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Abstract—Although the problem of maneuvering in extreme terrains
has critical weight on the advancement of legged robots and medical
assistive devices, little progress has been made on exploring practical
solutions to operate in these environments. Here, we report that multi-
contact models and perturbation theory, a set of approximation schemes
that has roots in celestial mechanics and non-linear dynamical systems,
can be adapted to solve non closed-form integrable state-space trajectories
of a robot’s center of mass, given its arbitrary contact state and center
of mass (CoM) path. In this paper we explore a case study of an extreme
maneuver involving gap leaping given a support point against a wall
board to ascend steps on a ladder. To tackle this problem, we first leverage
our previous work on multi-contact dynamics to derive reaction force
behavior from inertial movement and internal tension behavior. We then
study the nonlinear dynamics of single contact phases along arbitrary
paths and leverage perturbation theory to derive state space equations
of center of mass behavior.

Using this theoretical framework, we consider synthesizing extreme
maneuvers in the terrain by means of a motion planner. We derive
kinematic trajectories that fulfill dynamic constraints, such as the center
of mass’ angle of attack. We then use numerical integration to solve
the natural dynamics of the robot along the planned path. We leverage
our derivations on multi-contact dynamics to search the space of feasible
movements and internal tension behaviors during multi-contact. Finally,
we propose a new strategy to determine step transitions during jumping
and landing maneuvers. Our main contributions are on, (1) developing
a methodology to use the multi-contact/grasp matrix and numerical
integration to derive state space trajectories of extreme maneuvers, and
(2) developing a motion planner that can determine contact transitions
to negotiate the terrain.

I. MOTIVATION

Free-running is the ability to perform extreme maneuvers in urban
or back terrain by using fast contact interactions with surrounding
structures. Humans and animals are capable of maneuvering with
relative ease in these environments but little is known on the nature of
these type of skills, in part due to the limited availability of modeling
and planning methods. As such, our hypothesis, is that by modeling
extreme movements we will create new opportunities in the areas of
path planning and control of humanoid robots and assistive devices.
In turn, this research has wider potential to enable the development of
practical outdoor assistive devices as well as on health related fields.

In this paper we take on a case of an extreme maneuver inspired by
the sport of free-running and use it to produce models of movement
and synthetic plans that can handle similar terrains. The importance
of this study lies on the lack of substantial scientific material on the
subject and on the prospect to apply legged systems in urban and back
terrain. Moreover, this study could enable one day to mechanically
outperform human capabilities because of its focus on extreme skills.

Some of the main challenges for successfully studying extreme
maneuvers are the absence of mathematical tools to characterize these
type of movements, the lack of understanding of extreme physical
interactions, and the inadequacy of motion planners to artificially
synthesize these motions. In particular, it is known that extreme
maneuvers can be expressed in terms of nonlinear dynamical models
but, unfortunately, do not have a closed solution to work with,
posing a challenge on extracting the behaviors. Moreover, extreme
maneuvers are not only governed by natural inverted pendulum
dynamics but also by internal forces during multi-contact phases. Last
but not least, motion planners that can synthesize extreme maneuvers
do not exist due to the difficulty of finding contact transitions.

Our contributions are a direct response to these challenges. First,
we incorporate multi-contact models to the generation of center of

mass behavior and we propose search-based techniques to extract
maneuvering patterns. We then use perturbation theory to obtain
phase curves of center of mass behavior associated with the contact
states. Finally, we propose a motion planner consisting on deriving
phase curves for single and multi-contact phases and finding the
points of intersection between phases to determine contact transitions.

II. BACKGROUND

In dynamic walking we can classify techniques in various cate-
gories: (1) trajectory-based techniques, (2) passive dynamic walking
and optimal control, (3) prediction of contact, and (4) hybrids of the
previous three.

Trajectory-based techniques are techniques that track a time-
based joint or task space trajectory according to some locomotion
model such as the Zero Moment Point (ZMP). The state of the
art of these methods includes generalized multi-contact locomotion
behaviors, developed in [1] and more recently, a time delay extension
to the ZMP method for locomotion in moderately uneven terrain,
developed by [2].

