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Abstract— Whole-body operational space control is a pow-
erful compliant control approach for robots that physically
interact with their environment. The underlying mathematical
and algorithmic principles have been laid in a large body
of published work, and novel research keeps advancing its
formulation and variations. However the lack of a reusable
and robust shared implementation has hindered its widespread
adoption.

To fill this gap, we present an open-source implementation
of whole-body operational space control that provides runtime
configurability, ease of reuse and extension, and independence
from specific middlewares or operating systems. Our libraries
are highly portable, and the application code contains a
thin adaptation layer for specific development and runtime
environments such as ROS.

In this paper, we briefly survey the foundations of whole-body
control for mobile manipulation and describe the structure of
our software. We performed experiments on two quite different
robots to demonstrate that the software is mature enough for
building a community of users and developers who can work
on extensions and applications.

I. INTRODUCTION

The foundations for controlling robots that physically
interact with objects and persons in environments made
for humans have been investigated for approximately three
decades. In addition to recognizing and developing the
required mechatronic capabilities, such as backdriveable ac-
tuation and effective control of output torques, this large body
of work provides mathematical and algorithmic foundations
for creating robotic skills similar to those of humans in terms
of movement coordination, stiffness regulation, and contact
with the environment. However, despite the availability of
mechatronically advanced manipulators such as the KUKA
LWR, Barrett WAM, and Meka arm, this knowledge is only
slowly making its way into applications. These machines in-
dicate a definite trend toward robots better suited for physical
interaction with everyday environments, and we believe that
the remaining hurdle in producing agile interactive robot ap-
plications now lies in the complexity of the required models
and the difficulty of producing reusable extensible software
frameworks that provide advanced control methodologies.

To address this hurdle, we launched the stanford-wbc
open-source project in 2009, with the aim of making the
whole-body operational-space formulation developed at the
Stanford Robotics and AI Lab [17], [12] readily available
for widespread reuse. In this paper, we present the first
fruits of our effort to design, implement and test a software
package for compliant whole-body control, complete with
resources to create complex mobile manipulation behaviors

Fig. 1. To date, the stanford-wbc software has been integrated on
UT Austin’s Dreamer and Willow Garage’s PR2, which are quite distinct
in their mechatronics as well as their development and runtime system
environments.

by composition and extension. Having worked with open-
source robotics software and frameworks such as ROS,
Player/Stage, XCF, GenoM, and Orocos, we understand the
need for robust, flexible, and documented foundations that
can be re-composed in application-specific ways, and our
objectives explicitly include these non-technical challenges.

The project homepage is http://stanford-wbc.
sourceforge.net which contains announcements, doc-
umentation, mailing list archives, and links to download
source code releases and clone the git repository. The
majority of the source code is released under the LGPLv3
license [3], with some third-party code under other licenses.

To date, we have integrated the project on two robots
(Fig. 1): within the ROS-based control architecture on PR2 at
Willow Garage and Stanford; and on Dreamer at University
of Texas at Austin within the RTAI shared-memory interface
provided by Meka Robotics. The approach underlying our
software has been applied to other robots, such as PUMA and
ASIMO, and back-porting stanford-wbc to these systems
would be easy.

II. RELATED WORK

There is a large body of work that focuses on models
and control structures. Torque control strategies include the
work of Khatib [11] and the German aerospace center,
DLR [6], [14], the latter focusing on impedance control of
semi-flexible robot arms. At the whole-body level, torque
control has been applied by Mizuuchi et al. for compliant
tendon contraction [13], by Whitman and Atkeson [20] to
coordinate multiple optimal controllers for achieving com-
plex behaviors, by Hyon [8] for compliant multi-contact, and
ourselves [16] for the execution of whole-body skills. Posi-
tion control strategies still dominate the field; at the whole-
body level, they include work at AIST (e.g. momentum-



based models by Kajita et al. [9]), on the Honda Asimo (e.g.
inverse kinematic position control coupled with an inverted
pendulum model by Hirai et al. [5]), and on Reem-B ( inverse
kinematics approach by Tellez et al. [19]).

The research underlying stanford-wbc focuses on
models of whole-body compliant skills and on hierarchical
control structures that resolve task conflicts during execu-
tion [16], [18]. These rely on contact interactions for manip-
ulators, especially results on dynamics and force control by
Khatib [10] and Raibert and Craig [15], as well as our work
on mobile and multi-grasp manipulation [7], [21], [1].

