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Abstract— In this study, we explore mobility in a clut-
tered, uneven and dynamic environment where collisions are
inevitable. In particular, we study a mobile robot’s ability
to precisely track a planned path on an inclined surface,
then respond to unknown collisions by using force compliance
and estimation of the obstacle’s surface normal. In addition,
once the contact disturbance disappears, the robot merges
automatically back to its original planned path. This study
aims at highlighting the need to safely deal with unexpected
collisions with external objects and use them to move alongside
their contour, opening opportunities perhaps to use contacts
as supporting structures. At the same time, it aims to endow
capabilities for precise maneuvering in the rough terrains.
Our newly designed compliant omnidirectional robot is able to
quickly respond to contacts through the use of current control
and absolute position / orientation sensing. A whole-body
controller developed by the Human Centered Robotics Lab is
used to compensate for gravity and create new multicontact
constraints in response to the collisions. To pursue the study,
we built the mobile base and a multicontact experimental setup.
The results show that our model-based controller successfully
accomplishes the tasks with good precision while relying on
data-driven contact estimation.

I. INTRODUCTION

One of the main purposes of mobile robots is to manipu-
late objects with high accuracy. This goal requires the robot’s
mobile base to execute subtle maneuvers, i.e. precise and
slow movements that can, for instance, enable the assembly
of objects. When operating outdoors, robots must implement
these subtle movements in the presence of nearby obstacles
that can cause accidental collisions, and at the same time
while dealing with rough terrains. With these issues in
mind, this paper aims to provide new methods and their
experimental validation for the support of future mobile
robotic systems in human-centered or outdoor scenarios.

In particular, our everyday world is filled with clutter,
obstacles, moving people, and different topographies. There
is a need to deal with dynamic obstacles, perhaps by safely
handling collisions or using them as supports instead of
avoiding them. On the other hand, mobile robots in general
avoid contacts. However, our hypothesis is that by occasion-
ally establishing contacts, robots will become more effective,
for instance, in moving among crowded environments, recov-
ering from falls, or anchoring their bodies against objects to
engage in subtle manipulations.

We present here various methods and experiments to
endow the following capabilities: (1) to move skillfully in
uneven terrains without falling, (2) to respond reactively to
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unknown dynamic collisions using force compliance, (3) to
estimate at runtime the geometry of the collision surfaces,
and (4) to safely maneuver along the contour of obstacles
until they have been cleared. To demonstrate the effectiveness
of our methods, we have built a compliant holonomic base
equipped with omni wheels and passive rollers on the robot’s
side panels. These rollers are distributed such that the base
can smoothly slide along various types of surfaces during
contact. We also have built an experimental setup containing
an inclined terrain and a movable wall to test the adaptive
interactions.

To move on uneven terrains without sliding down, we
model gravity effects on the wheels as a function of both
the terrain’s slope and the base’s heading. We obtain robot
heading and position using a motion capture sensing system,
incorporate the sensor data on the gravity model, and add
the resulting gravity disturbances to a floating body dynamic
model of the robot. We then compensate for the estimated
gravity disturbances using a compliant control strategy.

To respond reactively to collisions, we first limit the forces
applied to the obstacles by using compliant control. We
achieve this capability by estimating an inverse dynamic
model of the robot and using it to control the effective
mechanical impedance (i.e. the force generated when con-
straining the motion).

To estimate the geometry of the collision surfaces, we first
detect the contact when the measured distance between the
desired path and the current position is larger than the motion
uncertainty bounds. Then we estimate the surface normal of
the object using a least squares fitting function based on
the movement data points. Finally, we project the compliant
control model into a mathematical constraint defined as a
function of the estimated surface normal. This projection,
effectively removes the direction of the wall from the motion
controller, leading to a motion that is tangent to the wall
while serving as a support.

Overall, although the concept of mobile robots and au-
tonomous ground vehicles bumping into obstacles has been
out for some time, this study is unique on its focus on sensing
and adapting to dynamic collisions in the rough terrains.