Prediction of contact placement are techniques that use dynamics
to estimate suitable contact transitions to produce locomotion or
regain balance. In [3], simple dynamic models are used to predict
the placement of next contacts to achieve desire gait patterns.
Finding feasible CoM static placements given frictional constraints
was tackled in [4], [5]. In [6], stable locomotion, in the wide sense
of not falling down, is studied by providing velocity based stability
margins. This work is used to regain stability when the robot’s is
pushed out, and lead to the concept of Capture Point.

Passive dynamic walking and optimal control were pioneered
by McGeer [7] through the field of passive dynamic walking. In
[8] the authors study orbital stability, and the effect of feedback
control to achieve asymptotic stability. Optimization of open-loop
stability is investigated in [9]. In [10], [11], [12], the authors analyze
the energetic cost of bipedal walking and running as well as the
role of leg sequencing. In [13], the authors developed a dynamic
walker using artificial muscles and principles of stability of passive
walkers. In [14], a methodology for the analysis of state-space
behavior and feedback control are presented for various physical
robots. Step recovery in response to perturbations is studied in [15]
supported by a linear bipedal model in combination with an orbital
energy controller. In [16], the selection of gait patterns based on
studying the interplay between robustness against perturbations and
leg compliance is investigated.

Hybrid methods include [17], where the stability of passive
walkers is studied and a controller obeying the rule, “in order to
prevent falling backward the next step, the swing leg shouldn’t be
too far in front”, in the words of the author, is suggested. Stochastic
models of stability and its application for walking on moderately
rough unmodeled terrain are studied in [18]. The design of non-
periodic locomotion for uneven terrain is investigated in [19], [20].
In [21], the authors explore the design of passivity-based controllers
to achieve walking on different ground slopes. Optimization-based
techniques for locomotion in rough terrains are presented in [22].
Locomotion in very rough terrain is presented in [23], where the
authors exploit optimization and static models as a means to plan
locomotion. More recently, the authors of [24] have proposed a very
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efficient planner that can generate a discrete sequence of multi-contact
stances using static criteria. Also very recently, we made various
theoretical contributions [25], [26] to enable walking at fast speeds
in very rough variable terrain.

III. MATHEMATICAL DERIVATIONS

A. Dynamic behavior from multiple contacts

Dynamic equilibrium of mechanical systems states that the sum of
external and reaction forces and moments on a moving system equals
the net inertial and gravitational forces and moments acting on it. In
our paper [27] a multi-contact/grasp matrix describing the complex
interactions between contact forces and center of mass behavior was
developed based on the principle of dynamic equilibrium. Based on
this study, we proposed a virtual linkage model for humanoid robots
to analyze the inter-dependencies between whole-body contacts and
center of mass behavior.

In particular, we consider the multi-contact scenario shown in
Figure 3 where a human performs an extreme maneuver involving
fast swings of his body back and forth using the two feet contacts
placed against uneven surfaces. For simplicity, we model the feet as
point contacts. In such case, the multi-contact/grasp matrix can be
derived from the virtual linkage model [27] as

fcom +Mg

mcom

ft

 = C7×6

fr(RF )

fr(LF )

 , (1)

where fr(RF ) and fr(LF ) represent the three dimensional reaction
forces on the right and left feet, respectively, fcom , M acom
represents inertial forces caused by center of mass accelerations, acom
is the three dimensional vector of center of mass linear accelerations,
M is the total mass of the human, g , (0, 0, 9.81) is the vector
of gravitational accelerations pointing upward to be consistent with
reaction forces, mcom is the three dimensional vector of inertial
moments at the center of mass, and ft is the one dimensional vector
of internal tension forces between the feet.

The multi-contact/grasp matrix C7×6, derived in the Appendix, is
non-square and therefore non-invertible, prompting us to further study
its structure. We further consider the decomposition of the multi-
contact/grasp matrix given in Equation (35) focusing on the inertial
components. An empirical study of the submatrix Wcom 6×6 (see
Equations (32) and (35)) by means of the motion captured sequence
of Figure 3, reveals that it has rank 5 instead of 6. Such condition
is analogous to the dependencies between bipedal center of pressure
points and center of mass accelerations that we analyzed in detail in
[27]. One way to get around with this deficiency is to remove one
raw from Wcom 6×6, for instance the raw corresponding to the linear
forces in the lateral y direction. This can be achieved by considering
the selection matrix described in Equation (36), which leads to the
full rank expression