III. WHOLE-BODY CONTROL FOUNDATIONS

This section summarizes algorithmic foundations and in-
troduces the main concepts of: (i) operational space tasks,
(ii) their adaptive hierarchical arrangement into sensorimotor
whole-body skills, and (iii) the prioritized control structure
which dynamically decouples tasks. Algorithm 1 in Sec. IV-
B provides a dense summary in pseudo-code with simplified
notation.

A task is defined via a mapping between the robot’s N -
dimensional joint configuration and some M -dimensional
space which describes an objective that the controller should
achieve. For any joint configuration, the robot is considered
a point in the M -dimensional operational space, and the
task controls the motion of this point. At this stage, a task
is a kinematic entity with an associated tangent space that
can be represented by a Jacobian, which maps velocities and
forces between joint and operational spaces.

For the (usual) case of N > M , a task-point defines
a manifold in joint-space. This manifold represents the
redundancy of the robot with respect to the task. We can
explore tangents to the current configuration to determine
joint-space motions which keep the task-point constant. This
is referred to as the null space of the task, and it provides
the basis for task decoupling via projection.

In order to facilitate the management of tasks and hierar-
chies, we introduce sensorimotor skills to translate between
higher-level goals (such as provided by planning algorithms)
and the operational-space tasks. A skill is responsible for
configuring the tasks such that an overall motion objective is
achieved. Skills can be considered containers and managers
of tasks, and the active skill provides the current task
hierarchy to the control structure.

The intuition behind the hierarchical control structure
is is to instantiate several tasks, each of which tries to
drive the robot toward some state. The task contributions
are accumulated using null space projections to ensure that
lower-priority tasks do not interfere with higher levels. The
motion is thus determined by each task in combination with
their priorities. This structuring provides two orthogonal
ways of changing robot behavior, either by influencing the
tasks (e.g. changing their gains or goals) or by rearranging
the hierarchy (e.g. inserting tasks or locally inverting their
ordering).

The model of the robot under prioritized control was
developed in [16] which provides the generalized Jacobian

Fig. 2. Architectural overview of the Whole-Body Control software.
SV stands for singular values, Tdes is the desired joint-torque vector, and
{qact, q̇act, Tact} are the actual joint positions, velocities, and torques. The
rest of the notation is the same as in Algorithm 1.

of an operational task for a given priority, written

J∗k|Pk
, Jtaskk

NPk
, (1)

where Jtaskk
is the Jacobian of the k-th level task manifold

with respect to an inertial frame,
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is the recursive dynamically-consistent null space describing
the task’s k-th priority state, k|Pk is used to express that the
k-th task operates in the null space of all higher priority tasks,
and J

∗
i|Pk

is the dynamically consistent generalized inverse
of the i-th prioritized Jacobian. The Principle of Virtual
Work allows us to determine the torques that accomplish
an operational force:

Γk = J ∗Tk|Pk
Fk (3)

where Fk is the force or impedance command to control
and interact with the task point, J∗k|Pk

is the whole-body
task Jacobian including the priority, and Γk is the task’s
contribution to the whole-body command of torques sent to
the actuators. For command summation, we use the control
structure

Γ =
∑
k

Γk =
∑
k

(
J ∗Tk|Pk

Fk

)
. (4)

This structure is a variant of our previous work on whole-
body compliant control [18].

IV. IMPLEMENTATION

We adhere to three main objectives during the design and
implementation of stanford-wbc: (i) separate concerns
into mathematical foundations, runtime configurability, and
independence from specific implementation environments;
(ii) support two types of end-users, namely control integra-
tors (library support for creating interesting applications) and
researchers (investigate and modify models and control struc-
tures); (iii) ease experimentation and system integration by
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Fig. 3. Controllers, skills, and tasks follow a similar layout
by providing init() and update() methods (the latter is called
computeCommand() in the controller to make its role more explicit).

providing reusable mechanisms for data logging, parameter
reflection, and interactive online configuration.

We follow the tried and trusted separation into layered
libraries that are then pulled into OS- and application-specific
executables. We rely on object-oriented programming (C++)
to allow extension by inheritance and composition. While
relying on some widespread open-source libraries, we care-
fully avoid dependencies on any particular middleware or
operating system. We strive to avoid feature bloat and keep
all interfaces clear and minimal.

