approach usually renders approximate solutions by
reducing a higher-order system into a second-order system. Let us

Table 1 Routh array for CE of Eq. (7)

s2n b2nðTÞ b2n�2ðTÞ � � � b0

� � � � �
s2 R21ðTÞ R22ðTÞ ¼ b0

s1 R11ðTÞ
s0 R01ðTÞ¼ b0
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define DI as the distance between the dominant root and the imag-
inary axis. In order to obtain a good solution, the model approxi-
mation method requires that all the other roots of the CE of the
closed-loop system must be at least five times DI from the domi-
nant (rightmost) root. However, it is impossible to do the rigorous
performance analysis for generic LTI-TDS because of the infin-
itely many roots of its CE and the fact that there is no explicit for-
mula solution for a general equation with an order higher than
four (also known as the Abel–Ruffini theorem).

In the real applications, one is more concerned about the time
required for the transient to decay to a small value so that the
desired output is almost in the steady-state. The time required is
mainly determined by the dominant roots of the CE of both LTI-
TDS or delay-free LTI system. Therefore, we will use the real
part of the dominant root as the main factor to analyze the system
performance especially for the settling time in this section. The
possible use of LQR and pole placement methods for LTI-TDS
are subjects for future research.

If there are infinitely many dominant roots in the complex
plane, then it is impossible for us to analyze the system perform-
ance. Fortunately, the following lemma guarantees a finite
number of dominant roots:

LEMMA 1. For any q 2 R, the number of roots of the CE of the
retarded LTI-TDS in the half plane of Re sð Þ > q is finite
[72,73,74].

A mapping-based algorithm called QPMR algorithm is widely
used to find the roots of the CE (see Refs. [74–76] for details). In
implementing the QPMR algorithm, one substitutes s ¼ aþ bi with
a;b 2 R into the quasi-polynomial (i.e., the CE of the system)
and separates this quasi-polynomial into real and imaginary parts.
The intersection points of these two parts are the solution of the
quasi-polynomial, i.e., the root of the CE.

By adopting the CTCR method, one can always find the MTD
for each stable interval of the system with a single-delay and max-
imum tolerable delay region (MTDR) for each stable region of the
system with multiple delays. It is worth pointing out that, for
some systems, there are more than one stable interval/region. The
MTD here means the maximum delay that the system can bear
before it changes from stable to unstable for the single-delay sys-
tem. The MTDR means the maximum delay combination within
which the system is stable for multiple delays case.

The MTD/MTDR information coupled with Lemma 1 may ena-
ble us to improve the performance of the system by choosing
proper delay/delay-combination which is no greater than MTD or
within MTDR. We propose the following rule for selecting the
latency of the system.

3.1 Delay Selection Rule

(1) If the real part of the rightmost characteristic root Re sfirst
dom

� �
is five times DI from other roots, we choose the delay s
which leads to the smallest Re sfirst

dom

� �
.

(2) If the real part of the rightmost characteristic root Re sfirst
dom

� �
is close (less than five times DI) to the real part of its

nearest root Re ssecond
dom

� �
, we choose the delay s which maxi-

mizes the following function:

max
s
�k1 � Re sfirst

dom

� �
þ k2 � Im ssecond

dom

� �� �
(26)

subject to

k1 þ k2 ¼ 1; k1; k2 2 Rþ (27)

where k1 and k2 are the weights determined by real application
requirements.

Since the settling time is approximately four times of the sys-

tem time constant �1=Re sfirst
dom

� �
, when Re sfirst

dom

� �
and Re ssecond

dom

� �
are close to each other, one should try to increase the weight of

Im ssecond
dom

� �
to accelerate the peak time of the response.

Note that the delay selection rule does not necessarily generate
the delay value of zero. In other words, increasing the delay of the
system purposely may give the system better performance than a
delay-free case.

Although the system may have multiple stable intervals/
regions, one is likely more interested in the MTD/MTDR for the
first stable interval/region, because the system is prone to achieve
better performance by choosing a delay within this interval/
region, this is more evident when the second stable interval/region
is far away from the first stable interval/region.

The following example is used to explain the reason why the
system is prone to have better performance in the first stable
region.

Taking the single-delay case as an example; if the system is sta-
ble in delay spaces 0; 5ð Þ and 10; 20ð Þ, then the optimal delays
will fall within these intervals. Given the optimal delays are 3 s
and 11 s and the settling times of the system are 10 s and 5 s, then
the entire process takes 13 s and 16 s. Although the settling time
for the 11 s optimal delay is shorter, we prefer using the optimal
delay in the first stable interval because the entire process takes
only 13 s opposed to 16 s.

4 Robotic Actuator Control Systems With

Displacement-Feedback Delay

In this section, we will discuss the influences of filtering fre-
quency and controller gains on the MTD of the UT actuator
testbed with displacement-feedback delay by using the CTCR
tool. Based on the knowledge of MTD, the system performance
will be discussed for different time delays within MTD. In addi-
tion, the possible ways of improving system performance will be
discussed.

4.1 System Model. As mentioned in Ref. [50], most typical
actuators (see Fig. 4) can be modeled as a force (Fext) on a mass-
(m) damper (b) system. The total system impedance, which repre-
sents the relationship between force and the displacement (X) of
the actuator, is composed of both the impedance of the system
(Zpassive) and the impedance caused by the force (F) supplied by
the actuator (Zactive), i.e.,

Z sð Þ ¼
Fext sð Þ
X sð Þ

¼ Zpassive sð Þ þ Zactive sð Þ (28)

where Zpassive ¼ �ms2 � bs and Zactive ¼ F sð Þ=X sð Þ.
If the proportional-derivative (PD) controller with derivative

filter is used to generate actuator force, then one obtains

Fig. 4 Actuator model with external force and actuator force:
(a) schematic and (b) model
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F sð Þ ¼ KD � Xd sð Þ � X sð Þð Þ
þKt � s � Xd sð Þ � X sð Þð Þ � Qt sð Þ (29)

where KD is the P-controller gain, Kt is the D-controller gain, Xd

is the desired actuator displacement, and Qt ¼ 2pft= sþ 2pftð Þ is
the first-order filter with the frequency ft.

