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Abstract
Although the problem of dynamic locomotion in very rough terrain is crit-

ical to the advancement of various areas in robotics and health devices, little
progress has been made on generalizing gait behavior with arbitrary paths.
Here, we report that perturbation theory, a set of approximation schemes
that has roots in celestial mechanics and non-linear dynamical systems, can
be adapted to predict the behavior of non closed-form integrable state-space
trajectories of a robot’s center of mass, given its arbitrary contact state and
center of mass (CoM) geometric path. Given an arbitrary geometric path of
the CoM and known step locations, we use perturbation theory to determine
phase curves of CoM behavior. We determine step transitions as the points of
intersection between adjacent phase curves. To discover intersection points,
we fit polynomials to the phase curves of neighboring steps and solve their dif-
ferential roots. The resulting multi-step phase diagram is the locomotion plan
suited to drive the behavior of a robot or device maneuvering in the rough
terrain. We provide two main contributions to legged locomotion: (1) pre-
dicting CoM state-space behavior for arbitrary paths by means of numerical
integration, and (2) finding step transitions by locating common intersection
points between neighboring phase curves. Because these points are contin-
uous in phase they correspond to the desired contact switching policy. We
validate our results on a human-size avatar navigating in a very rough envi-
ronment and compare its behavior to a human subject maneuvering through
the same terrain.

1 State of the Art

In dynamic walking we can classify techniques in various categories: (1)
trajectory-based techniques, (2) limit cycle-based techniques, (3) prediction
of contact, and (4) hybrids of the previous three.
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Trajectory-based techniques are techniques that track a time-based
joint or task space trajectory according to some locomotion model such as
the Zero Moment Point (ZMP). The state of the art of these methods in-
cludes generalized multi-contact locomotion behaviors, developed in [1] and
more recenlty, a time delay extension to the ZMP method for locomotin in
moderately uneven terrain, developed by [2].

Prediction of contact placement are techniques that use dynamics to
estimate suitable contact transitions to produce locomotion or regain balance.
In [3], simple dynamic models are used to predict the placement of next con-
tacts to achieve desire gait patterns. Finding feasible CoM static placements
given frictional constraints was tackled in [4, 5]. In [6], stable locomotion, in
the wide sense of not falling down, is studied by providing velocity based
stability margins. This work is used to regain stability when the robot’s is
pushed out, and lead to the concept of Capture Point.

Limit cycle based techniques were pioneered by McGeer [7] through
the field of passive dynamic walking. In [8] the authors study orbital stability,
and the effect of feedback control to achieve asymptotic stability. Optimiza-
tion of open-loop stability is investigated in [9]. In [10], the authors analyze
the energetic cost of bipedal walking and running as well as the role of leg
sequencing. In [11], the authors developed a dynamic walker using artificial
muscles and principles of stability of passive walkers. In [12], a methodology
for the analysis of state-space behavior and feedback control are presented for
various physical robots. Step recovery in response to perturbations is studied
in [13] supported by a linear bipedal model in combination with an orbital
energy controller. In [14], the selection of gait patterns based on studying
the interplay between robustness against perturbations and leg compliance
is investigated.

Hybrid methods include [15], where the stability of passive walkers is
studied and a controller obeying the rule, “in order to prevent falling back-
ward the next step, the swing leg shouldn’t be too far in front”, in the words
of the author, is suggested. Stochastic models of stability and its applica-
tion for walking on moderately rough unmodeled terrain are studied in [16].
The design of non-periodic locomotion for uneven terrain is investigated in
[17]. In [18], the authors explore the design of pasitivity-based controllers to
achieve walking on different ground slopes. Optimization-based techniques
for locomotion in rough terrains are presented in [19]. Locomotion in very
rough terrain is presented in [20], where the authors exploit optimization
and static models as a means to plan locomotion. More recently, the authors
of [21] have proposed a very efficient planner that can generate a discrete se-
quence of multi-contact stances using static criteria. Also recently, we made
a theoretical contribution in the form of an extended abstract [22] to enable
walking at fast speeds in very difficult variable terrain.