C6×6 , SVL C7×6. (2)

Given the above dimensional reduction, we can now solve reaction
forces for a given center of mass inertial and internal tension behavior,
as fr(RF )

fr(LF )

 = C−1
6×6 SVL


fcom +Mg

mcom

ft

 (3)

If we consider the block decomposition,

C−1
6×6 SVL =

(
Cf 6×2 | Cm 6×3 | Ct 6×1

)
, (4)

Fig. 1. Angle of attack from single contact phase: In these graphs we
show the angle of attack for two different center of mass geometric paths.
Only the one on the top is feasible since it is positive, i.e. α > 0, resulting
in a deceleration before reaching the vertical apex. On the other hand, the
bottom graph has an angle of attack β < 0.

we can express the reaction forces in the more intuitive formfr(RF )

fr(LF )

 = Cf Sxz

(
fcom +Mg

)
+ Cm mcom + Ct ft (5)

where

Sxz ,

(
1 0 0
0 0 1

)
, (6)

is a subcomponent of SVL that removes the y direction. Equation (5)
will serve as our model to both analyze and also synthesize extreme
multi-contact maneuvers.

B. Dynamic behavior from a single contact

Once more, we use the principle of dynamic equilibrium, this time
around applied to a single contact. In particular, we consider the
single contact scenario corresponding to the flight phase of Figure 4.
In such case, the balance of dynamic moments can be formulated as

pcopk
× frk = pcom ×

(
fcom +M g

)
+mcom, (7)

where, k is the limb in contact with the wall board, pcopk
is the limb’s

Center of Pressure (CoP) point, frk is the 3-dimensional vector of
reaction forces and fcom and mcom are 3-dimensional vectors of
center of mass inertial forces and moments respectively. The above
equation is vectorial and represents three orthogonal moments. Once
more we have considered point contact for simplicity and therefore
there are no reaction moments that need to be taken into account.
Solving this equation for the CoP in the Sagittal direction (see [25]),
leads to the solution

pcopk[x]
= pcom[x] −

fr[kx]

fr[kz]

(
pcom[z] − pcopk[z]

)
−
mcom[y]

fr[kz]
. (8)
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Using the equalities fr[kx]
= Macom[x], and fr[kz]

= M(acom[z]+g)
we can rewrite the above equation as

acom[x] =

(
pcom[x] − pcopk[x]

)(
acom[z] + g

)
pcom[z] − pcopk[z]

(9)

Here, we have assumed a point mass model of the human or robot,
with all of its weight located at its center of mass. As such, there are
no inertial moments generated about the center of mass, i.e. mcom =
0. Simplifying moments represents a limitation that we are aware
of and therefore we plan to consider more comprehensive models in
the future. Also, note that a similar equation could be derived for
accelerations in the lateral direction, but for the sake of simplicity
we do not consider it in this study, thus restricting our initial results
to Sagittal movements.

C. Geometric path planning

Because in Equation (9) there are two variables that need to be
solved, i.e. the accelerations of the center of mass on the Sagittal
and vertical directions, we choose to first seed geometric depen-
dencies based on an initial guess. This is equivalent to choosing a
geometric path of the center of mass a priori. There are many options
to determine these dependencies, ranging from ensuring kinematic
constraints, generating biomimetic patterns, or minimizing power. Let
us consider the option of ensuring kinematic constraints only.

One simple dependency is to draw a piecewise linear geometric
path of the humanoid’s CoM behavior that fulfills robot kinematic
constraints. Let us consider a given CoM geometric path determined
by a kinematic planner and for the length of a given maneuver.
Because the geometric trajectory is piecewise linear, it can be
specified through equations of multiple intersecting lines, i.e.

pcom[z] =



a1 pcom[x] + b1, pcom ∈ P1

a2 pcom[x] + b2, pcom ∈ P2

...

aN pcom[x] + bN , pcom ∈ PN

(10)

where, Pj represents the path of the CoM over line segment j.
Moreover, the acceleration profile can be extracted by differentiating
twice the above piecewise equation, i.e.

if pcom[z] = ai pcom[x] + bi, then acom[z] = ai acom[x]. (11)

Plugging the above acceleration in Equation (9) we get

acom[x] =

(
pcom[x] − pcopk[x]

)(
ai acom[x] + g

)
ai pcom[x] + bi − pcopk[z]

, (12)

and since acom[x] appears both on the left and right hand sides, we
can rewrite the equation as

acom[x] =

(
pcom[x] − pcopk[x]

)
· g(

ai pcopk[x]
+ bi − pcopk[z]

) . (13)

Notice that the denominator and the second term in the numerator
above are constants, so the above equation is of the form ẍ = β (x−
α), which is linear and as such has a closed-form solution.

