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Whole Body Operational Space Control (WBOSC) enables °oating-base highly redundant

robots to achieve uni¯ed motion/force control of one or more operational space objectives while

adhering to physical constraints. It is a pioneering algorithm in the ¯eld of human-centered
Whole-Body Control (WBC). Although there are extensive studies on the algorithms and theory

behindWBOSC, limited studies exist on the software architecture andAPIs that enableWBOSC

to perform and be integrated into a larger system. In this paper, we address this by presenting
ControlIt!, a new open-source software framework for WBOSC. Unlike previous implementa-

tions, ControlIt! is multi-threaded to increase maximum servo frequencies using standard PC

hardware. A new parameter bindingmechanism enables tight integration betweenControlIt! and

external processes via an extensible set of transport protocols. To support a new robot, only two
plugins and a URDF model is needed ��� the rest of ControlIt! remains unchanged. New WBC

primitives can be added by writing Task or Constraint plugins. ControlIt!'s capabilities are

demonstrated on Dreamer, a 16-DOF torque controlled humanoid upper body robot containing

both series elastic and co-actuated joints, and using it to perform a product disassembly task.
Using this testbed, we show that ControlIt! can achieve average servo latencies of about 0.5ms

when con¯gured with two Cartesian position tasks, two orientation tasks, and a lower priority

posture task. This is 10 times faster than the 5ms that was achieved using UTA-WBC, the

prototype implementation of WBOSC that is both application and platform-speci¯c. Variations
in the product's position is handled by updating the goal of the Cartesian position task.

ControlIt!'s source code is released under LGPLandwe hope it will be adopted andmaintained by

the WBC community for the long term as a platform for WBC development and integration.
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1. Introduction

Whole-Body Control (WBC) takes a holistic view of multi-branched highly redundant

robots like humanoids to achieve general coordinated behaviors. One of the ¯rst WBC

algorithms is Whole Body Operational Space Control (WBOSC),1–4 which provides

the theoretical foundations for achieving operational space inverse dynamics, task

prioritization, free °oating degrees of freedom, contact constraints, and internal forces.

There is now a growing community of researchers in this ¯eld as exempli¯ed by the

recent formation of an IEEE technical committee on WBC.5 While the foundational

theory and algorithms behind WBC have made great strides, less progress exists in

software support limiting the use ofWBC today. In this paper, we remedy this problem

by presenting ControlIt!,a an open sourceb software framework for WBOSC.

In this paper, we introduce ControlIt!, a software framework that enables

WBOSC controllers to be instantiated and is designed for systems integration, ex-

tensibility, high performance, and use by both WBC researchers and the general

public. Instantiating a WBOSC controller consists of de¯ning a prioritized com-

pound task that speci¯es the operational space objectives and underlying goal pos-

tures that the controller should achieve, and a constraint set that speci¯es the

natural physical constraints of the robot. Systems integration is achieved through a

parameter binding mechanism that enables external processes to access WBOSC

parameters through various transport protocols, and a set of introspection tools for

gaining insight into the controller's state at runtime. ControlIt! is extensible through

plugins that enable the addition of new WBC primitives and support for new robot

platforms. High performance is achieved by using state-of-the-art software libraries

and multiple threads that enable ControlIt! to o®er higher servo frequencies relative

to previous WBOSC implementations. By making ControlIt! open source and

maintaining a centralized website (https://robotcontrolit.com) with detailed

documentation, installation instructions, and tutorials, ControlIt! can be used to

evaluate new WBC ideas and supported long term.

The key contributions of this paper are as follows:

(1) We design a software architecture for supporting general use of WBOSC and its

integration within a larger system via parameter binding and events.

(2) We introduce the ¯rst API based on WBOSC principles for use across general

applications and robots.

aControlIt! should not be associated with MoveIt!.6 ControlIt! is focused on whole body feedback control

whereas MoveIt! is focused on motion planning. Thus, MoveIt! and ControlIt! typically reside at di®erent

levels of the software stack. The default feedback controller used by MoveIt! is ros control.7 However,

MoveIt! could be con¯gured to work with ControlIt!.
bControlIt!'s source code is available under a LGPLv2.1 license. Download and usage instructions are

available at https://robotcontrolit.com.
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(3) We provide an open-source software implementation.

(4) We design and implement a high performance multi-threaded architecture that

increases the achievable servo frequency by 10X relative to previous imple-

mentations of WBOSC.

(5) We reduce the number of components that need to be modi¯ed to develop a new

behavior to the set of RobotInterface, Clock, CompoundTask, and Con-

straintSet and decouple these changes from core ControlIt! code via plugins.

(6) We demonstrate ControlIt!'s utility and performance using a humanoid robot

executing a product disassembly task.

The remainder of this paper is organized as follows. Section 2 discusses related work.

Section 3 provides an overview of WBOSC's mathematical foundations. Section 4

presents ControlIt!'s software architecture and APIs. Section 5 presents how Con-

trolIt! was integrated with Dreamer and used to develop a product disassembly

application. Section 6 contains a discussion on other experiences using ControlIt! and

future research directions. The paper ends with conclusions in Sec. 7.

2. Related Work

As a relatively new ¯eld in robotics, WBC is rapidly evolving. Most WBC algorithms

issue torque commands8–26 or position commands.27 They di®er in whether they are

centralized28,29 or distributed,30,31 focus on manipulation,32 locomotion,33–35 or be-

havior sequencing,36,37 the underlying control models used,38–40, and whether they

have been evaluated in simulation or on hardware.41–69 These e®orts demonstrate the

behaviors enabled by WBC such as the use of compliance, multi-contact postures,

robot dynamics, and joint redundancy to balance multiple competing objectives.

ControlIt! is currently focused on supporting general use of WBOSC and its capa-

bilities, but may be enhanced to include ideas and capabilities from these recent

WBC developments.

An implementation of WBOSC called Stanford-WBC70 was released in 2011.

Stanford-WBC includes mechanisms for parameter re°ection, data logging, and

script-based con¯guration, but was a limited implementation of WBOSC that did

not support branched robots, mobile robots, or contact constraints. It was used to

make Dreamer's right arm wave and shake hands. More recently, UTA-WBC ex-

tended Stanford-WBC to support the full WBOSC algorithm, which includes

branched robots, free °oating degrees of freedom, contact constraints, and a more

accurate robot model that includes rotor inertias.71 UTA-WBC was used to make a

wheeled version of Dreamer containing 13 DOFs maintain balance on rough terrain.

While this demonstrated the feasibility of WBOSC using a real humanoid robot,

UTA-WBC was a research prototype targeted for a speci¯c robot and speci¯c be-

havior, i.e., balancing.29 The implementation was not designed to work as part of a

larger system for general applications. Instead, ControlIt! is a complete software re-

design and re-implementation of the WBOSC algorithm with a focus on the software

constructs and APIs that facilitate the integration of WBOSC into larger systems.

ControlIt! ��� A Software Framework for WBOSC
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The di®erences between UTA-WBC and ControlIt! are shown in Table 1. Com-

pared with UTA-WBC and Stanford-WBC, ControlIt! is a complete re-implemen-

tation that replaces the previous implementation. Speci¯cally, ControlIt! contains

new and more expressive software abstractions that enable arbitrarily complex

WBOSC controllers to be con¯gured, works with newer software libraries, middle-

ware, and simulators, supports extensibility through a plugin-based architecture, is

multi-threaded, and is designed to easily integrate with external processes through

parameter binding and controller introspection mechanisms.

The ability to integrate with external processes is important because applications

of branched highly redundant robots of the type targeted by WBC are typically very

sophisticated involving many layers of software both above and below the whole

body controller. To handle such complexity, a distributed component-based software

architecture is typically used where the application consists of numerous indepen-

dently running software processes or threads that communicate over both synchro-

nous and asynchronous channels.72,73 The importance of distributed component-

based software for advanced robotics is illustrated by the number of recently de-

veloped middleware frameworks that provide it. They include OpenHRP,74,75 RT-

Middleware,76 Orocos Toolchain,77 YARP,78 ROS,79,80 CLARAty,81,82 aRD,83

Microblx,84,85 OpenRDK,86–88 and ERSP.89 Among these, ControlIt! is currently

integrated with ROS and is a ROS node within a ROS network, though usually as a

real-time process potentially within another component-based framework (i.e.,

ControlIt!'s servo thread was an Orocos real-time task during the DRC Trials, and is

Table 1. A comparison between UTA-WBC and ControlIt!.

Property UTA-WBC ControlIt!

OS Ubuntu 10.04 Ubuntu 12.04 and 14.04

ROS Integration ROS Fuerte ROS Hydro and Indigo

Linear Algebra Library Eigen 2 Eigen 3
Model Library Tao RBDL 2.3.2

Model Description Format Proprietary XML URDF

Integration (higher levels) N/A Parameter binding

Integration (lower levels) Proprietary RobotInterface and Clock

plugins

Controller Introspection Parameter re°ection Parameter re°ection and ROS

services

WBC Initial Con¯guration YAML YAML and ROS parameter server
WBC Recon¯guration N/A Enable/disable tasks and con-

straints, update task priority

levels
Key Abstractions Task, constraint, skill Compound task, constraint set

Task/Constraint Libraries Statically coded Dynamically loadable via ROS

pluginlib

Number of threads 1 3
Simulator Proprietary Gazebo 6.1

Website https://github.com/lsentis/

uta-wbc-dreamer

https://robotcontrolit.com
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a RTAI90 real-time process in the Dreamer experiments discussed in this paper). In

general, ControlIt! can be modi¯ed to be a component within any of the other

aforementioned component-based robot middleware frameworks.

ControlIt! is designed to interact with components both below (i.e., closer to the

hardware) and above (i.e., closer to the end user or application) it within a robotic

system. Components below ControlIt! include robot hardware drivers or resource

allocators like ros control7,91 and Conman92 that manage how a robot's joints are

distributed among multiple controllers within the system. This is necessary since

multiple WBC controllers may coexist and a manager is needed to ensure only one is

active at a time. In addition, joints in a robots' extremity like those in an end e®ector

usually have separate dedicated controllers. Components that may reside above

ControlIt! include task speci¯cation frameworks like iTaSC,93–95 planners like

MoveIt!,6 management tools like Rock,96 MARCO,97 and GenoM,98 behavior se-

quencing frameworks like Ecto99 and Robot Task Commander (RTC),100 and other

frameworks for achieving machine autonomy101–109 or the coordination of multiple

humanoids.110 Clearly, the set of components that ControlIt! interacts with is large,

dynamic, and application-dependent. This is possible since component-based archi-

tectures provide su±cient decoupling to allow these external components to change

without requiring ControlIt! to be modi¯ed.

3. Overview of WBOSC

This section provides a brief overview of WBOSC. Details are provided in previous

publications.2–4,29 Let njoints be the number of actual DOFs in the robot. The robot's

joint state is represented by the vector qactual as shown by the following equation.

qactual ¼ hq1 . . . qnjointsi: ð1Þ

The robot's global pose is represented by a six-dimensional °oating virtual

joint that connects the robot's base link to the world, i.e., three rotational

and three prismatic virtual joints. It is denoted by vector qbase 2 R6. The two partial

state vectors, qactual and qbase, are concatenated into a single state vector qfull ¼
qactual [ qbase. This combination of real and virtual joints into a single vector is called

the generalized joint state vector. Let ndofs be the number real and virtual DOFs in

the model that is used by WBOSC. Thus, qfull 2 R
6þnjoints ¼ Rndofs . The total state

that is provided to the whole body controller consists of the full joint position vector

qfull and the full joint velocity vector q
:
full.