II. RELATED WORK

The concept of moving around by bumping into objects is
well known, for instance in bumper cars, but most recently
in home robotics such as iRobot’s Roomba [3], which
changes direction upon colliding with walls and obstacles.
Bumping into objects and humans is a major area of concern
in the area of free-roaming vehicles and trucks, such as
AGV-Forklift systems. It has normally been dealt by using



Fig. 1. Colliding Against Humans: Trikey safely bumps into people and
corrects its heading based on the estimated contact direction.

passive bumpers [15] [8] or intelligent sensing using a variety
techniques such as impact management accelerometers [17]
or indoor positioning systems [14]. However, encouraging
bumping into things has been largely discouraged [4] in large
autonomous systems. This is true in most cases except for a
few studies, such as manipulating by pushing [6] for instance.
Overall, sensing and adapting to obstacles by bumping into
them is a fairly unexplored area, which combined with rough
terrain mobility seems to be even more unique.

Navigation using visual landmarks [1], in rough terrains
using optimal control [10], and also in rough terrains while
avoiding obstacles [21], [20] have been recently explored in
the context of accurate mobile navigation. Although we are
related to those studies, none of them addresses the issue on
bumping and adapting to dynamic obstacles.

Robots with spring loaded casters [12] or trunks [13] have
been developed for contact interactions in rough terrains but
used in a very limited, even conceptual level. A step climbing
robot based on omnidirectional wheels was presented in [22],
however the focus was on stepping over obstacles rather
than colliding on them and moving along their contour. An
area where robots in contact have made a large impact is in
physical human robot interaction using robot manipulators.
Some of these pioneering studies include [23], [11], [2].
In contrast, our study focuses on mobile bases and on
performing the adaptations on rough terrains.

In the area of contact sensing, there exists pioneering work
focused on localization using force [5] or tactile sensing [7],
[16]. Our methods for detecting contact are much simpler,
based on comparing wheel or visual odometry with respect
to the desired trajectories. However, in contrast with those
studies we focus on mobile base contact mobility instead of
manipulation. Our methods are related to those discussed in
[9], which explores using articulated suspension to enhance
tipover stability. One major difference is that we focus on
colliding with objects which the previous work does not
address.
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Fig. 2. Drive Train of Trikey’s Wheels: The drive train consists of 3
axes (motor, sensor, and wheel), which are connected by timing belts to
minimize mechanical backlash.

Fig. 3. Embedded System: Each actuation module consists of a motor, an
amplifier, an encoder, a PIC processor, and a EtherCAT module. They are
connected to a small desktop PC through a daisy chained EtherCAT bus.

III. OMNI-DIRECTIONAL HOLONOMIC MOBILE ROBOT
SUITED FOR CONTACT

Our base, Trikey (Fig 1), is an omni-directional mobile
base designed for compliant interactions. The 40kg robot
includes three 250W Maxon brushless DC motors with
omni wheels in a triangular configuration (axes separated
by 120 ◦). At 1:43 gear reduction, each wheel can achieve a
maximum speed of 100 rpm and stall torque of 100N-m. The
drive train (Fig 2) is specially designed to minimize friction,
and it includes a rotary strain gauge torque sensor to enable
torque feedback control of the wheels. It comprises motors,
encoders and torque sensors, and omni wheels connected
through a timing belt transmission.

As shown in the electrical diagram of Fig. 3, an on-
board desktop PC communicates with embedded PIC motor
controllers via EtherCAT serial ports. This communication
architecture allows the robot to daisy chain its signals into
one channel, resulting in more compact and efficient elec-
trical wiring. The PIC controllers generate an analog signal
every 500 µs to control the Elmo motor amplifiers for current
control - the torque sensors where not enabled yet for this
study. Four 12V lead acid batteries are embedded inside the
base, allowing the robot to operate untethered for half an
hour, while supplying average power of 150W.



Fig. 4. Trikey Structure shows that the wheel axes are configured at 120 ◦.