Hybrid methods: In [15], the stability of passive walkers is studied and
a controller obeying the rule, “in order to prevent falling backward the next
step, the swing leg shouldn’t be too far in front”, in the words of the author,
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is suggested. Stochastic models of stability and its application for walking
on moderately rough unmodeled terrain are studied in [16]. The design of
non-periodic locomotion for uneven terrain is investigated in [17]. In [18], the
authors explore the design of passivity-based controllers to achieve walking
on different ground slopes. Optimization-based techniques for locomotion in
rough terrains are presented in [19]. One of the most impressive works in lo-
comotion in very rough terrain is presented in [20], where the authors exploit
optimization as a means to plan locomotion. However, the planner is derived
from static models of balance.

2 Summary of our approach

We present here a new contribution that tackles rough terrain locomotion by
exploring CoM state-space manifolds and transitional contact states.

Our approach, can be explained algorithmically in terms of various phases,
namely (1) geometric planning, (2) perturbation-based CoM phase genera-
tion, and (3) dynamic step planning based on locating common intersection
points between neighboring CoM phase curves. The geometric planning phase
consists of applying standard kinematic planning techniques to obtain initial
guesses of feet contact locations and CoM geometric path. Perturbation-based
CoM phase generation is our first contribution and consists on: (1) formu-
lating CoM accelerations based on the contact state, (2) incorporating the
dependencies between Sagittal and vertical accelerations due to the given
CoM geometric path, and (3) using perturbation theory to predict phase
curves of the CoM in the vicinity of the step contacts and given initial and
final conditions of the step. The step solver is our second contribution and
consists on finding step transitions by locating common intersection points
between neighboring CoM phase curves. Because these points are continuous
in phase they correspond to the desired contact switching policy.

3 Mathematic derivations

3.1 Dynamic behavior from single contact point

Dynamic equilibrium (a principle derived from Newton’s Laws of Motion and
Lagrange-d’Alembert Formalism) states that the sum of acting moments on
a moving system equals the net inertial moment. Given a contact scenario,
such as the one shown in Figure 1, this principle translates into the following
moment balance expression
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Fig. 1 Definition of coordinates of center of mass (CoM), center of pressures (CoP), and

their position coordinates, pcom, pcopi
, pcopj

. Also shown are reaction forces, fri , frj and

the CoM’s acceleration, acom.

ns∑
i=1

pcopi
× fri +

ns∑
i=1

mri = pcom ×
(
fcom +M g

)
+mcom, (1)

where pcopi
is the i-th foot contact pressure point (with respect to the co-

ordinate origin), i = 1, . . . , ns, the number of supporting limbs; fri and mri

are the reaction force and moment at the pressure point; pcom is the vector
from the origin (of coordinates) to the CoM; fcom and mcom are the net force
and moment acting on the CoM; M is the robot’s mass and g is gravitational
constant expressed upwards in the direction of the reaction forces.

Due to the complexity of the algorithms, in this paper we will first address
locomotion as transitions involving one support limb. Therefore, the above
equation becomes

pcopk
× frk +mrk = pcom ×

(
fcom +M g

)
+mcom, (2)

where, k is the limb in contact with the terrain, pcopk
is the limb’s Center of

Pressure (CoP) point. The above equation is vectorial and represents three
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orthogonal moments. Because we aim first at controlling planar robots in the
Sagittal direction, we consider only solutions that produce accelerations in
that direction, i.e.[

pcopk
× frk = pcom × (fcom +M g) +mcom

]Y
. (3)

where the Y symbolizes the Sagittal plane (x-coordinate for frontal direction
and z-coordinate for vertical).

Considering dynamic equilibrium in forces we obtain

frk = fcom +M g, (4)

and therefore we can rearrange Equation (3) as[(
pcom − pcopk

)
× frk

]Y
= m Ycom. (5)

Solving this equation for the CoP in the Sagittal direction leads to the solution

pcopk[x]
= pcom[x] −

fr[kx]

fr[kz]

(
pcom[z] − pcopk[z]

)
−
mcom[y]

fr[kz]
. (6)

Considering that fr[kx]
= Macom[x], and fr[kz]

= M(acom[z] + g) we rewrite
the above equation as

acom[x] =

(
pcom[x] − pcopk[x]

)(
acom[z] + g

)
pcom[z] − pcopk[z]

(7)

Here, we have assumed a point mass model of the robot, with all of its weight
located at its center of mass. As such, there are no inertial moments generated
about the center of mass. Also, note that a similar equation could be derived
for accelerations in the lateral direction, but for the sake of simplicity we do
not consider them in this first study.