In real applications, however, there is always a delay in the
actuator system due to computation and communication time
requirements. The block diagram for the UT actuator testbed with
displacement-feedback delay of value sD is depicted in Fig. 5. In
the figure, the actuator force is transformed into motor current
(I sð Þ) by a constant G sð Þ ¼ 1= NCgð Þ, where N is the speed reduc-
tion, C is the motor torque constant, and g is drivetrain efficiency.
The transfer function between the motor current and displacement
is denoted by P sð Þ and P sð Þ ¼ NCg= ms2 þ bsð Þ.

The system with PD-controller coupled with a first-order filter
described above is with single time delay, and the closed-loop
transfer function for this system is

Gsingle�delay
cl sð Þ¼

KtsþKD

ms2þbsþ KtQt sð ÞsþKDð Þe�sDs

¼ Kts
2þ 2pftKtþKDð Þsþ2pftKD

ms3þ 2pftmþbð Þs2þ2pftbsþ 2pftKtþKDð Þsþ2pftKD½ �e�sDs

(30)

It is evident that if sD ¼ 0 and Qt sð Þ ¼ 1, then the above
system is exactly second-order delay-free mass–damper system.
In the UT actuator testbed, for the full actuator experiment, m ¼
256 kg and b ¼ 1250 N � s=m are used.

4.2 MTD Analysis. We first use a simple example to illus-
trate how to obtain the MTD of the system by using the CTCR

method. In this computation, the values of ft ¼ 50, KD ¼ 363833,
and Kt ¼ 18051 are randomly chosen, the CE of closed-loop
system is

CE s; sDð Þ ¼ 256s3 þ 81; 634s2 þ 392; 500s

þ 6; 031; 847sþ 114; 243; 562ð Þe�sDs
(31)

The pioneering researches in computing the imaginary cross-
ings and delays for the problem in form of Eq. (31) can be found
in Refs. [77–82].

The characteristic roots of the delay-free system are �25:23,
�84:60, and �209:6, all of which are located on the left-half
plane. Therefore, the delay-free system is stable, i.e., NU 0ð Þ ¼ 0.
The maximum delay this system can bear under this set of param-
eters can be obtained by the following steps.

By applying the Rekasius substitution in Eq. (31), one obtains

CE s; Tð Þ ¼ 256Ts4 þ 256þ 81; 634Tð Þs3

þ 81; 634� 5; 639; 347Tð Þs2

þ 6; 424; 347� 114; 243; 562Tð Þs
þ114; 243; 562 (32)

By using the Routh stability criterion in Eq. (32), the auxiliary
equation can be obtained

R21 Tð Þs2 þ 114; 243; 562 ¼ 0 (33)

and the first row of the Routh table is

R21 Tð Þ 6; 424; 347� 114; 243; 562Tð Þ
� 256þ 81; 634Tð Þ14; 243; 562 ¼ 0 (34)

where

R21 Tð Þ ¼ 81; 634� 5; 639; 347 � Tð Þ 256þ 81; 634 � Tð Þ � 256T 6; 424; 347� 114; 243; 562Tð Þ
256þ 81; 634T

Solving Eq. (34), one obtains three T values, represented as

T1
c ¼ �0:0039, T2

c ¼ 0:0087, and T3
c ¼ 0:0753, where Tj

c refers to
the jth solution. In order to satisfy the sign agreement for the par-
ticular case of the Routh stability criterion (see Eq. (14)), i.e.,

R21 Tð Þ � 114; 243; 562 > 0, only T2
c ¼ 0:0087 is selected from

these three T values, and the corresponding crossing frequency
which is calculated from Eq. (15) is xc ¼ 75:1054 rad=s.

Substituting xc and T2
c into Eq. (5), one obtains all delays

sl
D ¼ 0:0154þ 0:0836l with l ¼ 0; 1; 2;…;þ1 for crossing fre-

quency 75.1054 rad/s. In addition, from Eq. (10), one obtains

RTjs¼xci;s¼sl
D
¼ þ1, which means for each sl

D value, the NU roots

of the closed-loop CE of the TDS will be increased by two, and
the only stable interval of the delay for the system is 0; 0:0154½ Þ.
The detailed NU roots in each delay interval are given in Table 2.

Fig. 5 UT actuator testbed with displacement delay
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Following the above schedules, the MTD with different
KD;Ktð Þ combinations is obtained under fixed filtering frequen-

cies ft ¼ 1, 25; 50, and 150 Hz in Figs. 6, 7, 8, and 9, respectively.

In our computations, we choose the P-controller gain KD 2
1:0� 104; 1:5� 106
� �

and the D-controller gain Kt 2 2:0� 103;
�

4:0� 104�, both with step size 1000. There are two considerations
when we choose these ranges for the controller gains: low gains
are not able to generate meaningful output motion and high gains
will saturate the current supply of the actuator’s power source
[50].

All of these four figures show that the MTD can be achieved by
choosing smaller KD and Kt. With the increase of KD, the MTD
will decrease for all the cases for every fixed Kt; however, for the
fixed KD, if one increases the Kt, the MTD may increase, espe-
cially when the filtering frequency is large; some comparison
examples for this case with different filtering frequencies can be
found in Table 3. The delay margin [83] which is the smallest
time delay required to make the system unstable is also calculated
for comparison purpose in this table. In all the 12 examples, the

Fig. 6 Maximum tolerable latency of the system with filtering
frequency of 1 Hz

Fig. 7 Maximum tolerable latency of the system with filtering
frequency of 25 Hz

Fig. 8 Maximum tolerable latency of the system with filtering
frequency of 50 Hz

Fig. 9 Maximum tolerable latency of the system with filtering
frequency of 150 Hz