This section begins with a high-level architectural
overview, then presents the code structure from the bottom
up, and finally describes the patterns and utilities for object
creation during startup and on-line reconfiguration of the
running tasks and skills.

A. System Architecture

Fig. 2 depicts the main components of our framework and
the information that flows during operation. The Controller
implements Eq. (4) to compute the torque commands Γdes
that are sent to the robot, based on the Jacobians Ji and
the desired accelerations ẍdes,i or forces Fdes,i that are
provided by the Task objects in the currently active task
hierarchy. The Model estimates the joint-space kinematics
and dynamics, used by tasks for internal updates and by the
controller for gravity compensation and dynamic decoupling.
The Skill is responsible for determining the currently active
task hierarchy. The latter is denoted current state in the figure
because hierarchy switching is typically implemented using
a finite-state machine that processes external sensorimotor
feedback as well as internal task feasibility information.

The system architecture diagram hints at the runtime
configurability and reflection capabilities by indicating pa-
rameter lists associated with the skill, tasks, and the con-
troller. These parameters are declared with type and name
in the source code, and at runtime they can be enumerated,
inspected, and changed by outside processes.

B. Implementation Structure

Fig. 3 shows the main aspects of the controller, skill, and
task base classes. The common Reflection base class
provides uniform parameter introspection capabilities which
are described in Sec. IV-C.

Algorithm 1 Hierarchical Task Decomposition (simplified).
Input: joint-space inverse mass-inertia A−1

joint-space gravity torque vector g
desired task accelerations ẍdes,i
task Jacobians Ji

Output: joint-space torque vector Γ
Γ← 0
N∗

0 ← In×n

for all 0 ≤ i < Ntasks do
J∗
i ← JiN

∗
i

Λ∗
i ←

(
J∗
i A−1J∗T )+++

p∗i ← Λ∗
i J

∗
i A−1g

Fcomp,i ← Λ∗
i J

∗
i A−1Γ

Γ← Γ + J∗
i
T (Λ∗

i ẍdes,i + p∗i − Fcomp,i)
if i < Ntasks − 1 then

N∗
i+1 ←

(
In×n −A−1J∗

i
T Λ∗

i J
∗
i

)
N∗

i

end if
end for
return Γ

Algorithm 1 gives simplified pseudo-code for the main
method (called computeCommand) of the default Con-
troller subclass. Here, the “(·)+++” denotes a pseudo-inverse
computed by singular-value decomposition and thresholding
at a task-dependent and configurable value. Several have
been omitted from the pseudo-code: task feasibility feedback
to the skill, switching to a safe fallback controller in case of
emergency, and skipping of inactive tasks.

The Model is a facade [4] that hides the specifics of the
kinematic and dynamic model behind a clear interface. Some
of its methods involve pointers that can be treated as opaque
handles but provide direct access to the dynamics engine for
experts.

The Task class is the extension point for programming
operational-space controllers independently of the specific
robot. Each task takes care of controlling a point in a virtual
task space that is mapped to and from the robot’s joint space
using the model.

The Skill base class is the starting point for composing
specific tasks into sensorimotor skills that result in compliant
whole-body behavior of the robot. A skill instance is respon-
sible for updating its tasks and providing a valid fully defined
task hierarchy at each control cycle. One intuitive way of
implementing skills is to define a finite set of states, each
with an associated task hierarchy, and have the skill perform
state transitions based on sensor readings or other feedback
methods, but the software framework does not enforce any
particular task management approach.

Although a skill defines what needs to be coordinated
by the tasks and the hierarchy, it (usually) does not define
specific goals. Instead, a skill definition file is parsed to
create and configure the required tasks, and their goals and
parameters get influenced at runtime using the reflection
approach described in Sec. IV-C.

Besides providing tasks to the controller, skill classes can
signal emergency situations by inspecting the singular values
of J ∗i J ∗Ti computed by the controller. When an essential
task becomes infeasible, the controller can be asked to switch



Reflection

check(*parameter,value)
lookupParameter(name)
getParameterTable()
declareParameter(name,*instance)

Parameter

get()
set(value)

ConcreteParameter
ParameterLogger

update(timestamp)
writeFiles(prefix)

Fig. 4. Parameter reflection infrastructure. There are five types of
ConcreteParameter: string, integer, floating point, vector, and matrix.
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T

Fig. 5. Task slots allow skill subclasses to declare a placeholder for a
task, and then rely on the parser and factory (not shown) to assign a task
instance at runtime when the controller starts up.

to a configurable safe fallback control law.