However, in a more general case, kinematic paths are not based on
piecewise linear functions, but instead depend on more sophisticated
base functions. For instance, in legged locomotion an efficient gait
can be produced by following circular arcs, i.e. pcom[z] =

(
r2 −

Fig. 2. Phase diagrams of CoM behavior using perturbation theory:
These phase diagrams correspond to Matlab simulations of CoM behavior
given a foot contact point, a desired CoM kinematic path, and boundary
conditions.

p2com[x]

)0.5. In that case path accelerations for a given step can be
expressed by differentiating the arc, i.e.

acom[z] =− (r2 − p2com[x])
−1.5 p2com[x] v

2
com[x]

− (r2 − p2com[x])
−0.5 v2com[x]

− (r2 − p2com[x])
−0.5 pcom[x] acom[x] (14)

where, r is the radius of the arc. Plugging the above acceleration in
Equation (9) we get

acom[x] =
(
pcom[x] − pcop[kx]

)
·

N
(
pcom[x], vcom[x], pcop[kx]

)
D
(
pcom[x], pcopk[x]

, pcopk[z]

) , (15)

with

N , g −
(
r2 − p2com[x]

)−1.5

p2com[x] v
2
com[x]−(

r2 − p2com[x]

)−0.5

v2com[x] (16)

D ,
(
r2 − p2com[x]

)0.5
− pcopk[z]

+(
pcom[x] − pcopk[x]

)(
r2 − p2com[x]

)−0.5

pcom[x]. (17)

The acceleration of Equation (15) is non-linear and therefore cannot
be integrated anymore.

In general, if the CoM geometric path is generated by a non-linear
base function, the acceleration profile will be non-linear with general
expression

acom[x] =
(
pcom[x] − pcop[kx]

)
·

Φ
(
pcom[x], vcom[x], pcopk[x]

, pcopk[z]

)
, (18)

where, Φ(.) is a non-linear function, and as such does not always
have a closed-form solution. In Figure 2 we depict some hypothetical
paths and their solution based on Equation (18). These solutions can
be derived using numerical integration as we will soon describe.

For instance, let us consider the gap leaping maneuver shown in
Figure 4. Two piecewise center of mass geometric paths are shown
in Figure 1 as candidates to ascend the step. The top geometric path
corresponds to a piecewise approximation of the captured motion
from the human performing the maneuver and the one on the bottom
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has been manually designed based on observation. Notice that both
paths cover the complete gap leaping sequence which consists on
jumping, flying, and landing phases. As such, the leaping maneuver
involves two multi-contact and one single contact transitions. These
transitions are not known a priori as it is the objective of the motion
planner of Section IV-B to reveal them. Although both paths fulfill
human and robot kinematic constraints, considering similar body
segment dimensions, one of them is deficient as we will now reveal.

Because the geometric paths are piecewise linear, we consider
Equation (13) for the single contact flight phase. Notice that, for our
example, the numerator is positive since the center of mass is ahead
of the left support foot. Therefore, if the denominator is positive the
Sagittal CoM acceleration is positive and vice-versa, i.e.

if ai pcop[x] + bi > pcopk[z]
, then acom[x] > 0

elseif ai pcop[x] + bi < pcopk[z]
, then acom[x] < 0 (19)

else acom[x] →∞. (20)

Using the equality bi = pcom[z] − ai pcom[x], derived from Equa-
tion (10), we can rewrite the above condition as

if ai <
pcom[z] − pcopk[z]

pcom[x] − pcopk[x]

, then acom[x] > 0

elseif ai >
pcom[z] − pcopk[z]

pcom[x] − pcopk[x]

, then acom[x] < 0 (21)

else acom[x] →∞. (22)

In other words, if the slope ai is smaller than the slope of the line
connecting the CoM to the supporting foot, then acom[x] is positive.
On the other hand if ai is larger than the slope of the CoM-foot line
then acom[x] is negative. We call these conditions, the angle of attack
of the CoM path. It can be calculated as the difference between the
angles of the CoM path line and the CoM-foot line, i.e.