IV. CONTROL APPROACH

A. Constrained Dynamics

Our robot consists of a 3-dof wheeled system (shown in
Fig. 4). To avoid directly deriving the kinematics between the
robot’s Cartesian frame and the wheel angles, we develop a
planar floating body dynamic model of the base consisting
of 6-dof generalized coordinates and kinematic constraints
which will be later described in detail. This model includes
the position and orientation of the center of the base on a
plane, and the joint positions of the wheels:

q =
[
x y θ q0 q1 q2

]T ∈ R6. (1)

To derive the floating base dynamic equation, we used
Lagrange formalism as follows

L = T − V =
1

2
M
(
ẋ2 + ẏ2

)
+

1

2
IM θ̇

2 +
1

2
Im
(
q̇0

2 + q̇1
2 + q̇2

2
)
, (2)

where L is the Lagrangian, T is the kinetic energy, and V
is the potential energy. Moreover, M , IM and Im are the
total mass of the mobile robot, the total inertia around the
vertical axis, and the inertia of a wheel around its rotating
axis, respectfully. Using the Lagrangian,

∂

∂t

∂L

∂q̇
− ∂L

∂q
= τ, (3)

we obtain the unconstrained system dynamics
Mẍ
Mÿ

IM θ̈
Imq̈0
Imq̈1
Imq̈2

 =


0
0
0
τ0
τ1
τ2

 , (4)

which can be expressed in matrix form as

A q̈ = UT T, (5)

where

A =

 M I2×2 02×1 03×3
01×2 IM 01×3
03×2 03×1 Im I3×3

 ,
U =

[
03×3 I3×3

]
,

T =
[
τ0 τ1 τ2

]T
.

(6)

In the above model, because there is no direct dependency
between the wheel and the base motion, we cannot control
the position and the orientation of the robot using the wheel
torques. As such, we introduce a new dependency based on
rolling constraints on the wheels with respect to the terrain.
We consider the velocity of the wheel center with respect
to the terrain in direction of the wheel rotation, vw, and the
velocity of the wheel center in the perpendicular plane vr.
Here r stands for roller, as in the side rollers of the omni
wheels. Then we can write the velocity of the i-th wheel, vi

as

vi = vw,i + vr,i

= [−vw,i sin (θ + θi) + vr,i cos (θ + θi)] ix

+ [vw,i cos (θ + θi) + vr,i sin (θ + θi)] iy,

(7)

where θi is the heading of the i-th wheel shown in Fig. 4.
Additionally,

vw,i = |vw,i| = r q̇i. (8)

The velocity of each wheel can be described as the function
of the position and the orientation of the center of the base
from the rigid body kinematics.

vi = vCoM + ω × pi

= ẋ ix + ẏ iy + θ̇ iz × pi,
(9)

where pi is the vector from the center of the base to the i-th
wheel:

pi = R cos (θ + θi) ix +R sin (θ + θi) iy. (10)

When we combine Eqs. (7) and (9), we can derive the
following kinematic equality.[

−vw,i sin (θ + θi) + vr,i cos (θ + θi)
vw,i cos (θ + θi) + vr,i sin (θ + θi)

]
=

[
ẋ
ẏ

]
+R θ̇

[
− sin (θ + θi)
cos (θ + θi)

]
.

(11)

From Eqs. (8) and (11), we eliminate vr,i and derive the
relationship between joint positions of the wheels and the
position and orientation of the center of the base,

r q̇i = −ẋ sin (θ + θi) + ẏ cos (θ + θi) +R θ̇. (12)

The above equation expressed for each wheel can be com-
bined into matrix form as

r

 q̇0
q̇1
q̇2

 = Jc,x

 ẋ
ẏ

θ̇

 , (13)
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Fig. 5. Motion Capture System: four markers on Trikey allow for heading
and position detection.

with,

Jc,x ,

 − sin (θ) cos (θ) R
− sin

(
θ − 2

3π
)

cos
(
θ − 2

3π
)