C. Configurability and Reflection

One of the most important features to make a software
framework reusable by others is runtime configurability. For
real-time capabilities, however, computational overhead is
also important. We have thus traded-off generality, amount
of code, and computational resources. Two features make
stanford-wbc configurable: parameter reflection and task
slots.

Parameter reflection (see Fig. 4) connects the imple-
mentation to the parser and runtime configuration engine.
The provided infrastructure maintains named parameters and
also provides generic logging capabilities. A subclass of
Reflection exposes its fields as parameters simply by
calling the declareParameter() method of its base
class. Optionally, parameters can be flagged read-only or
excluded from automatic logging, and reflection subclasses
can intercept write requests to enforce arbitrary constraints.

Task slots (see Fig. 5) allow skills to be written indepen-
dently of specific task subclasses or instances, a separation
of concerns important for extensibility and reusability. For
instance, if a skill requires a certain task to control the end-
effector position, it should not be concerned how exactly
a task achieves this. So, instead of hard-coding task types,
skill subclasses call the declareSlot() method in their
constructor, passing a name and a pointer to one of their
task fields. The rest is handled by the parser and factory: the
configuration file first defines tasks and their parameters, and
then instantiates skills fills their slots with the appropriate
task instances. In case of type mismatch, human readable
error messages are generated.
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Fig. 6. Task-singularity monitoring on Dreamer. When the elbow is
stretched out, the end-effector position task becomes infeasible (its condition
number becomes infinite) and the joint posture task gains an extra dimension
(its second eigenvalue becomes non-zero).

V. EXPERIMENTS

In order to demonstrate the portability of
stanford-wbc and its basic operation, we have performed
experiments on two robots which differ significantly from
each other, in terms of their mechatronics as well as
concerning their development and runtime environments.

Dreamer is a humanoid upper body made by Meka
Robotics for the Human-Centered Robotics Lab at the Uni-
versity of Texas at Austin. Its joints contain series-elastic
actuators that provide high-fidelity torque control. Here,
stanford-wbc is integrated with an RTAI application
that has one real-time whole-body control thread which
communicates via shared memory with the hardware driver,
and one non-real-time thread for runtime configuration and
debug output.

The second robot we used is PR2 at the Stanford Robotics
and AI Lab, a dual-arm mobile manipulator made by Wil-
low Garage. PR2 ships with ROS [2] and we integrated
stanford-wbc along with related packages into a ROS
stack called whole body control. We implemented a
ROS controller plugin that uses POSIX message queues
as communication mechanism between real-time driver and
non-real-time whole-body control application.

A. Studying Task Feasibility on Dreamer

As explained earlier, if parts of a task become infeasible,
its dynamically consistent Jacobian drops rank. This is not
always a problem: in fact, many if not most of the tasks will
be partially infeasible, and this is naturally handled by the
control structure. It is up to the skill to ensure that the ones
which are critical to the behavior remain at full rank.



Fig. 7. Demonstration of the interactive HelloByebyeSkill on
Dreamer, the Meka robot of the University of Texas at Austin, during a
show and tell at Willow Garage on March 4, 2011.

In order to illustrate how readily available the required
information is, Fig. 6 shows a skill with three tasks: an end-
effector orientation task at the top, an end-effector position
task in the middle, and a joint posture control at the bottom
of the hierarchy. The orientation task is always feasible
(this is a property of Dreamer’s kinematic structure). The
3-dimensional position task thus has 4 dimensions to work
in. It might be expected that it is always full rank, but
due to kinematic singularities, some directions of the end-
effector position can become uncontrollable. This is shown
by the plots of the condition number, which shoots up as
we manually push the arm toward specific configurations.
The joint posture controller, which gets projected into the
nullspaces of both the orientation and position tasks, thus
has between 1 and 2 dimensions to work with. This can be
seen by looking at its 2nd singular value, which is non-zero
only when the end-effector position task drops rank.

