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Abstract— In this paper we focus on a mobile platform which
physically interacts with a human operator. We detect the
contact gestures of a human operator in real-time using a lab-
made time-of-flight 3D scanner mounted on the platform as
well as rotary torque sensors mounted along the drivetrain of
its omni-directional wheels. Through the fusion of these two
different sensors, touch gestures of an operator are processed
inferring information about the body parts in contact and the
applied forces. Behaviors that respond to touch-based gestures
are programmed a priori, and with the previous sensor data we
classify them into a set of known contact gestures that allow
the platform to quickly react. We investigate these physical
human-robot cooperative functions in a testbed consisting of a
sensorized mobile platform and a human operator.

I. INTRODUCTION

In this paper, we study physical Human Robot Interaction
(pHRD) in personal robotic platforms using human contact
detection and contact gesture queues. Previously, to interact
with robots, various methods have been devised such as
those relying on dedicated input devices, body language
visual recognition, voice recognition, and sensorized skins
or touch devices [17] among others. In our study, we
focus on fusing visual recognition with contact sensing on
mobile platforms, which allows close contact with people.
Existing work on fusing visual and contact recognition [9]
has primarily focused on robotic manipulators and on using
external structured light 3D sensing. However, this type of
method does not directly apply to omnidirectional mobile
platforms like our studies. First mobile platforms require
different dynamical models that incorporate traction and
roller constraints as well as models of roller friction. Second,
mobile platforms need to carry the 3D sensor on board, and
therefore time-of-flight 3D sensing is more suitable for close
range detection. Third previous methods have focused on
detecting contacts and the corresponding forces. In addition
to these capabilities, we focus on inferring which human
body parts are in contact with the robot. Ultimately, these
capabilities endow richer pHRI behaviors. Finally, previous
work on multicontact detection has focused on detection
only, but not on multicontact gesture communications as
explored here. As such, the aim of this work is to enable
mobile ground platforms to physically interact with humans
by means of multicontact gestures.

Ultimately, if robots are to be used as personal companions
for boosting our comfort and productivity, we believe they
will benefit by these type of close contact capabilities. The
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goal is to increase the communication modalities with robots
to become more intuitive by exploiting contact interactions.

One type of intuitive method for HRI is based on using
body language. A popular method for gesture recognition
is using depth image data made from structure light such
as the Kinect™ sensor. One of the drawback is that this
type of sensor is limited to indoor environments because the
infrared light (IR) is vulnerable to sunlight. An alternative to
structure light sensing is a laser scanner based on time-of-
flight measurements. In our case we use this optical sensing
modality because it allows to operate at close ranges and also
in outdoor environments. To leverage gesture recognition to
HRI in robot companion applications, we focus both on
the detection phase but also on the identification of the
human body parts approaching or in contact with the robotic
platform. Such capability allows to closely analyze the nature
of the intended behaviors.

Additionally touching has became pervasive for handheld
devices. We feel that our technology will allow to interact
with robots in similar ways, enabling complex touch behav-
iors. In our case, we feel that the possibilities are enormous
as many body parts can be used for communication and the
entire robot structure can be touched.

One approach to detect contact is to use a vision system
recognizing contact with nearby object [4]. Also, tactile
sensors on robot skins are popular to detect a contact. In
such case, tactile sensors are attached to an outer skin of
the robot. The problem is that all the exterior of the robot
needs to be covered by the sensorized skin to guarantee
whole-body contact detection. Another limitation is that
touch skins cannot recognize human body parts. Lastly, joint
torques on robotic manipulators have been used to infer
contact information [7]. Usually, sensing contact forces has
enabled some level of safety during accidental collisions
[5]. Previously, we have investigated whole-body contact
detection on mobile platforms to provide safety [6], but
not for human intention recognition. Since a contact force
is just one part of touch-based gestures, we cannot fully
estimate the human intention solely based on forces. To
push the boundaries of physical HRI, we suggest a multi-
contact gesture recognition method with human body-part
awareness. Our contact-based gesture recognition method
allows differentiation between intentional gestures and un-
intentional human activity. The reason is that the robot can
recognize what contacts are being made and match them
against the human body parts in contact. This allows to be
precise on the detection of intention. Compared to other
input devices, a physical contact interaction can be more
intuitive for a certain class of communication queues. It could



Fig. 1. 3D scanner made from a 2D LIDAR, Hokuyo UTM-30LX, can
scan all around the robot. While the 2D lidar scans a vertical plane (green
plane), the rotating gimbal rotates the plane with 10 ~ 15Hz speed.

ultimately relief operators from getting distracted during their
interaction with personal mobile platforms.