Table 3 Examples of MTD with different filtering frequencies

ft (Hz) ðKD; KtÞ MTD Delay margin

1 ð6:35� 105; 3:0� 103Þ 1:99� 10�3 2:0� 10�3

ð6:35� 105; 1:7� 104Þ 2:0� 10�3 2:0� 10�3

ð6:35� 105; 3:4� 104Þ 1:95� 10�3 2:0� 10�3

25 ð1:006� 106; 3:0� 103Þ 3:51� 10�3 3:50� 10�3

ð1:006� 106; 1:2� 104Þ 7:17� 10�3 7:20� 10�3

ð1:006� 106; 3:3� 104Þ 6:0� 10�3 6:0� 10�3

50 ð5:15� 105; 1:6� 104Þ 1:42� 10�2 1:42� 10�2

ð5:15� 105; 2:3� 104Þ 1:18� 10�2 1:18� 10�2

ð5:15� 105; 9:0� 103Þ 1:4� 10�2 1:4� 10�2

125 ð9:82� 105; 3:0� 103Þ 4:2� 10�3 4:2� 10�3

ð9:82� 105; 1:8� 104Þ 1:2� 10�2 1:14� 10�2

ð9:82� 105; 3:5� 104Þ 8:9� 10�3 8:7� 10�3

Table 2 Stability interval (shaded) and the NU root of closed-
loop CE

sD (s) RT NU x (rad/s) T

0
0.0154 1 2 75.1054 0.0087
0.0990 1 4 75.1054 0.0087
0.1827 1 6 75.1054 0.0087
� � � � �
0.6010 1 16 75.1054 0.0087
� � � � �
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delay margins are equivalent to their MTDs since the system can
only be stable in the first stable interval. The numerical results of
the MTDs and the delay margins in Table 3 are in full agreement
with each other with slight computational errors.

In addition to the above results, from Fig. 10, one also notices
that with the increase of the filtering frequency, the maximum and
minimum MTD of the system do not necessarily change monot-
onically. However, for the specific controller gain combination,
the increase of filtering frequency will result in the increase of
MTD as shown in Fig. 11, and this phenomenon is more evident
when filtering frequencies are less than 60 Hz.

4.3 System Performance. In this section, the system per-
formance of the UT actuator testbed with displacement-feedback
delay will be discussed based on the delay selection rule proposed
in Sec. 3. For simplicity in the remainder of this paper, we will
refer to the optimal dominant root. The optimal dominant root of
the system is the lowest-valued root of all rightmost roots for
varying delays within each MTD interval. The optimal dominant
root’s corresponding delay is the optimal delay.

Figure 12 is the optimal dominant root of the system for differ-
ent filtering frequencies using four different controller gain com-
binations. From Fig. 12, one notices that for the same controller
gains, the optimal dominant root of the system will decrease with

the increase of the filtering frequency. However, the optimal dom-
inant root will not change too much when the filtering frequency
becomes high and the controller gains are relatively small. This
result and the stability result obtained in Sec. 4.2 demonstrate that
increasing the filtering frequency improves both stability and sys-
tem performance, especially when the filtering frequency is low.

Figure 13 shows the optimal dominant root of systems using
four different filtering frequencies, i.e., ft ¼ 5; 50; 100, and
400 Hz, with controller gains in the ranges we are interested in.
For all the four cases, if the P-controller gain is fixed, an increase
in the D-controller gain will decrease the optimal dominant root
first and then increase the optimal dominant root especially when
the P-controller gain is small. For the fixed D-controller gain,
increasing the P-controller gain will always decrease the domi-
nant root when the filtering frequency is high; however, if the fil-
tering frequency is low, increasing the P-controller gain will
decrease the dominant root first and then increase the dominant
root.

Another result one can draw is that for the low filtering fre-
quency, the dominant root will arrive at optimal when both the
controller gains are the largest; while for the high filtering fre-
quency, this result does not hold anymore and this tells us that in
the real application, increasing the controller gains does not neces-
sarily improve the system performance.

Fig. 10 Optimal tolerable latency of the system with different filtering frequencies

Fig. 11 Maximum tolerable latency of the system with different
filtering frequencies Fig. 12 Optimal dominant root of the system
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Figure 14 shows the corresponding optimal delay values when
the systems in Fig. 13 have the optimal dominant roots. One may
experience certain counterintuitive results regarding system per-
formance. For example, optimal delay values are not necessarily
0, especially when P-controller gain is small for all the four cases.
Also, the optimal dominant root may happen at sD > 0 for some
controller gain combinations with high filtering frequencies.

These are interesting results because one may improve the sys-
tem performance by enlarging the delay of the system to certain
time windows purposely without changing other parameters of the
system.

Figures 15 and 16 are the step responses of the system with ran-
domly chosen controller gains KD;Ktð Þ ¼ 14; 553; 2610ð Þ and fil-
tering frequencies ft ¼ 50 Hz and ft ¼ 121 Hz, respectively. Each
figure shows the system’s varying step response when there is
applied no delay, optimal delay, shorter than optimal delay, and
longer than optimal delay. From both figures, one can see that
when the systems are delay-free, their responses are the worst.
When the filtering frequency is 50 Hz, the system has the best per-
formance for the latency 0:051 s, where the corresponding largest
dominant root of the closed-loop CE of the system is �4.6832.
For the case with filtering frequency of 121 Hz, the largest

Fig. 13 Optimal dominant root of the system using different filtering frequencies

Fig. 14 Optimal delay of the system using different filtering frequencies
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dominant root of the closed-loop CE of the system is �4.6832 if
the latency is 0.036 s; however, the optimal system response among
the four cases is achieved when the latency is 0.056 s with the maxi-
mum dominant root �5.9963. Since �5.9963 is greater than
�6.1244, the system with 0.036 s latency should have better per-
formance than that of the system with 0.056 s latency, but Fig. 16
shows the opposite result. The reason for this result is because of the
distribution of the root of the system which is depicted in Fig. 17.