The underactuation matrix U 2 Rnjoints�ndofs de¯nes the relationship between the

actuated joint vector and the full joint state vector as shown by the following equation.

qactual ¼ Uqfull: ð2Þ
Let A be the robot's generalized joint space inertia matrix, B be the generalized

joint space Coriolis and centrifugal force vector, G be the generalized joint space

gravity force vector, Jc be the contact Jacobian matrix that maps from generalized

ControlIt! ��� A Software Framework for WBOSC
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joint velocity to the velocity of the constraint space dimensions, �c be the co-state of

the constraint space reaction forces, and �command be the desired force/torque joint

command vector that is sent to the robot's joint-level controllers. The robot dy-

namics can be described by a single linear second-order di®erential equation shown

by the following equation.

A
q
::
base

q
::
actual

� �
þ B þG þ J T

c �c ¼ 06�1

�command

� �
: ð3Þ

Constraints are formulated as follows. Let _pc be the velocity of the constrained

dimensions, which we approximate as being completely rigid and therefore yielding

zero velocity at the contact points, as shown by the following equation.

_pc ¼ Jc
q
:
base

q
:
actual

� �
, 0: ð4Þ

Tasks are formulated as follows. Let _pt be the desired velocity of the task, Jt be

the Jacobian matrix of task t that maps from generalized joint velocity to the ve-

locity of the task space dimensions, and Nc be the generalized null-space of the

constraint set. Furthermore, let J �
t be the contact consistent reduced Jacobian

matrix3 of task t, i.e., it is consistent with U and Nc. The de¯nition of _pt is given by

the following equation where operator arg is the dynamically consistent generalized

inverse of arg.3

_pt ¼ Jt
q
:
base

q
:
actual

 !
¼ JtUNcq

:
actual

¼ J �
t q
:
actual ð5Þ

Let ��
t be the contact-consistent prioritized task-space inertia matrix3 for task t,

p
::
t;ref be the reference, i.e., desired, task-space acceleration for task t, � �

t be the

contact-consistent task-space Coriolis and centrifugal force vector for task t, and � �
t

be the contact-consistent task space gravity force vector for task t. The force/torque

command of task t, denoted Ft , is given by the following equation.

Ft ¼ ��
t p
::
t;ref þ � �

t þ � �
t : ð6Þ

To achieve multi-priority control, let J �
t j prev be the Jacobian matrix of task t that

is consistent with U , Nc, and all higher priority tasks. The equation for �command is the

sum of all of the individual task commands multiplied by the corresponding J �
t jprev

matrix as shown by the following equation.

�command ¼
X
t

J �T
t j prevFt : ð7Þ

Finally, when a robot has more than one point of contact with the environment,

there are internal tensions within the robot. By de¯nition, these \internal forces" are

orthogonal to joint accelerations since they result in no net movement of the robot.

C.-L. Fok et al.
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The control structures like the multicontact/grasp matrix that are used to control

these internal forces are documented in previous publications.4 Let L� be the null-

space of ðUNcÞ and � internal be the reference (i.e., desired) internal forces vector. The

contribution of the internal forces can thus be added to Eq. (7) as shown by the

following equation.

� command ¼
X
t

ðJ �T
t j prevFtÞ þ L�T� internal: ð8Þ

�command is sent to the joint-level controllers concluding one cycle of the servo loop.

This concludes the mathematical discussion of WBOSC. The next section focuses on

the software architecture and abstractions for implementing WBOSC.

4. ControlIt! Software Architecture

There are six guiding principles behind ControlIt!'s development: (i) separate con-

cerns into interface de¯nitions, implementations, and con¯guration, (ii) support

extensibility and platform-independence through dynamically loadable plugins, (iii)

encourage code reuse through plugin libraries, (iv) support systems integration

through parameter binding, events, data introspection services, and compatibility

with a modern software ecosystem, (v) be cognizant of performance and real-time

considerations, and (vi) support two types of end users: developers who use

ControlIt! and researchers who modify ControlIt!.

Section 4.1 contains a discussion of ControlIt!'s software architecture, which

describes the software components within ControlIt's core. Many of these compo-

nents either instantiate plugins or are implemented by plugins based on ROS plu-

ginlib.111 The use of plugins enables ControlIt! to support di®erent robots and

applications. Section 4.2 discusses mechanisms for con¯guring and integrating

ControlIt! into a larger system. This includes the parameter re°ection, binding, and

event signaling mechanisms, and YAML speci¯cation ¯les. Finally, a description of

ControlIt!'s multi-threaded architecture is discussed in Sec. 4.3.

4.1. Software architecture

The software abstractions that enable ControlIt! to instantiate and integrate general

WBOSC controllers are shown in Fig. 1. The abstractions that are extensible via

plugins are colored gray. They include tasks, constraints, the whole body controller,

the clock, and the robot interface. Nonextensible components include the compound

task, robot model, constraint set, and coordinator. The coordinator implements the

servo loop and uses all of the other abstractions except for the clock, which imple-

ments the servo thread and controls when the coordinator executes the next cycle of

the servo loop. The software abstractions can be divided into three general catego-

ries: con¯guration, WBC, and hardware abstraction.

Con¯guration. Con¯guration software abstractions include the robot model,

compound task, and constraint set. Their APIs and attributes are shown in Fig. 2.

ControlIt! ��� A Software Framework for WBOSC
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Fig. 2. This UML diagram speci¯es the APIs of ControlIt!'s con¯guration software abstractions. They

are used to specify the objectives and constraints of the whole body controller.

Fig. 1. The primary software abstractions within ControlIt! fall into three categories: con¯guration,

WBC, and Hardware Abstraction Layer (HAL). Con¯guration components consist of a compound task,

constraint set, and robot model. The compound task contains a set of prioritized tasks. Tasks specify
operational space or postural objectives and contain task-space controllers; multiple tasks may have the

same priority level. Constraints specify natural physical constraints that must be satis¯ed at all times and

are e®ectively higher priority than the tasks. The robot model computes kinematic and dynamic properties

of the robot based on the current joint states. WBC components include a coordinator that ties all of the
other components together and implements the actual servo loop and the whole body controller itself. HAL

components include a clock and robot interface. They enable ControlIt! to work on many platforms.

Arrows indicate usage relationships between the software abstractions. The abstractions that are exten-

sible via plugins are colored gray.

C.-L. Fok et al.
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The robot model determines the kinematic and dynamic properties of the robot and

builds upon the model provided by the Rigid Body Dynamics Library (RBDL),112

which includes algorithms for computing forward and inverse kinematics and dy-

namics and frame transformations. The kinematic and dynamic values provided by

the model are only estimates and may be incorrect, necessitating the use of a whole

body feedback controller. The robot model API includes methods for saving and

obtaining the joint state, qfull, and getting properties of the robot like the joint space

inertia matrix, Coriolis and centrifugal force vector, and gravity compensation

vector, which are variables A, B, and G in Eq. (3). There are also methods for

obtaining the joint order within the whole body controller. A reference to the con-

straint set is kept within the robot model to determine which joints are virtual (i.e.,

the 6-DOF free °oating joints that specify a mobile robot's position and orientation

within the world frame), real, and actuated.

The compound task and constraint set contain lists of tasks and constraints,

respectively. Tasks and constraints are abstract; concrete implementations are added

to ControlIt! through plugins. Both have names and types for easy identi¯cation and

can be enabled or disabled based on context. A task represents an operational or

postural objective for the whole body controller to achieve. Concrete task imple-

mentations contain goal parameters that, in combination with the robot model,

produce an error. The error is used by a controller inside the task to generate a task-

space e®ort command,c which is accessible through the getCommand() method and

may be in units of force or torque. In addition to the command, a task also provides a

Jacobian that maps from task space to joint space. The compound task combines the

commands and Jacobians of the enabled tasks and relays this information to the

whole body controller. Speci¯cally, for each priority level, the compound task ver-

tically concatenates the Jacobians and commands belonging to the tasks at the

priority level. The WBOSC algorithm uses these concatenated Jacobian and com-

mand matrices to support task prioritization and multiple tasks at the same priority

level, as de¯ned by Eq. (7).

Task Library. To encourage code reuse and enable support for basic applications,

ControlIt! comes with a task library containing commonly used tasks. The tasks within

this library are shown in Fig. 3. There are currently six tasks in the library: joint

position, 2D/3D Orientation, Center of Mass (COM), Cartesian position, and Center

of Pressure (COP). In the future, more tasks can be added to the library by introducing

additional plugins. Of these, the joint position, orientation, and Cartesian position

tasks have been successfully tested in hardware. The rest have only been tested in

simulation. Note that all of the tasks make use of a PIDController. This feedback

controller generates the task-space command based on the current error and gains.

Alternative types of controllers like slidingmode control may be provided in the future.

The joint position task directly speci¯es the goal positions, velocities, and accel-

erations of every joint in the robot. It typically de¯nes the desired \posture" of the

cWe use the word \e®ort" to denote generalized force, i.e., force or torque.

ControlIt! ��� A Software Framework for WBOSC

1550040-9

In
t. 

J.
 H

um
an

. R
ob

ot
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 L

ui
s 

Se
nt

is
 o

n 
10

/2
4/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



robot, which is not an operational objective but accounts for situations where there is

su±cient redundancy within the robot to result in non-deterministic behavior when

no posture is de¯ned. Speci¯cally, a posture task is necessary when the null space of all

higher priority tasks and constraints is not nil, and the best practice is to always include

one as the lowest priority task in the compound task. The joint position task has an

input parameter called goalAcceleration to enable smooth transitions between joint

positions. The goal acceleration is a desired acceleration that is added as a feedforward

command to the control law. The currentAcceleration output parameter is a copy

of the goalAcceleration parameter and is used for debugging purposes.

The 2D and 3D orientation tasks are used to control the orientation of a link on

the robot. They di®er in terms of how the orientations are speci¯ed. Whereas the 2D

orientation is speci¯ed by a vector in the frame of the body being oriented, the 3D

orientation is speci¯ed using a quaternion. The purpose of providing a 2D orientation

task even though a 3D orientation could be used is to reduce computational overhead

when only two degrees of orientation control is required. For example, a 2D orien-

tation task is used to control the heading of Trikey, a three wheeled holonomic

mobile robot, as shown in Fig. C.1, whereas a 3D orientation task is used to control

the orientation of Dreamer's end e®ectors, as shown in Fig. C.2(b). Visualizations of

these two task-level controllers are given in Appendix C. The 2D orientation task

does not include a goalAngularVelocity input parameter because its current

Fig. 3. This UML class diagram shows the tasks in ControlIt!'s task library and the PID controller that

they use. Combinations of these tasks specify the operational space and postural objectives of the whole

body controller and collectively form the compound task. Concrete tasks are implemented as dynamically
loadable plugins. ControlIt! can be easily extended with new tasks via the plugin mechanism.

C.-L. Fok et al.
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implementation assumes the goal velocity is always zero. This assumption can be

easily removed in the future by modifying the control law to include a non-zero

goal velocity.