In our approach, a human behavior is estimated by a depth
image generated by a rotary laser scanner. The estimated
gesture is not immediately recognized as an intentional
command. When an external force is detected by the mobile
platform’s torque sensors, contact gestures can be recognized
from the behavior information of the human. As a response,
the robot can trigger a behavior that services the estimated
intention.

II. RELATED WORKS

To detect humans and objects in unstructured environ-
ments, exteroceptive sensors such as cameras and range
finders are often used. One of them is the Kinect sensor
[2]. The original application of this structured light sensor
was as a gaming input device, so the sensor did not require
360° scanning capabilities and had a relatively narrow field
of view. Additionally, the Kinect and similar sensors have a
relatively large minimum focal length making them unable
to detect proximity at close range. Recently, [9] detected
multicontact on a robotic manipulator using a Kinect sensor.
The sensor was located outside of the manipulator to allow it
to work at the prescribed operating distances. This placement
constraint highlights that Kinect type of sensors cannot be
used to detect close range contacts or proximity in mobile
platform compared to the proposed system which has with
the minimum distance of 10cm. Video cameras can also be
used to detect humans around robots, but their narrow field of
view limits their effectiveness. Additionally, video cameras
have very noisy and low resolution depth sensing making
them less suitable to detect proximity behaviors. A third
method consists on using a laser range finder. A large number
of research on human detection with these types of devices
focus on finding and tracking pedestrians with 2D scanning
[13] which is used in autonomous cars to avoid collisions,
for instance. To scan a 3D environment with a range finder,
multiple laser rays are shot and multiple planes are scanned
simultaneously by a multilayer 3D LIDAR [15] or multiple
2D LIDARs [18]. On the other hand, some researchers
reconstruct a 3D environment with a single LIDAR by
rotating it over its axis [13]. 2D LIDARs on rotary mounts
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Fig. 2. The electrical system of the mobile platform consists of
actuation parts and the 3D scanner. The microcontroller, which is Raspberry
PI 2, for the 3D scanner controls the rotational speed of the gimbal and
measures the orientation of the laser ray. It generates the orientation from
the synchronization signal from the 2D LIDAR and the encoder on the
gimbal.

are embedded in quadrotors [3], on mobile robots [12], or on
handheld poles [10]. There are several types of 3D scanning
methods addressing the rotating axes of the LIDAR and the
rotary mount [16]. In [13], the authors track human behavior
via HMM’s base on a planar LIDAR scanning. In [1], the
authors suggested combining an interlaced 3D scanner with a
2D planar LIDAR. This scanner is also known as Lissajous
scanner, and is used for multiresolution microscopes [14].
In [4], the authors attempted to find a contact based on
video sequences, but their estimated contacts did not include
magnitude and direction of the applied forces.

III. HARDWARE
A. Omni-directional Mobile Robot

Trikey shown in Figs. [7] [§] is a holonomic omnidirectional
mobile robot which has torque sensors on its drivetrain
[6]. The external forces applied by users are detected by
the torque sensors via model based whole-body sensing
algorithms. We can estimate the location, magnitude and
direction of external forces and collisions.