3.2 Integration of geometric path

Considering that acom[x] , p̈com[x], the above equation is dynamic and non-
linear. As such, the major challenge that it poses is that it does not have a
closed form solution, specially if pcom[z] and acom[z] are time varying. This
difficulty corresponds to the case of our study.

Almost all previous work that has addressed Equation (7) has tackled the
solution by simplifying it, constraining CoM trajectories to a fixed height, i.e.
pcom[z] = constant. These type of solutions have led to the concept of the Zero
Moment Point (ZMP). However, in doing so, locomotion trajectories cannot
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Fig. 2 Phase diagrams of CoM behavior using perturbation theory: These phase

diagrams correspond to Matlab simulations of CoM behavior given a foot contact point,
a desired CoM kinematic path, and varying boundary conditions given at the apex of the

step (i.e. when the CoM is directly above the foot contact point).

be considered for arbitrary terrains nor natural motion involving vertical
changes of the hip can be predicted. Therefore, our first contribution is on
predicting the behavior corresponding to the general case of Equation (7).
Because there are two variables that need to be solved, i.e. the trajectories of
the center of mass on the Sagittal and vertical directions, we need to first seed
geometric dependencies based on an initial guess. There are many options to
determined these dependencies, ranging from ensuring kinematic constraints,
generating biomimetic patterns, or minimizing electric and mechanical power.
For the time being, let us pick the option of ensuring kinematic constraints.

In such case, one simple dependency that fulfills the needs is to draw a
piecewise linear geometric path of the humanoid’s CoM behavior that changes
slope with the terrain while complying with kinematic constraints. In Figure
2 we depict two hypothetical paths, one linear and one sinusoidal. Let us con-
sider the linear case first with a static contact and use it to predict the CoM
dynamic behavior. More generally, if the CoM geometric path is piecewise
linear, it can be specified through equations of two or more intersecting lines,
i.e.
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pcom[z] =



a1 pcom[x] + b1, pcom ∈ P1

a2 pcom[x] + b2, pcom ∈ P2

...

aN pcom[x] + bN , pcom ∈ PN

(8)

where, Pk represents the path of the CoM over step k, ai represents the slope
of the piecewise lines, and bi represents the corresponding vertical crossing
points. Moreover, the acceleration profile can be extracted by differentiating
twice the above piecewise equation, i.e.

pcom[z] = ai pcom[x] + bi ⇒ acom[z] = ai acom[x]. (9)

Plugging the above acceleration in (7) we get

acom[x] =

(
pcom[x] − pcopk[x]

)(
ai acom[x] + g

)
ai pcom[x] + bi − pcopk[z]

, (10)

and since acom[x] appears both on the left and right hand sides, we can rewrite
the equation as

acom[x] =

(
pcom[x] − pcopk[x]

)
· g(

bi + ai pcopk[x]
− pcopk[z]

) . (11)

Notice that the denominator and the second term in the numerator above
are constants, so the above equation is of the form ẍ = β (x − α), which is
linear and as such has an exact solution.

However, in the more general case, kinematic paths do not necessarily map
to piecewise linear functions, but instead should be based on more sophisti-
cated mappings. For instance, an efficient gait can be produced by following

circular arcs, i.e. pcom[z] =
(
r2 − p2com[x]

)0.5
. In that case path accelerations

for a given step can be expressed by differentiating the arc, i.e.

acom[z] =− (r2 − p2com[x])
−1.5 p2com[x] v

2
com[x]

− (r2 − p2com[x])
−0.5 v2com[x]

− (r2 − p2com[x])
−0.5 pcom[x] acom[x] (12)

where, r is the radius of the arc. Plugging the above acceleration dependency
in (7) we get
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acom[x] =
(
pcom[x] − pcop[kx]

) N(pcom[x], vcom[x], pcop[kx]

)
D
(
pcom[x], pcopk[x]

, pcopk[z]

) , (13)

with

N , g −
(
r2 − p2com[x]

)−1.5
p2com[x] v

2
com[x]−(

r2 − p2com[x]

)−0.5
v2com[x] (14)

D ,
(
r2 − p2com[x]

)0.5
− pcopk[z]

+(
pcom[x] − pcopk[x]

)(
r2 − p2com[x]

)−0.5
pcom[x]. (15)

The acceleration of Eq. (13) is non-linear and therefore there is no closed-form
solution anymore.