From Fig. 17, one notices that even though �5.9963 is greater
than �6.1244, the secondary dominant root of the system with

latency 0.056s is �11.4844þ 15.8276i which is much further
away from the real axis than the one (i.e., �25.5165þ 3.9178i)
with latency 0.036 s. The secondary dominant root with the imagi-
nary part which is further away from the real axis will accelerate
the response to achieve the peak value. Therefore, the second root
of the system should be taken into consideration based on the
required specifications. Further, these simulation results coincide
with the delay selection rule proposed in Sec. 3.

5 Robotic Actuator Systems With Displacement and

Velocity Feedback Delays

Following the same line as Sec. 4, in this section, we will dis-
cuss the influences of filtering frequency and controller gains on
the stability of the UT actuator testbed with double delays. Based
on the knowledge of stability map, the system performance will
be discussed for different time delays within the stable region.
However, due to the computational costs we will only choose
some representative parameter sets which are usually used on the
UT actuator testbed to discuss its property.

5.1 System Model. If the velocity feedback (low-level con-
trol) is achieved through an embedded damping servo loop and
the displacement feedback (high-level) is accomplished by an
embedded stiffness servo loop, then the UT actuator testbed
possesses distributed control architecture. Figure 18 is the block
diagram for this system with velocity-feedback delay st and
displacement-feedback delay sD.

If all the other parameters are the same as single-delay in the
UT actuator testbed, the closed-loop transfer function for this
system is

Gtwo�delay
cl sð Þ ¼ Ktsþ KD

ms2 þ bþ KtQt sð Þe�stsð Þsþ KDe�sDs

¼ Kts
2 þ 2pftKt þ KDð Þsþ 2pftKD

ms3 þ 2pftmþ bð Þs2 þ 2pftbsþ 2pftKtse�sts þ KDsþ 2pftKDð Þe�sDs

(35)

It is clear that if st ¼ sD, then the double-delay system is equiva-
lent to the single-delay system described in Fig. 5.

5.2 Maximum Tolerable Latency Analysis. In this section,
we will first use an example to show how to obtain the stability
map for the UT actuator testbed using specific controller gains.
The influences of filtering frequency and controller gains on the
stability of the system will be examined thereafter.

If we choose KD;Ktð Þ ¼ 14; 553; 2610ð Þ and filtering frequency
ft ¼ 50 Hz, then the CE of the system is

CE s; st; sDð Þ ¼ 256s3 þ 81634s2 þ 392500s

þ 14553sþ 4569642ð Þe�sDs

þ819540se�sts

(36)

the roots of the CE without any delay are �6:38, �9:22, and
�303:28, all of which are on the left-half plane, therefore the sys-
tem is stable if there is no delay.

By applying two Rekasius substitutions: e�sDs ¼ 1� TDsð Þ=
1þ TDsð Þ and e�sts ¼ 1� Ttsð Þ= 1þ Ttsð Þ with TD;Tt 2 R in

Eq. (36), one obtains

CE s;Tt;TDð Þ ¼ 256TtTDs5þ 256Ttþ 256TDþ 81;634TtTDð Þs4

þ 81;634Ttþ 81;634TD� 441;593TtTDþ 256ð Þs3

þ �412;487TDþ 1;197;487Tt� 4;569;642TtTDð
þ81;634Þs2þ 4;569;642Tt� 4;569;642TDð
þ1;226;593Þsþ 4;569;642

(37)

Implementing half-angle substitutions Tt¢ tan stx=2ð Þ=x and
TD¢ tan sDx=2ð Þ=x in Eq. (37), a new equation, which is a func-
tion of the two delays and x, can be obtained, i.e.,

CE x; st; sDð Þ ¼ Re CE x; st; sDð Þ
n o

þi � Im CE x; st; sDð Þ
n o

(38)

Notice that Eq. (38) does not contain any transcendental terms,
and it is equivalent to Eq. (36) only if s ¼ xi. The solution for
Eq. (38) can be obtained by using the Sylvester method where stx
changes from 0 to 2p.

The graphical solution for Eq. (38) is shown in Fig. 19, and the
stability property of this system is totally determined by this

Fig. 15 Step response of the system using different latencies
with ðKD ;Kt; ftÞ5 ð14; 553; 2610; 50Þ
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solution. Figure 20 is a two-dimensional visualization of Fig. 19,
where the kernel of the delays is shown. The corresponding cross-
ing frequencies and root tendencies with respect to st (RTst ) and
sD (RTsD

) of the ten points in Fig. 20 are listed in Table 4. From
Fig. 20, the following conclusions can be made:

(1) Any delay combination st; sDð Þ which is slightly outside
(inside) the region confined by the axes and arc ABCD will

bring about two unstable (stable) roots to the CE of the
closed-loop system.

(2) Any delay combination st; sDð Þ which is slightly on the
lower (upper) side of the arc EFG will bring about two sta-
ble (unstable) roots to the CE of the closed-loop system.

(3) Any delay combination st; sDð Þ which is slightly on the
lower (upper) side of the arc HIJ will bring two stable
(unstable) roots to the CE of the closed-loop system.

Fig. 19 Three-dimensional graphic solution for the two-delay
system with ðKD ;Kt; ftÞ5 ð14;553; 2610;50Þ

Fig. 20 The kernel and its root tendencies of the two-delay
system with ðKD ;Kt; ftÞ5 ð14;553; 2610;50Þ

Table 4 Detailed information of the points on the kernel

Location ðst; sDÞ x ðrad=sÞ RTst RTsD

A (0.0557, 0.3845) 3.8149 �1 þ1
B (0.1801, 0.3781) 4.8555 þ1 þ1
C (0.1673, 0.2260) 8.1538 þ1 �1
D (0.1533, 0.0) 13.235 þ1 þ1
E (0.1569, 0.4744) 13.1197 �1 þ1
F (0.5101, 0.8966) 6.3121 �1 þ1
G (0.9770, 1.4620) 4.2951 �1 þ1
H (0.9841, 0.0019) 4.2791 �1 þ1
I (1.40, 0.1602) 3.6244 �1 þ1
J (1.7120, 0.3649) 3.670 �1 þ1

Fig. 17 Root distribution of the system using different laten-
cies with ðKD ;Kt; ftÞ5 ð14;553; 2610;121Þ

Fig. 18 UT actuator testbed with displacement and velocity
delays

Fig. 16 Step response of the system using different latencies
with ðKD ;Kt; ftÞ5 ð14; 553; 2610; 121Þ
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Since the delay-free system is stable, i.e., NU 0; 0ð Þ ¼ 0, from
the first conclusion above, one knows that the system will be sta-
ble wherever the delay combination st; sDð Þ is inside this region,
which we name as main stable area (MSA), i.e., NU st; sDð Þ ¼ 0,
for st; sDð Þ 2 MSA. The MSA in this example is equivalent to the
MTDR of the first stable region. In order to obtain all the stability
regions, i.e., stability map of the system, one needs to use both
kernel and offspring information.