αattack = atan(ai)− atan

(
pcom[z] − pcopk[z]

pcom[x] − pcopk[x]

)
. (23)

An interesting case, comes when the angle of attack is zero, i.e.
when the slope of the CoM path ai matches the slope of the CoM-foot
line. In such case acom[x] →∞. This condition is precisely the one
that makes us rapidly jump. We can test it on ourselves by standing
on one foot, starting moving forward, and then accelerating the CoM
along the line connecting the foot on the ground. We will then see
that we rapidly jump. In Figure 1 we show the angles of attack of
the different CoM segments around the estimated flight phase. When
the slope of the path segments is smaller than the line connecting the
foot and the segment itself, then accelerations are positive, shown in
green. Otherwise, the accelerations are negative, shown in red.

Using the angle of attack for analysis, we conclude that the
top graph is feasible since there is a deceleration stage before
reaching the vertical apex. This is consistent with the physics of
free falling. However, the bottom graph is not feasible since there is
an acceleration stage right before reaching the vertical apex which
would cause the center of mass to overshoot the desired apex height
instead of falling down on the path. The reason why there can exist a
deceleration stage while moving forward as shown in the top graph,
is because the inertial forces can be kept below the static friction
cone if they have smaller a vertical component than the grativational
force.

D. Numerical integration

Our objective is to extract state-space trajectories for arbitrary
kinematic CoM paths. We refer to perturbation theory to address the

Fig. 3. Analysis and estimation of internal tensions during a swinging
maneuver: In this figure we depict motion paths and state space curves of
captured motion of a multi-contact swinging behavior as well as estimation
of internal tensions using the multicontant/grasp matrix.

difficulty of solving non closed-form integrable differential equations
such as Eq. (18). In particular, perturbation theory has been widely
used to solve the trajectory of celestial bodies and pendulums.
Perturbation theory, is a set of methods that enable to approximate
solutions from problems that do not have exact solutions, by looking
into the solution of an exact related problem. In our case, we have
the exact solution of accelerations given positions and contact points
and we seek to approximate the solution of the position versus the
velocity, i.e. the state-space trajectory.

Let us study our generic Equation (18). For simplicity, we call
x , pcom[x] and therefore we can rewrite this Equation as

ẍ = f(x, ẋ), (24)

where f(x, ẋ) is the RHS of Equation (18). We assume that ẍ
is approximately constant for small perturbations of x. We derive
the first terms of a Taylor series for a small disturbance, ε, and
for boundary conditions (xk, ẋk) we approximate the behavior of
neighboring points as

ẋk+1 ≈ ẋk + ẍkε, (25)

xk+1 ≈ xk + ẋkε+ 0.5 ẍkε
2. (26)

From Eq. (25) we find an expression of the perturbation in terms of
the velocities and acceleration, ε ≈ (ẋk+1− ẋk)/ẍk, and substituting
in Eq. (26), with ẍk = f(xk, ẋk), we get

xk+1 ≈
(
ẋ2k+1 − ẋ2k

)
2 f
(
xk, ẋk

) + xk, (27)

which is the state-space approximate solution that we were looking
for. The pipeline for finding state-space trajectories goes as follows:
(1) choose a very small time perturbations ε, (2) given known
velocities ẋk and accelerations ẍk, and using Eq. (25), we get the
next velocity ẋk+1, (3) using Eq. (27) we get the next position xk+1,
(4) plot the points (xk+1, ẋk+1) in the phase-plane. We also notice,
that we can iterate this recursion both forward and backward. If we
iterate backward we then need to choose a negative perturbation ε.
In Figure 2 we solve state space curves using perturbation theory
for arbitrary linear and nonlinear paths and given various boundary
conditions.
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Fig. 4. Analysis and estimation of internal tensions during jumping and landing maneuvers: In this figure we depict a gap leaping maneuver and the
extraction of data using motion capture devices.