If the CoM geometric paths are generated by a more sophisticated planner
with more complex kinematic dependencies, the acceleration profile will be
non-linear with general expression

acom[x] =
(
pcom[x] − pcop[kx]

)
· Φ
(
pcom[x], vcom[x], pcopk[x]

, pcopk[z]

)
, (16)

where, Φ(·, ·, ·, ·) is a non-linear function, and as such does not have a closed-
form solution.

3.3 State-space behavior prediction from perturbation
theory

Our objective is to extract state-space trajectories for arbitrary kinematic
CoM paths, Pk. We refer to numerical integration to address the difficulty
of solving non-linear differential equations such as Eq. (16). In particular,
perturbation theory, has been widely used to solve the trajectory of celestial
bodies and complex physical phenomena. Perturbation theory, is a set of
methods that enable to approximate solutions from problems that do not
have exact solutions, by looking into the solution of an exact related problem.
In our case, we have the exact solution of accelerations given positions and
contact points and we seek to approximate the solution of the CoM trajectory
versus its velocity, i.e. the state-space trajectory.

Let us study our case. For simplicity, we call x , pcom[x] and therefore we
can write Eq. (16) as

ẍ = f(x, ẋ), (17)
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Fig. 3 Concatenation of steps: The top graph shows the kinematic trajectory of the
human CoM (derived using motion capture) versus a piecewise linear approximation that

we use to generate the automatic walking simulation. The red dots correspond to the

position of the foot contacts. The bottom figure shows Matlab plots of Sagittal phase
curves for the human and the automatic simulation. The red circles correspond to apexes

of the steps. The green squares correspond to contact transitions of the automatic walk.

The purple squares correspond to contact transitions of the human walk. Notice, that
during the climbing of the first step of the stairs results in a smooth CoM pattern for

the human walk. This is due to the smoothening effect of dual contact during the stance
phase. This is not the case during the automatic walk because we have neglected the dual
contact phase and therefore the transitions between contacts are instantaneous. Besides
this difference, the rest of the walk correlates well.

where f(x, ẋ) is the RHS of Eq. (16). We assume that ẍ is approximately
constant for small perturbations of x. By integrating over a small time period,
ε (the perturbation), and for boundary conditions (xk, ẋk) we approximate
the behavior of neighboring points as
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ẋk+1 ≈ ẋk + ẍkε, (18)

xk+1 ≈ xk + ẋkε+ 0.5 ẍkε
2. (19)

From Eq. (18) we find an expression of the perturbation in terms of the
velocities and acceleration, ε ≈ (ẋk+1− ẋk)/ẍk, and substituting in Eq. (19),
with ẍk = f(xk), we get

xk+1 ≈
(
ẋ2k+1 − ẋ2k

)
2 f
(
xk
) + xk, (20)

which is the state-space approximate solution that we were looking for.
The pipeline for finding state-space trajectories goes as follows: (1) choose

a very small time perturbations ε, (2) given known velocities ẋk and accelera-
tions ẍk, and using Eq. (18), we get the next velocity ẋk+1, (3) using Eq. (20)
we get the next position xk+1, (4) plot the points (xk+1, ẋk+1) in the phase-
plane. We also notice, that we can iterate this recursion both forward and
backward. If we iterate backward, we need to choose a negative perturbation
ε.

Let us apply this method to the case of complex CoM paths as charac-
terized by the general acceleration of Eq. (16). We apply it to two different
trajectories, one where the CoM follows a downward linear path Fig. 2(a-c)
and another one where the CoM follows a sinusoidal wave Fig. 2(d-f). The
results of these two studies are shown in Fig. 2. In both cases the contact foot
is located at point

(
pcop[x], pcop[z]

)
= (0, 0)[m]. For both studies, we provide

various initial conditions at the apex (i.e. when the CoM is on top of the
contact point), corresponding to the initial position and velocity, and using
the proposed perturbation method obtain the phase diagram using forward
and backward propagation. The reason why the Sagittal phase diagram of
the linear CoM path is symmetrical is because Sagittal CoM accelerations
are independent of vertical variations. This is not the case when the path is
sinusoidal.