B. Interlaced Scanning

We implement a 3D scanner by employing a 2D LIDAR
(Hokuyo UTM-30LX) on top of a gimbal as shown in Figs.[T]
(2] The LIDAR triggers a synchronization signal to the GPIO
port of the microcontroller. Whenever the laser in the sensor
rotates once with 40Hz and the LIDAR generates a sequence
of distance, we interpolate the timestamps of the signals, and
generate a sequence of a tuple which consists of a timestamp,
angle, and distance. Also, we attach an 2500-CPS optical
encoder from US Digital Inc. (E6-2500-1000-1E-S-H-D-B)
to the gimbal, and the QEI signals from the encoder are also
fed into the GPIO ports. To deal with the signals from the
LIDAR and the encoder, we execute a sequential program
on the microcontroller, and its loop period is 300kHz. By
merging the signals, we generate the orientation of the laser
ray and deliver it to the control PC through RS232c serial
communication with 115kbps baudrate. The gimbal actuator
is powered by a 12V DC motor which is controlled by



L298N DC motor driver. The rotational speed is controlled
by PWM signals and kept between 10 and 15Hz. There
are two rotational axes in the 3D scanner. ¢ is the angle
of the laser ray in the 2D LIDAR, and 6 is that of the
gimbal rotating the 2D LIDAR as shown in Fig[I} When the
laser ray shot by the 2D LIDAR collides with an object, the
collision point with distance d can be expressed in Cartesian
coordinate as follows.

pP= [d cosf cos¢ dsinf cos¢ dsin¢]T (D
The scanned 3D position, p, is specified by three vari-
ables d, ¢, and 6, which represent polar coordinates. There
are two different types of scanning methods: progressive
(raster) scanning and interlaced (Lissajous) scanning [14],
[1]. Progressive scanning methods are implemented in most
of the 3D scanners made from 2D LIDARs. Typically, the
rotation of the gimbal is much slower than the 2D scanning,
and the points captured during the previous rotation are
replaced with the new points. Therefore, the points in the
constructed point cloud from the progressive scan have high
correlation between position and time because the scanning
is conducted sequentially from one scan line to another scan
line. However, in the case of the interlaced scanning, the
scanning speed of the gimbal is comparable to the LIDAR
scanning which means the scanning method is more suit-
able for tracking objects moving fast because the interlaced
scanning is more responsive than the progressive scanning,
and the points clouds are generated from the points captured
during several rotations of the gimbal. Considering the point
cloud generated from the progressive scanning, the temporal
sequence of the points is usually ignored meaning that we
get a snapshot taken at a given time. On the other hand,
the points from interlaced scanners have a low correlation
between position and time because adjacent points can
belong to different scan lines. Therefore, each point has its
own generation time which is not related to the position, so
we need to deal with not only position of the point but also
its timestamp.

IV. CONTACT GESTURE RECOGNITION

An external force estimation method has been derived with
certain limitations as described in [6]. With the help of a
3D scanner, we can also identify the location of the contact
which generates an external force and, relax some of the
constraints of the estimation. In addition to the estimated
contact forces, the point clouds generated by the 3D scanner
include the information about the object making the contact.
We assume that the object is a human body, and identify
which parts of the human body make contacts with the
mobile platform. All the estimated contact information is
used to generate a contact gesture.

A. Point Cloud Registration

When the LIDAR sensor and the encoder of the gimbal
system generate a polar coordinate of the shooting laser, it
occupies one voxel in an octree [11] with the resolution of
2cmx 2cm x 2cm. We register the shape of the top plate of the
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Fig. 3. Contact Gesture Estimation is implemented using the 3D scanner

and the torque sensors. The estimated contact gesture consists of the number
of contacts, the location and the force vector of each contact, and the human
body part that makes the contact.

Fig. 4. An occupancy map evaluated by Octree includes the mobile
platform and nearby objects. The mobile platform (red voxels) is identified
from the predefined shape.

mobile platform as a triangular plane, and voxels outside of
the plane are considered to be separate objects. So far, all the
voxels in the space are separated into two groups: platform
voxels and object voxels. To identify whether there is an
object making a contact with the platform, we measure the
distance from each object voxel and the triangular plane, and
if the distance is less than a given threshold, we identify the
voxel as just next to the platform. Fig. 4| shows the platform
voxels and the object voxels which are making contacts with
the platform. The object voxels are grouped together, and the
mean position of the voxels in each group corresponds to
the location of the contact which is used in the subsequent
section.