The COM task controls the location of the robot's COM, which is derived from

the robot model. It is useful when balancing since it can ensure that the robot's

con¯guration always results in the COM being above the convex polygon sur-

rounding the supports holding up the robot. The COP task controls the center of

pressure of a link that is in contact with the ground. It is particularly useful for biped

robots containing feet since it can help ensure that the COP of a foot remains within

the boundaries of the foot thereby preventing the foot from rolling. The Cartesian

position task controls the operational space location of a point on the robot. Typi-

cally, this means the location of an end e®ector in a frame that is speci¯ed by the user

and is by default the world frame. For example, it is used to position Dreamer's end

e®ectors in front of Dreamer as shown in Fig. C.2. As indicated by the ¯gure, mul-

tiple Cartesian position tasks may exist within a compound task, as long as they

control di®erent points on the robot.

As previously mentioned, the aforementioned tasks are those that are currently

included with ControlIt!. They are implemented as plugins that are dynamically

loaded on-demand during the controller con¯guration process. Additional tasks may

be added in the future. For example, an external force task may be added that controls

a robot to assert a certain amount of force against an external obstacle. In addition, an

internal force task may be added to control the internal tensions between multiple

contact points. A prototype of such a task was successfully used during NASA

Johnson Space Center (JSC) DARPA Robotics Challenge (DRC) critical design

reviewd to make Valkyrie walk in simulation, but is not included in the current task

library due to the need for additional testing and re¯nement. For the walking be-

havior, ControlIt!'s compound task included a COM Task, internal tensions task,

posture task, and, for each foot, a COP, Cartesian position, and orientation task.

Constraints. A constraint speci¯es natural physical limits of the robot. There

are two types of constraints: ContactConstraint and TransmissionConstraint.

Contact constraints specify places where a robot touches the environment. Trans-

mission constraints specify dependences between joints, like when they are co-

actuated. The parent Constraint class includes methods for obtaining the number

of DOFs that are constrained and the Jacobian of the constraint, Jc, as used in

Eqs. (3) and (4). Contact constraints have a getJoint() method that speci¯es the

parent joint of the constrained link. Transmission constraints have a master joint

that is actuated and a set of slave joints that are co-actuated with the master joint.

Unlike tasks, constraints do not have commands since they simply specify the

dAs a Track A DRC team, NASA JSC was required to undergo a critical design review by DARPA

o±cials in June 2013, which was in the middle of the period leading up to the DRC Trials in December
2013. The results of the review determined whether the team would continue to receive funding and

proceed to compete in the DRC Trials as a Track A team. NASA JSC was one of six Track A teams to pass

this critical design review.
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nullspace within which all tasks must operate. Like the compound task, the con-

straint set computes a Jacobian that is the vertical concatenation of all the con-

straint Jacobians. In addition, it provides an update method that computes both the

null space projector and UNc (de¯ned in Eq. (5)), accessors for these matrices, and

methods for determining whether a particular joint is constrained. The whole body

controller uses this information to ensure all of the constraints are met. While it is

true that contact constraints are mathematically similar to tasks without an error

term, we wanted to distinguish between the two since they serve signi¯cantly dif-

ferent purposes: tasks denote a user's control objectives while constraints denote a

robot's physical limits. We do not want to confuse the API by using the same

software abstraction for both purposes. Furthermore, by separating tasks and con-

straints, the API will be easier to extend to support optimization-based controllers

with inequality constraints.

Constraint Library. Constraints included in ControlIt!'s constraint library are

shown in Fig. 4. Contact constraints include the °at contact constraint, omni wheel

contact constraint, and point contact constraint. The °at contact constraint restricts

both link translation and rotation. The omni wheel contact constraint restricts one

rotational DOF and one translational DOF based on the current orientation of the

wheel. Point contact constraint restricts just link translation. One transmission

constraint called CoactuationConstraint is provided that enables ControlIt! to

handle robots with two co-actuated joints, like Dreamer's torso pitch joints. It

includes a transmission ratio speci¯cation to handle situations where the relationship

between the master joint and slave joint is not one-to-one. Currently only the two-

joint co-actuation case is supported, though a more generalized constraint that

supports more than two co-actuated joints could be trivially added in the future.

Speci¯cally, another child class of TransmissionConstraint can be added as a

plugin to support the co-actuation of more than two joints by adding more rows to

Fig. 4. This UML class diagram shows the constraints in ControlIt!'s constraint library. Combinations of
these constraints specify natural physical limits of the robot and constitute the constraint set. Concrete

constraints are implemented as dynamically loadable plugins. Additional constraints can be easily added

via the plugin mechanism.
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the constraint's Jacobian. Like the task library, the constraint library can be easily

extended with new constraints via plugins.

Whole body control. The class diagrams for the WBC software abstractions

are shown in Fig. 5. There are two classes: WholeBodyController and Command.

WholeBodyController is an interface that contains a single method, compute

Command(). This method takes as input the robot model, which includes the con-

straint set, and the compound task. It performs the WBC computations that gen-

erate a command for each joint under its control and returns it within a Command

object. The Command object speci¯es the desired position, velocity, e®ort, and feed-

back gains. Note that sometimes not all of the ¯elds within a command are used. For

example, a robot that is e®ort controlled will only use the e®ort command. The

optional ¯elds within the command are included to support robots with joints that

are impedance/position controlled.

The whole body controller within ControlIt! is dynamically loaded as a plugin.

Two plugins are currently available as shown in Fig. 6. They include WBOSC and

WBOSC Impedance. The WBOSC plugin implements the WBOSC algorithm. It

computes the nullspace of the constraint set and projects the task commands

through this nullspace. Task commands are iteratively included into the ¯nal com-

mand based on priority. The commands of tasks at a particular priority level are

projected through the nullspaces of all higher priority tasks and the constraint set.

This ensures that all constraints are met and that higher priority tasks override lower

priority tasks. The output of WBOSC is an e®ort command that can be sent to e®ort

Fig. 5. The WBC software abstractions within ControlIt! consist of an interface called WBC and a class

called Command. The WBC interface de¯nes a single method called computeCommand that takes two input
parameters, the robot model, which includes the constraint set, and the compound task. It returns a

Command object. The command includes position, velocity, e®ort, and position controller gains. Depending

on the type of joint controller used, one or more of the member variables inside the command may not be

used. For example, a force- or torque-controlled robot will only use the e®ort speci¯cation within the
command.
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controlled robots like Dreamer. The member variables within the WBOSC plugin

ensure that memory is pre-allocated, which reduces execution time jitter and thus

increases real-time predictability.

To support impedance/position-controlled robots, ControlIt! also comes with the

WBOSC Impedance plugin. Unlike e®ort-controlled robots, impedance-controlled

robots take desired position and velocity commands, and position and velocity

feedback gains. The bene¯t of using impedance control is the ability to attain higher

levels of sti®ness since the position and velocity feedback control loop can be closed

by the embedded joint controller, which typically has a higher servo frequency and

lower communication latency than the central WBC controller. The

WBOSC Impedance plugin extends the WBOSC plugin with an internal model that

Fig. 6. ControlIt! currently includes two plugins in its WBC plugin library. They consist of WBOSC and

WBOSC Impedance. WBOSC implements the actual WBOSC algorithm that takes a holistic view of the robot
and achieves multiple prioritized task objectives using nullspace projection. It outputs an e®ort command

and is used with e®ort-controlled robots like Dreamer. The second plugin, WBOSC Impedance, extends

WBOSC with an internal robot model that is used to derive the desired joint positions and velocities based on

the torque commands generated by WBOSC. This is useful to support robots with joint position/impedance
controllers like NASA JSC's Valkryie.
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converts the e®ort commands generated by the WBOSC algorithm into expected

joint positions and velocities. The member variables within the WBOSC Impedance

plugin that start with \qi " hold the internal model's joint states. The pre-

vUpdateTime member variable records when this internal model was last updated.

Each time computeCommand is called, WBOSC Impedance computes the desired e®ort

command using WBOSC. It then uses this e®ort command along with the robot

model to determine the desired accelerations of each joint. WBOSC Impedance then

updates the internal model based on these acceleration values, the time since the last

update, the previous state of the internal model, and the actual position and velocity

of the joints. The derived joint positions, velocities, and e®orts are saved within a

Command object, which is returned. As previously mentioned, this control strategy

was used on the upper body of NASA JSC's Valkyrie robot to perform several DRC

manipulation tasks.

Hardware abstraction. To enable support for a wide variety of robot plat-

forms, ControlIt! includes a HAL consisting of two abstract classes, the Robot-

Interface and the Clock, as shown in Fig. 7. Concrete implementations are

provided through dynamically loadable plugins. RobotInterface is responsible for

obtaining the robot's joint state and sending the command from the whole body

controller to the robot. For diagnostic purposes, it also publishes the state and

command information onto ROS topics using a real-time ROS topic publisher, which

uses a thread-pool to o®load the publishing process from the servo thread. Clock

instantiates the servo thread and contains a reference to a Controller, which is

implemented by the Coordinator. Clock is responsible for initializing the controller

by calling servoInit() and then periodically executing the servo loop by calling the

Fig. 7. ControlIt! employs a HAL that consists of a RobotInterface and a Clock. The RobotInterface
has two methods: read and write. The readmethod returns a RobotState object that includes the robot's

joint positions, velocities, accelerations, and e®orts. The write method takes as input a Command object

and issues the command to the robot joints.
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servoUpdate() method. Initialization using the actual servo thread is needed to

handle situations where certain initialization tasks can only be done by the servo

thread. This occurs, for example, when the servo thread is part of a real-time context

meaning only it can initialize certain real-time resources.

ControlIt! includes libraries of RobotInterface and Clock plugins as shown in

Fig. 8. RobotInterface plugins include general ones that communicate with a robot

via three di®erent transport layers: ROS topics (RobotInterfaceROSTopic), UDP

datagrams (RobotIntefaceUDP), and shared memory (RobotInterfaceSM). These

are meant for general use – ControlIt! includes generic Gazebo plugins and abstract

classes that facilitate the creation of software adapters for allowing simulated and

real robots to communicate with ControlIt! using these three transport layers.

Among the three transport layers, shared memory has the lowest latency and is most

reliable in terms of message loss. It uses the ROS shared memory interface pack-

age,113 which is based on boost's interprocess communication library.

In addition to general RobotInterface plugins, ControlIt! also includes two

robot-speci¯c plugins, one for Dreamer (RobotInterfaceDreamer), and one for

Valkyrie (RobotInterfaceValkyrie). RobotInterfaceDreamer interfaces with a

RTAI real-time shared memory segment that is created by the robot's software

platform called the M3 Server. It also implements separate PID controllers for robot

joints that are not controlled by WBC. They include the ¯nger joints in the right

hand, the left gripper joint, the neck joints, and the head joints. In the current

implementation, these joints are ¯xed from WBC's perspective. Robot-

InterfaceValkyrie interfaces with the shared memory segment is created by

Valkyrie's software platform. This involves integration with a controller manager

provided by ros control7 to gain access to robot resources.

ControlIt! includes several Clock plugins to enable °exibility in the way the servo

thread is instantiated and con¯gured to be periodic. The current Clock plugin li-

brary includes plugins for supporting servo threads based on a ROS timer, a

Cþþstd::chrono timer, or an RTAI timer. Support for additional methods can be

included in the future as additional plugins.