R
− sin

(
θ + 2

3π
)

cos
(
θ + 2

3π
)

R

 . (14)

By re-arranging Eq. (13) to relate to generalized velocities
q we get

Jc q̇ = 0, (15)

which uses a constrained Jacobian defined as

Jc = Jc,wheel ,
[

Jc,x −rI3×3
]
∈ R3×6. (16)

The above rolling constraints, can be incorporated into the
robot’s dynamics by extending Eq. (5) to

A q̈ + Jc
Tλc = UT T. (17)

where λc are Lagrangian multipliers that model the con-
strained forces generated due to rolling friction between the
wheels and the terrain.

Using [19], we derive a constraint null space Nc matrix
and a constrained mass matrix Λc

Λc =
(
Jc A−1 JT

c

)+
, (18)

Nc = I− JcJc, (19)

where Jc , A−1JT
c Λc is the dynamically consistent gener-

alized inverse of Jc and (·)+ is the pseudo-inverse operator.
By left-multiplying Eq. (17) by JcΛc and merging it with
the time derivative of Eq. (15), we solve for the Lagrangian
multipliers λc as

λc = Jc
T
UTT− ΛcJ̇cq̇. (20)

Finally, by the above Equation into Eq. (17), we derive the
robot constrained dynamics as

q̈ = A−1 NT
c UT T− JT

c ΛcJ̇cq̇. (21)

Once more, we highlight that we did not need to explicitly
derive complex wheel kinematics.
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Fig. 6. Control Diagram: includes PD gains, an operational space
controller, a constraint generator, and a gravity compensator. The output
of the constraint generator, Jc is used to compute Λ∗, Jt|s, Nc, and J∗.

B. Operational Space Controller

We define an operational space controller based on the
robot’s Cartesian coordinates x, y, and θ. In turn, the task
kinematics can be defined as

x ,
[
x y θ

]T
,

J ,
[

I3×3 03×3
]
,

ẋ = J q̇.

(22)

As discussed in [19], constrained kinematics can be ex-
pressed as a function of wheel velocities alone,

ẋ = J∗
[
q̇0 q̇1 q̇2

]T
, (23)

where

J∗ = Jt|s UNc, (24)

Jt|s , J Nc, (25)

are projections of the Jacobian into the space consistent with
the rolling constraints and (·) is a dynamically consistent
inverse operator.

A dual expression of the above kinematics exists, provid-
ing the torque control strategy in operational space (see [18])
as

T = J∗T F, (26)

ẍ = Jt|s A−1 NT
c UTT− Jt|sJ

T
c ΛcJ̇cq̇, (27)

F = Λ∗ aref + Λ∗Jt|sJ
T
c ΛcJ̇cq̇, (28)

where aref is the acceleration command applied to the
system in the operational space, as described in Eq. (22),
and

Λ∗ ,
(
Jt|s A−1 JT

t|s

)−1
, (29)

is the effective mass of the robot in the constrained space.
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Fig. 7. Gravity compensation: Trikey stays up on the surface while a user
turns around the base. Notice that no controllers where used to maintained
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C. Gravity Compensation

In the case of a sloped surface, every point on the X-Y
plane has a certain potential energy. If the slope’s degree is
φ and the heading is ψ (see Fig. 7), the potential energy can
be defined as

V = mg cosφ (x cosψ + y sinψ) . (30)

We can now extend Eq. (17) to include gravity as

A q̈ + Jc
Tλc + G = UT T, (31)

where

G = mg cosφ
[

cosψ sinψ 0 0 0 0
]T
. (32)

Again, using [19], λc is eliminated and the above dynamic
equation can be further evolved to yield

q̈ = A−1 NT
c UT T−A−1NT

c G− JT
c ΛcJ̇cq̇. (33)

Finally, Eqs. (27) and (28) can be extended to include gravity
effects,

ẍ = Jt|s A−1 NT
c

(
UTT−G

)
− Jt|sJ

T
c ΛcJ̇cq̇, (34)

with

F = Λ∗ aref + Λ∗Jt|sA
−1Nc

TG+ Λ∗Jt|sJ
T
c ΛcJ̇cq̇. (35)

From Eqs. (26) and (35), we can obtain motor torque
commands while compensating for gravity disturbances (i.e
without falling along the slope).