B. Interactive Skill Demo on Dreamer

Fig. 7 shows some video stills from demonstrating an
interactive skill. The HelloByebyeSkill contains four
tasks subdivided among two states: the SHAKE HANDS

and WAVE states each have a Cartesian end-effector posi-
tion tasks and a joint-posture task. The skill starts in the
SHAKE HANDS state which holds the robot’s hand out in
front of the torso, waiting for a human to shake it to “say
hello.” Once that ends (detected by looking at the end-
effector position error), the skill switches to the WAVE state
which “waves goodbye” by alternating between two end-
effector position goals above the robot’s head.

This behavior was written in an afternoon and is fully
integrated into the parameter reflection and task slot mech-
anisms. It thus illustrates how easy it is to extend the
existing framework with novel behaviors while leveraging
the existing tasks and infrastructure for wider system in-
tegration: we also implemented a thin bridge between the
parameter reflection of stanford-wbc and ROS messages
and services, thus allowing direct interaction with the running
whole-body controller via the ROS command line tools or
other ROS nodes.

C. Compensating for Motor Saturation on PR2

One of the main objectives for the mechatronic design
of PR2 was to make the arms extremely safe. This was
achieved by relying on a mechanical counter-balance for
gravity compensation, which in turn allows the arm motors
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Fig. 8. In this experiment we send a step in the setpoint to the shoulder-
pan joint of the left arm of PR2. All other joint setpoints remain constant.
The setpoint and trajectory is shown with a thick line, and all the other
joint trajectories overlaid with thin lines in order to show the coupling
(before) and its absence (after). Top: without acceleration limit. Bottom:
with ẍmax = 10rad/s

to be very low-powered. While this is great for safety, it
severely limits the control torques, especially in the first
4 degrees of freedom. This motor torque saturation, along
with running-belt stretch in some of the transmissions, are
the main reasons for the difficulties in using whole-body
operational space control on PR2. A naive application of
stanford-wbc leads to arm motions that are reminiscent
of excessive dynamic coupling and severely under-damped
PD controllers.

The experiments shown in Fig. 8 demonstrate that these
mechatronic limitations can be partially overcome: the
running-belt stretch can be compensated with experimental
PR2 controller packages provided by Willow Garage, and
motor torque saturation can be avoided by limiting the
acceleration of task points. Moving just the first joint with a
simple PD controller creates large coupling in all the other
joints, but if we generate acceleration- and velocity-bounded
trajectories, the coupling disappears almost entirely.

More work remains to be done to make the acceleration
limitation adaptive during task execution. Also, the implica-
tions of the nullspace projections on acceleration-bounded
task-points are not yet fully understood. But we have shown
that it is possible to employ whole-body control on PR2 as
long as the required fidelity is not very high.

D. Demonstrating Base-Velocity Integration on PR2

An important aspect of mobile manipulators is of course
that they are not bolted to a fixed base. Fig. 9 shows video



Fig. 9. Translating errors in the end-effector position and orientation into
virtual torques at the base, and then translating these torques into base
velocity commands using a viscosity approximation, allows to easily control
the robot by pushing and twisting its hand.

stills taken during a demonstration of our integration of
PR2’s base velocity controller into the whole-body control
framework. We use 3 virtual joints to represent the base mo-
tion to stanford-wbc via a simple yet effective dynamic
model that treats the base as a large mass in a purely viscous
medium. This maps desired torques into velocities which we
send to PR2’s base velocity controller.

VI. CONCLUSION

The much-touted advent of personal robots that will
physically and safely interact with people and objects in
everyday environments is not likely to come about unless we
start employing mechatronics and control approaches that are
designed from the ground up to properly deal with forces and
dynamics. Many (if not most) of the required principles are
now sufficiently understood, and recent commercial hardware
developments for mobile manipulation indicate that the re-
quired technology is within our grasp. The whole-body con-
trol software presented in this paper leverages an advanced
control approach that inherently supports physical interaction
and can handle multiple competing control objectives in a
very flexible manner. With the release as an open-source
project, we are fostering its widespread adoption for upcom-
ing developments, for research as well as for applications. In
particular, the ROS stack which integrates our core libraries
with an executable that uses the controller plugin architecture
developed for PR2, significantly lowers the entrance barrier.
Our experimental results show once again that whole-body
control works, but this time the implementation is available
to a large community of roboticists for testing, use, and
modification.
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