4.2. Configuration and integration

Support for con¯guration and integration is important because, as a software

framework, ControlIt! is expected to be (1) used in many di®erent applications and

hardware platforms that require di®erent whole body controllers and (2) just one

component in a complex application consisting of many components. In addition,

ControlIt!'s con¯guration and integration capabilities directly impacts the software's

usability, which must be high to achieve widespread use. ControlIt! supports inte-

gration through four mechanisms: (1) parameter re°ection, which exposes controller

parameters to other objects within ControlIt! and is used by the other two

mechanisms, (2) parameter binding, which enables the parameters to be connected

to external processes through an extensible set of transport layers, (3) events, which

C.-L. Fok et al.
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enable parameter changes to trigger the execution of external processes without the

use of polling, and (4) services, which enable external processes to query information

about the controller. ControlIt! supports con¯guration through scripts that enable

users to specify the structure of the compound task and constraint set, the type of

whole body controller and hardware interface to use, the initial values of the para-

meters, the parameter bindings, and the events. These scripts are interpreted during

ControlIt!'s initialization to automatically instantiate the desired whole body con-

troller and integrate it into the rest of the system. Details of ControlIt!'s support for

con¯guration and integration are now discussed.

Parameter Re°ection. Parameter re°ection was originally introduced in

Stanford-WBC. It de¯nes a ParameterReflection parent class through which child

class member variables can be exposed to other objects within ControlIt!. The API

and class hierarchy of ParameterReflection is shown in Fig. 9(a). Parameter re-

°ection enables internal controller parameters to be exposed to other objects within

ControlIt!. It does this by specifying methods for declaring and looking up para-

meters. When a parameter is declared, it is encapsulated within a Parameter object,

which contains a name, pointer to the actual variable, a list of bindings, and a

method to set the parameter's value. Subclasses of ParameterReflection can de-

clare their member variables as parameters and thus make them compatible with

ControlIt's parameter binding and event mechanisms, which are now discussed.

Parameter Binding. Parameter binding enables the integration of ControlIt!

with other processes in the system by connecting parameters to an extensible set of

transport layers. Its API and class hierarchy is shown in Fig. 9(b). The classes that

Fig. 8. The robot interface plugins that are currently available include support for the following trans-

port protocols: ROS Topic, UDP, and shared memory. There are also specialized robot interfaces for
Dreamer and Valkyrie. The clocks provided include support for std::chrono, ROS time, and RTAI time.
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constitute the parameter binding mechanism consist of a BindingManager that

maintains a set of BindingFactory objects that actually create the bindings, and a

BindingConfig object that speci¯es properties of a binding. The required properties

include the binding direction (either input or output), the transport type, which is a

string that must match the name of a Binding provided by a BindingFactory

plugin, and a topic to which the parameter is bound. The BindingConfig also

contains an extensible list of name value properties that is transport protocol speci¯c.

For example, transport-speci¯c parameters for ROS topic output bindings include

the publish rate, the queue size, and whether the latest value published should be

latched.

Fig. 9. ControlIt! includes three mechanisms for integration: parameter re°ection, parameter binding,

and events. Sub-¯gure (a) shows the parameter re°ection mechanism that enables parameters to be

exposed to other objects within ControlIt! including the parameter binding and event mechanisms. Sub-
¯gure (b) shows the parameter binding mechanism that enables parameters to be bound to an extensible

set of transport layers, which enables them to be accessed by external processes. Sub-¯gure (c) shows an

event de¯nition. Events are stored within Parameter Re°ection objects and are emitted at the end of the

servo loop. They enable external processes to be noti¯ed when a logical expression over a set of parameters
transitions from being false to true and eliminates the need for external processes to poll for state changes

within ControlIt!.
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During the initialization process, BindingConfig objects are stored as parameters

within a ParameterRe°ection object, which is passed to the BindingManager. The

BindingManager searches through its BindingFactory objects, which are dynami-

cally loaded via plugins, for factories that are able to create the desired binding. The

current bindings in ControlIt!'s binding library include input and output bindings for

ROS topics and shared memory topics. More can be easily added in the future via

plugins. The newly created Binding objects are stored in the parameter's Parameter

object. When a parameter's value is set via Parameter.set(), the new value is

transmitted through output bindings to which the parameter is bound. This enables

changes in ControlIt! parameters to be published onto various transport layers no-

tifying external processes of the latest values of the parameters. Similarly, when an

external process publishes a value onto a transport layer to which a parameter is

bound via an input binding, the parameter's value is updated to be the published

value. This enables, for example, external processes to dynamically change a task's

reference parameters or controller gains, which is necessary for integration.

Events. Events contain a logical expression over parameters that are interpreted

via muParser,114 an open-source math parser library. Its API is shown in Fig. 9(c).

Events are stored in the ParameterReflection parent class. The servo thread calls

ParameterReflection.emitEvents() at the end of every servo cycle. The names of

events whose expressions evaluate to true are published on ROS topic /[controller

name]/events. Events contain a Boolean variable called \enabled" that is used to

prevent an event from continuously ¯ring when the condition expression remains

true since this would likely °ood the events ROS topic. Instead, events maintain a

¯re-once semantic meaning they only ¯re when the condition expression changes

from false to true.

Service-based controller introspection capabilities. To further assist

ControlIt! integration into a larger system, ControlIt! also includes a set of service-

based introspection capabilities. Unlike ROS topics, which are asynchronous and

unidirectional, ROS services are bi-directional and synchronous. ControlIt! uses this

capability to enable external processes to query certain controller properties as it is

running. For example, two often-used services include /[controller name]/diag-

nostics/getTaskParameters, which returns a list of all tasks in the compound

task, their parameters, and their parameter values, and /[controller name]/

diagnostics/getRealJointIndices, which returns the ordering of all real joints in

the robot. This is useful to determine the joint order when updating the reference

positions of a posture task or interpreting the meaning of the posture task's error

vector. A full list of ControlIt!'s service-based controller introspection capabilities is

provided in Appendix C.

Script-based con¯guration and initialization. As previously mentioned,

ControlIt! supports script-based con¯guration speci¯cation and initialization en-

abling integration into di®erent applications and platforms without being recom-

piled. This is necessary given the plethora of properties that must be de¯ned and the

wide range of anticipated applications and hardware platforms. To instantiate a
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whole body controller using ControlIt!, the user must specify many things including

the compound task, constraint set, whole body controller, robot interface, clock,

initial parameter values, parameter bindings, and events. In addition, there are

numerous controller parameters as de¯ned in Appendix B. ControlIt! enables users

to de¯ne the primary WBC con¯guration and integration abstractions including

tasks, constraints, compound tasks, constraint set, parameter bindings, and events

via a YAML ¯le whose syntax is given in Appendix D. The remaining parameters are

de¯ned through the ROS parameter server, which can also be initialized via another

YAML ¯le that is loaded via a ROS launch ¯le.115 ROS launch is a powerful tool for

loading parameters and instantiating processes. ControlIt! leverages this capability

to enable users to initialize and execute a whole body controller and all its sur-

rounding processes using a single command.

4.3. Multi-threaded architecture

Higher servo frequencies can be achieved by decreasing the amount of computation

in the servo loop. The amount of computation can be reduced because robots typi-

cally move little during one servo period, which is usually � 1ms. Thus, state that

depends on the robot con¯guration like the robot model and task Jacobians often do

not need to be updated every servo cycle. ControlIt! takes advantage of this possi-

bility by o®loading the updating of the robot model and the task states, which

include the task Jacobians, into child threads. Speci¯cally, ControlIt! uses three

threads as shown in Fig. 10. They include (1) a Servo thread that executes the servo

loop, (2) a ModelUpdater thread that updates the robot model, which includes the

kinematics, inertia matrix, gravity compensation vector, the constraint set, and the

virtual linkage model, and (3) a TaskUpdater thread that updates the states of each

task in the compound task, which includes the task Jacobians. The Servo thread is

instantiated by the Clock and can thus be real time when, for example, ClockRTAI is

used. ModelUpdater and TaskUpdater are child threads that do not operate in a real

time manner. From a high-level perspective, Servo provides ModelUpdater with the

latest joint states. The ModelUpdater uses this information to update the robot

model in parallel with the Servo thread, and provides the updated robot model to

the Servo thread when complete. Whenever the robot model is updated, the Servo

thread provides the updated model to the TaskUpdater thread, which updates the

task states. These updated task states are then provided to the Servo thread. Details

on how this process is achieved in a non-blocking and safe manner are now discussed.

Two key requirements of the multi-threaded architecture are (1) the servo thread

must not block and (2) there must not be any race conditions between threads. The

¯rst requirement implies that the servo thread cannot call the blocking lock()

method on the mutexes protecting the shared states between it and the child threads.

Instead, it can only call the non-blocking try lock() method, which returns im-

mediately if the lock is not obtainable. ControlIt!'s multi-threaded architecture is

thus structured to only require calls to try lock() by the Servo thread. To prevent

C.-L. Fok et al.
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race conditions between threads, two copies of the robot model and task state are

maintained: an \active" copy that is used by the Servo thread, and an \inactive" one

that is updated by the other threads. Updates from the child threads are provided to

the Servo thread by swapping the active and inactive states. This swapping is done

by the Servo thread in a non-blocking and opportunistic manner.

Fig. 10. To achieve higher servo frequencies, ControlIt! employs a multi-threaded architecture consisting

of three threads: (a) Servo, (b) ModelUpdater, and (c) TaskUpdater. Servo is a real-time thread whereas

ModelUpdater and TaskUpdater are non-real-time threads. This ¯gure shows the behavior and interac-
tions of these threads. At a high level, Servo gives ModelUpdater the latest joint states and receives an

updated RobotModel. It also gives TaskUpdater an updated RobotModel and receives updated state for

each task, which includes the task Jacobians. To prevent the Servo thread from blocking, which is

necessary for real-time operation, ControlIt! maintains two copies of the RobotModel and two copies of the
state for each task ��� an \active" one and an \inactive" one. Active versions are used solely by Servo.

Inactive versions are updated by the child threads. To get updates from the child threads, the Servo

thread swaps the active and inactive versions when it can be done in a non-blocking and safe manner. It
does this by calling the non-blocking tryLock() operation on the mutex protecting the inactive version of

the RobotModel and only performing the swap when it successfully obtains the lock. The swapping of task

state is kept non-blocking and safe through FSM design ��� a task will only indicate it has updated state

after the TaskUpdater thread is done updating it. To prevent contention between the child threads, the
inactive and active robot models can only be swapped when TaskUpdater is idle. To further reduce

unnecessary computations, TaskUpdater only executes after the RobotModel is swapped.

ControlIt! ��� A Software Framework for WBOSC
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Figures 10(a) and 10(b) show how the Servo thread passes the latest joint state to

the ModelUpdater thread and trigger it to execute. After obtaining the latest joint

states by calling RobotInterface.read() and checking for updates from the child

threads by executing the CheckForUpdates ¯nite state machine, the servo thread

attempts to obtain the lock on the mutex protecting the inactive RobotModel by

calling ModelUpdater.tryLock(). If it obtains the lock on the mutex, it saves the

latest joint states in the inactive RobotModel and then triggers the ModelUpdater

thread to execute by calling ModelUpdater.unlockAndUpdate(). As the name

implies, the Servo thread releases the lock on the inactive RobotModel thereby

allowing the ModelUpdater thread to access and update the inactive RobotModel. If

the Servo thread fails to obtain the lock on the inactive RobotModel, the Model

Updater thread must be busy updating it. In this situation, the Servo thread con-

tinues without updating the inactive RobotModel.