Figure 21 is the stability map for this system using this specific
parameter set within region 1:8� 1:8. The ten points on the kernel
of stability region in Fig. 20 are redrawn in this figure with differ-
ent notations, i.e., every point is attached with subscript 00 to
denote the kernel, and its offsprings with respect to st and sD axes
are denoted as 01; 02;… and 10; 20;…, respectively. Take
the point C00 ¼ 0:16773; 0:226ð Þ with crossing frequency x
¼ 8:1538rad=s on the kernel as an example, its first offsprings
with respect to st and sD axes are C01 ¼ 0:5526; 0:226ð Þ
and C10 ¼ 0:1673; 0:9966ð Þ, the second offsprings are C02

¼ 0:9379; 0:226ð Þ and C20 ¼ 0:1673; 1:7672ð Þ. Note that C00 and
all of its offsprings are sharing the same crossing frequency. Since
the delay-free system is stable, i.e., NU 0; 0ð Þ ¼ 0, the NU roots
only change on the kernel and its offsprings, NU st; sDð Þ ¼ 0 until

Fig. 22 Stability maps for the system with different filtering frequencies with controller gains
ðKD ;KtÞ5 ð14; 553;2610Þ

Fig. 23 Stability maps for the system with different filtering frequencies with controller gains
ðKD ;KtÞ5 ð130;979; 10; 331Þ

Fig. 21 Stability map and the NU roots for the two-delay sys-
tem with ðKD ;Kt; ftÞ5 ð14;553; 2610;50Þ
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st; sDð Þ arrives at its smallest kernel. With the information of

points on the kernel and their root tendencies, the stability map
can be obtained through the following procedures.

We start from the region where st and sD have small values,
and increasing st while keeping sD fixed (the same analysis can
be done for the case of changing sD while fixing st) until the arc
B00C00D00 is met. Increasing st such that st; sDð Þ crosses arc
B00C00D00 from left to right, because RTst ¼ þ1 on the arc
B00C00D00, there will be two unstable roots brought by this cross-
ing, and NU st; sDð Þ ¼ 2 immediately after this increase of st. In
the same way, one knows that NU st; sDð Þ ¼ 2 for all the region
right outside MSA. We continue increasing st while keeping sD

fixed until we meet arc D01C01B01A01. Since the root tendencies
of st; sDð Þ on this arc are all RTst ¼ þ1, the NU st; sDð Þ ¼ 4 for
any st; sDð Þ which crosses this arc from left to right before cross-
ing any other arc. For example, when the st; sDð Þ crosses arc
I00J00 from left to right with RTst ¼ �1 and RTsD

¼ þ1, then
NU st; sDð Þ ¼ 4 should be changed into NU st; sDð Þ ¼ 2. We con-
tinue doing the same processes to obtain NU st; sDð Þ until all of
the crossing arcs have been crossed, then the stability regions for
the system will be the regions where NU st; sDð Þ ¼ 0.

Fig. 25 Stability maps for the system with different filtering frequencies with controller gains
ðKD ;KtÞ5 ð1; 455; 332;37; 353Þ

Fig. 26 Area of MSA of the system for varying filtering fre-
quency with different control gain combinations

Fig. 24 Stability maps for the system with different filtering frequencies with controller gains
ðKD ;KtÞ5 ð363;833; 18; 051Þ
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The detailed information of NU st; sDð Þ is shown in Fig. 21
where the arguments st; sDð Þ are omitted. From the figure, one
knows that the system is stable only in the region shadowed with
green color (gray for NU st; sDð Þ ¼ 2, brown for NU st; sDð Þ ¼ 4,
yellow for NU st; sDð Þ ¼ 6, and magenta for NU st; sDð Þ ¼ 8).
From the shape of MSA, one notices that increasing sD or st may
stabilize the system as are the cases for C00 ¼ 0:16773; 0:226ð Þ
and A00 ¼ 0:0557; 0:3845ð Þ.

Increasing the delay to stabilize the system is counterintuitive
but one of the application advantages.

Figures 22–25 are stability maps for the system using six
different filtering frequencies (i.e., ft are 5, 25, 50, 100, 150,
and 200 Hz) with four different controller gain combinations
of KD;Ktð Þ ¼ 14; 553; 2610ð Þ, KD;Ktð Þ ¼ 130; 979; 10; 331ð Þ;
KD;Ktð Þ ¼ 363; 833; 18; 051ð Þ, and KD;Ktð Þ ¼ 1; 455; 332;ð

37; 353Þ. In all of the figures, the shaded regions are the regions

with property of MSA, i.e., NU st; sDð Þ ¼ 0. The following con-
clusions can be made based on the information of the figures:

(1) For the same frequency, with the increase of controller
gains KD;Ktð Þ, the stability region will decrease.

(2) For the small controller gains KD;Ktð Þ, the filtering fre-
quency does not have much influence on the system stabil-
ity as can be seen in Fig. 22.

(3) For the larger controller gains KD;Ktð Þ, with the increase
of filtering frequency, the stability region will increase
especially when the filtering frequency is less than 50 Hz.
However, once the filtering frequency is greater than
50 Hz, its influence on stability is not evident.

More quantitative view of the relationship between filtering fre-
quency and the area of MSA for different controller gain combi-
nations is shown in Fig. 26.