B. Point Clustering and Object Tracking

After the points are generated from the 2D LIDAR scan-
ning and added to the octree, the points are classified into
several point clusters. To reduce the computation time for
the clustering, we form a line segment from the LIDAR
data using the incremental least square linear regression
algorithm, and each line segment is classified into the nearest
point cluster. Then, we can deal with each point cluster as
an object. Some objects can be human bodies and others



are environments. In this paper, we assume that any objects
close to the robot are human operators who want to interact
physically with the robot.

To estimate the contact gesture, we start by tracking human
body which results in a set of time trajectories of the human
operator. To incorporate both the hitting laser and the missing
laser, we use a particle filter for the object tracking, and
each particle represents the candidate center point of the
object. We assume that the shape of the tracking object is an
ellipsoid which can be expressed with the covariance matrix
of the point cluster distribution, 32, as follows.

(x — xC)TZ*I(x —x.)=1 2)

where X, is the center of the object. If the j-th laser ray from
the 3D scanner hits a point, z;, then we can test whether the
point is located in the object whose center is the i-th particle
through the weighted distance, d;; between them as follows.

dij = (xi — 2;)" B (x; — z;) 3)

where x; is the postion of the i-th particle. If d;; is smaller
than or equal to 1, that means the point belongs to the object.
Therefore, we can generate a conditional probability of the
observation where the j-th laser ray hits on z; if the center
of the object is located on the i-th particle, x; as follows.

_ € dij S 1

P(Z]|Xz) o {0 : dij > 1 @)
Then, the conditional probability that the center of the object
is located on the i-th particle x; given the observation, z;
can be derived from the Bayesian rule as follows.

P(xi) P (z;]x:)

P xileg) = =g

(5
where

P(z))= Y €P(x) 6)

Xi,di; <1

When the laser misses the object, the missed laser ray can
also be used to confirm that the object does not exist on the
ray. The laser ray can be represented as a matrix equation
Az = 0 because the laser comes from the origin. Then,
the conditional probability of the missed laser ray given the
object position, x; can be expressed as follows.

n iming e, dij > 1
0 :ming; e, di; <1

P(Az=0|x;) = { )
The conditional probability of the i-th particle with respect
to the given missed laser ray events, P (x;|Az = 0) also

can be derived by the Bayesian rule similar to Eq. (6).

C. Contact Position and Human Posture Estimation

From the previous section, the robot can generate the point
cluster of a human body and identify its center position. As
described in Sec. when the point cloud is registered
in the occupancy map, we check how close each point is
to the predefined mobile platform shape. Therefore, we can
build a set of all the points close enough to the robot by

selecting points whose distance to the platform is smaller
than a given threshold, and name it as a contact point set.
The points in the set are clustered by k-means algorithm [8],
then the number of contacts the human body makes can be
identified by the number of the clusters. The initial states
of the clusters are established from the center of the points
in the set, and all the points are classified into one of the
clusters after the algorithm converges. Cluster with no points
are removed, and the remaining clusters are considered as
contact positions. In this paper, ¥ = 3 which means we
assume that the contact points can be both hands and the
body of the human operator. By identifying contact positions,
it can be assumed that the external forces are applied on the
contact positions. The locations of the contacts are fed into
the external force estimator as described in Sec.

The object point cloud, the center of the cloud, and the
contact positions to the mobile platform are estimated from
the 3D scanner. The body posture of the human operator can
also be estimated from the point cloud, then we can identify
how the human operator makes a contact with the mobile
platform which we call a contact gesture. To determine
body posture from the point cloud, we express a human
body as a Gaussian mixture model (GMM) with expectation-
maximization (EM) algorithm. Each Gaussian distribution of
GMM represents a human body part, and we can identify
the contact gesture from the locations of the Gaussian
distributions. In the paper, we use 4 mixture components
which represent left and right arms, a upper body, and a lower
body if there are two contact locations. If there is only one
contact location, we use 3 mixture components. The initial
distributions of the mixture components are initialized with
the center of the point cluster and the contact locations, and
the EM algorithm iterates until the change of distributions
is below a given threshold. Even though the human body
posture is oversimplified as only 3 or 4 mixture components,
the GMM representation has enough information to identify
which part of human body makes a contact with the mobile
platform. With the help of estimation methods described
in this section, we can track a human operator around the
mobile platform, and when the operator makes a contact, we
can identify which parts of the operator make contacts with
which parts of the mobile platform. The whole estimation
process is depicted in Fig. [3]