4 Motion Planning

Equipped with the perturbation method, which has allowed us to predict
phase diagrams given arbitrary CoM paths and contact locations, we are
now in the position to use it to plan dynamic walk in a very rough terrain.
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Fig. 4 Step solver: The center graph depicts phase curves for the two steps given the

CoM path shown on the left. We fit polynomials and find the differential root between the

adjacent curves to find the point of intersection.

4.1 Cascading multiple CoM phases

We have built a rough terrain set-up (see Fig. 4) in the Human Centered
Robotics Lab at UT which consists of several steps of a variety of heights
and widths. Figure 3, shows the resulting data of dynamically walking over
this terrain, for both our human subject and the automatic planner presented
throughout this paper. As we will see in the results section, the automatic
planner approximates feet locations and CoM kinematics from the human,
and automatically derives the dynamic walk. In particular, the CoM path
has been approximated with piecewise linear segments, which are shown laid
over the human CoM path extracted from a motion capture process.

Traversing the terrain of Fig. 4 involves making several steps, 7 in our
example which are marked with red circles in Fig. 4. We are interested in
displaying the phase diagram of the CoM for all steps for both the human
and automatic walks. By plotting phase behavior for each step we can de-
termine the intersections between neighboring steps (before and after), and
therefore, derive the precise phase points to switch between steps. Because
we have derived phase behavior for arbitrary CoM kinematics and feet loca-
tions, finding step intersections yields the motion and contact plan needed to
dynamically walk over the rough terrain.

Let us focus on the automatic walk of the results section. We have used
the perturbation method of Eq. (20) to derive phase curves for every step in
forward and backward modes with respect to the contact point. Boundary
conditions corresponding to CoM position and velocity are provided at the
apex of each step. For this example we have used similar values than the
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human. However, mimicking the human is not needed in the general case. We
do it here to compare results between the planner and the human. The valleys
of the bottom graph of Fig. 3 correspond to the deceleration/acceleration
pattern of single steps. They are in fact the same type of curves than those
predicted in Fig. 2, this time derived for every step of the desired sequence
given the desired boundary conditions. As such, the green squares shown
in Fig. 3 correspond to the points where two curves from neighboring steps
have the same position and velocity and therefore correspond to the necessary
contact transitions to switch to the next step.

The pipeline for automatically planning the walk in the rough terrain is
therefore as follows: (1) develop CoM geometric path to overcome the terrain,
(2) choose boundary conditions, i.e. position and velocity, of the CoM at the
apex of each step, (3) using the perturbation method of Eq. (20), predict
phase curves for each step, (4) find the phase intersections between neighbor-
ing steps which represent the phase point where the transition between steps
need to occur, (5) the resulting multi-step phase diagram is the locomotion
plan that will be fed to a control stage.

4.2 Phase Intersections to determine step transitions

From Fig. 3, it becomes clear that we derive the locomotion curves by finding
the phase intersection between steps. We illustrate this procedure by studying
the step to step transition on a particular example. Let us focus on the graphs
shown in Fig. 4. The left graph shows our test example, with a CoM path
consisting of a circular path first, continued by a line path. The motivation to
use different curves is to illustrate the versatility of our method on working
with any CoM path. The positions of the first and second step are also shown
as red circles. The center graph depicts the phase curves for the first and
second steps. We have used boundary conditions equal to (x0, ẋ0) = (0, 0.6)
and (x1, ẋ1) = (0.4, 0.45) at the apexes of steps 1 and 2 respectively. The
pictures showing the human are only to illustrate the switching strategy
between steps but they have not been used to derive CoM geometric paths
for this particular example.