The above conclusions tell us that in the real application, if one
chooses the large controller gains, the filtering frequency should
not be too low, otherwise the system will most likely be unstable
(see Figs. 24 and 25). In addition, if a low filtering frequency is
chosen, then the controller gains should also be small to guarantee
the stability of the system (see ft ¼ 5 Hz in the figures).

5.3 System Performance. In this section, the performance of
the system using different controller gains and filtering frequen-
cies will be discussed. As in Sec. 4.3, the optimal dominant root
of the system refers to the lowest-valued root of all the rightmost
roots for varying time delays of st and sD within each MTDR.
The optimal dominant root’s corresponding delay combination
st; sDð Þ is the optimal delay combination.

Figure 27 shows the relationship between the optimal dominant
root and filtering frequency. For each fixed controller gains
KD;Ktð Þ, with the increase of filtering frequency, the optimal

dominant root of the CE will decrease and this is more evident
when the filtering frequency is low. However, when the filtering
frequency is high, the optimal dominant root of the CE does not
change too much. From the figure, one also notices that for each
fixed filtering frequency, with the increase of controller gains

Fig. 27 Relationship between the optimal dominant root and
filtering frequency

Table 5 Dominant root of the CE of the system

ðst; sD;ReðsdomÞÞopt ðst; sD;ReðsdomÞÞopt

ðKt;KD; ftÞ ðst; sD;ReðsdomÞÞ ðKt;KD; ftÞ ðst; sD;ReðsdomÞÞ

(14,553, 2610, 5) (0.0, 0.056, �10.9730) (130,979, 10,331, 5) (0.0, 0.010, �10.3664)
(0.0, 0.0, �4.6625) (0.0, 0.0, �9.586)

(14,553, 2610, 25) (0.048, 0.082, �12.8558) (130,979, 10,331, 25) (0.008, 0.028, �36.8974)
(0.0, 0.0, �5.9871) (0.0, 0.0, �14.7601)

(14,553, 2610, 50) (0.048, 0.076, �13.4801) (130,979, 10,331, 50) (0.014, 0.032, �39.3525)
(0.0, 0.0, �6.3819) (0.0, 0.0, �16.5324)

(14,553, 2610, 100) (0.052, 0.080, �13.3787) (130,979, 10,331, 100) (0.016, 0.032, �35.6223)
(0.0, 0.0, �6.6885) (0.0, 0.0, �17.9935)

(14,553, 2610, 150) (0.05, 0.076, �13.2613) (130,979, 10,331, 150) (0.014, 0.028, �36.9463)
(0.0, 0.0, �6.8330) (0.0, 0.0, �18.710)

(14,553, 2610, 200) (0.054, 0.082, �13.322) (130,979, 10,331, 200) (0.018, 0.034, �36.1339)
(0.0, 0.0, �6.9221) (0.0, 0.0, �19.1606)

ðKt;KD; ftÞ ðst; sD;ReðsdomÞÞopt ðKt;KD; ftÞ ðst; sD;ReðsdomÞÞopt

ðst; sD;ReðsdomÞÞ ðst; sD;ReðsdomÞÞ
(363,833, 18,051, 5) (0.0, 0.0, �11.7509) (1,455,332, 37,353, 5) (0.0, 0.0, �17.695)

(0.0, 0.0, �11.7509) (0.0, 0.0, �9.3018)
(363,833, 18,051, 25) (0.0, 0.014, �46.6728) (1,455,332, 37,353, 25) (0.002, 0.0140, �62.9212)

(0.0, 0.0, �21.8915) (0.0, 0.0, �35.9471)
(363,833, 18,051, 50) (0.008, 0.022, �49.7102) (1,455,332, 37,353, 50) (0.0, 0.008, �88.0004)

(0.0, 0.0, �25.2359) (0.0, 0.0, �43.4786)
(363,833, 18,051, 100) (0.006, 0.016, �46.4943) (1,455,332, 37,353, 100) (0.004, 0.010, �84.2912)

(0.0, 0.0, �28.0802) (0.0, 0.0, �50.1882)
(363,833, 18,051, 150) (0.010, 0.022, �49.3312) (1,455,332, 37,353, 150) (0.02, 0.032, �89.2236)

(0.0, 0.0, �29.5058) (0.0, 0.0, �53.6608)
(363,833, 18,051, 200) (0.008 0.018, �48.4033) (1,455,332, 37,353, 200) (0.0, 0.020, �78.8183)

(0.0, 0.0, �30.4137) (0.0, 0.0, �55.9124)
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KD;Ktð Þ, the optimal dominant root of the CE also decreases,
especially when the filtering frequency is high.

These two results coupled with the stability results obtained in
Sec. 5.2 give us some guidance during our controller design which
indicates that increasing the controller gains will decrease the sta-
bility region, but can improve the system performance; however,
increasing the filtering frequency not only increases the stability
region but also improves the system performance, especially
when the filtering frequency is low.

Table 5 gives the detailed information of the dominant root of
the CE of the system using different controller gains and filtering
frequencies. The optimal delay combination st; sDð Þ and the cor-
responding optimal dominant root Re sdomð Þ are denoted as
st; sD;Re sdomð Þ
� �opt

. From the table, one can see that for most of

the cases, the optimal dominant root happens when the delay com-
bination st; sDð Þ 6¼ 0; 0ð Þ which is counterintuitive and implies
that enlarging the delay may not only increase the stability but
also improve the system performance.

In the following, one example with parameter set
KD;Kt; ftð Þ ¼ 130; 979; 10; 331; 50ð Þ is given to show the system

Fig. 28 Dominant root and step responses of the system with
ðKD ;Kt; ftÞ5 ð130; 979;10; 331; 50Þ

Fig. 29 UT actuator testbed. A motor drives a ball screw via a
belt reduction. A sensor measures the linear displacement of
the actuator.