IV. CASE STUDIES

A. Analysis of extreme swinging behavior

Let us consider the multi-contact swinging behavior shown in
Figure 3, where the subject swings his body back and forth between
two points. Suppose that we have a known center of mass phase
diagram of the maneuver, for instance extracted through mocap (see
graphs included in the Figure). There are infinite solutions to move
along the same kinematic path. However, each of them carries a
different signature in terms of velocities and internal tensions. We use
Equation (5) to extract internal tension forces by searching solutions
that fulfill the friction properties of the surfaces in contact (see
Algorithm 1 for details). As such, during multi-contact, the problem
that we solve is determining whether the phase curves are feasible
given the friction properties of the surfaces in contact.

On the image sequence, student Nick Paine engages into a forceful
contact behavior between the wall board and the ladder to enable fast
swings back and forth. The wall board leans at an angle of 70o from
the floor and contains layers of adhesive sand paper to increase the
friction coefficient with respect to the sport shoes. A simple mocap
setup is used in the HCRL facilities at UT Austin, where multiple
markers are placed near Nick’s center of mass body segments, while
a video camera records the movement from a sufficient distance and
at a rate of 30 frames per second. The video sequence is then broken
into multiple jpeg images and then uploaded into Matlab using the
command imread(). In Matlab, we use the command ginput()
to track the 14 markers as well as the perceived feet center of pressure
points. We use male anthropometry data ratios from [28], adjusted to
Nick’s weight and composition, to extract the center of mass path.
The continuous yellow curve corresponds to the center of mass path
from the bottom of the ladder until reaching the step where the swings
occur.

After extracting the path, we use the Matlab tool cftool() to fit
a spline using piecewise polynomials and then we extract the first
and second derivatives to estimate velocities and accelerations of
the center of mass. The graphs on the center column of Figure 3
display, (1) the path of the center of mass, (2) state space curves of
the Sagittal and vertical center of mass behavior, and (3) estimated
accelerations. The graphs on the rightmost column show the result of
extracting estimated internal tension forces ft that fulfill the friction
characteristics of the surfaces and the resulting reaction forces. They
plot the right foot reaction force angle against the ladder’s friction
angle and the left foot reaction force angle against the board’s friction
angle. They also plot the estimated internal tension force derived

from the search strategy of Algorithm 1, which is found to oscillate
between 400-500[N].

B. Synthesis of gap leaping maneuver

We now consider the maneuver of leaping from a given ladder
step to a higher one as shown in Figure 4. To tackle this problem
we resort to the two powerful methods presented in Sections III-A
and III-D, namely the multi-contact/grasp matrix and the perturbation
recursions. In the sequence shown in Figure 4, student Nick Paine
leaps upward from the second to the third step of the ladder and by
means of the supporting wall board.

Algorithm 1 Motion planner for multi-contact jumping (forward) and
landing (backward) phases

choose perturbation ε > 0 for forward or ε < 0 for backward rec.
use Eq. (2) to compute multi-contact/grasp matrices Ck(∀k)
use Eq. (4) to compute Cfk(∀k), Ctk(∀k)
using Eq. (5) to search over feasible ẍk(∀k) and ftk(∀k) values
set xk(k=1) equal to start (forward) or end (backward) point
set ẋk(k=1) = 0 and żk(k=1) = 0 due to boundary conditions
while distance to forward / backward horizon 6= 0 do

extract zk+1 = ai xk + bi
extract z̈k+1 = ẍk+1/ai
use Eq. (26) to infer żk+1

use Eq. (27) to infer zk+1

extract xk+1 = (zk+1 − bi)/ai
extract ẋk+1 = żk+1/ai
change piecewise segments (ai, bi) when appropriate
use Eq. (5) to determine reaction forces frk
check that reaction forces frk are within friction cones

end while

Our approach can be summarized as follows. First we derive a
center of mass geometric path using the techniques presented in Sec-
tion III-C. We then consider three distinctive phases corresponding
to a multi-contact jumping phase, a single-contact flight phase, and
a multi-contact landing phase. Based on the designed path, we first
solve the single-contact flight phase by means of perturbation theory
recursion. Next, we solve the jumping and landing phases by means
of the the multi-contact/grasp matrix and also the perturbation theory
recursion. Finally, we implement a contact transition planner, based
on finding intersection points in state space between multi-contact
and single-contact phases.
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Fig. 5. Contact transition planner for gap leaping: This composed figure depicts details on the planning strategy to synthesize the leaping maneuver.