To prevent race conditions between the Servo thread and the child threads,

updates from child threads are opportunistically pulled by the Servo thread. This is

because the child threads operate on inactive versions of the RobotModel and task

states, and only the Servo thread can swap the active and inactive versions. There

are two points in the servo loop where the Servo thread obtains updates from the

child threads. This is shown by the two \CheckForUpdates" states in left side of

Fig. 10(a). They occur immediately after obtaining the latest joint states by calling

RobotInterface.read(), and immediately after triggering the ModelUpdater

thread to run or failing to obtain the lock on the inactive robot model. More checks

for updates could be interspersed throughout the servo loop but we found these two

placements to be su±cient.

The operations of the CheckForUpdates state are shown in the upper-right corner

in Fig. 10. The Servo thread ¯rst obtains task state updates and then checks whether

the TaskUpdater thread is idle. If it is idle, the Servo thread checks for updated task

states again. This is to account for the following degenerate thread interleaving

during the ¯rst check for updated task states that could result in loss of updated task

state:

(1) The Servo thread begins to check some of the tasks for updated states.

(2) TaskUpdater updates all of the tasks including those that were just checked by

the Servo thread and returns to idle state. Note that this is possible even if the

Servo thread is real time and has higher priority since TaskUpdatermay execute

on a di®erent CPU core.

(3) The Servo thread completes checking the remainder of the tasks for updates.

In the above scenario, the tasks that were checked in step 1 would have updated

states that would be lost without the Servo thread re-checking for them after it

con¯rms that the TaskUpdater is idle. In a worst-case scenario, the TaskUpdater

thread may update all of the tasks after the servo thread checks for updates but

before it checks whether the TaskUpdater is idle, resulting in the loss of updated

C.-L. Fok et al.
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state from every task. The loss of updated task state is not acceptable despite the

presence of future update rounds since it is theoretically possible for the updated

states of the same tasks to be continuously lost during every update round. While

improbable, this \task update starvation" problem was actually observed and thus

discovered while testing ControlIt! on Valkyrie.

After verifying that the TaskUpdater thread is idle and ensuring all of the

updated task states were obtained, the Servo thread checks for an updated

RobotModel by calling ModelUpdater.checkUpdate(). This method switches to the

updated RobotModel if one is available. If the model was updated, the Servo thread

then calls TaskUpdater.updateTasks() passing it the updated RobotModel. This

method is non-blocking since the TaskUpdater thread must be idle. It triggers the

TaskUpdater thread to update the states of each task in the compound task. Note

that if the RobotModel was not updated, the Servo thread does not call TaskUp-

dater.updateTasks() since task state updates are based on changes in the

RobotModel.

The current implementation does not consider the possibility that the active

RobotModel or task states become excessively stale. This can occur if the robot

moves so quickly that the model changes signi¯cantly since the last time it was

updated. ControlIt's multi-threaded architecture can be easily modi¯ed to monitor

di®erence between the current robot state and the robot state that was used to

update the active RobotModel and task states. If the di®erence exceeds a certain

threshold, the Servo thread can update the active RobotModel itself to prevent

excessive staleness. We currently do not implement this because our evaluations did

not indicate the need for it.

Sometimes a multi-threaded architecture is not necessary when the robot has a

limited number of joints, the control computer is particularly fast, and the compound

task is structured to reduce computational complexity (e.g., by using simpler tasks or

limiting the number of tasks that share the same priority level). In this case, Con-

trolIt!'s multi-threaded architecture can be disabled by setting two ROS parameters,

single threaded model and single threaded tasks, to be true prior to starting

ControlIt!. Details of these parameters are given in Table B.2 in Appendix B. When

these parameters are set to true, the Servo thread updates the RobotModel and task

states every cycle of the servo loop.

Regardless of whether a multi-threaded architecture is used, the servo loop must

be executed in a real-time manner. To help facilitate this, no dynamic memory

allocation can occur once the servo loop starts. The initialization process consists of

instantiating all objects using their constructors and then calling init()methods on

all of the objects. All necessary memory is allocated during either the construction or

initialization phases. To ensure no memory is being dynamically allocated in the

linear algebra operations that are extensively used in WBOSC, we tested the code by

de¯ning the EIGEN RUNTIME NO MALLOC preprocessor macro prior to including the

Eigen headers.

ControlIt! ��� A Software Framework for WBOSC
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5. Evaluation

We integrate ControlIt! with Dreamer, a dual-arm humanoid upper body robot made

by Meka Robotics, which was purchased by Google in December 2013. Dreamer's

arms and torso contains series elastic actuators and high ¯delity torque control. The

robot is modeled as a (16þ 6 ¼ 22) DOF robot where 16 are physical joints and the

remaining 6 represent the °oating DOFs.e

5.1. Product disassembly application

Using ControlIt!, we developed an application that makes Dreamer disassemble a

product as shown in Fig. 11. The task is to take apart an assembly consisting of a

metal pipe with a rubber valve installed at one end. To remove the valve, Dreamer is

programed to grab and hold the metal pipe with her right hand while using her left

gripper to detach the valve. Once separated, Dreamer places the two pieces into

separate storage containers.

Two compound task con¯gurations were used:

(1) single priority level containing a joint position task,

(2) dual priority level containing two higher priority Cartesian position tasks and

two 2D orientation tasks (one for each wrist) and a lower priority posture task.

The bene¯ts of the second con¯guration are shown by demonstrating how

changing just three controller parameters, i.e., the Cartesian position of the product,

enables the controller to adapt to changes in the product's location while continuously

minimizing the squared error of the posture task. This is in the spirit of WBC where

changes in a low-dimensional space (three Cartesian dimensions) results in desirable

changes in a larger dimensional space (e.g., the number of DOFs in the robot).

eWBOSC always assumes a °oating base. When the robot is ¯xed in place, the ¯xture is represented in

WBOSC using a constraint. This enables ControlIt! to support both mobile and ¯xed robots.

Fig. 11. This sequence of snapshots show the movements of Dreamer performing a product disassembly
task. Initially a metal pipe with a rubber valve is in front of Dreamer. To disassemble the product, Dreamer

grabs the pipe with her right hand while using her left gripper to remove the valve. The pipe and valve are

then placed into separate containers for storage. This demonstrates the integration of ControlIt! with a

robot and an application. It shows that the task and constraint libraries are su±ciently expressive to
accomplish this application.
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Developing the product disassembly application required writing new

RobotInterface and ServoClock plugins that enable ControlIt! to work with

Dreamer. This is because Dreamer comes with the M3 software that is designed

speci¯cally for robots built by Meka Robotics. The M3 software includes the M3

Server, which instantiates an RTAI shared memory region through which ControlIt!

can transmit torque commands and receive joint state information. In addition, the

M3 Server also implements the transmissions that translate between joint space and

actuator space and protocols for setting the modes and gains of the joint controllers

on the robot's DSPs. Other useful tools provided by the M3 software include

applications for tuning and calibrating individual joints. The ControlIt! robot in-

terface we developed for Dreamer is called RobotInterfaceDreamer. It uses the

shared memory region created by the M3 Server to connect the WBOSC controller to

the robot, and implements separate simpler controllers for the joints that are not

controlled by WBOSC. These joints include the ¯nger joints in the right hand, the

left gripper joint, the neck joints, and the head joints (eyes and ears). In the current

implementation, these joints are ¯xed in place from WBOSC's perspective. While

this is not true, they are located at the robot's extremities and are attached to

relatively small masses; the feedback portion of the WBOSC controller is able to

su±ciently account for these inaccuracies as demonstrated by the successful execu-

tion of the application.

Because Dreamer's M3 software is designed to work with RTAI we created an

RTAI-enabled servo clock called ServoClockRTAI, which instantiates a RTAI real-

time thread for executing the servo loop within ControlIt!. Whereas Robot-

InterfaceDreamer is speci¯c to Dreamer, ServoClockRTAI can be re-used on any

robot that is RTAI-compatible to get real-time execution semantics.

Since Dreamer contains a 2-DOF torso and two 7-DOF arms, we use a compound

task containing a Cartesian position and orientation task for each of the two end

e®ectors, and a lower priority joint position task for de¯ning the desired posture. The

constraint set contains two constraints: a FlatContactConstraint for ¯xing the

robot's base to the world and a CoactuationConstraint for the upper torso pitch

joint that is mechanically connected to the lower torso pitch joint by a 1:1 trans-

mission. This results in the positions and velocities of the two joints to always be the

same. The Jacobian of the CoactuationConstraint consists of one row and a column

for each DOF in the robot's model. The column representing the slave joint contains a

1 and the column representing the master joint contains the negative of the trans-

mission ratio. Details of these types of constraints were discussed in Ref. 29.

Finally, the goal state and error of every task in the compound task are bound to

ROS topics so they can be accessed by the application. A data logger based on

ROSBag116 is used to record experimental data. Figure 12 shows how the various

components are connected. Kinesthetic teaching is used to obtain the trajectories for

performing the task, which consists of manually moving the robot along the desired

trajectories while taking snapshots of the robot's con¯guration. Cubic spline is used

to interpolate intermediate points between snapshots. Note that the application is

ControlIt! ��� A Software Framework for WBOSC
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open-loop in that the robot does not sense where the metal pipe and valve assembly is

located. We manually reposition the assembly at approximately the same location

prior to executing the application.

Before the application can be successfully executed, calibration and gain tuning

must be done for every joint and controller in the system. We calibrated and tuned

one joint at a time starting from those in the robot's extremities (e.g., wrist yaw

joints) and moving inward to joints with increasing numbers of child joints. Once all

of the joints were calibrated and torque controller gains tuned, we proceeded to tune

the task-level gains in the following order: joint position task, Cartesian position

tasks, and ¯nally orientation tasks. The gains used are given in Appendix E. Note

that these gains are dependent on ControlIt's servo frequency, which we set to be

Fig. 12. ControlIt! is integrated into a larger system consisting of three major components: ControlIt!,

the application, and a data logger. Each of these components run as a separate process but communicate

over ROS topics, which are represented by the arrows. The ROS topics are bound the variables within
ControlIt!. The WBOSC con¯guration consists of two priority levels within the compound task. Higher

priority numbers correspond to higher priority tasks. The other components within ControlIt! are not

shown since they do not have any bound parameters in this application.

C.-L. Fok et al.

1550040-26

In
t. 

J.
 H

um
an

. R
ob

ot
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 L

ui
s 

Se
nt

is
 o

n 
10

/2
4/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://www.worldscientific.com/action/showImage?doi=10.1142/S0219843615500401&iName=master.img-013.jpg&w=351&h=308


1kHz, and the end-to-end communication latency between the whole body controller

and the joint torque controllers, which is about 7ms.

The system architecture is shown in Fig. 13. It consists of the robot, the control PC,

and the application PC.The robot communicates with the control PC over a 100Mbps

EtherCAT link. The control PC communicates with an application PC via a 2-hop

1Gbps Ethernet network. The control PC runs ControlIt! on an older but real-time

patched version of Linux relative to the application PC. This is because upgrading the

operating system on the control PC while maintaining compatibility with RTAI and

necessary drivers like EtherCAT and ensuring acceptable real-time performance is a

di±cult and time-consuming process that requires extensive testing. The product

disassembly application could run directly on the Control PC, but we chose to run on a

di®erent application PC to emphasize the ability to integrate ControlIt! with remote

processes and to allow the application to make use of a newer operating system,

middleware, and libraries. In addition, running the application on a separate PC

reduces the likelihood that the application would interfere with the whole body con-

troller especially if the application includes complex GPU-accelerated operations.