D. Multicontact Force Estimation

In the previous section, we have figured out where the
contacts happen on the mobile platform, which are described
as 3D coordinates on the robot’s frame. Assume that there
are N objects making contacts with the top of the platform,
and the location of the i-th contact location is (z;, y;) which
is in the local frame of the mobile platform, and the contact
force is F; = (F; 4, F; ) which includes no torque. Then,
the sum of all the forces satisfies the following condition
with respect to the net force and torque on its center,
Fo.: = (Femt’x Ferty Tezt)T. which can be expressed



as the following matrix form.

Fe:z:t = HN FN (8)
where
Iy Iy 3x2N
Hy = eR 9
N (yl T —YN $N> 2
Fn=(F. Fiy Fne Funy)' (10)

From [6], the external net force on the center of the mobile
platform, F.,; can be derived from the joint torques as
follows.

Fea = sz (F Fent=0 FS) (11

The size of Hy is determined by the number of contacts,
and the estimation can be either overdetermined or underde-
termined. In either case, we can estimate the contact forces,
Fy as follows.

Fy = HY (HyHY) Foo (12)

where (-)* is a pseudoinverse. The solution is equivalent to
a minimum norm estimation if it is underdetermined and a
least mean square error estimation if overdetermined.

When there are more than one contact point, the estimation
is underdetermined because the joint torque sensors cannot
sense all the contact forces such as squeezing and stretching,
which means the estimated contact forces, F' j are different
from the actual contact forces, F . However, the multi-
contact may happen simultaneously, so the estimated first
contact information can be exploited during a multicontact
estimation. For the first contact, we can determine the unit
vector of the force, u; = (ul,x ul,y)T and apply it to the
minimum norm estimation process as follows.

0 e 0

H — Hy e R(3+1)X2N
ul,y
Few
F/ea:t = < 0 t)

—Ul,x
Using Eq. (T3), contact forces are estimated with the first
contact information as follows.

(13)

ﬁ?\f —g7 (H/H/T)+ F/wt

(14)

E. Reaction to Human Intention

Using a new algorithm shown in Fig. 3] we identify all
contacts on the mobile platform and corresponding human
body parts in contact. Subsequently, the mobile platform
can respond according to the estimated contact gestures.
Inspired by touch-based APIs in mobile devices, we de-
fine a multi-touch event including location of a contact,
contact force vector, and human body part in contact.
When the mobile platform detects n contacts, each contact
is labeled with the corresponding human body part, i €
P £ {left_hand, right_hand, body}, and touch event,
t.,; belonging to a set of multiple touches, T.. Each touch
event includes a location vector (l.;) and the force vector
corresponding to the touch (f.;). To react to the contact

gestures, a command set, C is defined. Each command,
¢ € C includes a set of triggering touch information, T'.. A
triggering touch made by the human body part, 7, is denoted
as t.; € T, and it consists of the location vector (1. ;) and
the touch force vector (f.;). Given the estimated touches,
we can find the desired command, ¢, from the command set
from the following equation.

argmin Y ~ p1; (Te, Te) (wy [les — Le| +wp [£es — £ui])
c«€C icp

5)

where w; and wy are weights for distance and torque,
respectively, and p; is a function of sets which has the
following property

1, 4 ﬁl,i €Ty, and 4 t2,i €Ty
wi (T1,To) =4 0, t1; € T1, and to; € To
0, otherwise

(16)

V. EXPERIMENTS

In this section, we conduct experiments with the mobile
platform, and prove that the proposed algorithm guarantee
the effective retrieval of the contact gestures. The experi-
ments consist of 1) contact force estimation experiment in
which contact positions are identified by the 3D scanner, and
we estimate the contact force on each position; 2) contact
gesture recognition experiment in which the posture of a
human operator is estimated, and we figure out which parts
of the operator make contacts with the mobile platform; and
3) proof of concept experiment in which we show examples
of how the proposed contact gesture recognition can be used
as a physical HRI tool.