Before starting with the synthesis part, let us analyze the behavior
shown in Figure 4. Nick accelerates his body backward (jumping
phase) to gain momentum to leap upward (flight phase) and land
on the next ladder step (landing phase). Motion capture is conducted
enabling the extraction of CoM geometric paths and CoM state space
curves as shown in the graphs that accompany the Figure. We then
approximate the CoM path using piecewise segments. Since we lack
force plates on the surfaces in contact, we estimate contact reaction
forces by using Algorithm 1. The results of this estimation is shown
in the center bottom graph.

We now consider synthesizing an artificially generated maneuver
that can leap the steps in similar ways than the human does. The
results of this process are shown in Figure 6. For simplicity, we use
the discretized version of the CoM geometric path from the human
shown on the bottom left graph of Figure 4. We divide the synthesis
problem in three separate parts. First, we use Algorithm 2 to derive
flight phase data. This algorithm can be summarize as follows. We
choose an initial point on the CoM geometric path perceived as
belonging to the single-contact flight phase. We then search over
candidate starting vertical velocities and apply perturbation theory
to derive the natural dynamics of the movement over the geometric
path. We validate the initial velocity if its forward projection reaches
the vertical apex with zero vertical velocities, meaning that the center
of mass can start falling. Because we don’t know to what extend the
single-contact phase belongs to the different segments of the CoM
geometric path we implement forward and backward recursions over
horizons along the path.

We then solve the multi-contact jumping and landing phases by
means of Algorithm 1 which can be summarized as follows. We
compute the multi-contact grasp matrix along all data points over the
CoM geometric path. We then search over candidate acceleration and
tension pairs and apply perturbation theory to project the movement
over a horizon. The jumping phase involves a forward projection
while the landing phase involves a backward projection which need
to be considered in choosing the perturbation sign direction. Putting
together the previous single and multi-contact recursions lead to the

Algorithm 2 Motion planner for single-contact flight phase (for-
ward/backward strategy)
{forward recursion}
choose perturbation ε > 0
set xk(k=1) to be on flight zone
search żk(k=1) to reach vertical apex
while distance to forward horizon 6= 0 do

extract zk = ai xk + bi
use Eq. (13) to determine ẍk
extract z̈k = ai ẍk
use Eq. (26) to infer żk+1

use Eq. (27) to infer zk+1

extract xk+1 = (zk+1 − bi)/ai
extract ẋk+1 = żk+1/ai
change piecewise segments (ai, bi) when appropriate
check that żk(k=apex) = 0

end while
{backward recursion}
choose perturbation ε < 0
use xk(k=1) equal to previous init value
use żk(k=1) from previous vertical apex search
while distance to backward horizon 6= 0 do

extract zk = ai xk + bi
use Eq. (13) to determine ẍk
extract z̈k = ai ẍk
use Eq. (26) to infer żk+1

use Eq. (27) to infer zk+1

extract xk+1 = (zk+1 − bi)/ai
extract ẋk+1 = żk+1/ai
change piecewise segments (ai, bi) when appropriate

end while
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Fig. 6. Results on synthesis of gap leaping using motion planner: Synthetic leaping motion and artificially generated path and contact plans to achieve it.

top center graph of Figure 5. As we can see, the jumping and landing
phases intersect the flight phase at different points (shown in green
on the graph).

Having solved all phases of the movement, we consider finding
contact transitions by means of a contact planner. Because we operate
in state space, crossing points between phases imply continuity on
position and velocity. As such, the intersections previously discussed
are precisely the moments at which contacts need to change to follow
the path. For instance, to switch from jumping to free flight phase,
we need to remove the right foot contact at the intersection between
the jumping and the backward flight phases. The final motion plan
is shown on the bottom center graph of Figure 5 against the one
extracted from the human. As we can notice they are remarkably
similar. One of the main differences is that the synthetic path
reaches higher velocities during the jumping phase than what the
mocap data extraction process shows. However, when synthesizing
the movement based on the proposed planner, shown in Figure 6,
the time trajectories of the vertical and Sagittal CoM behavior look
very similar to the human. Therefore, we believe that the difference
in velocities are due to the low sampling rate of the marker data. In
fact, the sampling time is equal to 0.1[s] which means that the peak
velocities may have been cut off.