(a) Side View (b) Top View

Fig. 8. Details on contact with the wall The rollers attached on the side
of the robot reduce the friction while in contact.

D. Contact Sensing and Adaptation

We focus for now on collisions and in particular on
collisions against walls. A wall can be easily modeled as
a first order inequality constraint. However, for simplicity
we use an equality constraint defined as

y = ax+ b. (36)

A Jacobian describing such constraint can be formulated as

Jc,wall ,
[
a −1 0 0 0 0

]
,

Jc,wall q̇ = 0.
(37)

When a new collision is encountered, such constraint can
be added to the previous rolling constraints described in Eq.
(16) extending the constrained Jacobian to

Jc ,

[
Jc,wheel

Jc,wall

]
∈ R4×6. (38)

We can now re-use the control equations defined in Eqs.
(26) and (35) but using the above augmented Jacobian. As
described in [19] the robot will minimize the distance to
the desired trajectory if there exists a contact constraint in
between.

To effectively modify the desired trajectory with respect
to the contact constraint we need to detect the contact
and estimate its direction. Although there are many sensing
options, such as using onboard visual or LIDAR information,
we choose to implement a simple sensing strategy based on
a motion capture system. We measure the distance to the
desired trajectory based on the motion captured data, and
if the error is greater than a threshold we determine that a
contact exists, i.e.

(Wall Detection) =

{
On, |x− xdes| ≥ (ErrTh)
Off , |x− xdes| < (ErrTh)

(39)
where x, xdes, and (ErrTh) are the current and desired
operational space coordinates, and the error threshold, re-
spectively. We further estimate the wall heading by using a
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Fig. 9. Circular Motion on Inclined Surface: This figure shows the accuracy of tracking the desire circular path on a 10◦ terrain and aided by a MoCap
system.

least square fitting formula defined as

an =
n (
∑
x′i y

′
i)− (

∑
x′i) (

∑
y′i)

n
(∑

x′2i
)
− (
∑
x′i)

2 , (40)

x′i , xi + xd, (41)

y′i , yi + yd. (42)

where xi and yi are the X-Y data points of the center of the
base while the base, xd and yd are the distances from the
center of the base to its edge contacting the wall, and an is
the estimated direction of the wall for iteration n. If xd and
yd are constant, an depends only on xi and yi,

an =
n (
∑
xi yi)− (

∑
xi) (

∑
yi)

n (
∑
x2i )− (

∑
xi)

2 . (43)

V. EXPERIMENTS

We have built an adjustable inclined platform with a
movable wall (Fig. 1) and attached sand papers to the terrain
to increase surface traction. The trajectory of the robot is
measured by a motion capture system from Phase Space
that provides about 1mm precision. By attaching four active
markers on the mobile robot (Fig. 5), the motion capture
server processes and detects a single rigid body in real time.
We use the captured data in the feedback control loop and
the wall detection algorithm. Fig. 6 depicts the controller
used in the experiments. The feedback input can be based
on odometry or motion captured data. Velocity is derived
by differentiation of the data using the Tustin Z transform.
The state variables are delivered to the PD control loop, then
fed to the wall detector and estimator module, to the wheel
constraints, and to the gravity compensator. To verify the
controller, we command the robot follow a circular trajectory
in the inclined terrain. Trikey turns circles of various radii on
both a flat surface and inclined terrains. The desired angular
velocities are 1 rad/s for a 1m radius, and 0.5 rad/s for a 0.5m

radius. The gains of the PD controller are adjusted to limit
the forces upon collision through the compliant controllers.
Additionally, we limit the velocity gain to avoid feedback
chattering due to gear backlash.