Fig. 30 Stability of the system under different displacement-
feedback delays with ðKD ;Kt; ftÞ5 ð1; 290; 000;22;000; 100Þ

Fig. 31 Step responses of the system under different
displacement-feedback delays with ðKD ;Kt; ftÞ5 ð1; 290; 000;
22;000; 100Þ

Table 6 Dominant root of the system with displacement delay

sD (s) Root

0 �53:2479þ 56:3548i
0.002 �60:1953þ 67:5279i
0.004 �60:8563þ 95:4715i
0.006 �32:71þ 112:36i; �100:84
0.008 �10:35þ 109:29i; �85:7
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performance with different delay combinations (see Fig. 28). Fig-
ure 28(a) shows the dominant roots of the CE for different delays,
and the optimal delay combination is sD; stð Þ ¼ 0:014; 0:032ð Þ
which results in the optimal dominant root �39:3525þ 25:2292i.
Figure 28(b) is the step response for this system with different
delays. It is clear that the system has the worst performance when
it is delay-free. When sD; stð Þ ¼ 0:014; 0:032ð Þ, the system has

the shortest settling time of 0.102 s, which coincides with the
dominant root result. For the case of sD; stð Þ ¼ 0:020; 0:040ð Þ,
which is within the stable region but slightly larger than the opti-
mal delay combination, although it has the shortest rising time, it
oscillates and takes longer to enter the error band.

Generally speaking, for many systems, increasing the system
delay will most likely deteriorate system performance. However,
there might be some areas within which the system performance
can be improved by increasing of system delay. The reason for
this counterintuitive phenomenon is that the delay within this area
will push the roots of the CE further away from the imaginary
axis, and this, in return, results in a better system performance.

6 Experimental Validation

In this section, we will test the stability and performance results
obtained in Secs. 4 and 5 on the UT actuator testbed (see Fig. 29).
We will first test the stability and performance of the system with
displacement-feedback delay and then test the stability and per-
formance of the system using both displacement-feedback and
velocity-feedback delays. Since it is hard to generate an impulse
signal in our testbed, to make the experimental result and simu-
lated result comparable, the numerators of the close-loop transfer
function for both the single and double delays in Eqs. (30) and
(35) will be replaced by 2pftKD in our simulation.

We measured the actuator’s parameters in the following ways.
Actuator inertia was measured by observing the relationship
between force and velocity for a position tracking chirp test. An
inertia model was fit to the measured data using the transfer func-
tion V sð Þ=F sð Þ ¼ 1=ms. To measure damping, we analyzed the
position response of a proportional position feedback controller.
The fact that a proportional controller was stable indicated the
presence of damping. To quantify the amount of damping and
with the actuator inertia known, we measured the overshoot of a
step response and fit the actuator damping parameter to the experi-
mental data.

6.1 Experiments With Displacement-Feedback Delay. For
the case when the UT actuator testbed uses only displacement-
feedback delay, we choose the filtering frequency ft ¼ 100 Hz

and controller gain combination KD;Ktð Þ ¼ 1; 290; 000; 22; 000ð Þ.
Following the same procedures in Sec. 4.2, we know that the max-
imum tolerable latency for the system is 0.0094 s.

Figure 30 shows the step responses of the system with different
displacement delays. In Fig. 30(a), since the delay
sD ¼ 0:008 < 0:0094, the system is stable and the simulated
result coincides very well with the experimental result.

Figure 30(c) illustrates the scenario where the system is unsta-
ble due to the delay greater than the MTD.

Figure 30(b) shows the marginal stable case since the system
delay sD ¼ 0:0094 is equivalent to its maximum tolerable latency.
While the experimental result shows the convergence of the sys-
tem, this is contradictory to the theoretical result. If the estimated
model is accurate enough, another reason for this contradictory
result could be due to the sensing precision and sensing speed of
the UT actuator testbed. The actuator testbed we used has a cycle
time of 1 ms. Delays were simulated by implementing a first-in
first-out (FIFO) data structure and passing sensor data through this
FIFO before feeding the data to the feedback control loop. The
length of this FIFO is proportional to the simulated delay value.
For simulating larger delays, the 1 ms cycle time places a restric-
tion on the minimum step size of the simulated delay value.
Therefore, the actual delay used in this experiment is 0.009 s
instead of 0.0094 s. Since 0.009 is less than the maximum tolera-
ble latency, the system is stable which agrees with the theoretical
result.

Figure 31 shows the simulated and experimental results of step
responses of the system using different displacement delays. Since
the system is stable as long as the displacement-feedback delay is
less than the maximum tolerable latency 0.0094 s, we try to find
the optimal delay within this stable interval. The characteristic
roots of the system with different delays that have a real part
greater than �150 are listed in Table 6. Based on the delay selec-
tion rule proposed in Sec. 3, one knows that the optimal delay of
the system should be 0.004 s which will result in a settling time of
0.0657 s. For this experiment, one also notices that if the delay of
the system is 0.002 s, then the system would have the settling time
0.0665 s, which is almost the same as when the delay is 0.004 s.
However, since the imaginary part of the dominant root of the sys-
tem with delay 0.004 s is 95.4715, which is greater than 67.5279
(the imaginary part of the dominant root of the system with delay
0.002 s), the system with latency 0.004 s should also have a
shorter rising time than the system with latency 0.002 s and there-
fore has the best overall performance. One can also notice that the
delay-free system has the longest rising time due to the relatively
small value of the imaginary part of its characteristic root. From

Fig. 32 Stability of the system under different displacement
and velocity feedback delays with ðKD ;Kt; ftÞ5 ð130; 979;
10;331; 50Þ

Fig. 33 Stability of the system under different displacement
and velocity feedback delays with ðKD ;Kt; ftÞ5 ð363; 833;
18;051; 50Þ
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the figure, it is obvious that the simulated results and the experi-
mental results agree with each other.

6.2 Experiments With Displacement and Velocity Feed-
back Delays. For the UT actuator testbed with both displacement
and velocity feedback delays, we will run the experiments using
different system parameter sets but with the same filtering fre-
quency, ft ¼ 50 Hz.