Because the perturbation method of Eq. (20) is numerical, it is not obvious
to derive the intersection point between CoM phases. Our approach goes as
follows, (1) fit a polynomial of order 5 using Matlab’s polyfit() function,
to each of the two CoM phases, (2) subtract the two polynomials and find
its roots using Matlab’s roots() function, (3) discard imaginary roots, (4)
get the point of intersection within CoM position range, and (5) extract the
CoM velocity intersection by evaluating the polynomial at the CoM position
intersection. If we apply this pipeline to the example of Fig. 4 we get that
the step intersection is at (xs, ẋs) = (0.3, 0.7).
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5 Results

Based on the methods described in the previous sections, we have conducted
a study of locomotion in the Sagittal/vertical plane on a very rough terrain.
Using a human-size robot model, we consider a variable stepped terrain with
height variations between 0-40 [cm] and width variations between 20-40 [cm].
The goal of the planner is to maneuver the robot throughout the total length
of the terrain. The speed specifications are determined to cruise the terrain
at an average speed of 0.6 [m/s], although this choice could be arbitrary.
We also assume that the robot starts and finishes with zero velocities and
it increases velocity according to a trapezoidal profile similar to that of our
human subject. Once more, our planner does not need human specifications,
but we use them for comparison (see Fig. 3). Velocity specifications are given
only at each new step, corresponding to the moment when the center of
mass Sagittal position crosses the corresponding supporting foot, namely the
apex of the step. We consider steps to be spanned from apex to apex. Also
for simplicity, we consider only single-support phases, with instantaneous
transition between feet. The contact locations and CoM geometrical path are
given by the human subject and we assume a point mass model of the robot,
with all of the weight located at its waist. The human subject traversing the
terrain is shown in Fig. 6. His height is 184 [cm] and his weight is 80.5 [Kg]
at the time of the experiment.

An analysis of the experiments is shown in the caption text of Figures 5
and 6.

6 Conclusions and outlook

Locomotion in very rough terrain can be formulated as a non-linear dynamical
process. As such, it does not have a closed-form solution in most cases. We
have resorted to perturbation theory as an effective tool to predict state space
curves of CoM behavior. By cascading multiple phase curves of CoM behavior
around step contacts and finding intersection points, we have generalized the
planning of locomotion curves for arbitrary terrains. These prediction and
planning methods represent important contributions to locomotion.

The strong correlation of locomotion curves shown in Figure 3, which
compare artificial and human walks, demonstrate the validity of our methods.
However, to be deployable, our method needs to further include multicontact
stages such as when the two feet are in contact with the ground for some
period of time. In such case, we will need to derive new dynamic models
involving the effect of multicontact. We anticipate, that in such cases the
effect of internal forces will play an important role of the acceleration profile.
The Multicontact/Grasp matrix of [23] presents a powerful method to derive
dynamic behavior given frictional constraints and tension forces between feet.
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Fig. 5 Automatic locomotion planner: Using the proposed locomotion planner and

based on human kinematic data, we create artificial CoM trajectories and determine con-

tact transitions to achieve the desired design specifications of the walk. The snapshots on
the upper left show a mix reality sequence derive from our planner. Time trajectories of

CoM Sagittal and vertical behavior are shown to the right and are derived from the phase

curves. A separate planner computes feet trajectories to synchronize with CoM behavior
and switch step at the desired contact intersections.

Fig. 6 Data extraction from human walk: A human subject walks over a rough
terrain. Marker tracking is implemented and used to extract approximate CoM paths as

well as Sagittal and vertical CoM trajectories and velocities.

Moreover, during multicontact phases, there will be multiple phase curves
that will fulfill frictional constraints. This fact will enable to consider solutions
that minimize some criterion such as effort.

Constraining the locomotion paths to the Sagittal-vertical plane has al-
lowed us to tackle rough terrain locomotion effectively. However, practical
locomotion needs to include the 3 dimensions of space. In such case, CoM ge-
ometric paths need to be planned in the full 3D space and a lateral dynamic
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model similar to Equation (7) needs to be consider. Although this work has
explore modeling and planning issues, an important component for locomo-
tion is the choice of a controller. Operating in state space opens opportunities
to implement robust controllers. We plan to tackle this problem in the context
of whole-body compliant control [23]. The proposed methods can be used to
tackle a wide variety of issues such as rough terrain locomotion, disturbance
robustness, parameter uncertainty, internal force behavior, optimization of
performance parameters, and feasibility conditions for planners.
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