A. Tracking Experiment on an Inclined Surface

We placed the robot on a 10◦ slope. Obviously, when the
robot is not powered it falls quickly down the surface because
of the effect of gravity. We then turn on our Cartesian
controller of Eq. 35, with zero desired accelerations, i.e.
aref = 0, and the base stays at its initial position without
falling down because of gravity compensation (see Fig. 7).
Notice, that we rotate the base by hand to various orientations
and it remains on the same location. For further validation,
we now command the base to follow a circular trajectory on
the inclined terrain as shown in in Fig. 9. As we can see, the
tracking accuracy is about 10cm for the relatively moderate
gains that we have chosen for our implementation.

B. Collision Experiment Against a Wall

Our second experiment consists on colliding with an
unknown wall. As shown in Fig. 10, the robot tries to follow
the desired circular trajectory but the contact constraint kicks
in prompting the robot to move alongside the wall. Notice
that to enable a smooth rolling of the base against the wall
we attach 4 roller wheels to the side of the robot’s base.

Fig. 10 also shows the torque commands applied to the
wheels. We can see that the torque values remain constant
during the contact phase, and increase right after the con-
tact. That might be the result of applying less torques to
compensate for gravity because the wall supports the base.

In Fig. 11, we change the orientation of the wall to
various angles and observe that it is correctly detected and
the estimated orientation is used to activate at runtime the
contact consistent controller described in Fig. 6.
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Fig. 11. Detection of Wall at Various Orientations: In these graphs obtained from experimentation, the wall is randomly oriented to various angles by
an operator. Using the procedure discussed in Eq. (43), the robot estimates the direction of the wall while moving and by means of our motion capture
system. As we can see in the right graphs, for the slope at 45◦ the robot estimates the slope to be of value 0.99 which is very close to the expected value
of 1. For the slope at 50◦ the robot estimates a slope of 1.25 which is also close to the expected value. The time period where the robot is in contact is
between the times of 4 to 12.5 seconds.

VI. CONCLUSIONS

We have developed unique methods to maneuver in rough
terrains with unknown contacts. We have also conducted

various experiments to show the accuracy of our methods
and the ability to reactively respond and adapt to the contact



disturbances. We believe that these capabilities will be very
important to operate in human-centered and outdoor envi-
ronments. Our sensing strategy currently relies on position
error detection and linear fitting to the data points. Although
it is a simplistic approach it has shown to be effective for
wall detection.

For our controller, we have relied on sensor-based con-
straints given the obstacle estimations. An optional strategy
would be to implement hybrid position / force control
strategies that do not rely on constraints. However, in doing
so we require to estimate the contact forces in order to
compensate for them in operational space. In contrast, by
accounting for reaction forces as contact constraints, direct
estimation is not needed. We have observed that the force on
the wall can help the robot to support its body effectively,
reducing the amount of effort to compensate for gravity. This
kind of behavior might be beneficial to recover from certain
types of adverse scenarios or to deal with wheel slippage.

Compliant control not only allows the robot to create
practical impedance behaviors for accidental collisions but
also enables the base to compensate for gravity disturbances.
Compensating for gravity allows the controller to employ
smaller PD gains, as there are less disturbances unaccounted
for. Using the same methods, we have also conducted suc-
cessful experiments on safely colliding against humans (see
Fig. 1).

In the near future we will seek to limit the amount
of force applied to the wall to be safer and improve the
interaction with the colliding objects. Also, we plan to use
wheel odometry and the torque sensors on the wheels to help
detecting the wall and providing better compliance control.
As a natural extension of this research, we would like to
handle collisions with more sophisticated object shapes and
also with objects in motion, such as walking humans.

Further along, we plan to incorporate an upper body
humanoid robot and perform mobile manipulation tasks
while dealing with unexpected contacts. We also plan to
incorporate visual sensors such as LIDAR and cameras to
gain navigation autonomy.

Overall, we find that the area of human-centered robotics
and outdoor navigation will benefit by incorporating com-
pliant and online data-driven controllers to effectively deal
with accidental or intentional contacts.
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