(a)

Property Control PC Application PC

CPU Intel Core i7-4771 @ 3.56GHz Intel Core i7-4771 @
3.56GHz

Motherboard Zotac H87 JetWay JNF9J-Q87

OS Ubuntu 12.04 server, 32-bit, kernel
2.6.32.20, RTAI 3.9, EtherCAT 1.5.1

Ubuntu 14.04 desktop,
64-bit, Kernel 3.13.0-44

Middleware and
Applications

ROS Hydro, ControlIt!, M3 Server ROS Indigo, demo
applications, Gazebo

(b)

Fig. 13. The system consists of a humanoid robot that is connected to a control PC over a 100Mbps
EtherCAT network. The control PC runs ControlIt! and is connected to an application PC over a two-hop

1GbpsEthernet network. The applicationPC runs the application, which remotely interacts withControlIt!

via ROS topics. Details of the hardware and software on the control and application PCs are given in the
table.Note that the controlPC runs an older operating systemandoldermiddleware than the applicationPC

despite having similar hardware. This is because con¯guring the control PC for real-time operation is time-

intensive and thus cannot be repeated every time the operating system or middleware is updated. Allowing

applications to run on a separate PC enables them to operate in amore up-to-date software environment and
reduces the likelihood of interference between the applications and the controller.
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The application PC includes the dynamics simulator Gazebo.117 When developing

the product disassembly application, we always tested the application in simulation

prior to evaluation on real hardware, reducing the number of potentially cata-

strophic problems encountered on hardware. For example, on the real hardware, if

the application crashes while the arms are above the table, the arms may slam into

the table and damage both the robot and the table. Testing the application in

simulation enabled us to evaluate application stability. We implemented the appli-

cation in Python (see Appendix F for an example code fragment), which further

increases the importance of simulation testing since there is no compilation stage to

identify potential problems. Note that the application could have been written in any

programming language supported by ROS.118 Because ControlIt! has a HAL con-

sisting of a RobotInterface plugin and a ServoClock plugin, switching between

testing the application in simulation versus on the real hardware is simple and does

not require any changes to the code.

After tuning the controllers, we were able to repeatedly execute the application in

a reliable manner. Figure 14 shows performance data collected from one of the many

executions of the application. The data was collected from ROS topics to which

internal controller parameters were bound. Average statistics are given in Table 2.

The results show average servo computational latencies of about 0.5ms, which is the

amount of time the servo thread takes to compute one cycle of the servo loop and is

an order of magnitude faster than the 5ms achieved by UTA-WBC. Table 3 shows

the results of an experiment that obtains a detailed breakdown of the latencies within

the servo loop by instrumenting the servo loop with timers. The values are the

average over 1000 executions of the servo loop. The vast majority of the servo loop's

computational latency is from executing the WBOSC algorithm to get the next

command. Multi-threading signi¯cantly decreases the latency of updating the model

and slightly decreases the latency of computing the command. The slightly higher

average total latency in the multi-threaded case in Table 3 relative to the servo

computational latency in Table 2 is most likely due to the additional instrumenta-

tion that was added to the servo loop to obtain the detailed latency breakdown

information.

The results in Table 2 also show Cartesian positioning errors of up to 5 cm and

orientation errors of up to 30�, though the errors are much less on average. Note that

the Cartesian position and orientation errors are both model-based meaning they are

derived from the joint states and the robot model and not from external sensors like a

motion capture system. Thus, the accuracy of these error values depend on the

accuracy of the robot's model and should not be considered absolute. However, they

do represent the errors that the whole body controller sees and attempts to eliminate

but cannot because the feedback gains cannot be made su±ciently high to remove

the errors.

Figures 14(c) and 14(f) indicate a problem with achieving real-time semantics on

the control PC since the servo frequency and computational latency occasionally

su®ers excessively low and high spikes. The lowest servo frequency measured in

C.-L. Fok et al.
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(a) (b)

(c) (d)

(e) (f)

Fig. 14. Performance data collected from one execution of the product disassembly application.
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this sample is only 195.3Hz, the maximum is 2.254 kHz, and the average is

1:01� 0:016 kHz. Coincident with the large spikes in the servo frequency are large

spikes in the servo compute latency. This indicates that something in the operating

system or underlying hardware occasionally prevented ControlIt!'s real-time servo

thread from executing as expected. Despite the violations in real-time semantics and

errors in Cartesian position and orientation, the ControlIt! is still able to make

Dreamer reliably perform the task. This is probably because the spikes are rare as

shown by the histograms of the same data as shown in Fig. 15.

5.2. Latency benchmarks

The results in Table 2 indicate that the servo loop spends about 0:487� 0:0335ms

computing the next command. This is for a speci¯c compound task with two priority

levels and 2D orientation tasks and with multi-threading enabled. We now vary the

compound task con¯guration in terms of both number of priority levels (which

Table 2. Average statistics of the performance data from one execution of the

product disassembly task using the 22-DOF Dreamer model. The average range

is the standard deviation of the data set. The results indicate that average
Cartesian position error of the end e®ectors are about 2–3 cm and average ori-

entation is about 3–5�. The servo frequency is slightly above the desired 1 kHz

and there is jitter despite running within an RTAI real-time context. The servo

compute latency indicates that on average it only takes about 0.5ms to perform
all computations in one cycle of the servo loop, which is signi¯cantly faster than

the 5ms required by UTA-WBC.

Statistic Sample size Average Units

Right hand cartesian error 49,137 2.79 � 0.56 cm

Right hand orientation error 55,735 3.72� 3.12 degrees

Left hand cartesian error 43,026 1.91� 0.67 cm
Left hand orientation error 50,381 4.86� 2.23 degrees

Servo frequency 67,225 1005.43� 15.68 Hz

Servo compute latency 64,118 0.487� 0.0335 ms

Table 3. A breakdown of the latencies incurred within one cycle of the servo

loop for both the single- and multi-threaded scenarios using a 22-DOF robot

model. All values are in milliseconds and are the average and standard deviation

over 1000 samples. Most of the latency is spent computing the command, which
includes executing the WBOSC algorithm. The bene¯ts of multi-threading are

apparent in the latency of updating the model.

Step in servo loop Multi-threaded latency Single-threaded latency

Read joint state 0.020� 0.0020 0.020� 0.0026

Publish odometry 0.014� 0.0041 0.0147� 0.00526

Update model 0.0075� 0.00256 0.272� 0.00235
Compute command 0.470� 0.0128 0.497� 0.0120

Emit events 0.0036� 0.00028 0.0041� 0.00027

Write 0.0116� 0.00075 0.0125� 0.00119
Total 0.528�0.0144 0.820�0.0145
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a®ects the number of tasks per priority level) and types of orientation task used (2D

versus 3D). We also evaluate both multi-threaded and single-threaded execution of

ControlIt!.

All tests involve ¯ve tasks: a Cartesian position task for each of the two end

e®ectors, an orientation task for each of the two end e®ectors, and a posture task.

Two types of orientation tasks are used: 2D and 3D. When 2D orientation tasks are

used, only 5 DOFs of each end e®ector are controlled by the orientation and position

tasks; the sixth DOF is controlled by a lower priority posture task. When 3D ori-

entation tasks are used, all 6 DOFs of each end e®ector are controlled by the ori-

entation and position tasks.

Three con¯gurations of the compound task are evaluated. The ¯rst con¯guration

uses two priority levels and assigns all four Cartesian position and orientation tasks

to be at the higher priority level. The posture task is located at the lower priority

level. The second con¯guration uses three priority levels and assigns the Cartesian

position tasks to be at the highest priority level and the orientation tasks to be in the

middle priority level. This is possible since the orientation tasks operate within the

nullspace of the Cartesian position tasks. Like the ¯rst con¯guration, the posture

task is located at the lowest priority level. The third con¯guration uses ¯ve priority

levels. The two Cartesian position tasks are placed in the top two priority levels. The

two orientation tasks are placed in the next two priority levels. Finally, the posture

task is located in the lowest priority level.

The results are shown in Table 4. The use of multi-threading signi¯cantly

decreases computational latency by about 0.2–0.3ms. Interestingly, distributing the

tasks across more priority levels decreases computational latency. In this case,

placing the orientation tasks and Cartesian position tasks at di®erent priority levels

results in a signi¯cant decrease in servo computational latency. This is because the

(a) (b)

Fig. 15. Histograms of the servo frequency and computational latency measured during one execution of

the product disassembly application. The vast majority of the measurements were at the desired 1 kHz

frequency and expected 0.5ms computational latency.
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Jacobians and commands of all tasks within the same priority level are concatenated

into a large matrix and, in this case, performing operations on large matrices takes

more time than performing a larger number of operations and nullspace projections

using smaller matrices.

Note that ControlIt! can maintain a 1 kHz servo frequency in many of the com-

pound task con¯gurations even when running in single-threaded mode. Speci¯cally,

when 2D orientation tasks are used, 1 kHz servo frequencies are achieved in all

compound task con¯gurations. When 3D orientation tasks are used, 1 kHz servo

frequencies can be achieved when the ¯ve tasks are spread across ¯ve priority levels.

The 0:882� 0:0168ms that is achieved in this case is similar to the 0:9� 0:045ms

that is achieved using an optimized quadratic programming WBC algorithm.63

5.3. Flexible end effector repositioning

As previously mentioned, the product disassembly application operates open-loop

and requires the product to be placed at approximately the same location at the

beginning of each execution of the application. For the application to be more robust,

additional sensors need to be integrated that can determine the actual location of the

product and communicate this information to the application. Such a sensor could be

easily integrated since the application is a ROS node meaning it can simply subscribe

to the ROS topic onto which the sensor publishes the actual location of the product.

Once the application knows where the product is located, it can generate the

Cartesian space trajectories that make the end e®ectors disassemble the product.

To demonstrate the ability for ControlIt! to make Dreamer follow di®erent

Cartesian space trajectories based on a sensedCartesian goal coordinate, we created an

application that makes Dreamer's right hand move to random Cartesian positions

Table 4. The servo loop's computational latency when con¯gured with several

di®erent compound tasks and running in both multi-threaded and single-threaded

mode using a 22-DOF model. All latencies are the average over 1000 consecutive
measurements and the intervals are the standard deviations. The results show that

the servo loop's computational latency can be signi¯cantly decreased by using

multi-threading and placing fewer tasks at each priority level.

Priority levels/task allocation Orientation task Threading Latency (ms)

2 priority levels 2D Multi 0.528� 0.0144

4 tasks at higher priority Single 0.820� 0.0145
1 task at lower priority 3D Multi 0.999� 0.0261

Single 1.289� 0.0218

3 priority levels 2D Multi 0.494� 0.0161
2 tasks at highest priority Single 0.764� 0.0217

2 tasks at middle priority 3D Multi 0.788� 0.0212

1 task at lowest priority Single 1.068� 0.0207

5 priority levels 2D Multi 0.477� 0.0155

1 task at each level Single 0.744� 0.0386

3D Multi 0.603� 0.0166
Single 0.882� 0.0168

C.-L. Fok et al.
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(a)

(b)

(c) (d)

Fig. 16. This ¯gure shows two di®erent perspectives of the same execution of Dreamer changing the

Cartesian position of her right hand while keeping the lower priority joint position task unchanged. It

demonstrates WBOSC's ability to handle changes in the goal Cartesian position while predictably han-

dling joint redundancies. The error plots show periodically elevated errors when the goal Cartesian
position is moved beyond the robot's workspace. The errors are square-shaped because of a 5-s pause

inserted between successive Cartesian trajectories. The controller remains stable despite this problem.
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while keeping the lower priority joint position task unchanged.The results are shown in

Fig. 16.Note that the right hand is able tomove into awide range ofCartesianpositions

and that the whole body of the robot moves to help achieve the goal of the right hand's

Cartesian position task. The elevated error values that periodically appear in

Figs. 16(c) and 16(d) are due to the goal Cartesian position being moved beyond the

robot's workspace. Note that the controller remains stable despite this problem. This

demonstrates ControlIt!'s ability to be integrated into di®erent applications and

WBOSC's ability to handle joint redundancies in a predictable and reliable manner.