Figure 6 depicts the synthetic maneuver based on the planning
strategy we have proposed. A time based reconstruction of the vertical
and Sagittal trajectories is also shown against the same data extracted
from the human. The trajectories are very similar, demonstrating the
validity of the proposed planning methodology. Also, reaction forces
of the synthetic maneuver are shown to remain within boundaries of
the surfaces in contact. Finally, we show the right foot geometric path
created with a trajectory generator (not described here) to ascend one
step.

V. CONCLUSION

Maneuvering in extreme environments is a highly complex problem
because of the lack of closed-form solutions of the passive dynamics
and the dominance of multi-contact forces during take off and landing
phases. It requires an in-depth exploration of physical phenomena and
resorting to advanced mathematical tools to model and solve these
type of interactions. We have resorted to multi-contact dynamics and
numerical integration to derive state space curves during the different
phases of the movements. These tools, and proposing a contact solver
based on finding intersection points in state space represent important
contributions for legged robots.

The good correlation of synthetic curves shown in Figure 6, which
compare artificial and human movement, point towards the validity

of our methods. However, there is still much work to be done. Topics
to explore in the near future include, (1) the inclusion of center of
mass inertial moments in the modeling and planning strategies, (2)
relying less on manual search of data points, and (3) extending the
methods to 3d maneuvers. Moreover, to be deployable, our methods
will need to be extended with a suitable control strategy as well as
the design of bipedal hardware that can accomplish the performance
sought.

APPENDIX

A. Simple virtual linkage model for the human

Using dynamic balance of moments and forces we can specify the
following relationship which links inertial and gravitational behavior
to reaction forces (see [27] for the derivation of this model)(

[I]3×3 [I]3×3

P̂cop[1] P̂cop[2]

)(
fr1

fr2

)
=(

[I]3× 3 [0]3×3

P̂com [I]3×3

)(
fcom +Mg

mcom

)
, (28)

where the operators with a (̂.) correspond to the cross product matrix,
pcop[i] corresponds to the center of pressure of the i-th foot and pcom
corresponds to the position of the center of mass. We can also express
internal forces as

ft = St

( V LR0

)
∆t

(
fr1

fr2

)
, (29)

where the differential operation is described by

∆t ,
(
[I]3× 3 [I]3×3

)
, (30)

and the rotation matrix that transforms an inertial frame to the virtual
linkage frame is

0RV L ,


(xV L · x̂) (xV L · ŷ) (xV L · ẑ)

(yV L · x̂) (yV L · ŷ) (yV L · ẑ)

(zV L · x̂) (zV L · ŷ) (zV L · ẑ)

 , (31)

Calling

[
Wcom

]
6×6

,

(
[I]3× 3 [0]3×3

P̂com [I]3×3

)−1(
[I]3×3 [I]3×3

P̂cop[1] P̂cop[2]

)
(32)

[
Wint

]
1×6

, St

( V LR0

)
∆t, (33)
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we get a non-square multi-contact expression
fcom +M g

mcom

ft

 = [C]7×6

(
fr1

fr2

)
, (34)

with

[C]7×6 ,


[
Wcom

]
6×6[

Wint

]
1×6

 (35)

The matrix [C]7×6 is a candidate for the multi-contact/grasp ma-
trix, however being non-square it means that there is redundancy on
the RHS of the above equation. We need to reveal the interdependency
between inertial and reaction forces. This is analogous to the case
analyzed in our previous paper [27] where in planar dual contact
stance we revealed that there is a dependency between the zero
moment position and the position of the contact centers of pressure. A
similar condition must exist in the case of non-coplanar dual contact
stance. For instance, imagine the static case where the center of mass
lies in the line uniting the two point feet. Then it seems physically
intuitive that no accelerations can be caused in the directions lateral
to the uniting line (i.e. the y direction on the virtual linkage frame).
We decide to remove the inertial forces on the y direction. For that,
we choose a selection matrix of the following form

SVL ,


1 0 0
0 0 1

[0]2×3 [0]1×3

[0]3×3 [I]3×3 [0]3×1

[0]1×3 [0]1×3 1

 εR6×7

(36)

Taking independent variables we formulate the multi-contact/grasp
matrix

[C]6×6 , SVL


[
Wcom

]
6×6[

Wint

]
1×6

 . (37)
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