A. Contact Force Estimation

In this experiment, we determine contact forces when a
human operator makes contacts with the mobile platform.
To generate the calibrated contact forces, the human operator
applies 10N of contact forces by pulling the mobile platform
with spring scales as shown in Figs. [5}(a)~(c). With the 3D
scanner, the contact positions are observed, and the contact
forces are estimated from the contact positions and the net
force generated from the rotary torque sensors.

Figs. Bl(a)~(c) show the configurations of the contact
positions. In the case of Figs. B}(a) and (c), the contact
positions are identical, and there is no difference in the 3D
scanner data. However, the operator applies different contact
forces, and the contact gesture recognition method is able
to resolve for the different forces. In Figs. [5}(a) and (b), the
contact forces are applied in the same direction, while in Fig.
E}(C)the contact forces are perpendicular. In Figs. E}(d)w(f),
the occupancy maps are generated from the point clouds
of the configurations of Figs. [B}(a)~(c), respectively. The
red voxels are the mobile platform, and the blue voxels are
the human operator. The white voxels belong to the human
operator, and are close enough to be considered as making
a contact with the mobile platform. The pink sphere is the
estimated center of the human operator from the particle filter



(c) (f)

Fig. 5. Multicontact Force Estimation is conducted on the top of the
mobile platform. Both hands of the human operator make contacts and apply
some forces in (a)~(c). In (d)~(f), the corresponding occupancy maps are
shown. The red voxels are the mobile platform, the blue voxels are the
human operator, and the white voxels are the voxels of the human operator
which are making contacts.

in Sec. [IV-B] As described before, the contacts in Figs. 5} (a)
and (c) are identical in position.

Figs. [5}(d)~(f) show both the estimated contact positions
and the contact forces. The contact positions are calculated
from the average of contact voxels in the occupancy maps,
and the contact forces are estimated from the net force and
the contact positions with Eq. (I2). Because the applied
contact forces in Figs. @(a) and (c) are in the same direction,
the estimated fores are identical from the minimum norm
estimation process. On the other hand, in Fig. |§|-(c), the
forces are not in the same direction, and therefore some
components cancel each other out, resulting in the estimated
forces being different from the actual ones. To estimate
contacts more precisely, the human operator makes contacts
sequentially, and the information from the first contact is
used as a prior. The left hand makes a contact earlier than
the right hand, the direction of the first contact is added to
H’ in Eq. , and the contact forces are estimated with
Eq. (T4). The estimation with the sequential contacts in Fig.
[6H(d) shows that the estimated forces are close to the actual
forces.

TABLE I
COMMAND SET

Name ‘ Part ‘ Location (m) | Force (N) | Action
Collide | body (0,0) (5,0) Move away quickly
Push right (0,-0.3) (5,0) Go straight
Pull right (0,-0.3) (-5,0) Go straight and
come back
Rotate left (0,-0.3) (5,0) Rotate
right (0,0.3) (-5,0)

B. Contact Gesture Recognition

In addition to the previous experiment, we estimate the
body posture of the human operator making contacts with
the mobile platform. In this experiment, the following body
parts of the human operator make contact: 1) a single hand,
2) both hands, and 3) a thigh. We simplify the human body
and express it as three or four parts: one or two arms,
an upper body, and a lower body. The number of arms is
determined by the number of contacts which is identified
by the k-means method. Also, while making contacts, the
human operator applies forces by pulling or pushing. Fig. [7]
shows the experimental results.

In Figs. [TH(a)~(f), the human operator’s posture is ren-
dered, and the estimated contact gestures are shown in
Figs. (g)w(l). In those figures, the white spheres are the
estimated contact positions identified from the point clouds,
and the green octahedron shows the Gaussian distribution
of the estimated human body parts. Each vertex of the
octahedron is 1-o boundary of the distribution. The yellow
arrows are the estimated contact forces.

In Figs.[7H(a) and (b), single pulling and pushing forces are
applied to the mobile platform, respectively, and The green
arrows show the applied forces. As shown in Figs. [7}(g) and
(h), a single contact point is found, and the three Gaussian
distributions are identified as the human body parts. The
arm clusters converge to the real arm distributions, and the
contact is determined to be at the end of the arms. Thus, we
can determined what hands make contacts with the mobile
platform. Also, the contact forces estimated from the external
force estimator in Fig. [3] have the correct directions with
respect to the applied forces.