6. Discussion

In this section, we provide a brief history of ControlIt's development followed by

future research directions.

6.1. History of ControlIt!'s development

Prior to integration with Dreamer, ControlIt! was initially developed for NASA

JSC's Valkyrie humanoid robot (also called R5).119 Software and hardware devel-

opment commenced simultaneously in October 2012. Since hardware development

took nearly a year, the ¯rst year of developing and testing ControlIt! involved using a

simulated version of Valkyrie in Gazebo.117 During this phase, ControlIt! was ini-

tially used to control individual parts of the robot, e.g., each individual limb, the

lower body, the upper body, and ¯nally the whole robot. By the summer of 2013,

ControlIt! was used to control 32-DOFs of Valkyrie in simulation (6 DOFs per leg, 7

DOFs per arm, 3 DOFs in the waist, and 3 DOFs in the neck). Compound tasks

consisting of up to 15 tasks were employed. They include Cartesian position and

orientation tasks for the wrists, feet, and the head, an orientation task for the chest, a

COM task and posture task for the whole robot, and COP tasks for the feet. Contact

constraints for the hands and feet were con¯gured, though not always enabled,

depending on whether contact with the environment was being made. Management

of all of these tasks and constraints were done using a higher level application called

RTC,100 which provided a graphical user interface for operators to instantiate and

con¯gure controllers based on ControlIt!, integrate these controllers with planners

and other processes via ROS topics (locomotion was done using a phase space

planner120), and sequence their execution within a ¯nite state machine. Integration

of ControlIt! with Valkyrie in simulation was successful. We were able to do most of

the DRC tasks including valve turning, door opening, power tool manipulation,

ladder and stair climbing, water hose manipulation, and vehicle ingress. This enabled

us to pass the DRC critical design review in June 2013 and continue to participate in

the DRC Trials as a Track A team.

By the end of Summer 2013, Valkyrie's hardware development was nearing

completion. At this point we began integrating ControlIt! with actual Valkyrie

hardware. After using ControlIt! to control parts of the robot individually, we

C.-L. Fok et al.
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attempted to control all 32 DOFs but ran into problems where feedback gains could

not be increased high enough to su±ciently reduce errors due to modeling inaccu-

racies. The robot could stand under joint position control but it was not su±ciently

sti® to locomote and certain joints like the knees and ankles would frequently

overheat. We later hypothesized that one problem was likely due to high commu-

nication latencies between ControlIt! and the joint-level controllers. We have since

developed a strategy called embedded damping to help maintain stability despite the

high communication latency.121 Since we could not control all 32 DOFs in time for

the DRC Trials in December 2013, we resorted to use ControlIt! on Valkyrie's upper

body to perform several DARPA Robotics Challenge tasks including opening a door,

using a power tool, manipulating a hose, and turning a valve. Laboratory tests of

ControlIt! being used to make Valkyrie turn a valve and integrated with the RTC-

based operator interface is shown in Fig. 17.

It is important to note that the currently demonstrable capabilities of WBOSC on

real hardware is a subset of the capabilities achieved in simulation. For example,

while preparing for the DRC critical design review in June 2013, ControlIt! was used

to make a simulated Valkyrie walk using a phase-space locomotion planner and

a compound task that controls the COP of the feet, the COM location, and the

internal tensions between the feet. We will continue to strive to demonstrate

these capabilities using ControlIt! on real hardware. Recent results showing an

Fig. 17. This ¯gure shows Valkyrie's upper body being controlled by an early version of ControlIt!. Using
a compound task consisting of Cartesian position and orientation tasks for each hand, and a °at contact

constraint for the torso, a human operator uses Valkyrie to turn an industrial valve. Parameter binding is

used to integrate ControlIt! with the operator's command and visualization applications.
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application-speci¯c implementation of WBOSC controlling Hume, a point-foot

biped, and making it walk in two dimensions is promising.120

6.2. Future research directions

As an open-source framework that supports whole body controllers, we hope that

ControlIt! will be adopted by the research community and serve as a common

platform for developing, testing, and comparing whole body controllers. As a

standalone system that works in both simulation and on real hardware, ControlIt!

opens numerous avenues of research. For example, ControlIt! currently allows tasks

and constraints to be enabled and disabled and to change priority levels at runtime.

We tested this on hardware by using a joint position task to get the robot into a

ready state and then switching on higher priority Cartesian position and orientation

tasks to perform a manipulation operation. The transition resulted in a discontinuity

in the torque signal going to the robot, which is not a problem for an upper body

manipulation task, but will likely be a problem for legged locomotion.

We are currently considering ways to enable smooth WBOSC con¯guration

changes. For example, one method we are considering is to compute the di®erence

between the current and new compound tasks' torque commands and adjusting for

the di®erence in a feed-forward manner. This feed-forward adjustment can be

gradually eliminated to ensure a smooth transition between compound task con¯g-

urations. Speci¯cally, let �command old be the old compound task's command,

�diff ¼ �command old � � command, and �� 2 ½0; 1�. A smooth transition can be achieved

by ramping �� from 1 to 0 and modifying � command to be as follows:

�command ¼ � command þ ���diff : ð9Þ
We recently used this technique on Hume, a biped robot, for smooth transition

between contact and non-contact states of the feet.120

While ControlIt! is designed to support multiple WBC algorithms via plugins,

we currently only have two WBC plugins and both are based on WBOSC.

Other successful WBC algorithms incorporate quadratic programming.26,59,63,122

Unlike WBOSC that analytically solves the WBC problem, quadratic program-

ming is an optimization method that more naturally supports inequality con-

straints. While quadratic programming is computationally intensive, recent

progress on methods to simplify quadratic programming-based whole body con-

trollers have enabled them to execute in less than 1ms on robots with two fewer

joints than Dreamer.63 As future work, it would be interesting to determine (1)

whether quadratic programming-based whole body controllers could be imple-

mented as a plugin within ControlIt!'s architecture and (2) the pros and cons of

WBOSC relative to quadratic programming-based whole body controllers. Note

that others have developed formulations similar to WBOSC that include support

for inequality constraints and solve them using quadratic programming.18,123 The

integration of on-line optimization techniques to allow the incorporation of

C.-L. Fok et al.
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inequality constraints is an area of future work and may require modifying the

current constraint API to include a speci¯cation of whether the constraint is

negative or positive.

To the best of our knowledge, there are no other multi-threaded open source

implementations of WBOSC or other forms of whole body controllers. We are cur-

rently unable to prove that our multi-threaded design consisting of a real-time servo

thread with two child threads is optimal. Other choices certainly exist. For example,

the two child threads could be combined into a single child thread that update both

the model and the tasks. Going in the opposite direction, a separate child thread

could be instantiated for each task where there is one thread per task. Performing a

more detailed analysis on the ideal multi-threaded architecture is a future research

direction.

One consequence of adopting a multi-threaded strategy in the robot model is no

longer updated synchronously with the servo thread and thus can become stale. We

currently do not use any metric to determine when the model has become excessively

stale. A child thread simply updates the model as quickly as possible. For our

product disassembly task, the child thread was able to update the model fast enough

to enable WBOSC to reliably complete the task. A future research direction is to

investigate the correlation between model staleness and robot performance.

A given constraint can have an in¯nite number of null space projectors. The one

we use in ControlIt! is the Dynamically Consistent Null Space Projector.124 The

nullspace projector is currently derived within the constraint set. Given the exis-

tence of alternative null space projectors, a potential improvement to ControlIt!

would be to make the constraint set extensible via plugins. The default plugin will

use the current Dynamically Consistent Null Space Projector. However, the user

can easily override this by providing a plugin that provides another null space

projector.

The results in Sec. 5.1 show that the control PC is unable to maintain hard real-

time semantics. There are occasional latency spikes that violate the desired servo

frequency. Learning why the latency spikes occur is useful since eliminating them

will likely increase system performance. However, we have yet to notice the latency

spikes causing any problem during our extensive use of Dreamer. It is worth noting

that Dreamer is a COTS robot and its control PC was con¯gured by the robot's

manufacturer. Given that the control PC was pre-con¯gured for us, from our

perspective, it is a \black box". If the need arises (i.e., the latency spikes actually

prevent us from executing a particular task), we will investigate the latency spikes

using a two-pronged approach. First, we will instrument the Linux kernel with

debug messages that help track down when the latency spikes occur. Second, we

will remove all unnecessary kernel modules and disable all unnecessary hardware

until the latency spikes no longer occur. We will then slowly add hardware and

software modules re-testing for latency spikes after each addition. Once the latency

spikes return, we know which hardware or software module caused it and can

investigate it further.
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In this paper, we did not explicitly account for singularities but they did not pose

a problem in our tests even when the arms are fully stretched out as described in

Sec. 5.3. This is probably due to our choice of the tolerances for computing pseudo-

inverses within the controller. However, we have not performed a detailed study on

adequate tolerances nor on handling singularity thus far.

Other future research areas include how to add adaptive control capabilities that

continuously improve the robot model based on observed robot behavior, which

should enable the resulting WBOSC commands to have an increasingly high feed-

forward component and lower feedback component, and the integration of ControlIt!

with a network of sensors125 to enable, for example, visual servoing126 and integra-

tion with higher level sensor-based whole body a®ordance planning127 and learning

frameworks.128,129

7. Conclusions

With the increasing availability of sophisticated multi-branched highly redundant

robots targeted for general applications, whole body controllers will likely become an

essential component in advanced human-centered robotics. ControlIt! is an open-

source software framework that de¯nes a software architecture and set of APIs for

instantiating and con¯guring whole body controllers, integrating them into larger

systems and di®erent robot platforms, and enabling high performance via multi-

threading. While it is currently focused on facilitating the integration of controllers

based on WBOSC, the software architecture is highly extensible to support addi-

tional WBC algorithms and control primitives.

This paper provided a software framework that enables the quick instantiation

and con¯guration of WBOSC behaviors for practical applications such as a product

disassembly task using a 22-DOF humanoid upper body robot. The experiments

demonstrated high performance with servo computational latencies of about 0.5ms.

In summary, WBC is a rich and vibrant though fragmented research area today

with numerous algorithms and implementations that are not cross-compatible and

thus di±cult to compare in hardware. We present ControlIt! as a software frame-

work for supporting the development and study of whole body operational space

controllers and their integration into useful advanced robotic applications.
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Appendix A. ControlIt! Dependencies

Appendix B. ControlIt! Parameters

Tables B.1 and B.2 contains additional ControlIt! parameters that can be loaded

onto the ROS parameter server. They must be namespaced by the controller's name.

Table A.1. ControlIt! dependencies.

Dependency Version Purpose

gþþ 4.8.2 or 4.6.3 Compiler for C++11 programming language

Eigen 3.0.5 Linear algebra operations
RBDL 2.3.2 Robot modeling, forward and inverse kinematics and dynamics

URDF 1.11.6 Parsing robot model descriptions

ROS Hydro or Indigo Component-based software architecture, useful libraries like

pluginlib, runtime support like a parameter server and roslaunch
bootstrapping capabilities

RTAI 3.9 Real-time execution semantics (only required when using Dreamer or

other RTAI-compatible robots)
Gazebo 6.1.0 Test controller in simulation prior to on real hardware

Table B.1. ControlIt! parameters (1 of 2).