Figures 32 and 33 are the step responses of the system with
different delay combinations using control gains KD;Ktð Þ
¼ 130; 979; 10; 331ð Þ and KD;Ktð Þ ¼ 363; 833; 18; 051ð Þ, respec-
tively. In each of the figures, both the simulated and experimental
data are plotted for comparison purpose. Figures 32(a) and 33(a)
illustrations show the situation in which the system is stable, and
Figs. 32(b) and 33(b) show the scenario where the system should
be marginally stable, while Figs. 32(c) and 33(c) demonstrate the
case when the system is unstable.

Following the same procedures described in Sec. 5.2, one
knows that the system with control gains KD;Ktð Þ ¼ 130;ð
979; 10; 331Þ is stable when delay combination is st; sDð Þ
¼ 0:04985; 0:10ð Þ, and the system with control gains KD;Ktð Þ
¼ 363; 833; 18; 051ð Þ, delay combination st; sDð Þ ¼ 0:0251;ð
0:060Þ is also stable. Both Figs. 32(a) and 33(a) verified this
assertion.

Similarly, the system with control gains KD;Ktð Þ
¼ 130; 979; 10; 331ð Þ will be marginally stable with delay combi-
nation st; sDð Þ ¼ 0:04919; 0:09369ð Þ (see Fig. 32(b)). If the con-
trol gains are KD;Ktð Þ ¼ 363; 833; 18; 051ð Þ, and delay
combination is st; sDð Þ ¼ 0:0251; 0:04978ð Þ, then the system will
also be marginally stable (see Fig. 33(b)). However, from Figs.
32(b) and 33(b), one may notice that the experimental data does
not match the simulated data very well; one of the possible rea-
sons is due to the discrepancy between the real model and the esti-
mated model. In these two experiments, even though the
experimental and simulation results are different in the end, they
behave similarly for a certain amount of time.

When the system is marginally stable, two interesting results
are that if one increases the velocity delay, the system will
become stable (compare Fig. 32(b) with Fig. 32(a) and Fig. 33(b)
with Fig. 33(a)); however, if one decreases the velocity delay, the
system will become unstable (compare Fig. 32(b) with Fig. 32(c)
and Fig. 33 (b) with Fig. 33(c)).

Comparing Figs. 32(a) and 33(a), one also observes that the
system with higher control gains can decrease the discrepancy
between the experimental results and simulated results.

In general, the disparity between the simulated results and ex-
perimental results is only obvious when the system is marginally
stable because any factor (noise, unmodeled dynamics, etc.) will
change a marginally stable system into either a stable or unstable
system.

Figure 34 shows the step responses of the system with different
control gains and delay combinations. In Fig. 34(a), we choose
control gains KD;Ktð Þ ¼ 130; 979; 10; 331ð Þ; from the discussion
in Sec. 5.3, we know that with the delay combination
sD; stð Þ ¼ 0:014; 0:032ð Þ, the system has the best performance

with settling time 0.102 s, since the dominant root of the system is
�39:3525þ 25:2292i; however, if the delay combination
sD; stð Þ ¼ 0:0; 0:006ð Þ, then the dominant root becomes
�24:3802þ 1:0475i and the system has settling time 0:1641 s.
For the delay-free case, the roots of the system are �16:5324 and
�36:5571; therefore, the settling time of the system is 0:2419 s. In
Fig. 34(b), the control gain combination is KD;Ktð Þ
¼ 363; 833; 18; 051ð Þ, and the delay combinations sD; stð Þ are
0:004; 0:014ð Þ, 0:0; 0:008ð Þ, and 0:0; 0:0ð Þ. For the different delay

combinations, the corresponding dominant roots are �49:5338,
�41:1205þ 13:3555i, and �25:2359; therefore, the settling times
are 0:0808 s, 0:0973 s; and 0:1585 s, respectively. The results
obtained from the experimental data match the results obtained
from simulation, and both the simulated results and experimental
results coincide with the theoretical results.

One thing should be pointed out: in Fig. 34, both the experi-
mental and simulation data are not starting from zero; this is
because it is hard to set the initial condition of our testbed exactly
at its origin due to inertia.

7 Conclusions

This paper discussed the influences of displacement-feedback
delay as well as both displacement and velocity feedback delays
on the UT actuator testbed stability and performance. The follow-
ing conclusions can be made.

7.1 Stability. For a displacement-feedback delay system, the
MTD of the system can be achieved by choosing smaller control-
ler gains or a higher filtering frequency. The stability interval will
decrease with an increase of the P-controller gain or if the filtering
frequency is increased.

For the system with both displacement and velocity feedback
delays, the filtering frequency does not have too much influence
on the stability of the system if the controller gains are small,
however, increasing controller gains will shrink the stability
region tremendously with the low filtering frequency. Therefore, a
high filtering frequency is required for large controller gains, and

Fig. 34 Step responses of the system under different latency
combinations with ft 5 50 Hz
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the small controller gains are required for a low filtering fre-
quency to guarantee the stability of the system.

7.2 Performance. For a displacement-feedback delay system,
if the filtering frequency is high, increasing the P-controller gain
will always improve the system performance, while increasing the
D-controller gain will improve the system performance at first
and then deteriorate system performance, especially for a small
P-controller gain.

For a system with both displacement-feedback and velocity-
feedback delays, increasing the controller gains will always
improve the system performance.

For both single time delay and double TDS, increasing the fil-
tering frequency not only increases the stability robustness of the
system but also improves the performance of the system.

The other important finding for both single time delay and dou-
ble TDS is that the optimal system performance might be
achieved when the system is not delay free, in other words, for the
UT actuator testbed, we can enlarge system delay purposely to
achieve better performance; this finding is contrary to what was
previously believed for many real systems.

Although the conclusions are made for the UT actuator testbed,
a similar analysis can be done for any LTI-TDS by following the
same procedures proposed in this paper.

It is worth mentioning that although this work shows that opti-
mal values of delays exist for system stability and performance,
delays are generally still very detrimental. Using delays should
only be pursued within the design specifications outlined in this
paper to attain the expected gains on performance.
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