In the case of the multicontact experiments shown in Figs.
[7H(c) and (d), a pushing and twisting forces are applied to
the mobile platform, respectively. The k-means algorithm
identifies that there are two contact points, and therefore
four Gaussian distributions are used for all contact situations.
Both arm clusters converge towards the actual visualized
arms, allowing to determine that both hands make contacts
with the mobile platform. Figs. [7}(i) and (j) show the
estimated forces with the contact gestures, and the directions
of the contact forces are identical to the actual forces.

Contact with the lower human body is tested in Fig. [7}(e)
and (f). Typically, this kind of contact means a collision that
needs to be avoided. In the experiment, the human operator
leans toward the mobile platform, and a pushing force is



accidentally applied to it. As shown in Fig. [7}(k) and (1), all
three distributions are located on the lower human body area.
By comparing the covariance of the Gaussian distributions
to those of other contact events, we can distinguish between
lower body contacts and hand contacts.

C. pHRI through Contact Gesture

In the last experiment, we prove the concept of HRI
with the proposed contact-based gesture recognition. For the
experiments, we define four commands in Table E} If the
magnitude of the estimated contact force is greater than a
triggering threshold of 5N, the mobile platform determines
one command in the set which has the smallest test value
from Eq. (I3), and executes the predefined action. Fig [§]
shows the operations of the mobile platform commanded
through the recognized contact gesture. Even though the
difference between the gestures in Fig. (a) and (b) are
insignificant, the commands are different by the estimated
forces. Also, by identifying the human body part in contact,
we can differentiate an intentional action from an undesired
collision as shown in Fig. [8}(a) and (d).

VI. CONCLUSION

In this paper, we have devised a methodology for identi-
fying contact gestures between humans and omnidirectional
mobile platforms. To estimate contact gestures, we combine
data from a 3D scanner which is constructed using a rotating
2D LIDAR and rotary torque sensors on the platform’s
drivetrains. We use this infrastructure to determine which
human body parts make contact with mobile platforms and
how much forces they apply to it. To achieve responsive
and omnidirectional contact detection using the 3D scan-
ner, we choose an interlaced scanning procedure, where its
meshlike scan map enables instantaneous contact detection.
Even though it is hard to reconstruct a sophisticated 3D
environment with the coarse scanning sensor, our method
can obtain enough contact information for effective physical
HRI. We assume that all the nearby objects are human
operators, but this limitation can be relaxed by adopting
pervasive object classification methods. The contact informa-
tion includes the location of a contact and the human body
parts making contacts, which are determined via clustering
methods. Also, by fusing these contact information with the
rotary torque sensory data, we can estimate the contact force
on each contact location. The estimation is underdetermined,
so we apply a minimum norm estimation and prior contact
information. Finally, we demonstrate the possibility of using
contact gestures as a physical HRI tool through various proof
of concept experiments. In those experiment, the mobile
platform identifies the predefined contact command queues
and response according to the commanded gestures. In
the future, we will focus on achieving higher accuracy on
detection and faster responsiveness to human gestures. The
complexity of our detection algorithm is proportional to the
number of nearby human operators, so it can be extended
without a great effort. We will also focus on developing a

more meaningful language for contact based communications
for effective pHRI.
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Fig. 6. Estimated Multicontact Positions and Forces are shown in the graphs. The forces in Fig (c) and (d) are estimated from the same data, but (d)
uses a prior information of the left hand contact (upper one).
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Fig. 7. Contact Gesture Recognition for multiple contact situations are shown in Fig (a)~(f). Their corresponding occupancy maps are shown in Fig
(g)~(1), respectively. The white spheres show the contact locations, the green octahedrons represent the identified human body parts, and the yellow arrows
are the estimated contact forces.
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Fig. 8. pHRI Experiments using Contact Gesture Recognition demonstrate four use cases. Each use case starts from the top row. When the mobile
platform detects contact forces, it operates following the predefined reaction table shown in Table[I]
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