Name Description

coupled joint groups Speci¯es which groups of joints should be coupled. E®ectively modi¯es the
model to decouple group of joints from each other. This is useful for

debugging purposes or to account for modeling inaccuracies. It is an

array of strings.
enforce e®ort limits Whether to enforce joint e®ort limits. These limits are speci¯ed in the

robot description. If true, e®ort commands exceeding the limits will be

truncated at the limit and a warning message will be produced. It is an

array of Boolean values.
enforce position limits Whether to enforce joint position limits. These limits are speci¯ed in the

robot description. If true, position commands exceeding the limits will

be truncated at the limit and a warning message will be produced. It is

an array of Boolean values.
enforce velocity limits Whether to enforce joint velocity limits. These limits are speci¯ed in the

robot description. If true, velocity commands exceeding the limits will

be truncated at the limit and a warning message will be produced. It is

an array of Boolean values.
gravity compensation mask Speci¯es which joints should not be gravity compensated. This is useful

when certain joints have so much friction that gravity compensation is

not necessary. It is an array of joint name strings.
log level The log level, which can be DEBUG, INFO, WARN, ERROR, or FATAL.

This controls how much log information is generated during runtime. It

is a string value.
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Appendix C. ControlIt! Introspection Capabilities

This appendix describes ControlIt!'s introspection capabilities, which enable users to

gain insight into the internal states of the controller.

Task-based introspection capabilities. Tasks can be con¯gured to publish

ROS visualization msgs/MarkerArray and visualization msgs/Inter-

activeMarkerUpdate messages onto ROS topics that show the current and goal

states of the controller. These messages can be visualized in RViz to understand what

the task-level controller is trying to achieve. For example, Fig. C.1 shows the marker

array messages published by a 2D orientation task. The green arrow shows the goal

heading whereas the blue arrow shows the current heading. Figure C.2 shows

visualizations of 2D and 3D orientation tasks and Cartesian position tasks.

ROS service-based introspection capabilities. Table C.1 lists the various

service-based controller introspection capabilities that are provided by ControlIt!.

These services can be called by external processes and are useful for integrating

ControlIt! into a larger system. All services are namespaced by the controller's name

enabling multiple instances of ControlIt! to simultaneously exist.

ROS topic-based introspection capabilities. Table C.2 lists the various

topic-based controller introspection capabilities that are provided by ControlIt!.

Table B.2. ControlIt! parameters (2 of 2).

Name Description

log ¯elds Speci¯es the optional ¯elds that are in a log message's pre¯x. Possible

values include:

package - the ROS package containing the message
¯le - ¯le containing the message

line - the line number of the message

function - the method producing the message

pid - the process ID of the thread producing the message
It is an array of strings.

max e®ort command Speci¯es the maximum e®ort that should be commanded for each joint.

A warning is produced if this is violated. It is an array of integers.

parameter binding factories The names of the plugins containing the parameter binding factories to
use. It is an array of strings.

robot description Contains the URDF description of the robot. This is used to initialize

ControlIt's °oating model. It is a string value.
robot interface type The name of the robot interface plugin to use. It is a string.

servo clock type The name of the servo clock plugin to use. It is a string value.

servo frequency The desired servo loop frequency in Hz. Warnings will be published if this

frequency is not achieved. It is an integer value.
single threaded model Whether to use the servo thread to update the model. It is a Boolean value.

single threaded tasks Whether to use the servo thread to update the task states. It is a Boolean

value.

whole body controller type The name of the WBC plugin to use. It is a string value.
world gravity Speci¯es the gravity acceleration along the X-, Y -, and Z -axis of the world

frame. Defaults to h0; 0;�9:81i. This is useful for debugging or when

working in worlds where the gravity does not pull in negative Z -axis
direction. It is an integer array.
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These topics can be subscribed to by external processes and are useful for integrating

ControlIt! into a larger system. All topics are namespaced by the controller's name

enabling multiple instances of ControlIt! to simultaneously exist.

Appendix D. ControlIt! Con¯guration File

ControlIt! enables users to specify the controller con¯guration using a YAML ¯le.

The syntax of this ¯le is shown below. By enabling YAML-based con¯guration,

ControlIt! can be made to work with a wide variety of applications without modi-

fying the source code and recompiling.

Task speci¯cation:

tasks:

- name: [task name] # user defined

type: [task type] # must match plugin name

... # task-specific parameters and their values

... # additional tasks

Constraint specification:

constraints:

- name: [constraint name] # user defined

type: [constraint type] # must match plugin name

Fig. C.1. When integratedwithTrikey, ControlIt! can be con¯gured to publishROS visualization msgs/

MarkerArray messages containing the current and goal headings of the robot. These marker messages

can be visualized in RViz as arrows. In this screenshot, ControlIt! is in the process of rotating Trikey
clockwise when viewed from above.
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... # constraint-specific parameters and their values

... # additional constraints

Compound task speci¯cation:

compound_task:

- name: [task name]

priority: [priority level]

operational_state: [enable, disable, or sense]

... # additional tasks

Constraint set speci¯cation:

constraint_set:

- name: [constraint name]

type: [constraint type]

operational_state: [enable or disable]

... # additional constraints

Binding Speci¯cation:

bindings:

- parameter: [parameter name] # must match real parameter name

direction: [input or output]

topic: [topic name]

transport_type: [transport type] # must match plugin name

properties:

- [transport-specific property]

... # additional transport-specific properties ...

# additional bindings

Event Speci¯cation:

events:

- name: [event name] # user defined

expression: [logical expression over parameters]

... # additional events

Appendix E. Controller Gains

The following tables provide the gains used by the various controllers in the

product disassembly application using Dreamer. The negative joint position con-

troller gains are strange but were con¯gured as such by Meka Robotics, the robot's

manufacturer (Meka Robotics has since been bought by Google). We do not know
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(a)

(b)

Fig. C.2. Two Cartesian position tasks and two orientation tasks are used to position and orient

Dreamer's end e®ectors in the world. The orientation and Cartesian position tasks have higher priority

than a joint position task that de¯nes the robot's posture. (a) Shows the current and goal 2-DOF oren-

tations. (b) Shows how ROS 6-DOF interactive markers denote the current position and orientation of the
wrists. The interactive markers can be dynamically and visually changed by the user to update the goal

positions and orientaions of the robot's wrists.
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for sure why some gains are negative since we are unable to access the details

of the joint-level controllers. It is possible that the direction of the encoder is

opposite of the motor resulting in the need for negative gains. Regardless, these

were the functioning settings used in the development and testing of ControlIt! on

Dreamer.

The reason why the left and right arms have di®erent gains is because the left arm

is about three years newer than the right arm and internally the mechatronics of the

left arm are signi¯cantly di®erent from that of the right arm.

Table C.2. ControlIt!'s ROS topic-based controller introspection capabilities.

Service Description

diagnostics/RTTCommLatency Publishes the latest round-trip communication time between
ControlIt! and the joint-level controllers. This is done by

transmitting sequence numbers to the joint-level controllers,

which are re°ected back through the joint state data. ControlIt!
monitors the time between transmitting a particular sequence

number and receiving it back.

diagnostics/command Publishes the latest command issued by ControlIt! to the robot.

diagnostics/errors Publishes any runtime errors that are encountered. An example
error is when the command includes NaN values.

diagnostics/gravityVector Publishes the current gravity compensation vector.

diagnostics/jointState Publishes the latest joint state information.

diagnostics/modelLatency Publishes the staleness of the currently active model. The model
latency is the time since the model was last updated.

diagnostics/servoComputeLatency Publishes the amount of time it took to execute the computations

within one cycle of the servo loop.

diagnostics/servoFrequency Publishes the instantaneous servo frequency.
diagnostics/warnings Publishes any runtime warnings that are encountered. An example

warning is when the joint position or velocity exceeds expected

limits.

Table C.1. ControlIt!'s ROS service-based controller introspection capabilities.

Service Description

diagnostics/getActuableJointIndices Provides the order of every actuable joint in the robot

model (omits joints that are real but not actuable)

diagnostics/getCmdJointIndices Provides the order of the joints in the command issued
by ControlIt! to the robot.

diagnostics/getConstraintJacobianMatrices Provides the Jacobian matrices belonging to the con-

straints in the constraint set.

diagnostics/getConstraintParameters Provides a list of every constraint parameter and its
current value.

diagnostics/getControlItParameters Provides the current values of the ControlIt! parameters

de¯ned in Appendix A.2.

diagnostics/getControllerCon¯guration Provides the current state of the compound task and
constraint set.

diagnostics/getRealJointIndices Provides the order of every real joint in the robot model.

diagnostics/getTaskParameters Provides a list of every task parameter is its current
value.
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Appendix F. Example Application Code

Figure F.1 contains an example code fragment from the product disassembly. The

application is written in the Python programming language, though any program-

ming language supported by ROS could be used including Cþþ. The code fragment

shows how the Cartesian position trajectory is generated for moving the right hand

into a position where it can grab the metal tube. Lines 548-552 specify the Cartesian

(x; y; z) waypoints that the hand is expected to traverse. For brevity, only one

waypoint is shown. Line 555 creates a cubic-spline interpolator, which is used on line

559 to generate the intermediate points between the waypoints. The while loop

starting on line 564 obtains the current goal Cartesian position based on the elapsed

time (line 572) and transmits this goal via a ROS topic (line 576). The goal pa-

rameter of the right hand Cartesian position task within ControlIt! is bound to this

ROS topic enabling ControlIt! to follow the desired Cartesian trajectory. The tra-

jectory is transmitted at 100Hz, based on line 579. Once the trajectory is done, line

583 issues a command to close the ¯ngers in the right hand is issued via another

bound ROS topic.

Table E.1. Dreamer joint torque controller gains.

Controller Kp Ki Kd

torso lower pitch �3 0 0

left shoulder extensor 10 1 0

left shoulder abductor 10 1 0
left shoulder rotator 10 1 0

left elbow 10 1 0

left wrist rotator 50 0 0

left wrist pitch 15 0 1
left wrist yaw 15 0 1

right shoulder extensor 7 0 0

right shoulder abductor 6 0 0

right shoulder rotator 5 0 0
right elbow 5 0 0

right wrist rotator �3 0 1

right wrist pitch �15 0 �1
right wrist yaw �15 0 �1

Table E.2. ControlIt! Task-level con-

troller gains used to control dreamer.

Task Kp Ki Kd

Joint position task 60 0 3

Left hand orientation 60 0 3
Right hand orientation 60 0 3

Left hand position 64 0 3

Right hand position 64 0 3
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Fig. F.1. Code fragment from product disassembly application.
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Fig. G.1. This ¯gure shows a visualization of the FSM used by the product disassembly application. The
ROS package SMACH is used to both implement the FSM logic and visualize its execution. The

highlighted state is the current state of the demo.
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Appendix G. ControlIt! SMACH FSM Integration

The following screenshot is a visualization of the product disassembly ¯nite state

machine provided by ROS SMACH Visualizer. It is updated in real time as

the application executes. This particular screenshot shows that Dreamer is in the

\GrabValveState" which is when her left gripper is being positioned to grab the

valve.
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